spi-pl022.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503
  1. /*
  2. * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
  3. *
  4. * Copyright (C) 2008-2012 ST-Ericsson AB
  5. * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
  6. *
  7. * Author: Linus Walleij <linus.walleij@stericsson.com>
  8. *
  9. * Initial version inspired by:
  10. * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11. * Initial adoption to PL022 by:
  12. * Sachin Verma <sachin.verma@st.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. */
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/device.h>
  27. #include <linux/ioport.h>
  28. #include <linux/errno.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/spi/spi.h>
  31. #include <linux/delay.h>
  32. #include <linux/clk.h>
  33. #include <linux/err.h>
  34. #include <linux/amba/bus.h>
  35. #include <linux/amba/pl022.h>
  36. #include <linux/io.h>
  37. #include <linux/slab.h>
  38. #include <linux/dmaengine.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/scatterlist.h>
  41. #include <linux/pm_runtime.h>
  42. #include <linux/gpio.h>
  43. #include <linux/of_gpio.h>
  44. #include <linux/pinctrl/consumer.h>
  45. /*
  46. * This macro is used to define some register default values.
  47. * reg is masked with mask, the OR:ed with an (again masked)
  48. * val shifted sb steps to the left.
  49. */
  50. #define SSP_WRITE_BITS(reg, val, mask, sb) \
  51. ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  52. /*
  53. * This macro is also used to define some default values.
  54. * It will just shift val by sb steps to the left and mask
  55. * the result with mask.
  56. */
  57. #define GEN_MASK_BITS(val, mask, sb) \
  58. (((val)<<(sb)) & (mask))
  59. #define DRIVE_TX 0
  60. #define DO_NOT_DRIVE_TX 1
  61. #define DO_NOT_QUEUE_DMA 0
  62. #define QUEUE_DMA 1
  63. #define RX_TRANSFER 1
  64. #define TX_TRANSFER 2
  65. /*
  66. * Macros to access SSP Registers with their offsets
  67. */
  68. #define SSP_CR0(r) (r + 0x000)
  69. #define SSP_CR1(r) (r + 0x004)
  70. #define SSP_DR(r) (r + 0x008)
  71. #define SSP_SR(r) (r + 0x00C)
  72. #define SSP_CPSR(r) (r + 0x010)
  73. #define SSP_IMSC(r) (r + 0x014)
  74. #define SSP_RIS(r) (r + 0x018)
  75. #define SSP_MIS(r) (r + 0x01C)
  76. #define SSP_ICR(r) (r + 0x020)
  77. #define SSP_DMACR(r) (r + 0x024)
  78. #define SSP_ITCR(r) (r + 0x080)
  79. #define SSP_ITIP(r) (r + 0x084)
  80. #define SSP_ITOP(r) (r + 0x088)
  81. #define SSP_TDR(r) (r + 0x08C)
  82. #define SSP_PID0(r) (r + 0xFE0)
  83. #define SSP_PID1(r) (r + 0xFE4)
  84. #define SSP_PID2(r) (r + 0xFE8)
  85. #define SSP_PID3(r) (r + 0xFEC)
  86. #define SSP_CID0(r) (r + 0xFF0)
  87. #define SSP_CID1(r) (r + 0xFF4)
  88. #define SSP_CID2(r) (r + 0xFF8)
  89. #define SSP_CID3(r) (r + 0xFFC)
  90. /*
  91. * SSP Control Register 0 - SSP_CR0
  92. */
  93. #define SSP_CR0_MASK_DSS (0x0FUL << 0)
  94. #define SSP_CR0_MASK_FRF (0x3UL << 4)
  95. #define SSP_CR0_MASK_SPO (0x1UL << 6)
  96. #define SSP_CR0_MASK_SPH (0x1UL << 7)
  97. #define SSP_CR0_MASK_SCR (0xFFUL << 8)
  98. /*
  99. * The ST version of this block moves som bits
  100. * in SSP_CR0 and extends it to 32 bits
  101. */
  102. #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
  103. #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
  104. #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
  105. #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
  106. /*
  107. * SSP Control Register 0 - SSP_CR1
  108. */
  109. #define SSP_CR1_MASK_LBM (0x1UL << 0)
  110. #define SSP_CR1_MASK_SSE (0x1UL << 1)
  111. #define SSP_CR1_MASK_MS (0x1UL << 2)
  112. #define SSP_CR1_MASK_SOD (0x1UL << 3)
  113. /*
  114. * The ST version of this block adds some bits
  115. * in SSP_CR1
  116. */
  117. #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
  118. #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
  119. #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
  120. #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
  121. #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
  122. /* This one is only in the PL023 variant */
