spi-sirf.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682
  1. /*
  2. * SPI bus driver for CSR SiRFprimaII
  3. *
  4. * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
  5. *
  6. * Licensed under GPLv2 or later.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/clk.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/io.h>
  14. #include <linux/of.h>
  15. #include <linux/bitops.h>
  16. #include <linux/err.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/of_gpio.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/spi/spi_bitbang.h>
  21. #include <linux/pinctrl/consumer.h>
  22. #define DRIVER_NAME "sirfsoc_spi"
  23. #define SIRFSOC_SPI_CTRL 0x0000
  24. #define SIRFSOC_SPI_CMD 0x0004
  25. #define SIRFSOC_SPI_TX_RX_EN 0x0008
  26. #define SIRFSOC_SPI_INT_EN 0x000C
  27. #define SIRFSOC_SPI_INT_STATUS 0x0010
  28. #define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
  29. #define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
  30. #define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
  31. #define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
  32. #define SIRFSOC_SPI_TXFIFO_OP 0x0110
  33. #define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
  34. #define SIRFSOC_SPI_TXFIFO_DATA 0x0118
  35. #define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
  36. #define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
  37. #define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
  38. #define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
  39. #define SIRFSOC_SPI_RXFIFO_OP 0x0130
  40. #define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
  41. #define SIRFSOC_SPI_RXFIFO_DATA 0x0138
  42. #define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
  43. /* SPI CTRL register defines */
  44. #define SIRFSOC_SPI_SLV_MODE BIT(16)
  45. #define SIRFSOC_SPI_CMD_MODE BIT(17)
  46. #define SIRFSOC_SPI_CS_IO_OUT BIT(18)
  47. #define SIRFSOC_SPI_CS_IO_MODE BIT(19)
  48. #define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
  49. #define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
  50. #define SIRFSOC_SPI_TRAN_MSB BIT(22)
  51. #define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
  52. #define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
  53. #define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
  54. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
  55. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
  56. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
  57. #define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
  58. #define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
  59. #define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
  60. #define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
  61. /* Interrupt Enable */
  62. #define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
  63. #define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
  64. #define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
  65. #define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
  66. #define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
  67. #define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
  68. #define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
  69. #define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
  70. #define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
  71. #define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
  72. #define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
  73. #define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
  74. /* Interrupt status */
  75. #define SIRFSOC_SPI_RX_DONE BIT(0)
  76. #define SIRFSOC_SPI_TX_DONE BIT(1)
  77. #define SIRFSOC_SPI_RX_OFLOW BIT(2)
  78. #define SIRFSOC_SPI_TX_UFLOW BIT(3)
  79. #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
  80. #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
  81. #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
  82. #define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
  83. #define SIRFSOC_SPI_FRM_END BIT(10)
  84. /* TX RX enable */
  85. #define SIRFSOC_SPI_RX_EN BIT(0)
  86. #define SIRFSOC_SPI_TX_EN BIT(1)
  87. #define SIRFSOC_SPI_CMD_TX_EN BIT(2)
  88. #define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
  89. #define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
  90. /* FIFO OPs */
  91. #define SIRFSOC_SPI_FIFO_RESET BIT(0)
  92. #define SIRFSOC_SPI_FIFO_START BIT(1)
  93. /* FIFO CTRL */
  94. #define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
  95. #define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
  96. #define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
  97. /* FIFO Status */
  98. #define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
  99. #define SIRFSOC_SPI_FIFO_FULL BIT(8)
  100. #define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
  101. /* 256 bytes rx/tx FIFO */
  102. #define SIRFSOC_SPI_FIFO_SIZE 256
  103. #define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
  104. #define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
