main.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <m@bues.ch>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/module.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/ssb/ssb.h>
  16. #include <linux/ssb/ssb_regs.h>
  17. #include <linux/ssb/ssb_driver_gige.h>
  18. #include <linux/dma-mapping.h>
  19. #include <linux/pci.h>
  20. #include <linux/mmc/sdio_func.h>
  21. #include <linux/slab.h>
  22. #include <pcmcia/cistpl.h>
  23. #include <pcmcia/ds.h>
  24. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  25. MODULE_LICENSE("GPL");
  26. /* Temporary list of yet-to-be-attached buses */
  27. static LIST_HEAD(attach_queue);
  28. /* List if running buses */
  29. static LIST_HEAD(buses);
  30. /* Software ID counter */
  31. static unsigned int next_busnumber;
  32. /* buses_mutes locks the two buslists and the next_busnumber.
  33. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  34. static DEFINE_MUTEX(buses_mutex);
  35. /* There are differences in the codeflow, if the bus is
  36. * initialized from early boot, as various needed services
  37. * are not available early. This is a mechanism to delay
  38. * these initializations to after early boot has finished.
  39. * It's also used to avoid mutex locking, as that's not
  40. * available and needed early. */
  41. static bool ssb_is_early_boot = 1;
  42. static void ssb_buses_lock(void);
  43. static void ssb_buses_unlock(void);
  44. #ifdef CONFIG_SSB_PCIHOST
  45. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  46. {
  47. struct ssb_bus *bus;
  48. ssb_buses_lock();
  49. list_for_each_entry(bus, &buses, list) {
  50. if (bus->bustype == SSB_BUSTYPE_PCI &&
  51. bus->host_pci == pdev)
  52. goto found;
  53. }
  54. bus = NULL;
  55. found:
  56. ssb_buses_unlock();
  57. return bus;
  58. }
  59. #endif /* CONFIG_SSB_PCIHOST */
  60. #ifdef CONFIG_SSB_PCMCIAHOST
  61. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  62. {
  63. struct ssb_bus *bus;
  64. ssb_buses_lock();
  65. list_for_each_entry(bus, &buses, list) {
  66. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  67. bus->host_pcmcia == pdev)
  68. goto found;
  69. }
  70. bus = NULL;
  71. found:
  72. ssb_buses_unlock();
  73. return bus;
  74. }
  75. #endif /* CONFIG_SSB_PCMCIAHOST */
  76. #ifdef CONFIG_SSB_SDIOHOST
  77. struct ssb_bus *ssb_sdio_func_to_bus(struct sdio_func *func)
  78. {
  79. struct ssb_bus *bus;
  80. ssb_buses_lock();
  81. list_for_each_entry(bus, &buses, list) {
  82. if (bus->bustype == SSB_BUSTYPE_SDIO &&
  83. bus->host_sdio == func)
  84. goto found;
  85. }
  86. bus = NULL;
  87. found:
  88. ssb_buses_unlock();
  89. return bus;
  90. }
  91. #endif /* CONFIG_SSB_SDIOHOST */
  92. int ssb_for_each_bus_call(unsigned long data,
  93. int (*func)(struct ssb_bus *bus, unsigned long data))
  94. {
  95. struct ssb_bus *bus;
  96. int res;
  97. ssb_buses_lock();
  98. list_for_each_entry(bus, &buses, list) {
  99. res = func(bus, data);
  100. if (res >= 0) {
  101. ssb_buses_unlock();
  102. return res;
  103. }
  104. }
  105. ssb_buses_unlock();
  106. return -ENODEV;
  107. }
  108. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  109. {
  110. if (dev)
  111. get_device(dev->dev);
  112. return dev;
  113. }
  114. static void ssb_device_put(struct ssb_device *dev)
  115. {
  116. if (dev)
  117. put_device(dev->dev);
  118. }
  119. static int ssb_device_resume(struct device *dev)
  120. {
  121. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  122. struct ssb_driver *ssb_drv;
  123. int err = 0;
  124. if (dev->driver) {
  125. ssb_drv = drv_to_ssb_drv(dev->driver);
  126. if (ssb_drv && ssb_drv->resume)
  127. err = ssb_drv->resume(ssb_dev);
  128. if (err)
  129. goto out;
  130. }
  131. out:
  132. return err;
  133. }
  134. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  135. {
  136. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  137. struct ssb_driver *ssb_drv;
  138. int err = 0;
  139. if (dev->driver) {
  140. ssb_drv = drv_to_ssb_drv(dev->driver);
  141. if (ssb_drv && ssb_drv->suspend)
  142. err = ssb_drv->suspend(ssb_dev, state);
  143. if (err)
  144. goto out;
  145. }
  146. out:
  147. return err;
  148. }
  149. int ssb_bus_resume(struct ssb_bus *bus)
  150. {
  151. int err;
  152. /* Reset HW state information in memory, so that HW is
  153. * completely reinitialized. */
  154. bus->mapped_device = NULL;
  155. #ifdef CONFIG_SSB_DRIVER_PCICORE
  156. bus->pcicore.setup_done = 0;
  157. #endif
  158. err = ssb_bus_powerup(bus, 0);
  159. if (err)
  160. return err;
  161. err = ssb_pcmcia_hardware_setup(bus);
  162. if (err) {
  163. ssb_bus_may_powerdown(bus);
  164. return err;
  165. }
  166. ssb_chipco_resume(&bus->chipco);
  167. ssb_bus_may_powerdown(bus);
  168. return 0;
  169. }
  170. EXPORT_SYMBOL(ssb_bus_resume);
  171. int ssb_bus_suspend(struct ssb_bus *bus)
  172. {
  173. ssb_chipco_suspend(&bus->chipco);
  174. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  175. return 0;
  176. }
  177. EXPORT_SYMBOL(ssb_bus_suspend);
  178. #ifdef CONFIG_SSB_SPROM
  179. /** ssb_devices_freeze - Freeze all devices on the bus.