  123. #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
  124. /*
  125. * SSP Status Register - SSP_SR
  126. */
  127. #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
  128. #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
  129. #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
  130. #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
  131. #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
  132. /*
  133. * SSP Clock Prescale Register - SSP_CPSR
  134. */
  135. #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
  136. /*
  137. * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
  138. */
  139. #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
  140. #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
  141. #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
  142. #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
  143. /*
  144. * SSP Raw Interrupt Status Register - SSP_RIS
  145. */
  146. /* Receive Overrun Raw Interrupt status */
  147. #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
  148. /* Receive Timeout Raw Interrupt status */
  149. #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
  150. /* Receive FIFO Raw Interrupt status */
  151. #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
  152. /* Transmit FIFO Raw Interrupt status */
  153. #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
  154. /*
  155. * SSP Masked Interrupt Status Register - SSP_MIS
  156. */
  157. /* Receive Overrun Masked Interrupt status */
  158. #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
  159. /* Receive Timeout Masked Interrupt status */
  160. #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
  161. /* Receive FIFO Masked Interrupt status */
  162. #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
  163. /* Transmit FIFO Masked Interrupt status */
  164. #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
  165. /*
  166. * SSP Interrupt Clear Register - SSP_ICR
  167. */
  168. /* Receive Overrun Raw Clear Interrupt bit */
  169. #define SSP_ICR_MASK_RORIC (0x1UL << 0)
  170. /* Receive Timeout Clear Interrupt bit */
  171. #define SSP_ICR_MASK_RTIC (0x1UL << 1)
  172. /*
  173. * SSP DMA Control Register - SSP_DMACR
  174. */
  175. /* Receive DMA Enable bit */
  176. #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
  177. /* Transmit DMA Enable bit */
  178. #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
  179. /*
  180. * SSP Integration Test control Register - SSP_ITCR
  181. */
  182. #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
  183. #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
  184. /*
  185. * SSP Integration Test Input Register - SSP_ITIP
  186. */
  187. #define ITIP_MASK_SSPRXD (0x1UL << 0)
  188. #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
  189. #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
  190. #define ITIP_MASK_RXDMAC (0x1UL << 3)
  191. #define ITIP_MASK_TXDMAC (0x1UL << 4)
  192. #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
  193. /*
  194. * SSP Integration Test output Register - SSP_ITOP
  195. */
  196. #define ITOP_MASK_SSPTXD (0x1UL << 0)
  197. #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
  198. #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
  199. #define ITOP_MASK_SSPOEn (0x1UL << 3)
  200. #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
  201. #define ITOP_MASK_RORINTR (0x1UL << 5)
  202. #define ITOP_MASK_RTINTR (0x1UL << 6)
  203. #define ITOP_MASK_RXINTR (0x1UL << 7)
  204. #define ITOP_MASK_TXINTR (0x1UL << 8)
  205. #define ITOP_MASK_INTR (0x1UL << 9)
  206. #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
  207. #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
  208. #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
  209. #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
  210. /*
  211. * SSP Test Data Register - SSP_TDR
  212. */
  213. #define TDR_MASK_TESTDATA (0xFFFFFFFF)
  214. /*
  215. * Message State
  216. * we use the spi_message.state (void *) pointer to
  217. * hold a single state value, that's why all this
  218. * (void *) casting is done here.