  105. #define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
  106. #define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
  107. #define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
  108. struct sirfsoc_spi {
  109. struct spi_bitbang bitbang;
  110. struct completion done;
  111. void __iomem *base;
  112. u32 ctrl_freq; /* SPI controller clock speed */
  113. struct clk *clk;
  114. struct pinctrl *p;
  115. /* rx & tx bufs from the spi_transfer */
  116. const void *tx;
  117. void *rx;
  118. /* place received word into rx buffer */
  119. void (*rx_word) (struct sirfsoc_spi *);
  120. /* get word from tx buffer for sending */
  121. void (*tx_word) (struct sirfsoc_spi *);
  122. /* number of words left to be tranmitted/received */
  123. unsigned int left_tx_cnt;
  124. unsigned int left_rx_cnt;
  125. /* tasklet to push tx msg into FIFO */
  126. struct tasklet_struct tasklet_tx;
  127. int chipselect[0];
  128. };
  129. static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
  130. {
  131. u32 data;
  132. u8 *rx = sspi->rx;
  133. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  134. if (rx) {
  135. *rx++ = (u8) data;
  136. sspi->rx = rx;
  137. }
  138. sspi->left_rx_cnt--;
  139. }
  140. static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
  141. {
  142. u32 data = 0;
  143. const u8 *tx = sspi->tx;
  144. if (tx) {
  145. data = *tx++;
  146. sspi->tx = tx;
  147. }
  148. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  149. sspi->left_tx_cnt--;
  150. }
  151. static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
  152. {
  153. u32 data;
  154. u16 *rx = sspi->rx;
  155. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  156. if (rx) {
  157. *rx++ = (u16) data;
  158. sspi->rx = rx;
  159. }
  160. sspi->left_rx_cnt--;
  161. }
  162. static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
  163. {
  164. u32 data = 0;
  165. const u16 *tx = sspi->tx;
  166. if (tx) {
  167. data = *tx++;
  168. sspi->tx = tx;
  169. }
  170. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  171. sspi->left_tx_cnt--;
  172. }
  173. static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
  174. {
  175. u32 data;
  176. u32 *rx = sspi->rx;
  177. data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
  178. if (rx) {
  179. *rx++ = (u32) data;
  180. sspi->rx = rx;
  181. }
  182. sspi->left_rx_cnt--;
  183. }
  184. static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
  185. {
  186. u32 data = 0;
  187. const u32 *tx = sspi->tx;
  188. if (tx) {
  189. data = *tx++;
  190. sspi->tx = tx;
  191. }
  192. writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
  193. sspi->left_tx_cnt--;
  194. }
  195. static void spi_sirfsoc_tasklet_tx(unsigned long arg)
  196. {
  197. struct sirfsoc_spi *sspi = (struct sirfsoc_spi *)arg;
  198. /* Fill Tx FIFO while there are left words to be transmitted */
  199. while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) &
  200. SIRFSOC_SPI_FIFO_FULL)) &&
  201. sspi->left_tx_cnt)
  202. sspi->tx_word(sspi);
  203. }
  204. static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
  205. {
  206. struct sirfsoc_spi *sspi = dev_id;
  207. u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
  208. writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
  209. /* Error Conditions */
  210. if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
  211. spi_stat & SIRFSOC_SPI_TX_UFLOW) {
  212. complete(&sspi->done);
  213. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  214. }
  215. if (spi_stat & SIRFSOC_SPI_FRM_END) {
  216. while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
  217. & SIRFSOC_SPI_FIFO_EMPTY)) &&
  218. sspi->left_rx_cnt)
  219. sspi->rx_word(sspi);
  220. /* Received all words */
  221. if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
  222. complete(&sspi->done);
  223. writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
  224. }
  225. }
  226. if (spi_stat & SIRFSOC_SPI_RXFIFO_THD_REACH ||
  227. spi_stat & SIRFSOC_SPI_TXFIFO_THD_REACH ||
  228. spi_stat & SIRFSOC_SPI_RX_FIFO_FULL ||
  229. spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
  230. tasklet_schedule(&sspi->tasklet_tx);
  231. return IRQ_HANDLED;
  232. }
  233. static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
  234. {
  235. struct sirfsoc_spi *sspi;
  236. int timeout = t->len * 10;
  237. sspi = spi_master_get_devdata(spi->master);
  238. sspi->tx = t->tx_buf;
  239. sspi->rx = t->rx_buf;
  240. sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
  241. INIT_COMPLETION(sspi->done);
  242. writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
  243. if (t->len == 1) {
  244. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  245. SIRFSOC_SPI_ENA_AUTO_CLR,
  246. sspi->base + SIRFSOC_SPI_CTRL);
  247. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  248. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  249. } else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
  250. writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
  251. SIRFSOC_SPI_MUL_DAT_MODE |