  180. *
  181. * After freezing no device driver will be handling a device
  182. * on this bus anymore. ssb_devices_thaw() must be called after
  183. * a successful freeze to reactivate the devices.
  184. *
  185. * @bus: The bus.
  186. * @ctx: Context structure. Pass this to ssb_devices_thaw().
  187. */
  188. int ssb_devices_freeze(struct ssb_bus *bus, struct ssb_freeze_context *ctx)
  189. {
  190. struct ssb_device *sdev;
  191. struct ssb_driver *sdrv;
  192. unsigned int i;
  193. memset(ctx, 0, sizeof(*ctx));
  194. ctx->bus = bus;
  195. SSB_WARN_ON(bus->nr_devices > ARRAY_SIZE(ctx->device_frozen));
  196. for (i = 0; i < bus->nr_devices; i++) {
  197. sdev = ssb_device_get(&bus->devices[i]);
  198. if (!sdev->dev || !sdev->dev->driver ||
  199. !device_is_registered(sdev->dev)) {
  200. ssb_device_put(sdev);
  201. continue;
  202. }
  203. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  204. if (SSB_WARN_ON(!sdrv->remove))
  205. continue;
  206. sdrv->remove(sdev);
  207. ctx->device_frozen[i] = 1;
  208. }
  209. return 0;
  210. }
  211. /** ssb_devices_thaw - Unfreeze all devices on the bus.
  212. *
  213. * This will re-attach the device drivers and re-init the devices.
  214. *
  215. * @ctx: The context structure from ssb_devices_freeze()
  216. */
  217. int ssb_devices_thaw(struct ssb_freeze_context *ctx)
  218. {
  219. struct ssb_bus *bus = ctx->bus;
  220. struct ssb_device *sdev;
  221. struct ssb_driver *sdrv;
  222. unsigned int i;
  223. int err, result = 0;
  224. for (i = 0; i < bus->nr_devices; i++) {
  225. if (!ctx->device_frozen[i])
  226. continue;
  227. sdev = &bus->devices[i];
  228. if (SSB_WARN_ON(!sdev->dev || !sdev->dev->driver))
  229. continue;
  230. sdrv = drv_to_ssb_drv(sdev->dev->driver);
  231. if (SSB_WARN_ON(!sdrv || !sdrv->probe))
  232. continue;
  233. err = sdrv->probe(sdev, &sdev->id);
  234. if (err) {
  235. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  236. dev_name(sdev->dev));
  237. result = err;
  238. }
  239. ssb_device_put(sdev);
  240. }
  241. return result;
  242. }
  243. #endif /* CONFIG_SSB_SPROM */
  244. static void ssb_device_shutdown(struct device *dev)
  245. {
  246. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  247. struct ssb_driver *ssb_drv;
  248. if (!dev->driver)
  249. return;
  250. ssb_drv = drv_to_ssb_drv(dev->driver);
  251. if (ssb_drv && ssb_drv->shutdown)
  252. ssb_drv->shutdown(ssb_dev);
  253. }
  254. static int ssb_device_remove(struct device *dev)
  255. {
  256. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  257. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  258. if (ssb_drv && ssb_drv->remove)
  259. ssb_drv->remove(ssb_dev);
  260. ssb_device_put(ssb_dev);
  261. return 0;
  262. }
  263. static int ssb_device_probe(struct device *dev)
  264. {
  265. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  266. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  267. int err = 0;
  268. ssb_device_get(ssb_dev);
  269. if (ssb_drv && ssb_drv->probe)
  270. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  271. if (err)
  272. ssb_device_put(ssb_dev);
  273. return err;
  274. }
  275. static int ssb_match_devid(const struct ssb_device_id *tabid,
  276. const struct ssb_device_id *devid)
  277. {
  278. if ((tabid->vendor != devid->vendor) &&
  279. tabid->vendor != SSB_ANY_VENDOR)
  280. return 0;
  281. if ((tabid->coreid != devid->coreid) &&
  282. tabid->coreid != SSB_ANY_ID)
  283. return 0;
  284. if ((tabid->revision != devid->revision) &&
  285. tabid->revision != SSB_ANY_REV)
  286. return 0;
  287. return 1;
  288. }
  289. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  290. {
  291. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  292. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  293. const struct ssb_device_id *id;
  294. for (id = ssb_drv->id_table;
  295. id->vendor || id->coreid || id->revision;
  296. id++) {
  297. if (ssb_match_devid(id, &ssb_dev->id))
  298. return 1; /* found */
  299. }
  300. return 0;
  301. }
  302. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  303. {
  304. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  305. if (!dev)
  306. return -ENODEV;
  307. return add_uevent_var(env,
  308. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  309. ssb_dev->id.vendor, ssb_dev->id.coreid,
  310. ssb_dev->id.revision);
  311. }
  312. #define ssb_config_attr(attrib, field, format_string) \
  313. static ssize_t \
  314. attrib##_show(struct device *dev, struct device_attribute *attr, char *buf) \
  315. { \
  316. return sprintf(buf, format_string, dev_to_ssb_dev(dev)->field); \
  317. }
  318. ssb_config_attr(core_num, core_index, "%u\n")
  319. ssb_config_attr(coreid, id.coreid, "0x%04x\n")
  320. ssb_config_attr(vendor, id.vendor, "0x%04x\n")
  321. ssb_config_attr(revision, id.revision, "%u\n")
  322. ssb_config_attr(irq, irq, "%u\n")
  323. static ssize_t
  324. name_show(struct device *dev, struct device_attribute *attr, char *buf)
  325. {
  326. return sprintf(buf, "%s\n",
  327. ssb_core_name(dev_to_ssb_dev(dev)->id.coreid));
  328. }
