pci.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
  1. /*
  2. * Sonics Silicon Backplane PCI-Hostbus related functions.
  3. *
  4. * Copyright (C) 2005-2006 Michael Buesch <m@bues.ch>
  5. * Copyright (C) 2005 Martin Langer <martin-langer@gmx.de>
  6. * Copyright (C) 2005 Stefano Brivio <st3@riseup.net>
  7. * Copyright (C) 2005 Danny van Dyk <kugelfang@gentoo.org>
  8. * Copyright (C) 2005 Andreas Jaggi <andreas.jaggi@waterwave.ch>
  9. *
  10. * Derived from the Broadcom 4400 device driver.
  11. * Copyright (C) 2002 David S. Miller (davem@redhat.com)
  12. * Fixed by Pekka Pietikainen (pp@ee.oulu.fi)
  13. * Copyright (C) 2006 Broadcom Corporation.
  14. *
  15. * Licensed under the GNU/GPL. See COPYING for details.
  16. */
  17. #include <linux/ssb/ssb.h>
  18. #include <linux/ssb/ssb_regs.h>
  19. #include <linux/slab.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include "ssb_private.h"
  23. /* Define the following to 1 to enable a printk on each coreswitch. */
  24. #define SSB_VERBOSE_PCICORESWITCH_DEBUG 0
  25. /* Lowlevel coreswitching */
  26. int ssb_pci_switch_coreidx(struct ssb_bus *bus, u8 coreidx)
  27. {
  28. int err;
  29. int attempts = 0;
  30. u32 cur_core;
  31. while (1) {
  32. err = pci_write_config_dword(bus->host_pci, SSB_BAR0_WIN,
  33. (coreidx * SSB_CORE_SIZE)
  34. + SSB_ENUM_BASE);
  35. if (err)
  36. goto error;
  37. err = pci_read_config_dword(bus->host_pci, SSB_BAR0_WIN,
  38. &cur_core);
  39. if (err)
  40. goto error;
  41. cur_core = (cur_core - SSB_ENUM_BASE)
  42. / SSB_CORE_SIZE;
  43. if (cur_core == coreidx)
  44. break;
  45. if (attempts++ > SSB_BAR0_MAX_RETRIES)
  46. goto error;
  47. udelay(10);
  48. }
  49. return 0;
  50. error:
  51. ssb_printk(KERN_ERR PFX "Failed to switch to core %u\n", coreidx);
  52. return -ENODEV;
  53. }
  54. int ssb_pci_switch_core(struct ssb_bus *bus,
  55. struct ssb_device *dev)
  56. {
  57. int err;
  58. unsigned long flags;
  59. #if SSB_VERBOSE_PCICORESWITCH_DEBUG
  60. ssb_printk(KERN_INFO PFX
  61. "Switching to %s core, index %d\n",
  62. ssb_core_name(dev->id.coreid),
  63. dev->core_index);
  64. #endif
  65. spin_lock_irqsave(&bus->bar_lock, flags);
  66. err = ssb_pci_switch_coreidx(bus, dev->core_index);
  67. if (!err)
  68. bus->mapped_device = dev;
  69. spin_unlock_irqrestore(&bus->bar_lock, flags);
  70. return err;
  71. }
  72. /* Enable/disable the on board crystal oscillator and/or PLL. */
  73. int ssb_pci_xtal(struct ssb_bus *bus, u32 what, int turn_on)
  74. {
  75. int err;
  76. u32 in, out, outenable;
  77. u16 pci_status;
  78. if (bus->bustype != SSB_BUSTYPE_PCI)
  79. return 0;
  80. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_IN, &in);
  81. if (err)
  82. goto err_pci;
  83. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT, &out);
  84. if (err)
  85. goto err_pci;
  86. err = pci_read_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, &outenable);
  87. if (err)
  88. goto err_pci;
  89. outenable |= what;
  90. if (turn_on) {
  91. /* Avoid glitching the clock if GPRS is already using it.
  92. * We can't actually read the state of the PLLPD so we infer it
  93. * by the value of XTAL_PU which *is* readable via gpioin.
  94. */
  95. if (!(in & SSB_GPIO_XTAL)) {
  96. if (what & SSB_GPIO_XTAL) {
  97. /* Turn the crystal on */
  98. out |= SSB_GPIO_XTAL;
  99. if (what & SSB_GPIO_PLL)
  100. out |= SSB_GPIO_PLL;
  101. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  102. if (err)
  103. goto err_pci;
  104. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE,
  105. outenable);
  106. if (err)
  107. goto err_pci;
  108. msleep(1);
  109. }
  110. if (what & SSB_GPIO_PLL) {
  111. /* Turn the PLL on */
  112. out &= ~SSB_GPIO_PLL;
  113. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  114. if (err)
  115. goto err_pci;
  116. msleep(5);
  117. }
  118. }
  119. err = pci_read_config_word(bus->host_pci, PCI_STATUS, &pci_status);
  120. if (err)
  121. goto err_pci;
  122. pci_status &= ~PCI_STATUS_SIG_TARGET_ABORT;
  123. err = pci_write_config_word(bus->host_pci, PCI_STATUS, pci_status);
  124. if (err)
  125. goto err_pci;
  126. } else {
  127. if (what & SSB_GPIO_XTAL) {
  128. /* Turn the crystal off */
  129. out &= ~SSB_GPIO_XTAL;
  130. }
  131. if (what & SSB_GPIO_PLL) {
  132. /* Turn the PLL off */
  133. out |= SSB_GPIO_PLL;
  134. }
  135. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT, out);
  136. if (err)
  137. goto err_pci;
  138. err = pci_write_config_dword(bus->host_pci, SSB_GPIO_OUT_ENABLE, outenable);
  139. if (err)
  140. goto err_pci;
  141. }
  142. out:
  143. return err;
  144. err_pci:
  145. printk(KERN_ERR PFX "Error: ssb_pci_xtal() could not access PCI config space!\n");
  146. err = -EBUSY;
  147. goto out;
  148. }
  149. /* Get the word-offset for a SSB_SPROM_XXX define. */
  150. #define SPOFF(offset) ((offset) / sizeof(u16))
  151. /* Helper to extract some _offset, which is one of the SSB_SPROM_XXX defines. */
  152. #define SPEX16(_outvar, _offset, _mask, _shift) \
  153. out->_outvar = ((in[SPOFF(_offset)] & (_mask)) >> (_shift))