  219. */
  220. #define STATE_START ((void *) 0)
  221. #define STATE_RUNNING ((void *) 1)
  222. #define STATE_DONE ((void *) 2)
  223. #define STATE_ERROR ((void *) -1)
  224. /*
  225. * SSP State - Whether Enabled or Disabled
  226. */
  227. #define SSP_DISABLED (0)
  228. #define SSP_ENABLED (1)
  229. /*
  230. * SSP DMA State - Whether DMA Enabled or Disabled
  231. */
  232. #define SSP_DMA_DISABLED (0)
  233. #define SSP_DMA_ENABLED (1)
  234. /*
  235. * SSP Clock Defaults
  236. */
  237. #define SSP_DEFAULT_CLKRATE 0x2
  238. #define SSP_DEFAULT_PRESCALE 0x40
  239. /*
  240. * SSP Clock Parameter ranges
  241. */
  242. #define CPSDVR_MIN 0x02
  243. #define CPSDVR_MAX 0xFE
  244. #define SCR_MIN 0x00
  245. #define SCR_MAX 0xFF
  246. /*
  247. * SSP Interrupt related Macros
  248. */
  249. #define DEFAULT_SSP_REG_IMSC 0x0UL
  250. #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
  251. #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
  252. #define CLEAR_ALL_INTERRUPTS 0x3
  253. #define SPI_POLLING_TIMEOUT 1000
  254. /*
  255. * The type of reading going on on this chip
  256. */
  257. enum ssp_reading {
  258. READING_NULL,
  259. READING_U8,
  260. READING_U16,
  261. READING_U32
  262. };
  263. /**
  264. * The type of writing going on on this chip
  265. */
  266. enum ssp_writing {
  267. WRITING_NULL,
  268. WRITING_U8,
  269. WRITING_U16,
  270. WRITING_U32
  271. };
  272. /**
  273. * struct vendor_data - vendor-specific config parameters
  274. * for PL022 derivates
  275. * @fifodepth: depth of FIFOs (both)
  276. * @max_bpw: maximum number of bits per word
  277. * @unidir: supports unidirection transfers
  278. * @extended_cr: 32 bit wide control register 0 with extra
  279. * features and extra features in CR1 as found in the ST variants
  280. * @pl023: supports a subset of the ST extensions called "PL023"
  281. */
  282. struct vendor_data {
  283. int fifodepth;
  284. int max_bpw;
  285. bool unidir;
  286. bool extended_cr;
  287. bool pl023;
  288. bool loopback;
  289. };
  290. /**
  291. * struct pl022 - This is the private SSP driver data structure
  292. * @adev: AMBA device model hookup
  293. * @vendor: vendor data for the IP block
  294. * @phybase: the physical memory where the SSP device resides
  295. * @virtbase: the virtual memory where the SSP is mapped
  296. * @clk: outgoing clock "SPICLK" for the SPI bus
  297. * @master: SPI framework hookup
  298. * @master_info: controller-specific data from machine setup
  299. * @kworker: thread struct for message pump
  300. * @kworker_task: pointer to task for message pump kworker thread
  301. * @pump_messages: work struct for scheduling work to the message pump
  302. * @queue_lock: spinlock to syncronise access to message queue
  303. * @queue: message queue
  304. * @busy: message pump is busy
  305. * @running: message pump is running
  306. * @pump_transfers: Tasklet used in Interrupt Transfer mode
  307. * @cur_msg: Pointer to current spi_message being processed
  308. * @cur_transfer: Pointer to current spi_transfer
  309. * @cur_chip: pointer to current clients chip(assigned from controller_state)
  310. * @next_msg_cs_active: the next message in the queue has been examined
  311. * and it was found that it uses the same chip select as the previous
  312. * message, so we left it active after the previous transfer, and it's
  313. * active already.