  252. SIRFSOC_SPI_ENA_AUTO_CLR,
  253. sspi->base + SIRFSOC_SPI_CTRL);
  254. writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  255. writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  256. } else {
  257. writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
  258. sspi->base + SIRFSOC_SPI_CTRL);
  259. writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
  260. writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
  261. }
  262. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  263. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  264. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  265. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  266. /* Send the first word to trigger the whole tx/rx process */
  267. sspi->tx_word(sspi);
  268. writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
  269. SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
  270. SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
  271. SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
  272. writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  273. if (wait_for_completion_timeout(&sspi->done, timeout) == 0)
  274. dev_err(&spi->dev, "transfer timeout\n");
  275. /* TX, RX FIFO stop */
  276. writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  277. writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  278. writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
  279. writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
  280. return t->len - sspi->left_rx_cnt;
  281. }
  282. static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
  283. {
  284. struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
  285. if (sspi->chipselect[spi->chip_select] == 0) {
  286. u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
  287. regval |= SIRFSOC_SPI_CS_IO_OUT;
  288. switch (value) {
  289. case BITBANG_CS_ACTIVE:
  290. if (spi->mode & SPI_CS_HIGH)
  291. regval |= SIRFSOC_SPI_CS_IO_OUT;
  292. else
  293. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  294. break;
  295. case BITBANG_CS_INACTIVE:
  296. if (spi->mode & SPI_CS_HIGH)
  297. regval &= ~SIRFSOC_SPI_CS_IO_OUT;
  298. else
  299. regval |= SIRFSOC_SPI_CS_IO_OUT;
  300. break;
  301. }
  302. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  303. } else {
  304. int gpio = sspi->chipselect[spi->chip_select];
  305. gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
  306. }
  307. }
  308. static int
  309. spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
  310. {
  311. struct sirfsoc_spi *sspi;
  312. u8 bits_per_word = 0;
  313. int hz = 0;
  314. u32 regval;
  315. u32 txfifo_ctrl, rxfifo_ctrl;
  316. u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
  317. sspi = spi_master_get_devdata(spi->master);
  318. bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
  319. hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
  320. /* Enable IO mode for RX, TX */
  321. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
  322. writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
  323. regval = (sspi->ctrl_freq / (2 * hz)) - 1;
  324. if (regval > 0xFFFF || regval < 0) {
  325. dev_err(&spi->dev, "Speed %d not supported\n", hz);
  326. return -EINVAL;
  327. }
  328. switch (bits_per_word) {
  329. case 8:
  330. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
  331. sspi->rx_word = spi_sirfsoc_rx_word_u8;
  332. sspi->tx_word = spi_sirfsoc_tx_word_u8;
  333. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  334. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  335. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  336. SIRFSOC_SPI_FIFO_WIDTH_BYTE;
  337. break;
  338. case 12:
  339. case 16:
  340. regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
  341. SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
  342. sspi->rx_word = spi_sirfsoc_rx_word_u16;
  343. sspi->tx_word = spi_sirfsoc_tx_word_u16;
  344. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  345. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  346. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  347. SIRFSOC_SPI_FIFO_WIDTH_WORD;
  348. break;
  349. case 32:
  350. regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
  351. sspi->rx_word = spi_sirfsoc_rx_word_u32;
  352. sspi->tx_word = spi_sirfsoc_tx_word_u32;
  353. txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  354. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  355. rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
  356. SIRFSOC_SPI_FIFO_WIDTH_DWORD;
  357. break;
  358. default:
  359. dev_err(&spi->dev, "Bits per word %d not supported\n",
  360. bits_per_word);
  361. return -EINVAL;
  362. }
  363. if (!(spi->mode & SPI_CS_HIGH))
  364. regval |= SIRFSOC_SPI_CS_IDLE_STAT;
  365. if (!(spi->mode & SPI_LSB_FIRST))
  366. regval |= SIRFSOC_SPI_TRAN_MSB;
  367. if (spi->mode & SPI_CPOL)
  368. regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
  369. /*
  370. * Data should be driven at least 1/2 cycle before the fetch edge to make
  371. * sure that data gets stable at the fetch edge.