  154. #define SPEX32(_outvar, _offset, _mask, _shift) \
  155. out->_outvar = ((((u32)in[SPOFF((_offset)+2)] << 16 | \
  156. in[SPOFF(_offset)]) & (_mask)) >> (_shift))
  157. #define SPEX(_outvar, _offset, _mask, _shift) \
  158. SPEX16(_outvar, _offset, _mask, _shift)
  159. #define SPEX_ARRAY8(_field, _offset, _mask, _shift) \
  160. do { \
  161. SPEX(_field[0], _offset + 0, _mask, _shift); \
  162. SPEX(_field[1], _offset + 2, _mask, _shift); \
  163. SPEX(_field[2], _offset + 4, _mask, _shift); \
  164. SPEX(_field[3], _offset + 6, _mask, _shift); \
  165. SPEX(_field[4], _offset + 8, _mask, _shift); \
  166. SPEX(_field[5], _offset + 10, _mask, _shift); \
  167. SPEX(_field[6], _offset + 12, _mask, _shift); \
  168. SPEX(_field[7], _offset + 14, _mask, _shift); \
  169. } while (0)
  170. static inline u8 ssb_crc8(u8 crc, u8 data)
  171. {
  172. /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
  173. static const u8 t[] = {
  174. 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
  175. 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
  176. 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
  177. 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
  178. 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
  179. 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
  180. 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
  181. 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
  182. 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
  183. 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
  184. 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
  185. 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
  186. 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
  187. 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
  188. 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
  189. 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
  190. 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
  191. 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
  192. 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
  193. 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
  194. 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
  195. 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
  196. 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
  197. 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
  198. 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
  199. 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
  200. 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
  201. 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
  202. 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
  203. 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
  204. 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
  205. 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
  206. };
  207. return t[crc ^ data];
  208. }
  209. static u8 ssb_sprom_crc(const u16 *sprom, u16 size)
  210. {
  211. int word;
  212. u8 crc = 0xFF;
  213. for (word = 0; word < size - 1; word++) {
  214. crc = ssb_crc8(crc, sprom[word] & 0x00FF);
  215. crc = ssb_crc8(crc, (sprom[word] & 0xFF00) >> 8);
  216. }
  217. crc = ssb_crc8(crc, sprom[size - 1] & 0x00FF);
  218. crc ^= 0xFF;
  219. return crc;
  220. }
  221. static int sprom_check_crc(const u16 *sprom, size_t size)
  222. {
  223. u8 crc;
  224. u8 expected_crc;
  225. u16 tmp;
  226. crc = ssb_sprom_crc(sprom, size);
  227. tmp = sprom[size - 1] & SSB_SPROM_REVISION_CRC;
  228. expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
  229. if (crc != expected_crc)
  230. return -EPROTO;
  231. return 0;
  232. }
  233. static int sprom_do_read(struct ssb_bus *bus, u16 *sprom)
  234. {
  235. int i;
  236. for (i = 0; i < bus->sprom_size; i++)
  237. sprom[i] = ioread16(bus->mmio + bus->sprom_offset + (i * 2));
  238. return 0;
  239. }
  240. static int sprom_do_write(struct ssb_bus *bus, const u16 *sprom)
  241. {
  242. struct pci_dev *pdev = bus->host_pci;
  243. int i, err;
  244. u32 spromctl;
  245. u16 size = bus->sprom_size;
  246. ssb_printk(KERN_NOTICE PFX "Writing SPROM. Do NOT turn off the power! Please stand by...\n");
  247. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  248. if (err)
  249. goto err_ctlreg;
  250. spromctl |= SSB_SPROMCTL_WE;
  251. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  252. if (err)
  253. goto err_ctlreg;
  254. ssb_printk(KERN_NOTICE PFX "[ 0%%");
  255. msleep(500);
  256. for (i = 0; i < size; i++) {
  257. if (i == size / 4)
  258. ssb_printk("25%%");
  259. else if (i == size / 2)
  260. ssb_printk("50%%");
  261. else if (i == (size * 3) / 4)
  262. ssb_printk("75%%");
  263. else if (i % 2)
  264. ssb_printk(".");
  265. writew(sprom[i], bus->mmio + bus->sprom_offset + (i * 2));
  266. mmiowb();
  267. msleep(20);
  268. }
  269. err = pci_read_config_dword(pdev, SSB_SPROMCTL, &spromctl);
  270. if (err)
  271. goto err_ctlreg;
  272. spromctl &= ~SSB_SPROMCTL_WE;
  273. err = pci_write_config_dword(pdev, SSB_SPROMCTL, spromctl);
  274. if (err)
  275. goto err_ctlreg;