  329. static struct device_attribute ssb_device_attrs[] = {
  330. __ATTR_RO(name),
  331. __ATTR_RO(core_num),
  332. __ATTR_RO(coreid),
  333. __ATTR_RO(vendor),
  334. __ATTR_RO(revision),
  335. __ATTR_RO(irq),
  336. __ATTR_NULL,
  337. };
  338. static struct bus_type ssb_bustype = {
  339. .name = "ssb",
  340. .match = ssb_bus_match,
  341. .probe = ssb_device_probe,
  342. .remove = ssb_device_remove,
  343. .shutdown = ssb_device_shutdown,
  344. .suspend = ssb_device_suspend,
  345. .resume = ssb_device_resume,
  346. .uevent = ssb_device_uevent,
  347. .dev_attrs = ssb_device_attrs,
  348. };
  349. static void ssb_buses_lock(void)
  350. {
  351. /* See the comment at the ssb_is_early_boot definition */
  352. if (!ssb_is_early_boot)
  353. mutex_lock(&buses_mutex);
  354. }
  355. static void ssb_buses_unlock(void)
  356. {
  357. /* See the comment at the ssb_is_early_boot definition */
  358. if (!ssb_is_early_boot)
  359. mutex_unlock(&buses_mutex);
  360. }
  361. static void ssb_devices_unregister(struct ssb_bus *bus)
  362. {
  363. struct ssb_device *sdev;
  364. int i;
  365. for (i = bus->nr_devices - 1; i >= 0; i--) {
  366. sdev = &(bus->devices[i]);
  367. if (sdev->dev)
  368. device_unregister(sdev->dev);
  369. }
  370. #ifdef CONFIG_SSB_EMBEDDED
  371. if (bus->bustype == SSB_BUSTYPE_SSB)
  372. platform_device_unregister(bus->watchdog);
  373. #endif
  374. }
  375. void ssb_bus_unregister(struct ssb_bus *bus)
  376. {
  377. int err;
  378. err = ssb_gpio_unregister(bus);
  379. if (err == -EBUSY)
  380. ssb_dprintk(KERN_ERR PFX "Some GPIOs are still in use.\n");
  381. else if (err)
  382. ssb_dprintk(KERN_ERR PFX
  383. "Can not unregister GPIO driver: %i\n", err);
  384. ssb_buses_lock();
  385. ssb_devices_unregister(bus);
  386. list_del(&bus->list);
  387. ssb_buses_unlock();
  388. ssb_pcmcia_exit(bus);
  389. ssb_pci_exit(bus);
  390. ssb_iounmap(bus);
  391. }
  392. EXPORT_SYMBOL(ssb_bus_unregister);
  393. static void ssb_release_dev(struct device *dev)
  394. {
  395. struct __ssb_dev_wrapper *devwrap;
  396. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  397. kfree(devwrap);
  398. }
  399. static int ssb_devices_register(struct ssb_bus *bus)
  400. {
  401. struct ssb_device *sdev;
  402. struct device *dev;
  403. struct __ssb_dev_wrapper *devwrap;
  404. int i, err = 0;
  405. int dev_idx = 0;
  406. for (i = 0; i < bus->nr_devices; i++) {
  407. sdev = &(bus->devices[i]);
  408. /* We don't register SSB-system devices to the kernel,
  409. * as the drivers for them are built into SSB. */
  410. switch (sdev->id.coreid) {
  411. case SSB_DEV_CHIPCOMMON:
  412. case SSB_DEV_PCI:
  413. case SSB_DEV_PCIE:
  414. case SSB_DEV_PCMCIA:
  415. case SSB_DEV_MIPS:
  416. case SSB_DEV_MIPS_3302:
  417. case SSB_DEV_EXTIF:
  418. continue;
  419. }
  420. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  421. if (!devwrap) {
  422. ssb_printk(KERN_ERR PFX
  423. "Could not allocate device\n");
  424. err = -ENOMEM;
  425. goto error;
  426. }
  427. dev = &devwrap->dev;
  428. devwrap->sdev = sdev;
  429. dev->release = ssb_release_dev;
  430. dev->bus = &ssb_bustype;
  431. dev_set_name(dev, "ssb%u:%d", bus->busnumber, dev_idx);
  432. switch (bus->bustype) {
  433. case SSB_BUSTYPE_PCI:
  434. #ifdef CONFIG_SSB_PCIHOST
  435. sdev->irq = bus->host_pci->irq;
  436. dev->parent = &bus->host_pci->dev;
  437. sdev->dma_dev = dev->parent;
  438. #endif
  439. break;
  440. case SSB_BUSTYPE_PCMCIA:
  441. #ifdef CONFIG_SSB_PCMCIAHOST
  442. sdev->irq = bus->host_pcmcia->irq;
  443. dev->parent = &bus->host_pcmcia->dev;
  444. #endif
  445. break;
  446. case SSB_BUSTYPE_SDIO:
  447. #ifdef CONFIG_SSB_SDIOHOST
  448. dev->parent = &bus->host_sdio->dev;
  449. #endif
  450. break;
  451. case SSB_BUSTYPE_SSB:
  452. dev->dma_mask = &dev->coherent_dma_mask;
  453. sdev->dma_dev = dev;
  454. break;
  455. }
  456. sdev->dev = dev;
  457. err = device_register(dev);
  458. if (err) {
  459. ssb_printk(KERN_ERR PFX
  460. "Could not register %s\n",
  461. dev_name(dev));
  462. /* Set dev to NULL to not unregister
  463. * dev on error unwinding. */
  464. sdev->dev = NULL;
  465. kfree(devwrap);
  466. goto error;
  467. }
  468. dev_idx++;
  469. }
  470. #ifdef CONFIG_SSB_DRIVER_MIPS
  471. if (bus->mipscore.pflash.present) {
  472. err = platform_device_register(&ssb_pflash_dev);
  473. if (err)
  474. pr_err("Error registering parallel flash\n");
  475. }
  476. #endif
  477. return 0;
  478. error:
  479. /* Unwind the already registered devices. */
  480. ssb_devices_unregister(bus);
  481. return err;
  482. }
  483. /* Needs ssb_buses_lock() */
  484. static int ssb_attach_queued_buses(void)
  485. {
  486. struct ssb_bus *bus, *n;
  487. int err = 0;
  488. int drop_them_all = 0;
  489. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  490. if (drop_them_all) {
  491. list_del(&bus->list);
  492. continue;
  493. }
  494. /* Can't init the PCIcore in ssb_bus_register(), as that
  495. * is too early in boot for embedded systems
  496. * (no udelay() available). So do it here in attach stage.