  314. * @tx: current position in TX buffer to be read
  315. * @tx_end: end position in TX buffer to be read
  316. * @rx: current position in RX buffer to be written
  317. * @rx_end: end position in RX buffer to be written
  318. * @read: the type of read currently going on
  319. * @write: the type of write currently going on
  320. * @exp_fifo_level: expected FIFO level
  321. * @dma_rx_channel: optional channel for RX DMA
  322. * @dma_tx_channel: optional channel for TX DMA
  323. * @sgt_rx: scattertable for the RX transfer
  324. * @sgt_tx: scattertable for the TX transfer
  325. * @dummypage: a dummy page used for driving data on the bus with DMA
  326. * @cur_cs: current chip select (gpio)
  327. * @chipselects: list of chipselects (gpios)
  328. */
  329. struct pl022 {
  330. struct amba_device *adev;
  331. struct vendor_data *vendor;
  332. resource_size_t phybase;
  333. void __iomem *virtbase;
  334. struct clk *clk;
  335. /* Two optional pin states - default & sleep */
  336. struct pinctrl *pinctrl;
  337. struct pinctrl_state *pins_default;
  338. struct pinctrl_state *pins_idle;
  339. struct pinctrl_state *pins_sleep;
  340. struct spi_master *master;
  341. struct pl022_ssp_controller *master_info;
  342. /* Message per-transfer pump */
  343. struct tasklet_struct pump_transfers;
  344. struct spi_message *cur_msg;
  345. struct spi_transfer *cur_transfer;
  346. struct chip_data *cur_chip;
  347. bool next_msg_cs_active;
  348. void *tx;
  349. void *tx_end;
  350. void *rx;
  351. void *rx_end;
  352. enum ssp_reading read;
  353. enum ssp_writing write;
  354. u32 exp_fifo_level;
  355. enum ssp_rx_level_trig rx_lev_trig;
  356. enum ssp_tx_level_trig tx_lev_trig;
  357. /* DMA settings */
  358. #ifdef CONFIG_DMA_ENGINE
  359. struct dma_chan *dma_rx_channel;
  360. struct dma_chan *dma_tx_channel;
  361. struct sg_table sgt_rx;
  362. struct sg_table sgt_tx;
  363. char *dummypage;
  364. bool dma_running;
  365. #endif
  366. int cur_cs;
  367. int *chipselects;
  368. };
  369. /**
  370. * struct chip_data - To maintain runtime state of SSP for each client chip
  371. * @cr0: Value of control register CR0 of SSP - on later ST variants this
  372. * register is 32 bits wide rather than just 16
  373. * @cr1: Value of control register CR1 of SSP
  374. * @dmacr: Value of DMA control Register of SSP
  375. * @cpsr: Value of Clock prescale register
  376. * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
  377. * @enable_dma: Whether to enable DMA or not
  378. * @read: function ptr to be used to read when doing xfer for this chip
  379. * @write: function ptr to be used to write when doing xfer for this chip
  380. * @cs_control: chip select callback provided by chip
  381. * @xfer_type: polling/interrupt/DMA
  382. *
  383. * Runtime state of the SSP controller, maintained per chip,
  384. * This would be set according to the current message that would be served
  385. */
  386. struct chip_data {
  387. u32 cr0;
  388. u16 cr1;
  389. u16 dmacr;
  390. u16 cpsr;
  391. u8 n_bytes;
  392. bool enable_dma;
  393. enum ssp_reading read;
  394. enum ssp_writing write;
  395. void (*cs_control) (u32 command);
  396. int xfer_type;
  397. };
  398. /**
  399. * null_cs_control - Dummy chip select function
  400. * @command: select/delect the chip
  401. *
  402. * If no chip select function is provided by client this is used as dummy
  403. * chip select
  404. */
  405. static void null_cs_control(u32 command)
  406. {
  407. pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
  408. }
  409. static void pl022_cs_control(struct pl022 *pl022, u32 command)
  410. {
  411. if (gpio_is_valid(pl022->cur_cs))
  412. gpio_set_value(pl022->cur_cs, command);
  413. else
  414. pl022->cur_chip->cs_control(command);
  415. }
  416. /**
  417. * giveback - current spi_message is over, schedule next message and call
  418. * callback of this message. Assumes that caller already
  419. * set message->status; dma and pio irqs are blocked
  420. * @pl022: SSP driver private data structure
  421. */
  422. static void giveback(struct pl022 *pl022)
  423. {
  424. struct spi_transfer *last_transfer;
  425. pl022->next_msg_cs_active = false;
  426. last_transfer = list_entry(pl022->cur_msg->transfers.prev,
  427. struct spi_transfer,
  428. transfer_list);
  429. /* Delay if requested before any change in chip select */
  430. if (last_transfer->delay_usecs)
  431. /*
  432. * FIXME: This runs in interrupt context.
  433. * Is this really smart?
  434. */
  435. udelay(last_transfer->delay_usecs);
  436. if (!last_transfer->cs_change) {
  437. struct spi_message *next_msg;
  438. /*
  439. * cs_change was not set. We can keep the chip select
  440. * enabled if there is message in the queue and it is
  441. * for the same spi device.