  276. msleep(500);
  277. ssb_printk("100%% ]\n");
  278. ssb_printk(KERN_NOTICE PFX "SPROM written.\n");
  279. return 0;
  280. err_ctlreg:
  281. ssb_printk(KERN_ERR PFX "Could not access SPROM control register.\n");
  282. return err;
  283. }
  284. static s8 r123_extract_antgain(u8 sprom_revision, const u16 *in,
  285. u16 mask, u16 shift)
  286. {
  287. u16 v;
  288. u8 gain;
  289. v = in[SPOFF(SSB_SPROM1_AGAIN)];
  290. gain = (v & mask) >> shift;
  291. if (gain == 0xFF)
  292. gain = 2; /* If unset use 2dBm */
  293. if (sprom_revision == 1) {
  294. /* Convert to Q5.2 */
  295. gain <<= 2;
  296. } else {
  297. /* Q5.2 Fractional part is stored in 0xC0 */
  298. gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
  299. }
  300. return (s8)gain;
  301. }
  302. static void sprom_extract_r123(struct ssb_sprom *out, const u16 *in)
  303. {
  304. int i;
  305. u16 v;
  306. u16 loc[3];
  307. if (out->revision == 3) /* rev 3 moved MAC */
  308. loc[0] = SSB_SPROM3_IL0MAC;
  309. else {
  310. loc[0] = SSB_SPROM1_IL0MAC;
  311. loc[1] = SSB_SPROM1_ET0MAC;
  312. loc[2] = SSB_SPROM1_ET1MAC;
  313. }
  314. for (i = 0; i < 3; i++) {
  315. v = in[SPOFF(loc[0]) + i];
  316. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  317. }
  318. if (out->revision < 3) { /* only rev 1-2 have et0, et1 */
  319. for (i = 0; i < 3; i++) {
  320. v = in[SPOFF(loc[1]) + i];
  321. *(((__be16 *)out->et0mac) + i) = cpu_to_be16(v);
  322. }
  323. for (i = 0; i < 3; i++) {
  324. v = in[SPOFF(loc[2]) + i];
  325. *(((__be16 *)out->et1mac) + i) = cpu_to_be16(v);
  326. }
  327. }
  328. SPEX(et0phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0A, 0);
  329. SPEX(et1phyaddr, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1A,
  330. SSB_SPROM1_ETHPHY_ET1A_SHIFT);
  331. SPEX(et0mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET0M, 14);
  332. SPEX(et1mdcport, SSB_SPROM1_ETHPHY, SSB_SPROM1_ETHPHY_ET1M, 15);
  333. SPEX(board_rev, SSB_SPROM1_BINF, SSB_SPROM1_BINF_BREV, 0);
  334. if (out->revision == 1)
  335. SPEX(country_code, SSB_SPROM1_BINF, SSB_SPROM1_BINF_CCODE,
  336. SSB_SPROM1_BINF_CCODE_SHIFT);
  337. SPEX(ant_available_a, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTA,
  338. SSB_SPROM1_BINF_ANTA_SHIFT);
  339. SPEX(ant_available_bg, SSB_SPROM1_BINF, SSB_SPROM1_BINF_ANTBG,
  340. SSB_SPROM1_BINF_ANTBG_SHIFT);
  341. SPEX(pa0b0, SSB_SPROM1_PA0B0, 0xFFFF, 0);
  342. SPEX(pa0b1, SSB_SPROM1_PA0B1, 0xFFFF, 0);
  343. SPEX(pa0b2, SSB_SPROM1_PA0B2, 0xFFFF, 0);
  344. SPEX(pa1b0, SSB_SPROM1_PA1B0, 0xFFFF, 0);
  345. SPEX(pa1b1, SSB_SPROM1_PA1B1, 0xFFFF, 0);
  346. SPEX(pa1b2, SSB_SPROM1_PA1B2, 0xFFFF, 0);
  347. SPEX(gpio0, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P0, 0);
  348. SPEX(gpio1, SSB_SPROM1_GPIOA, SSB_SPROM1_GPIOA_P1,
  349. SSB_SPROM1_GPIOA_P1_SHIFT);
  350. SPEX(gpio2, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P2, 0);
  351. SPEX(gpio3, SSB_SPROM1_GPIOB, SSB_SPROM1_GPIOB_P3,
  352. SSB_SPROM1_GPIOB_P3_SHIFT);
  353. SPEX(maxpwr_a, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_A,
  354. SSB_SPROM1_MAXPWR_A_SHIFT);
  355. SPEX(maxpwr_bg, SSB_SPROM1_MAXPWR, SSB_SPROM1_MAXPWR_BG, 0);
  356. SPEX(itssi_a, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_A,
  357. SSB_SPROM1_ITSSI_A_SHIFT);
  358. SPEX(itssi_bg, SSB_SPROM1_ITSSI, SSB_SPROM1_ITSSI_BG, 0);
  359. SPEX(boardflags_lo, SSB_SPROM1_BFLLO, 0xFFFF, 0);
  360. if (out->revision >= 2)
  361. SPEX(boardflags_hi, SSB_SPROM2_BFLHI, 0xFFFF, 0);
  362. SPEX(alpha2[0], SSB_SPROM1_CCODE, 0xff00, 8);
  363. SPEX(alpha2[1], SSB_SPROM1_CCODE, 0x00ff, 0);
  364. /* Extract the antenna gain values. */
  365. out->antenna_gain.a0 = r123_extract_antgain(out->revision, in,
  366. SSB_SPROM1_AGAIN_BG,
  367. SSB_SPROM1_AGAIN_BG_SHIFT);
  368. out->antenna_gain.a1 = r123_extract_antgain(out->revision, in,
  369. SSB_SPROM1_AGAIN_A,
  370. SSB_SPROM1_AGAIN_A_SHIFT);
  371. }
  372. /* Revs 4 5 and 8 have partially shared layout */
  373. static void sprom_extract_r458(struct ssb_sprom *out, const u16 *in)
  374. {
  375. SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01,
  376. SSB_SPROM4_TXPID2G0, SSB_SPROM4_TXPID2G0_SHIFT);
  377. SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01,
  378. SSB_SPROM4_TXPID2G1, SSB_SPROM4_TXPID2G1_SHIFT);
  379. SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23,
  380. SSB_SPROM4_TXPID2G2, SSB_SPROM4_TXPID2G2_SHIFT);
  381. SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23,
  382. SSB_SPROM4_TXPID2G3, SSB_SPROM4_TXPID2G3_SHIFT);
  383. SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01,
  384. SSB_SPROM4_TXPID5GL0, SSB_SPROM4_TXPID5GL0_SHIFT);
  385. SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01,
  386. SSB_SPROM4_TXPID5GL1, SSB_SPROM4_TXPID5GL1_SHIFT);
  387. SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23,
  388. SSB_SPROM4_TXPID5GL2, SSB_SPROM4_TXPID5GL2_SHIFT);
  389. SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23,
  390. SSB_SPROM4_TXPID5GL3, SSB_SPROM4_TXPID5GL3_SHIFT);
  391. SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01,