  497. */
  498. err = ssb_bus_powerup(bus, 0);
  499. if (err)
  500. goto error;
  501. ssb_pcicore_init(&bus->pcicore);
  502. if (bus->bustype == SSB_BUSTYPE_SSB)
  503. ssb_watchdog_register(bus);
  504. ssb_bus_may_powerdown(bus);
  505. err = ssb_devices_register(bus);
  506. error:
  507. if (err) {
  508. drop_them_all = 1;
  509. list_del(&bus->list);
  510. continue;
  511. }
  512. list_move_tail(&bus->list, &buses);
  513. }
  514. return err;
  515. }
  516. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  517. {
  518. struct ssb_bus *bus = dev->bus;
  519. offset += dev->core_index * SSB_CORE_SIZE;
  520. return readb(bus->mmio + offset);
  521. }
  522. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  523. {
  524. struct ssb_bus *bus = dev->bus;
  525. offset += dev->core_index * SSB_CORE_SIZE;
  526. return readw(bus->mmio + offset);
  527. }
  528. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  529. {
  530. struct ssb_bus *bus = dev->bus;
  531. offset += dev->core_index * SSB_CORE_SIZE;
  532. return readl(bus->mmio + offset);
  533. }
  534. #ifdef CONFIG_SSB_BLOCKIO
  535. static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
  536. size_t count, u16 offset, u8 reg_width)
  537. {
  538. struct ssb_bus *bus = dev->bus;
  539. void __iomem *addr;
  540. offset += dev->core_index * SSB_CORE_SIZE;
  541. addr = bus->mmio + offset;
  542. switch (reg_width) {
  543. case sizeof(u8): {
  544. u8 *buf = buffer;
  545. while (count) {
  546. *buf = __raw_readb(addr);
  547. buf++;
  548. count--;
  549. }
  550. break;
  551. }
  552. case sizeof(u16): {
  553. __le16 *buf = buffer;
  554. SSB_WARN_ON(count & 1);
  555. while (count) {
  556. *buf = (__force __le16)__raw_readw(addr);
  557. buf++;
  558. count -= 2;
  559. }
  560. break;
  561. }
  562. case sizeof(u32): {
  563. __le32 *buf = buffer;
  564. SSB_WARN_ON(count & 3);
  565. while (count) {
  566. *buf = (__force __le32)__raw_readl(addr);
  567. buf++;
  568. count -= 4;
  569. }
  570. break;
  571. }
  572. default:
  573. SSB_WARN_ON(1);
  574. }
  575. }
  576. #endif /* CONFIG_SSB_BLOCKIO */
  577. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  578. {
  579. struct ssb_bus *bus = dev->bus;
  580. offset += dev->core_index * SSB_CORE_SIZE;
  581. writeb(value, bus->mmio + offset);
  582. }
  583. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  584. {
  585. struct ssb_bus *bus = dev->bus;
  586. offset += dev->core_index * SSB_CORE_SIZE;
  587. writew(value, bus->mmio + offset);
  588. }
  589. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  590. {
  591. struct ssb_bus *bus = dev->bus;
  592. offset += dev->core_index * SSB_CORE_SIZE;
  593. writel(value, bus->mmio + offset);
  594. }
  595. #ifdef CONFIG_SSB_BLOCKIO
  596. static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
  597. size_t count, u16 offset, u8 reg_width)
  598. {
  599. struct ssb_bus *bus = dev->bus;
  600. void __iomem *addr;
  601. offset += dev->core_index * SSB_CORE_SIZE;
  602. addr = bus->mmio + offset;
  603. switch (reg_width) {
  604. case sizeof(u8): {
  605. const u8 *buf = buffer;
  606. while (count) {
  607. __raw_writeb(*buf, addr);
  608. buf++;
  609. count--;
  610. }
  611. break;
  612. }
  613. case sizeof(u16): {
  614. const __le16 *buf = buffer;
  615. SSB_WARN_ON(count & 1);
  616. while (count) {
  617. __raw_writew((__force u16)(*buf), addr);
  618. buf++;
  619. count -= 2;
  620. }
  621. break;
  622. }
  623. case sizeof(u32): {
  624. const __le32 *buf = buffer;
  625. SSB_WARN_ON(count & 3);
  626. while (count) {
  627. __raw_writel((__force u32)(*buf), addr);
  628. buf++;
  629. count -= 4;
  630. }
  631. break;
  632. }
  633. default:
  634. SSB_WARN_ON(1);
  635. }
  636. }
  637. #endif /* CONFIG_SSB_BLOCKIO */
  638. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  639. static const struct ssb_bus_ops ssb_ssb_ops = {
  640. .read8 = ssb_ssb_read8,
  641. .read16 = ssb_ssb_read16,
  642. .read32 = ssb_ssb_read32,
  643. .write8 = ssb_ssb_write8,
  644. .write16 = ssb_ssb_write16,
  645. .write32 = ssb_ssb_write32,
  646. #ifdef CONFIG_SSB_BLOCKIO
  647. .block_read = ssb_ssb_block_read,
  648. .block_write = ssb_ssb_block_write,
  649. #endif
  650. };
  651. static int ssb_fetch_invariants(struct ssb_bus *bus,
  652. ssb_invariants_func_t get_invariants)
  653. {
  654. struct ssb_init_invariants iv;
  655. int err;
  656. memset(&iv, 0, sizeof(iv));
  657. err = get_invariants(bus, &iv);
  658. if (err)
  659. goto out;
  660. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  661. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  662. bus->has_cardbus_slot = iv.has_cardbus_slot;
  663. out:
  664. return err;
  665. }
  666. static int ssb_bus_register(struct ssb_bus *bus,
  667. ssb_invariants_func_t get_invariants,
  668. unsigned long baseaddr)
  669. {
  670. int err;
  671. spin_lock_init(&bus->bar_lock);
  672. INIT_LIST_HEAD(&bus->list);
  673. #ifdef CONFIG_SSB_EMBEDDED
  674. spin_lock_init(&bus->gpio_lock);
  675. #endif
  676. /* Powerup the bus */
  677. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  678. if (err)
  679. goto out;
  680. /* Init SDIO-host device (if any), before the scan */
  681. err = ssb_sdio_init(bus);
  682. if (err)
  683. goto err_disable_xtal;
  684. ssb_buses_lock();
  685. bus->busnumber = next_busnumber;
  686. /* Scan for devices (cores) */
  687. err = ssb_bus_scan(bus, baseaddr);
  688. if (err)
  689. goto err_sdio_exit;