  372. */
  373. if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
  374. (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
  375. regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
  376. else
  377. regval |= SIRFSOC_SPI_DRV_POS_EDGE;
  378. writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
  379. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  380. SIRFSOC_SPI_FIFO_HC(2),
  381. sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
  382. writel(SIRFSOC_SPI_FIFO_SC(2) |
  383. SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
  384. SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
  385. sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
  386. writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
  387. writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
  388. writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
  389. return 0;
  390. }
  391. static int spi_sirfsoc_setup(struct spi_device *spi)
  392. {
  393. struct sirfsoc_spi *sspi;
  394. if (!spi->max_speed_hz)
  395. return -EINVAL;
  396. sspi = spi_master_get_devdata(spi->master);
  397. if (!spi->bits_per_word)
  398. spi->bits_per_word = 8;
  399. return spi_sirfsoc_setup_transfer(spi, NULL);
  400. }
  401. static int spi_sirfsoc_probe(struct platform_device *pdev)
  402. {
  403. struct sirfsoc_spi *sspi;
  404. struct spi_master *master;
  405. struct resource *mem_res;
  406. int num_cs, cs_gpio, irq;
  407. int i;
  408. int ret;
  409. ret = of_property_read_u32(pdev->dev.of_node,
  410. "sirf,spi-num-chipselects", &num_cs);
  411. if (ret < 0) {
  412. dev_err(&pdev->dev, "Unable to get chip select number\n");
  413. goto err_cs;
  414. }
  415. master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
  416. if (!master) {
  417. dev_err(&pdev->dev, "Unable to allocate SPI master\n");
  418. return -ENOMEM;
  419. }
  420. platform_set_drvdata(pdev, master);
  421. sspi = spi_master_get_devdata(master);
  422. mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  423. if (!mem_res) {
  424. dev_err(&pdev->dev, "Unable to get IO resource\n");
  425. ret = -ENODEV;
  426. goto free_master;
  427. }
  428. master->num_chipselect = num_cs;
  429. for (i = 0; i < master->num_chipselect; i++) {
  430. cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
  431. if (cs_gpio < 0) {
  432. dev_err(&pdev->dev, "can't get cs gpio from DT\n");
  433. ret = -ENODEV;
  434. goto free_master;
  435. }
  436. sspi->chipselect[i] = cs_gpio;
  437. if (cs_gpio == 0)
  438. continue; /* use cs from spi controller */
  439. ret = gpio_request(cs_gpio, DRIVER_NAME);
  440. if (ret) {
  441. while (i > 0) {
  442. i--;
  443. if (sspi->chipselect[i] > 0)
  444. gpio_free(sspi->chipselect[i]);
  445. }
  446. dev_err(&pdev->dev, "fail to request cs gpios\n");
  447. goto free_master;
  448. }
  449. }
  450. sspi->base = devm_ioremap_resource(&pdev->dev, mem_res);
  451. if (IS_ERR(sspi->base)) {
  452. ret = PTR_ERR(sspi->base);
  453. goto free_master;
  454. }
  455. irq = platform_get_irq(pdev, 0);
  456. if (irq < 0) {
  457. ret = -ENXIO;
  458. goto free_master;
  459. }
  460. ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
  461. DRIVER_NAME, sspi);
  462. if (ret)
  463. goto free_master;
  464. sspi->bitbang.master = spi_master_get(master);
  465. sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
  466. sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
  467. sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
  468. sspi->bitbang.master->setup = spi_sirfsoc_setup;
  469. master->bus_num = pdev->id;
  470. sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