  392. SSB_SPROM4_TXPID5G0, SSB_SPROM4_TXPID5G0_SHIFT);
  393. SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01,
  394. SSB_SPROM4_TXPID5G1, SSB_SPROM4_TXPID5G1_SHIFT);
  395. SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23,
  396. SSB_SPROM4_TXPID5G2, SSB_SPROM4_TXPID5G2_SHIFT);
  397. SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23,
  398. SSB_SPROM4_TXPID5G3, SSB_SPROM4_TXPID5G3_SHIFT);
  399. SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01,
  400. SSB_SPROM4_TXPID5GH0, SSB_SPROM4_TXPID5GH0_SHIFT);
  401. SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01,
  402. SSB_SPROM4_TXPID5GH1, SSB_SPROM4_TXPID5GH1_SHIFT);
  403. SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23,
  404. SSB_SPROM4_TXPID5GH2, SSB_SPROM4_TXPID5GH2_SHIFT);
  405. SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23,
  406. SSB_SPROM4_TXPID5GH3, SSB_SPROM4_TXPID5GH3_SHIFT);
  407. }
  408. static void sprom_extract_r45(struct ssb_sprom *out, const u16 *in)
  409. {
  410. int i;
  411. u16 v;
  412. u16 il0mac_offset;
  413. if (out->revision == 4)
  414. il0mac_offset = SSB_SPROM4_IL0MAC;
  415. else
  416. il0mac_offset = SSB_SPROM5_IL0MAC;
  417. /* extract the MAC address */
  418. for (i = 0; i < 3; i++) {
  419. v = in[SPOFF(il0mac_offset) + i];
  420. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  421. }
  422. SPEX(et0phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET0A, 0);
  423. SPEX(et1phyaddr, SSB_SPROM4_ETHPHY, SSB_SPROM4_ETHPHY_ET1A,
  424. SSB_SPROM4_ETHPHY_ET1A_SHIFT);
  425. SPEX(board_rev, SSB_SPROM4_BOARDREV, 0xFFFF, 0);
  426. if (out->revision == 4) {
  427. SPEX(alpha2[0], SSB_SPROM4_CCODE, 0xff00, 8);
  428. SPEX(alpha2[1], SSB_SPROM4_CCODE, 0x00ff, 0);
  429. SPEX(boardflags_lo, SSB_SPROM4_BFLLO, 0xFFFF, 0);
  430. SPEX(boardflags_hi, SSB_SPROM4_BFLHI, 0xFFFF, 0);
  431. SPEX(boardflags2_lo, SSB_SPROM4_BFL2LO, 0xFFFF, 0);
  432. SPEX(boardflags2_hi, SSB_SPROM4_BFL2HI, 0xFFFF, 0);
  433. } else {
  434. SPEX(alpha2[0], SSB_SPROM5_CCODE, 0xff00, 8);
  435. SPEX(alpha2[1], SSB_SPROM5_CCODE, 0x00ff, 0);
  436. SPEX(boardflags_lo, SSB_SPROM5_BFLLO, 0xFFFF, 0);
  437. SPEX(boardflags_hi, SSB_SPROM5_BFLHI, 0xFFFF, 0);
  438. SPEX(boardflags2_lo, SSB_SPROM5_BFL2LO, 0xFFFF, 0);
  439. SPEX(boardflags2_hi, SSB_SPROM5_BFL2HI, 0xFFFF, 0);
  440. }
  441. SPEX(ant_available_a, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_A,
  442. SSB_SPROM4_ANTAVAIL_A_SHIFT);
  443. SPEX(ant_available_bg, SSB_SPROM4_ANTAVAIL, SSB_SPROM4_ANTAVAIL_BG,
  444. SSB_SPROM4_ANTAVAIL_BG_SHIFT);
  445. SPEX(maxpwr_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_MAXP_BG_MASK, 0);
  446. SPEX(itssi_bg, SSB_SPROM4_MAXP_BG, SSB_SPROM4_ITSSI_BG,
  447. SSB_SPROM4_ITSSI_BG_SHIFT);
  448. SPEX(maxpwr_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_MAXP_A_MASK, 0);
  449. SPEX(itssi_a, SSB_SPROM4_MAXP_A, SSB_SPROM4_ITSSI_A,
  450. SSB_SPROM4_ITSSI_A_SHIFT);
  451. if (out->revision == 4) {
  452. SPEX(gpio0, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P0, 0);
  453. SPEX(gpio1, SSB_SPROM4_GPIOA, SSB_SPROM4_GPIOA_P1,
  454. SSB_SPROM4_GPIOA_P1_SHIFT);
  455. SPEX(gpio2, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P2, 0);
  456. SPEX(gpio3, SSB_SPROM4_GPIOB, SSB_SPROM4_GPIOB_P3,
  457. SSB_SPROM4_GPIOB_P3_SHIFT);
  458. } else {
  459. SPEX(gpio0, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P0, 0);
  460. SPEX(gpio1, SSB_SPROM5_GPIOA, SSB_SPROM5_GPIOA_P1,
  461. SSB_SPROM5_GPIOA_P1_SHIFT);
  462. SPEX(gpio2, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P2, 0);
  463. SPEX(gpio3, SSB_SPROM5_GPIOB, SSB_SPROM5_GPIOB_P3,
  464. SSB_SPROM5_GPIOB_P3_SHIFT);
  465. }
  466. /* Extract the antenna gain values. */
  467. SPEX(antenna_gain.a0, SSB_SPROM4_AGAIN01,
  468. SSB_SPROM4_AGAIN0, SSB_SPROM4_AGAIN0_SHIFT);
  469. SPEX(antenna_gain.a1, SSB_SPROM4_AGAIN01,
  470. SSB_SPROM4_AGAIN1, SSB_SPROM4_AGAIN1_SHIFT);
  471. SPEX(antenna_gain.a2, SSB_SPROM4_AGAIN23,
  472. SSB_SPROM4_AGAIN2, SSB_SPROM4_AGAIN2_SHIFT);
  473. SPEX(antenna_gain.a3, SSB_SPROM4_AGAIN23,
  474. SSB_SPROM4_AGAIN3, SSB_SPROM4_AGAIN3_SHIFT);
  475. sprom_extract_r458(out, in);
  476. /* TODO - get remaining rev 4 stuff needed */
  477. }
  478. static void sprom_extract_r8(struct ssb_sprom *out, const u16 *in)
  479. {
  480. int i;
  481. u16 v, o;
  482. u16 pwr_info_offset[] = {
  483. SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1,
  484. SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3
  485. };
  486. BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) !=
  487. ARRAY_SIZE(out->core_pwr_info));
  488. /* extract the MAC address */
  489. for (i = 0; i < 3; i++) {
  490. v = in[SPOFF(SSB_SPROM8_IL0MAC) + i];
  491. *(((__be16 *)out->il0mac) + i) = cpu_to_be16(v);
  492. }
  493. SPEX(board_rev, SSB_SPROM8_BOARDREV, 0xFFFF, 0);
  494. SPEX(alpha2[0], SSB_SPROM8_CCODE, 0xff00, 8);
  495. SPEX(alpha2[1], SSB_SPROM8_CCODE, 0x00ff, 0);
  496. SPEX(boardflags_lo, SSB_SPROM8_BFLLO, 0xFFFF, 0);
  497. SPEX(boardflags_hi, SSB_SPROM8_BFLHI, 0xFFFF, 0);
  498. SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, 0xFFFF, 0);