  690. /* Init PCI-host device (if any) */
  691. err = ssb_pci_init(bus);
  692. if (err)
  693. goto err_unmap;
  694. /* Init PCMCIA-host device (if any) */
  695. err = ssb_pcmcia_init(bus);
  696. if (err)
  697. goto err_pci_exit;
  698. /* Initialize basic system devices (if available) */
  699. err = ssb_bus_powerup(bus, 0);
  700. if (err)
  701. goto err_pcmcia_exit;
  702. ssb_chipcommon_init(&bus->chipco);
  703. ssb_extif_init(&bus->extif);
  704. ssb_mipscore_init(&bus->mipscore);
  705. err = ssb_gpio_init(bus);
  706. if (err == -ENOTSUPP)
  707. ssb_dprintk(KERN_DEBUG PFX "GPIO driver not activated\n");
  708. else if (err)
  709. ssb_dprintk(KERN_ERR PFX
  710. "Error registering GPIO driver: %i\n", err);
  711. err = ssb_fetch_invariants(bus, get_invariants);
  712. if (err) {
  713. ssb_bus_may_powerdown(bus);
  714. goto err_pcmcia_exit;
  715. }
  716. ssb_bus_may_powerdown(bus);
  717. /* Queue it for attach.
  718. * See the comment at the ssb_is_early_boot definition. */
  719. list_add_tail(&bus->list, &attach_queue);
  720. if (!ssb_is_early_boot) {
  721. /* This is not early boot, so we must attach the bus now */
  722. err = ssb_attach_queued_buses();
  723. if (err)
  724. goto err_dequeue;
  725. }
  726. next_busnumber++;
  727. ssb_buses_unlock();
  728. out:
  729. return err;
  730. err_dequeue:
  731. list_del(&bus->list);
  732. err_pcmcia_exit:
  733. ssb_pcmcia_exit(bus);
  734. err_pci_exit:
  735. ssb_pci_exit(bus);
  736. err_unmap:
  737. ssb_iounmap(bus);
  738. err_sdio_exit:
  739. ssb_sdio_exit(bus);
  740. err_disable_xtal:
  741. ssb_buses_unlock();
  742. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  743. return err;
  744. }
  745. #ifdef CONFIG_SSB_PCIHOST
  746. int ssb_bus_pcibus_register(struct ssb_bus *bus, struct pci_dev *host_pci)
  747. {
  748. int err;
  749. bus->bustype = SSB_BUSTYPE_PCI;
  750. bus->host_pci = host_pci;
  751. bus->ops = &ssb_pci_ops;
  752. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  753. if (!err) {
  754. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  755. "PCI device %s\n", dev_name(&host_pci->dev));
  756. } else {
  757. ssb_printk(KERN_ERR PFX "Failed to register PCI version"
  758. " of SSB with error %d\n", err);
  759. }
  760. return err;
  761. }
  762. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  763. #endif /* CONFIG_SSB_PCIHOST */
  764. #ifdef CONFIG_SSB_PCMCIAHOST
  765. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  766. struct pcmcia_device *pcmcia_dev,
  767. unsigned long baseaddr)
  768. {
  769. int err;
  770. bus->bustype = SSB_BUSTYPE_PCMCIA;
  771. bus->host_pcmcia = pcmcia_dev;
  772. bus->ops = &ssb_pcmcia_ops;
  773. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  774. if (!err) {
  775. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  776. "PCMCIA device %s\n", pcmcia_dev->devname);
  777. }
  778. return err;
  779. }
  780. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  781. #endif /* CONFIG_SSB_PCMCIAHOST */
  782. #ifdef CONFIG_SSB_SDIOHOST
  783. int ssb_bus_sdiobus_register(struct ssb_bus *bus, struct sdio_func *func,
  784. unsigned int quirks)
  785. {
  786. int err;
  787. bus->bustype = SSB_BUSTYPE_SDIO;
  788. bus->host_sdio = func;
  789. bus->ops = &ssb_sdio_ops;
  790. bus->quirks = quirks;
  791. err = ssb_bus_register(bus, ssb_sdio_get_invariants, ~0);
  792. if (!err) {
  793. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  794. "SDIO device %s\n", sdio_func_id(func));
  795. }
  796. return err;
  797. }
  798. EXPORT_SYMBOL(ssb_bus_sdiobus_register);
  799. #endif /* CONFIG_SSB_PCMCIAHOST */
  800. int ssb_bus_ssbbus_register(struct ssb_bus *bus, unsigned long baseaddr,
  801. ssb_invariants_func_t get_invariants)
  802. {
  803. int err;
  804. bus->bustype = SSB_BUSTYPE_SSB;
  805. bus->ops = &ssb_ssb_ops;
  806. err = ssb_bus_register(bus, get_invariants, baseaddr);
  807. if (!err) {
  808. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  809. "address 0x%08lX\n", baseaddr);
  810. }
  811. return err;
  812. }
  813. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  814. {
  815. drv->drv.name = drv->name;
  816. drv->drv.bus = &ssb_bustype;
  817. drv->drv.owner = owner;
  818. return driver_register(&drv->drv);
  819. }
  820. EXPORT_SYMBOL(__ssb_driver_register);
  821. void ssb_driver_unregister(struct ssb_driver *drv)
  822. {
  823. driver_unregister(&drv->drv);
  824. }
  825. EXPORT_SYMBOL(ssb_driver_unregister);
  826. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  827. {
  828. struct ssb_bus *bus = dev->bus;
  829. struct ssb_device *ent;
  830. int i;
  831. for (i = 0; i < bus->nr_devices; i++) {
  832. ent = &(bus->devices[i]);
  833. if (ent->id.vendor != dev->id.vendor)
  834. continue;
  835. if (ent->id.coreid != dev->id.coreid)
  836. continue;
  837. ent->devtypedata = data;
  838. }
  839. }
  840. EXPORT_SYMBOL(ssb_set_devtypedata);
  841. static u32 clkfactor_f6_resolve(u32 v)
  842. {
  843. /* map the magic values */
  844. switch (v) {
  845. case SSB_CHIPCO_CLK_F6_2:
  846. return 2;
  847. case SSB_CHIPCO_CLK_F6_3:
  848. return 3;
  849. case SSB_CHIPCO_CLK_F6_4:
  850. return 4;
  851. case SSB_CHIPCO_CLK_F6_5:
  852. return 5;
  853. case SSB_CHIPCO_CLK_F6_6:
  854. return 6;
  855. case SSB_CHIPCO_CLK_F6_7:
  856. return 7;
  857. }
  858. return 0;
  859. }
  860. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  861. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  862. {