  442. *
  443. * We cannot postpone this until pump_messages, because
  444. * after calling msg->complete (below) the driver that
  445. * sent the current message could be unloaded, which
  446. * could invalidate the cs_control() callback...
  447. */
  448. /* get a pointer to the next message, if any */
  449. next_msg = spi_get_next_queued_message(pl022->master);
  450. /*
  451. * see if the next and current messages point
  452. * to the same spi device.
  453. */
  454. if (next_msg && next_msg->spi != pl022->cur_msg->spi)
  455. next_msg = NULL;
  456. if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
  457. pl022_cs_control(pl022, SSP_CHIP_DESELECT);
  458. else
  459. pl022->next_msg_cs_active = true;
  460. }
  461. pl022->cur_msg = NULL;
  462. pl022->cur_transfer = NULL;
  463. pl022->cur_chip = NULL;
  464. spi_finalize_current_message(pl022->master);
  465. /* disable the SPI/SSP operation */
  466. writew((readw(SSP_CR1(pl022->virtbase)) &
  467. (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
  468. }
  469. /**
  470. * flush - flush the FIFO to reach a clean state
  471. * @pl022: SSP driver private data structure
  472. */
  473. static int flush(struct pl022 *pl022)
  474. {
  475. unsigned long limit = loops_per_jiffy << 1;
  476. dev_dbg(&pl022->adev->dev, "flush\n");
  477. do {
  478. while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  479. readw(SSP_DR(pl022->virtbase));
  480. } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
  481. pl022->exp_fifo_level = 0;
  482. return limit;
  483. }
  484. /**
  485. * restore_state - Load configuration of current chip
  486. * @pl022: SSP driver private data structure
  487. */
  488. static void restore_state(struct pl022 *pl022)
  489. {
  490. struct chip_data *chip = pl022->cur_chip;
  491. if (pl022->vendor->extended_cr)
  492. writel(chip->cr0, SSP_CR0(pl022->virtbase));
  493. else
  494. writew(chip->cr0, SSP_CR0(pl022->virtbase));
  495. writew(chip->cr1, SSP_CR1(pl022->virtbase));
  496. writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
  497. writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
  498. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  499. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  500. }
  501. /*
  502. * Default SSP Register Values
  503. */
  504. #define DEFAULT_SSP_REG_CR0 ( \
  505. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
  506. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
  507. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  508. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  509. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  510. )
  511. /* ST versions have slightly different bit layout */
  512. #define DEFAULT_SSP_REG_CR0_ST ( \
  513. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  514. GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
  515. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  516. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  517. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
  518. GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
  519. GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
  520. )
  521. /* The PL023 version is slightly different again */
  522. #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
  523. GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
  524. GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
  525. GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
  526. GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
  527. )
  528. #define DEFAULT_SSP_REG_CR1 ( \
  529. GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
  530. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  531. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  532. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
  533. )
  534. /* ST versions extend this register to use all 16 bits */
  535. #define DEFAULT_SSP_REG_CR1_ST ( \
  536. DEFAULT_SSP_REG_CR1 | \
  537. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  538. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  539. GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
  540. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  541. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
  542. )
  543. /*
  544. * The PL023 variant has further differences: no loopback mode, no microwire
  545. * support, and a new clock feedback delay setting.
  546. */
  547. #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
  548. GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
  549. GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
  550. GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
  551. GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
  552. GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
  553. GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
  554. GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
  555. GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
  556. )
  557. #define DEFAULT_SSP_REG_CPSR ( \
  558. GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
  559. )
  560. #define DEFAULT_SSP_REG_DMACR (\
  561. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
  562. GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
  563. )
  564. /**
  565. * load_ssp_default_config - Load default configuration for SSP
  566. * @pl022: SSP driver private data structure
  567. */
  568. static void load_ssp_default_config(struct pl022 *pl022)
  569. {
  570. if (pl022->vendor->pl023) {
  571. writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
  572. writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
  573. } else if (pl022->vendor->extended_cr) {
  574. writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
  575. writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
  576. } else {
  577. writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
  578. writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
  579. }
  580. writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
  581. writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
  582. writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
  583. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  584. }
  585. /**
  586. * This will write to TX and read from RX according to the parameters
  587. * set in pl022.