  499. SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, 0xFFFF, 0);
  500. SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
  501. SSB_SPROM8_ANTAVAIL_A_SHIFT);
  502. SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
  503. SSB_SPROM8_ANTAVAIL_BG_SHIFT);
  504. SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
  505. SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
  506. SSB_SPROM8_ITSSI_BG_SHIFT);
  507. SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
  508. SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
  509. SSB_SPROM8_ITSSI_A_SHIFT);
  510. SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
  511. SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
  512. SSB_SPROM8_MAXP_AL_SHIFT);
  513. SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
  514. SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
  515. SSB_SPROM8_GPIOA_P1_SHIFT);
  516. SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
  517. SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
  518. SSB_SPROM8_GPIOB_P3_SHIFT);
  519. SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
  520. SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
  521. SSB_SPROM8_TRI5G_SHIFT);
  522. SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
  523. SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
  524. SSB_SPROM8_TRI5GH_SHIFT);
  525. SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G, 0);
  526. SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
  527. SSB_SPROM8_RXPO5G_SHIFT);
  528. SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
  529. SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
  530. SSB_SPROM8_RSSISMC2G_SHIFT);
  531. SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
  532. SSB_SPROM8_RSSISAV2G_SHIFT);
  533. SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
  534. SSB_SPROM8_BXA2G_SHIFT);
  535. SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
  536. SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
  537. SSB_SPROM8_RSSISMC5G_SHIFT);
  538. SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
  539. SSB_SPROM8_RSSISAV5G_SHIFT);
  540. SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
  541. SSB_SPROM8_BXA5G_SHIFT);
  542. SPEX(pa0b0, SSB_SPROM8_PA0B0, 0xFFFF, 0);
  543. SPEX(pa0b1, SSB_SPROM8_PA0B1, 0xFFFF, 0);
  544. SPEX(pa0b2, SSB_SPROM8_PA0B2, 0xFFFF, 0);
  545. SPEX(pa1b0, SSB_SPROM8_PA1B0, 0xFFFF, 0);
  546. SPEX(pa1b1, SSB_SPROM8_PA1B1, 0xFFFF, 0);
  547. SPEX(pa1b2, SSB_SPROM8_PA1B2, 0xFFFF, 0);
  548. SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, 0xFFFF, 0);
  549. SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, 0xFFFF, 0);
  550. SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, 0xFFFF, 0);
  551. SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, 0xFFFF, 0);
  552. SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, 0xFFFF, 0);
  553. SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, 0xFFFF, 0);
  554. SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, 0xFFFF, 0);
  555. SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, 0xFFFFFFFF, 0);
  556. SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, 0xFFFFFFFF, 0);
  557. SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, 0xFFFFFFFF, 0);
  558. SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, 0xFFFFFFFF, 0);
  559. /* Extract the antenna gain values. */
  560. SPEX(antenna_gain.a0, SSB_SPROM8_AGAIN01,
  561. SSB_SPROM8_AGAIN0, SSB_SPROM8_AGAIN0_SHIFT);
  562. SPEX(antenna_gain.a1, SSB_SPROM8_AGAIN01,
  563. SSB_SPROM8_AGAIN1, SSB_SPROM8_AGAIN1_SHIFT);
  564. SPEX(antenna_gain.a2, SSB_SPROM8_AGAIN23,
  565. SSB_SPROM8_AGAIN2, SSB_SPROM8_AGAIN2_SHIFT);
  566. SPEX(antenna_gain.a3, SSB_SPROM8_AGAIN23,
  567. SSB_SPROM8_AGAIN3, SSB_SPROM8_AGAIN3_SHIFT);
  568. /* Extract cores power info info */
  569. for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) {
  570. o = pwr_info_offset[i];
  571. SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  572. SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT);
  573. SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
  574. SSB_SPROM8_2G_MAXP, 0);
  575. SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0);
  576. SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0);
  577. SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0);
  578. SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  579. SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT);
  580. SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
  581. SSB_SPROM8_5G_MAXP, 0);
  582. SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP,
  583. SSB_SPROM8_5GH_MAXP, 0);
  584. SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP,
  585. SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT);
  586. SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0);
  587. SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0);
  588. SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0);
  589. SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0);