  863. u32 n1, n2, clock, m1, m2, m3, mc;
  864. n1 = (n & SSB_CHIPCO_CLK_N1);
  865. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  866. switch (plltype) {
  867. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  868. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  869. return SSB_CHIPCO_CLK_T6_M1;
  870. return SSB_CHIPCO_CLK_T6_M0;
  871. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  872. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  873. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  874. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  875. n1 = clkfactor_f6_resolve(n1);
  876. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  877. break;
  878. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  879. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  880. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  881. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  882. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  883. break;
  884. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  885. return 100000000;
  886. default:
  887. SSB_WARN_ON(1);
  888. }
  889. switch (plltype) {
  890. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  891. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  892. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  893. break;
  894. default:
  895. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  896. }
  897. if (!clock)
  898. return 0;
  899. m1 = (m & SSB_CHIPCO_CLK_M1);
  900. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  901. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  902. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  903. switch (plltype) {
  904. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  905. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  906. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  907. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  908. m1 = clkfactor_f6_resolve(m1);
  909. if ((plltype == SSB_PLLTYPE_1) ||
  910. (plltype == SSB_PLLTYPE_3))
  911. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  912. else
  913. m2 = clkfactor_f6_resolve(m2);
  914. m3 = clkfactor_f6_resolve(m3);
  915. switch (mc) {
  916. case SSB_CHIPCO_CLK_MC_BYPASS:
  917. return clock;
  918. case SSB_CHIPCO_CLK_MC_M1:
  919. return (clock / m1);
  920. case SSB_CHIPCO_CLK_MC_M1M2:
  921. return (clock / (m1 * m2));
  922. case SSB_CHIPCO_CLK_MC_M1M2M3:
  923. return (clock / (m1 * m2 * m3));
  924. case SSB_CHIPCO_CLK_MC_M1M3:
  925. return (clock / (m1 * m3));
  926. }
  927. return 0;
  928. case SSB_PLLTYPE_2:
  929. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  930. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  931. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  932. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  933. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  934. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  935. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  936. clock /= m1;
  937. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  938. clock /= m2;
  939. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  940. clock /= m3;
  941. return clock;
  942. default:
  943. SSB_WARN_ON(1);
  944. }
  945. return 0;
  946. }
  947. /* Get the current speed the backplane is running at */
  948. u32 ssb_clockspeed(struct ssb_bus *bus)
  949. {
  950. u32 rate;
  951. u32 plltype;
  952. u32 clkctl_n, clkctl_m;
  953. if (bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU)
  954. return ssb_pmu_get_controlclock(&bus->chipco);
  955. if (ssb_extif_available(&bus->extif))
  956. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  957. &clkctl_n, &clkctl_m);
  958. else if (bus->chipco.dev)
  959. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  960. &clkctl_n, &clkctl_m);
  961. else
  962. return 0;
  963. if (bus->chip_id == 0x5365) {
  964. rate = 100000000;
  965. } else {
  966. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  967. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  968. rate /= 2;
  969. }
  970. return rate;
  971. }
  972. EXPORT_SYMBOL(ssb_clockspeed);
  973. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  974. {
  975. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  976. /* The REJECT bit seems to be different for Backplane rev 2.3 */
  977. switch (rev) {
  978. case SSB_IDLOW_SSBREV_22:
  979. case SSB_IDLOW_SSBREV_24:
  980. case SSB_IDLOW_SSBREV_26:
  981. return SSB_TMSLOW_REJECT;
  982. case SSB_IDLOW_SSBREV_23:
  983. return SSB_TMSLOW_REJECT_23;
  984. case SSB_IDLOW_SSBREV_25: /* TODO - find the proper REJECT bit */
  985. case SSB_IDLOW_SSBREV_27: /* same here */
  986. return SSB_TMSLOW_REJECT; /* this is a guess */
  987. default:
  988. WARN(1, KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  989. }
  990. return (SSB_TMSLOW_REJECT | SSB_TMSLOW_REJECT_23);
  991. }
  992. int ssb_device_is_enabled(struct ssb_device *dev)
  993. {
  994. u32 val;
  995. u32 reject;
  996. reject = ssb_tmslow_reject_bitmask(dev);
  997. val = ssb_read32(dev, SSB_TMSLOW);
  998. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  999. return (val == SSB_TMSLOW_CLOCK);
  1000. }
  1001. EXPORT_SYMBOL(ssb_device_is_enabled);
  1002. static void ssb_flush_tmslow(struct ssb_device *dev)
  1003. {
  1004. /* Make _really_ sure the device has finished the TMSLOW
  1005. * register write transaction, as we risk running into
  1006. * a machine check exception otherwise.