  471. sspi->p = pinctrl_get_select_default(&pdev->dev);
  472. ret = IS_ERR(sspi->p);
  473. if (ret)
  474. goto free_master;
  475. sspi->clk = clk_get(&pdev->dev, NULL);
  476. if (IS_ERR(sspi->clk)) {
  477. ret = -EINVAL;
  478. goto free_pin;
  479. }
  480. clk_prepare_enable(sspi->clk);
  481. sspi->ctrl_freq = clk_get_rate(sspi->clk);
  482. init_completion(&sspi->done);
  483. tasklet_init(&sspi->tasklet_tx, spi_sirfsoc_tasklet_tx,
  484. (unsigned long)sspi);
  485. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  486. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  487. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  488. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  489. /* We are not using dummy delay between command and data */
  490. writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
  491. ret = spi_bitbang_start(&sspi->bitbang);
  492. if (ret)
  493. goto free_clk;
  494. dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
  495. return 0;
  496. free_clk:
  497. clk_disable_unprepare(sspi->clk);
  498. clk_put(sspi->clk);
  499. free_pin:
  500. pinctrl_put(sspi->p);
  501. free_master:
  502. spi_master_put(master);
  503. err_cs:
  504. return ret;
  505. }
  506. static int spi_sirfsoc_remove(struct platform_device *pdev)
  507. {
  508. struct spi_master *master;
  509. struct sirfsoc_spi *sspi;
  510. int i;
  511. master = platform_get_drvdata(pdev);
  512. sspi = spi_master_get_devdata(master);
  513. spi_bitbang_stop(&sspi->bitbang);
  514. for (i = 0; i < master->num_chipselect; i++) {
  515. if (sspi->chipselect[i] > 0)
  516. gpio_free(sspi->chipselect[i]);
  517. }
  518. clk_disable_unprepare(sspi->clk);
  519. clk_put(sspi->clk);
  520. pinctrl_put(sspi->p);
  521. spi_master_put(master);
  522. return 0;
  523. }
  524. #ifdef CONFIG_PM
  525. static int spi_sirfsoc_suspend(struct device *dev)
  526. {
  527. struct platform_device *pdev = to_platform_device(dev);
  528. struct spi_master *master = platform_get_drvdata(pdev);
  529. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  530. clk_disable(sspi->clk);
  531. return 0;
  532. }
  533. static int spi_sirfsoc_resume(struct device *dev)
  534. {
  535. struct platform_device *pdev = to_platform_device(dev);
  536. struct spi_master *master = platform_get_drvdata(pdev);
  537. struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
  538. clk_enable(sspi->clk);
  539. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  540. writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  541. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
  542. writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
  543. return 0;
  544. }
  545. static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
  546. .suspend = spi_sirfsoc_suspend,
  547. .resume = spi_sirfsoc_resume,
  548. };
  549. #endif
  550. static const struct of_device_id spi_sirfsoc_of_match[] = {
  551. { .compatible = "sirf,prima2-spi", },
  552. { .compatible = "sirf,marco-spi", },
  553. {}
  554. };
  555. MODULE_DEVICE_TABLE(of, sirfsoc_spi_of_match);
  556. static struct platform_driver spi_sirfsoc_driver = {
  557. .driver = {
  558. .name = DRIVER_NAME,
  559. .owner = THIS_MODULE,
  560. #ifdef CONFIG_PM
  561. .pm = &spi_sirfsoc_pm_ops,
  562. #endif
  563. .of_match_table = spi_sirfsoc_of_match,
  564. },
  565. .probe = spi_sirfsoc_probe,
  566. .remove = spi_sirfsoc_remove,
  567. };
  568. module_platform_driver(spi_sirfsoc_driver);
  569. MODULE_DESCRIPTION("SiRF SoC SPI master driver");
  570. MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
  571. "Barry Song <Baohua.Song@csr.com>");
  572. MODULE_LICENSE("GPL v2");