  590. SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0);
  591. SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0);
  592. SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0);
  593. SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0);
  594. SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0);
  595. }
  596. /* Extract FEM info */
  597. SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G,
  598. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  599. SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G,
  600. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  601. SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G,
  602. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  603. SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G,
  604. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  605. SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G,
  606. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  607. SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G,
  608. SSB_SROM8_FEM_TSSIPOS, SSB_SROM8_FEM_TSSIPOS_SHIFT);
  609. SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G,
  610. SSB_SROM8_FEM_EXTPA_GAIN, SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
  611. SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G,
  612. SSB_SROM8_FEM_PDET_RANGE, SSB_SROM8_FEM_PDET_RANGE_SHIFT);
  613. SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G,
  614. SSB_SROM8_FEM_TR_ISO, SSB_SROM8_FEM_TR_ISO_SHIFT);
  615. SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G,
  616. SSB_SROM8_FEM_ANTSWLUT, SSB_SROM8_FEM_ANTSWLUT_SHIFT);
  617. SPEX(leddc_on_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_ON,
  618. SSB_SPROM8_LEDDC_ON_SHIFT);
  619. SPEX(leddc_off_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_OFF,
  620. SSB_SPROM8_LEDDC_OFF_SHIFT);
  621. SPEX(txchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_TXCHAIN,
  622. SSB_SPROM8_TXRXC_TXCHAIN_SHIFT);
  623. SPEX(rxchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_RXCHAIN,
  624. SSB_SPROM8_TXRXC_RXCHAIN_SHIFT);
  625. SPEX(antswitch, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_SWITCH,
  626. SSB_SPROM8_TXRXC_SWITCH_SHIFT);
  627. SPEX(opo, SSB_SPROM8_OFDM2GPO, 0x00ff, 0);
  628. SPEX_ARRAY8(mcs2gpo, SSB_SPROM8_2G_MCSPO, ~0, 0);
  629. SPEX_ARRAY8(mcs5gpo, SSB_SPROM8_5G_MCSPO, ~0, 0);
  630. SPEX_ARRAY8(mcs5glpo, SSB_SPROM8_5GL_MCSPO, ~0, 0);
  631. SPEX_ARRAY8(mcs5ghpo, SSB_SPROM8_5GH_MCSPO, ~0, 0);
  632. SPEX(rawtempsense, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_RAWTEMP,
  633. SSB_SPROM8_RAWTS_RAWTEMP_SHIFT);
  634. SPEX(measpower, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_MEASPOWER,
  635. SSB_SPROM8_RAWTS_MEASPOWER_SHIFT);
  636. SPEX(tempsense_slope, SSB_SPROM8_OPT_CORRX,
  637. SSB_SPROM8_OPT_CORRX_TEMP_SLOPE,
  638. SSB_SPROM8_OPT_CORRX_TEMP_SLOPE_SHIFT);
  639. SPEX(tempcorrx, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMPCORRX,
  640. SSB_SPROM8_OPT_CORRX_TEMPCORRX_SHIFT);
  641. SPEX(tempsense_option, SSB_SPROM8_OPT_CORRX,
  642. SSB_SPROM8_OPT_CORRX_TEMP_OPTION,
  643. SSB_SPROM8_OPT_CORRX_TEMP_OPTION_SHIFT);
  644. SPEX(freqoffset_corr, SSB_SPROM8_HWIQ_IQSWP,
  645. SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR,
  646. SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR_SHIFT);
  647. SPEX(iqcal_swp_dis, SSB_SPROM8_HWIQ_IQSWP,
  648. SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP,
  649. SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP_SHIFT);
  650. SPEX(hw_iqcal_en, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL,
  651. SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL_SHIFT);
  652. SPEX(bw40po, SSB_SPROM8_BW40PO, ~0, 0);
  653. SPEX(cddpo, SSB_SPROM8_CDDPO, ~0, 0);
  654. SPEX(stbcpo, SSB_SPROM8_STBCPO, ~0, 0);
  655. SPEX(bwduppo, SSB_SPROM8_BWDUPPO, ~0, 0);
  656. SPEX(tempthresh, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_TRESH,
  657. SSB_SPROM8_THERMAL_TRESH_SHIFT);
  658. SPEX(tempoffset, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_OFFSET,
  659. SSB_SPROM8_THERMAL_OFFSET_SHIFT);
  660. SPEX(phycal_tempdelta, SSB_SPROM8_TEMPDELTA,
  661. SSB_SPROM8_TEMPDELTA_PHYCAL,
  662. SSB_SPROM8_TEMPDELTA_PHYCAL_SHIFT);
  663. SPEX(temps_period, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_PERIOD,
  664. SSB_SPROM8_TEMPDELTA_PERIOD_SHIFT);
  665. SPEX(temps_hysteresis, SSB_SPROM8_TEMPDELTA,
  666. SSB_SPROM8_TEMPDELTA_HYSTERESIS,
  667. SSB_SPROM8_TEMPDELTA_HYSTERESIS_SHIFT);
  668. sprom_extract_r458(out, in);
  669. /* TODO - get remaining rev 8 stuff needed */
  670. }
  671. static int sprom_extract(struct ssb_bus *bus, struct ssb_sprom *out,
  672. const u16 *in, u16 size)
  673. {
  674. memset(out, 0, sizeof(*out));
  675. out->revision = in[size - 1] & 0x00FF;
  676. ssb_dprintk(KERN_DEBUG PFX "SPROM revision %d detected.\n", out->revision);
  677. memset(out->et0mac, 0xFF, 6); /* preset et0 and et1 mac */
  678. memset(out->et1mac, 0xFF, 6);
  679. if ((bus->chip_id & 0xFF00) == 0x4400) {
  680. /* Workaround: The BCM44XX chip has a stupid revision
  681. * number stored in the SPROM.