  1007. * Do this by reading the register back to commit the
  1008. * PCI write and delay an additional usec for the device
  1009. * to react to the change. */
  1010. ssb_read32(dev, SSB_TMSLOW);
  1011. udelay(1);
  1012. }
  1013. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  1014. {
  1015. u32 val;
  1016. ssb_device_disable(dev, core_specific_flags);
  1017. ssb_write32(dev, SSB_TMSLOW,
  1018. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  1019. SSB_TMSLOW_FGC | core_specific_flags);
  1020. ssb_flush_tmslow(dev);
  1021. /* Clear SERR if set. This is a hw bug workaround. */
  1022. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  1023. ssb_write32(dev, SSB_TMSHIGH, 0);
  1024. val = ssb_read32(dev, SSB_IMSTATE);
  1025. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  1026. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  1027. ssb_write32(dev, SSB_IMSTATE, val);
  1028. }
  1029. ssb_write32(dev, SSB_TMSLOW,
  1030. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  1031. core_specific_flags);
  1032. ssb_flush_tmslow(dev);
  1033. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  1034. core_specific_flags);
  1035. ssb_flush_tmslow(dev);
  1036. }
  1037. EXPORT_SYMBOL(ssb_device_enable);
  1038. /* Wait for bitmask in a register to get set or cleared.
  1039. * timeout is in units of ten-microseconds */
  1040. static int ssb_wait_bits(struct ssb_device *dev, u16 reg, u32 bitmask,
  1041. int timeout, int set)
  1042. {
  1043. int i;
  1044. u32 val;
  1045. for (i = 0; i < timeout; i++) {
  1046. val = ssb_read32(dev, reg);
  1047. if (set) {
  1048. if ((val & bitmask) == bitmask)
  1049. return 0;
  1050. } else {
  1051. if (!(val & bitmask))
  1052. return 0;
  1053. }
  1054. udelay(10);
  1055. }
  1056. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  1057. "register %04X to %s.\n",
  1058. bitmask, reg, (set ? "set" : "clear"));
  1059. return -ETIMEDOUT;
  1060. }
  1061. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  1062. {
  1063. u32 reject, val;
  1064. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  1065. return;
  1066. reject = ssb_tmslow_reject_bitmask(dev);
  1067. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_CLOCK) {
  1068. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  1069. ssb_wait_bits(dev, SSB_TMSLOW, reject, 1000, 1);
  1070. ssb_wait_bits(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  1071. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1072. val = ssb_read32(dev, SSB_IMSTATE);
  1073. val |= SSB_IMSTATE_REJECT;
  1074. ssb_write32(dev, SSB_IMSTATE, val);
  1075. ssb_wait_bits(dev, SSB_IMSTATE, SSB_IMSTATE_BUSY, 1000,
  1076. 0);
  1077. }
  1078. ssb_write32(dev, SSB_TMSLOW,
  1079. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  1080. reject | SSB_TMSLOW_RESET |
  1081. core_specific_flags);
  1082. ssb_flush_tmslow(dev);
  1083. if (ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_INITIATOR) {
  1084. val = ssb_read32(dev, SSB_IMSTATE);
  1085. val &= ~SSB_IMSTATE_REJECT;
  1086. ssb_write32(dev, SSB_IMSTATE, val);
  1087. }
  1088. }
  1089. ssb_write32(dev, SSB_TMSLOW,
  1090. reject | SSB_TMSLOW_RESET |
  1091. core_specific_flags);
  1092. ssb_flush_tmslow(dev);
  1093. }
  1094. EXPORT_SYMBOL(ssb_device_disable);
  1095. /* Some chipsets need routing known for PCIe and 64-bit DMA */
  1096. static bool ssb_dma_translation_special_bit(struct ssb_device *dev)
  1097. {
  1098. u16 chip_id = dev->bus->chip_id;
  1099. if (dev->id.coreid == SSB_DEV_80211) {
  1100. return (chip_id == 0x4322 || chip_id == 43221 ||
  1101. chip_id == 43231 || chip_id == 43222);
  1102. }
  1103. return 0;
  1104. }
  1105. u32 ssb_dma_translation(struct ssb_device *dev)
  1106. {
  1107. switch (dev->bus->bustype) {
  1108. case SSB_BUSTYPE_SSB:
  1109. return 0;
  1110. case SSB_BUSTYPE_PCI:
  1111. if (pci_is_pcie(dev->bus->host_pci) &&
  1112. ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_DMA64) {
  1113. return SSB_PCIE_DMA_H32;
  1114. } else {
  1115. if (ssb_dma_translation_special_bit(dev))
  1116. return SSB_PCIE_DMA_H32;
  1117. else
  1118. return SSB_PCI_DMA;
  1119. }
  1120. default:
  1121. __ssb_dma_not_implemented(dev);
  1122. }
  1123. return 0;
  1124. }
  1125. EXPORT_SYMBOL(ssb_dma_translation);
  1126. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  1127. {
  1128. struct ssb_chipcommon *cc;
  1129. int err = 0;
  1130. /* On buses where more than one core may be working
  1131. * at a time, we must not powerdown stuff if there are
  1132. * still cores that may want to run. */
  1133. if (bus->bustype == SSB_BUSTYPE_SSB)
  1134. goto out;
  1135. cc = &bus->chipco;
  1136. if (!cc->dev)
  1137. goto out;
  1138. if (cc->dev->id.revision < 5)
  1139. goto out;