  588. */
  589. static void readwriter(struct pl022 *pl022)
  590. {
  591. /*
  592. * The FIFO depth is different between primecell variants.
  593. * I believe filling in too much in the FIFO might cause
  594. * errons in 8bit wide transfers on ARM variants (just 8 words
  595. * FIFO, means only 8x8 = 64 bits in FIFO) at least.
  596. *
  597. * To prevent this issue, the TX FIFO is only filled to the
  598. * unused RX FIFO fill length, regardless of what the TX
  599. * FIFO status flag indicates.
  600. */
  601. dev_dbg(&pl022->adev->dev,
  602. "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
  603. __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
  604. /* Read as much as you can */
  605. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  606. && (pl022->rx < pl022->rx_end)) {
  607. switch (pl022->read) {
  608. case READING_NULL:
  609. readw(SSP_DR(pl022->virtbase));
  610. break;
  611. case READING_U8:
  612. *(u8 *) (pl022->rx) =
  613. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  614. break;
  615. case READING_U16:
  616. *(u16 *) (pl022->rx) =
  617. (u16) readw(SSP_DR(pl022->virtbase));
  618. break;
  619. case READING_U32:
  620. *(u32 *) (pl022->rx) =
  621. readl(SSP_DR(pl022->virtbase));
  622. break;
  623. }
  624. pl022->rx += (pl022->cur_chip->n_bytes);
  625. pl022->exp_fifo_level--;
  626. }
  627. /*
  628. * Write as much as possible up to the RX FIFO size
  629. */
  630. while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
  631. && (pl022->tx < pl022->tx_end)) {
  632. switch (pl022->write) {
  633. case WRITING_NULL:
  634. writew(0x0, SSP_DR(pl022->virtbase));
  635. break;
  636. case WRITING_U8:
  637. writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
  638. break;
  639. case WRITING_U16:
  640. writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
  641. break;
  642. case WRITING_U32:
  643. writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
  644. break;
  645. }
  646. pl022->tx += (pl022->cur_chip->n_bytes);
  647. pl022->exp_fifo_level++;
  648. /*
  649. * This inner reader takes care of things appearing in the RX
  650. * FIFO as we're transmitting. This will happen a lot since the
  651. * clock starts running when you put things into the TX FIFO,
  652. * and then things are continuously clocked into the RX FIFO.
  653. */
  654. while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
  655. && (pl022->rx < pl022->rx_end)) {
  656. switch (pl022->read) {
  657. case READING_NULL:
  658. readw(SSP_DR(pl022->virtbase));
  659. break;
  660. case READING_U8:
  661. *(u8 *) (pl022->rx) =
  662. readw(SSP_DR(pl022->virtbase)) & 0xFFU;
  663. break;
  664. case READING_U16:
  665. *(u16 *) (pl022->rx) =
  666. (u16) readw(SSP_DR(pl022->virtbase));
  667. break;
  668. case READING_U32:
  669. *(u32 *) (pl022->rx) =
  670. readl(SSP_DR(pl022->virtbase));
  671. break;
  672. }
  673. pl022->rx += (pl022->cur_chip->n_bytes);
  674. pl022->exp_fifo_level--;
  675. }
  676. }
  677. /*
  678. * When we exit here the TX FIFO should be full and the RX FIFO
  679. * should be empty
  680. */
  681. }
  682. /**
  683. * next_transfer - Move to the Next transfer in the current spi message
  684. * @pl022: SSP driver private data structure
  685. *
  686. * This function moves though the linked list of spi transfers in the
  687. * current spi message and returns with the state of current spi
  688. * message i.e whether its last transfer is done(STATE_DONE) or
  689. * Next transfer is ready(STATE_RUNNING)
  690. */
  691. static void *next_transfer(struct pl022 *pl022)
  692. {
  693. struct spi_message *msg = pl022->cur_msg;
  694. struct spi_transfer *trans = pl022->cur_transfer;
  695. /* Move to next transfer */
  696. if (trans->transfer_list.next != &msg->transfers) {
  697. pl022->cur_transfer =
  698. list_entry(trans->transfer_list.next,
  699. struct spi_transfer, transfer_list);
  700. return STATE_RUNNING;
  701. }
  702. return STATE_DONE;
  703. }
  704. /*
  705. * This DMA functionality is only compiled in if we have
  706. * access to the generic DMA devices/DMA engine.