  682. * Always extract r1. */
  683. out->revision = 1;
  684. ssb_dprintk(KERN_DEBUG PFX "SPROM treated as revision %d\n", out->revision);
  685. }
  686. switch (out->revision) {
  687. case 1:
  688. case 2:
  689. case 3:
  690. sprom_extract_r123(out, in);
  691. break;
  692. case 4:
  693. case 5:
  694. sprom_extract_r45(out, in);
  695. break;
  696. case 8:
  697. sprom_extract_r8(out, in);
  698. break;
  699. default:
  700. ssb_printk(KERN_WARNING PFX "Unsupported SPROM"
  701. " revision %d detected. Will extract"
  702. " v1\n", out->revision);
  703. out->revision = 1;
  704. sprom_extract_r123(out, in);
  705. }
  706. if (out->boardflags_lo == 0xFFFF)
  707. out->boardflags_lo = 0; /* per specs */
  708. if (out->boardflags_hi == 0xFFFF)
  709. out->boardflags_hi = 0; /* per specs */
  710. return 0;
  711. }
  712. static int ssb_pci_sprom_get(struct ssb_bus *bus,
  713. struct ssb_sprom *sprom)
  714. {
  715. int err;
  716. u16 *buf;
  717. if (!ssb_is_sprom_available(bus)) {
  718. ssb_printk(KERN_ERR PFX "No SPROM available!\n");
  719. return -ENODEV;
  720. }
  721. if (bus->chipco.dev) { /* can be unavailable! */
  722. /*
  723. * get SPROM offset: SSB_SPROM_BASE1 except for
  724. * chipcommon rev >= 31 or chip ID is 0x4312 and
  725. * chipcommon status & 3 == 2
  726. */
  727. if (bus->chipco.dev->id.revision >= 31)
  728. bus->sprom_offset = SSB_SPROM_BASE31;
  729. else if (bus->chip_id == 0x4312 &&
  730. (bus->chipco.status & 0x03) == 2)
  731. bus->sprom_offset = SSB_SPROM_BASE31;
  732. else
  733. bus->sprom_offset = SSB_SPROM_BASE1;
  734. } else {
  735. bus->sprom_offset = SSB_SPROM_BASE1;
  736. }
  737. ssb_dprintk(KERN_INFO PFX "SPROM offset is 0x%x\n", bus->sprom_offset);
  738. buf = kcalloc(SSB_SPROMSIZE_WORDS_R123, sizeof(u16), GFP_KERNEL);
  739. if (!buf)
  740. return -ENOMEM;
  741. bus->sprom_size = SSB_SPROMSIZE_WORDS_R123;
  742. sprom_do_read(bus, buf);
  743. err = sprom_check_crc(buf, bus->sprom_size);
  744. if (err) {
  745. /* try for a 440 byte SPROM - revision 4 and higher */
  746. kfree(buf);
  747. buf = kcalloc(SSB_SPROMSIZE_WORDS_R4, sizeof(u16),
  748. GFP_KERNEL);
  749. if (!buf)
  750. return -ENOMEM;
  751. bus->sprom_size = SSB_SPROMSIZE_WORDS_R4;
  752. sprom_do_read(bus, buf);
  753. err = sprom_check_crc(buf, bus->sprom_size);
  754. if (err) {
  755. /* All CRC attempts failed.
  756. * Maybe there is no SPROM on the device?
  757. * Now we ask the arch code if there is some sprom
  758. * available for this device in some other storage */
  759. err = ssb_fill_sprom_with_fallback(bus, sprom);
  760. if (err) {
  761. ssb_printk(KERN_WARNING PFX "WARNING: Using"
  762. " fallback SPROM failed (err %d)\n",
  763. err);
  764. } else {
  765. ssb_dprintk(KERN_DEBUG PFX "Using SPROM"
  766. " revision %d provided by"
  767. " platform.\n", sprom->revision);
  768. err = 0;
  769. goto out_free;
  770. }
  771. ssb_printk(KERN_WARNING PFX "WARNING: Invalid"
  772. " SPROM CRC (corrupt SPROM)\n");
  773. }
  774. }
  775. err = sprom_extract(bus, sprom, buf, bus->sprom_size);
  776. out_free:
  777. kfree(buf);
  778. return err;
  779. }
  780. static void ssb_pci_get_boardinfo(struct ssb_bus *bus,
  781. struct ssb_boardinfo *bi)
  782. {
  783. bi->vendor = bus->host_pci->subsystem_vendor;
  784. bi->type = bus->host_pci->subsystem_device;
  785. }
  786. int ssb_pci_get_invariants(struct ssb_bus *bus,
  787. struct ssb_init_invariants *iv)
  788. {
  789. int err;
  790. err = ssb_pci_sprom_get(bus, &iv->sprom);
  791. if (err)
  792. goto out;
  793. ssb_pci_get_boardinfo(bus, &iv->boardinfo);
  794. out:
  795. return err;
  796. }
  797. #ifdef CONFIG_SSB_DEBUG
  798. static int ssb_pci_assert_buspower(struct ssb_bus *bus)
  799. {
  800. if (likely(bus->powered_up))
  801. return 0;
  802. printk(KERN_ERR PFX "FATAL ERROR: Bus powered down "
  803. "while accessing PCI MMIO space\n");
  804. if (bus->power_warn_count <= 10) {
  805. bus->power_warn_count++;
  806. dump_stack();
  807. }
  808. return -ENODEV;
  809. }
  810. #else /* DEBUG */
  811. static inline int ssb_pci_assert_buspower(struct ssb_bus *bus)
  812. {
  813. return 0;
  814. }
  815. #endif /* DEBUG */
  816. static u8 ssb_pci_read8(struct ssb_device *dev, u16 offset)
  817. {
  818. struct ssb_bus *bus = dev->bus;
  819. if (unlikely(ssb_pci_assert_buspower(bus)))
  820. return 0xFF;
  821. if (unlikely(bus->mapped_device != dev)) {
  822. if (unlikely(ssb_pci_switch_core(bus, dev)))
  823. return 0xFF;
  824. }
  825. return ioread8(bus->mmio + offset);
  826. }
  827. static u16 ssb_pci_read16(struct ssb_device *dev, u16 offset)
  828. {
  829. struct ssb_bus *bus = dev->bus;
  830. if (unlikely(ssb_pci_assert_buspower(bus)))
  831. return 0xFFFF;
  832. if (unlikely(bus->mapped_device != dev)) {
  833. if (unlikely(ssb_pci_switch_core(bus, dev)))
  834. return 0xFFFF;
  835. }
  836. return ioread16(bus->mmio + offset);
  837. }
  838. static u32 ssb_pci_read32(struct ssb_device *dev, u16 offset)
  839. {
  840. struct ssb_bus *bus = dev->bus;
  841. if (unlikely(ssb_pci_assert_buspower(bus)))