  1140. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  1141. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  1142. if (err)
  1143. goto error;
  1144. out:
  1145. #ifdef CONFIG_SSB_DEBUG
  1146. bus->powered_up = 0;
  1147. #endif
  1148. return err;
  1149. error:
  1150. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  1151. goto out;
  1152. }
  1153. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  1154. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  1155. {
  1156. int err;
  1157. enum ssb_clkmode mode;
  1158. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  1159. if (err)
  1160. goto error;
  1161. #ifdef CONFIG_SSB_DEBUG
  1162. bus->powered_up = 1;
  1163. #endif
  1164. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  1165. ssb_chipco_set_clockmode(&bus->chipco, mode);
  1166. return 0;
  1167. error:
  1168. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  1169. return err;
  1170. }
  1171. EXPORT_SYMBOL(ssb_bus_powerup);
  1172. static void ssb_broadcast_value(struct ssb_device *dev,
  1173. u32 address, u32 data)
  1174. {
  1175. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1176. /* This is used for both, PCI and ChipCommon core, so be careful. */
  1177. BUILD_BUG_ON(SSB_PCICORE_BCAST_ADDR != SSB_CHIPCO_BCAST_ADDR);
  1178. BUILD_BUG_ON(SSB_PCICORE_BCAST_DATA != SSB_CHIPCO_BCAST_DATA);
  1179. #endif
  1180. ssb_write32(dev, SSB_CHIPCO_BCAST_ADDR, address);
  1181. ssb_read32(dev, SSB_CHIPCO_BCAST_ADDR); /* flush */
  1182. ssb_write32(dev, SSB_CHIPCO_BCAST_DATA, data);
  1183. ssb_read32(dev, SSB_CHIPCO_BCAST_DATA); /* flush */
  1184. }
  1185. void ssb_commit_settings(struct ssb_bus *bus)
  1186. {
  1187. struct ssb_device *dev;
  1188. #ifdef CONFIG_SSB_DRIVER_PCICORE
  1189. dev = bus->chipco.dev ? bus->chipco.dev : bus->pcicore.dev;
  1190. #else
  1191. dev = bus->chipco.dev;
  1192. #endif
  1193. if (WARN_ON(!dev))
  1194. return;
  1195. /* This forces an update of the cached registers. */
  1196. ssb_broadcast_value(dev, 0xFD8, 0);
  1197. }
  1198. EXPORT_SYMBOL(ssb_commit_settings);
  1199. u32 ssb_admatch_base(u32 adm)
  1200. {
  1201. u32 base = 0;
  1202. switch (adm & SSB_ADM_TYPE) {
  1203. case SSB_ADM_TYPE0:
  1204. base = (adm & SSB_ADM_BASE0);
  1205. break;
  1206. case SSB_ADM_TYPE1:
  1207. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1208. base = (adm & SSB_ADM_BASE1);
  1209. break;
  1210. case SSB_ADM_TYPE2:
  1211. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1212. base = (adm & SSB_ADM_BASE2);
  1213. break;
  1214. default:
  1215. SSB_WARN_ON(1);
  1216. }
  1217. return base;
  1218. }
  1219. EXPORT_SYMBOL(ssb_admatch_base);
  1220. u32 ssb_admatch_size(u32 adm)
  1221. {
  1222. u32 size = 0;
  1223. switch (adm & SSB_ADM_TYPE) {
  1224. case SSB_ADM_TYPE0:
  1225. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1226. break;
  1227. case SSB_ADM_TYPE1:
  1228. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1229. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1230. break;
  1231. case SSB_ADM_TYPE2:
  1232. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1233. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1234. break;
  1235. default:
  1236. SSB_WARN_ON(1);
  1237. }
  1238. size = (1 << (size + 1));
  1239. return size;
  1240. }
  1241. EXPORT_SYMBOL(ssb_admatch_size);
  1242. static int __init ssb_modinit(void)
  1243. {
  1244. int err;
  1245. /* See the comment at the ssb_is_early_boot definition */
  1246. ssb_is_early_boot = 0;
  1247. err = bus_register(&ssb_bustype);
  1248. if (err)
  1249. return err;
  1250. /* Maybe we already registered some buses at early boot.
  1251. * Check for this and attach them
  1252. */
  1253. ssb_buses_lock();
  1254. err = ssb_attach_queued_buses();
  1255. ssb_buses_unlock();
  1256. if (err) {
  1257. bus_unregister(&ssb_bustype);
  1258. goto out;
  1259. }
  1260. err = b43_pci_ssb_bridge_init();
  1261. if (err) {
  1262. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1263. "initialization failed\n");
  1264. /* don't fail SSB init because of this */
  1265. err = 0;
  1266. }
  1267. err = ssb_gige_init();
  1268. if (err) {
  1269. ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
  1270. "driver initialization failed\n");
  1271. /* don't fail SSB init because of this */
  1272. err = 0;
  1273. }
  1274. out:
  1275. return err;
  1276. }
  1277. /* ssb must be initialized after PCI but before the ssb drivers.
  1278. * That means we must use some initcall between subsys_initcall
  1279. * and device_initcall. */
  1280. fs_initcall(ssb_modinit);
  1281. static void __exit ssb_modexit(void)
  1282. {
  1283. ssb_gige_exit();
  1284. b43_pci_ssb_bridge_exit();
  1285. bus_unregister(&ssb_bustype);
  1286. }
  1287. module_exit(ssb_modexit)