  842. return 0xFFFFFFFF;
  843. if (unlikely(bus->mapped_device != dev)) {
  844. if (unlikely(ssb_pci_switch_core(bus, dev)))
  845. return 0xFFFFFFFF;
  846. }
  847. return ioread32(bus->mmio + offset);
  848. }
  849. #ifdef CONFIG_SSB_BLOCKIO
  850. static void ssb_pci_block_read(struct ssb_device *dev, void *buffer,
  851. size_t count, u16 offset, u8 reg_width)
  852. {
  853. struct ssb_bus *bus = dev->bus;
  854. void __iomem *addr = bus->mmio + offset;
  855. if (unlikely(ssb_pci_assert_buspower(bus)))
  856. goto error;
  857. if (unlikely(bus->mapped_device != dev)) {
  858. if (unlikely(ssb_pci_switch_core(bus, dev)))
  859. goto error;
  860. }
  861. switch (reg_width) {
  862. case sizeof(u8):
  863. ioread8_rep(addr, buffer, count);
  864. break;
  865. case sizeof(u16):
  866. SSB_WARN_ON(count & 1);
  867. ioread16_rep(addr, buffer, count >> 1);
  868. break;
  869. case sizeof(u32):
  870. SSB_WARN_ON(count & 3);
  871. ioread32_rep(addr, buffer, count >> 2);
  872. break;
  873. default:
  874. SSB_WARN_ON(1);
  875. }
  876. return;
  877. error:
  878. memset(buffer, 0xFF, count);
  879. }
  880. #endif /* CONFIG_SSB_BLOCKIO */
  881. static void ssb_pci_write8(struct ssb_device *dev, u16 offset, u8 value)
  882. {
  883. struct ssb_bus *bus = dev->bus;
  884. if (unlikely(ssb_pci_assert_buspower(bus)))
  885. return;
  886. if (unlikely(bus->mapped_device != dev)) {
  887. if (unlikely(ssb_pci_switch_core(bus, dev)))
  888. return;
  889. }
  890. iowrite8(value, bus->mmio + offset);
  891. }
  892. static void ssb_pci_write16(struct ssb_device *dev, u16 offset, u16 value)
  893. {
  894. struct ssb_bus *bus = dev->bus;
  895. if (unlikely(ssb_pci_assert_buspower(bus)))
  896. return;
  897. if (unlikely(bus->mapped_device != dev)) {
  898. if (unlikely(ssb_pci_switch_core(bus, dev)))
  899. return;
  900. }
  901. iowrite16(value, bus->mmio + offset);
  902. }
  903. static void ssb_pci_write32(struct ssb_device *dev, u16 offset, u32 value)
  904. {
  905. struct ssb_bus *bus = dev->bus;
  906. if (unlikely(ssb_pci_assert_buspower(bus)))
  907. return;
  908. if (unlikely(bus->mapped_device != dev)) {
  909. if (unlikely(ssb_pci_switch_core(bus, dev)))
  910. return;
  911. }
  912. iowrite32(value, bus->mmio + offset);
  913. }
  914. #ifdef CONFIG_SSB_BLOCKIO
  915. static void ssb_pci_block_write(struct ssb_device *dev, const void *buffer,
  916. size_t count, u16 offset, u8 reg_width)
  917. {
  918. struct ssb_bus *bus = dev->bus;
  919. void __iomem *addr = bus->mmio + offset;
  920. if (unlikely(ssb_pci_assert_buspower(bus)))
  921. return;
  922. if (unlikely(bus->mapped_device != dev)) {
  923. if (unlikely(ssb_pci_switch_core(bus, dev)))
  924. return;
  925. }
  926. switch (reg_width) {
  927. case sizeof(u8):
  928. iowrite8_rep(addr, buffer, count);
  929. break;
  930. case sizeof(u16):
  931. SSB_WARN_ON(count & 1);
  932. iowrite16_rep(addr, buffer, count >> 1);
  933. break;
  934. case sizeof(u32):
  935. SSB_WARN_ON(count & 3);
  936. iowrite32_rep(addr, buffer, count >> 2);
  937. break;
  938. default:
  939. SSB_WARN_ON(1);
  940. }
  941. }
  942. #endif /* CONFIG_SSB_BLOCKIO */
  943. /* Not "static", as it's used in main.c */
  944. const struct ssb_bus_ops ssb_pci_ops = {
  945. .read8 = ssb_pci_read8,
  946. .read16 = ssb_pci_read16,
  947. .read32 = ssb_pci_read32,
  948. .write8 = ssb_pci_write8,
  949. .write16 = ssb_pci_write16,
  950. .write32 = ssb_pci_write32,
  951. #ifdef CONFIG_SSB_BLOCKIO
  952. .block_read = ssb_pci_block_read,
  953. .block_write = ssb_pci_block_write,
  954. #endif
  955. };
  956. static ssize_t ssb_pci_attr_sprom_show(struct device *pcidev,
  957. struct device_attribute *attr,
  958. char *buf)
  959. {
  960. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  961. struct ssb_bus *bus;
  962. bus = ssb_pci_dev_to_bus(pdev);
  963. if (!bus)
  964. return -ENODEV;
  965. return ssb_attr_sprom_show(bus, buf, sprom_do_read);
  966. }
  967. static ssize_t ssb_pci_attr_sprom_store(struct device *pcidev,
  968. struct device_attribute *attr,
  969. const char *buf, size_t count)
  970. {
  971. struct pci_dev *pdev = container_of(pcidev, struct pci_dev, dev);
  972. struct ssb_bus *bus;
  973. bus = ssb_pci_dev_to_bus(pdev);
  974. if (!bus)
  975. return -ENODEV;
  976. return ssb_attr_sprom_store(bus, buf, count,
  977. sprom_check_crc, sprom_do_write);
  978. }
  979. static DEVICE_ATTR(ssb_sprom, 0600,
  980. ssb_pci_attr_sprom_show,
  981. ssb_pci_attr_sprom_store);
  982. void ssb_pci_exit(struct ssb_bus *bus)
  983. {
  984. struct pci_dev *pdev;
  985. if (bus->bustype != SSB_BUSTYPE_PCI)
  986. return;
  987. pdev = bus->host_pci;
  988. device_remove_file(&pdev->dev, &dev_attr_ssb_sprom);
  989. }
  990. int ssb_pci_init(struct ssb_bus *bus)
  991. {
  992. struct pci_dev *pdev;
  993. int err;
  994. if (bus->bustype != SSB_BUSTYPE_PCI)
  995. return 0;
  996. pdev = bus->host_pci;
  997. mutex_init(&bus->sprom_mutex);
  998. err = device_create_file(&pdev->dev, &dev_attr_ssb_sprom);
  999. if (err)
  1000. goto out;
  1001. out:
  1002. return err;
  1003. }