  707. */
  708. #ifdef CONFIG_DMA_ENGINE
  709. static void unmap_free_dma_scatter(struct pl022 *pl022)
  710. {
  711. /* Unmap and free the SG tables */
  712. dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
  713. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  714. dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
  715. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  716. sg_free_table(&pl022->sgt_rx);
  717. sg_free_table(&pl022->sgt_tx);
  718. }
  719. static void dma_callback(void *data)
  720. {
  721. struct pl022 *pl022 = data;
  722. struct spi_message *msg = pl022->cur_msg;
  723. BUG_ON(!pl022->sgt_rx.sgl);
  724. #ifdef VERBOSE_DEBUG
  725. /*
  726. * Optionally dump out buffers to inspect contents, this is
  727. * good if you want to convince yourself that the loopback
  728. * read/write contents are the same, when adopting to a new
  729. * DMA engine.
  730. */
  731. {
  732. struct scatterlist *sg;
  733. unsigned int i;
  734. dma_sync_sg_for_cpu(&pl022->adev->dev,
  735. pl022->sgt_rx.sgl,
  736. pl022->sgt_rx.nents,
  737. DMA_FROM_DEVICE);
  738. for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
  739. dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
  740. print_hex_dump(KERN_ERR, "SPI RX: ",
  741. DUMP_PREFIX_OFFSET,
  742. 16,
  743. 1,
  744. sg_virt(sg),
  745. sg_dma_len(sg),
  746. 1);
  747. }
  748. for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
  749. dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
  750. print_hex_dump(KERN_ERR, "SPI TX: ",
  751. DUMP_PREFIX_OFFSET,
  752. 16,
  753. 1,
  754. sg_virt(sg),
  755. sg_dma_len(sg),
  756. 1);
  757. }
  758. }
  759. #endif
  760. unmap_free_dma_scatter(pl022);
  761. /* Update total bytes transferred */
  762. msg->actual_length += pl022->cur_transfer->len;
  763. if (pl022->cur_transfer->cs_change)
  764. pl022_cs_control(pl022, SSP_CHIP_DESELECT);
  765. /* Move to next transfer */
  766. msg->state = next_transfer(pl022);
  767. tasklet_schedule(&pl022->pump_transfers);
  768. }
  769. static void setup_dma_scatter(struct pl022 *pl022,
  770. void *buffer,
  771. unsigned int length,
  772. struct sg_table *sgtab)
  773. {
  774. struct scatterlist *sg;
  775. int bytesleft = length;
  776. void *bufp = buffer;
  777. int mapbytes;
  778. int i;
  779. if (buffer) {
  780. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  781. /*
  782. * If there are less bytes left than what fits
  783. * in the current page (plus page alignment offset)
  784. * we just feed in this, else we stuff in as much
  785. * as we can.
  786. */
  787. if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
  788. mapbytes = bytesleft;
  789. else
  790. mapbytes = PAGE_SIZE - offset_in_page(bufp);
  791. sg_set_page(sg, virt_to_page(bufp),
  792. mapbytes, offset_in_page(bufp));
  793. bufp += mapbytes;
  794. bytesleft -= mapbytes;
  795. dev_dbg(&pl022->adev->dev,
  796. "set RX/TX target page @ %p, %d bytes, %d left\n",
  797. bufp, mapbytes, bytesleft);
  798. }
  799. } else {
  800. /* Map the dummy buffer on every page */
  801. for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
  802. if (bytesleft < PAGE_SIZE)
  803. mapbytes = bytesleft;
  804. else
  805. mapbytes = PAGE_SIZE;
  806. sg_set_page(sg, virt_to_page(pl022->dummypage),
  807. mapbytes, 0);
  808. bytesleft -= mapbytes;
  809. dev_dbg(&pl022->adev->dev,
  810. "set RX/TX to dummy page %d bytes, %d left\n",
  811. mapbytes, bytesleft);
  812. }
  813. }
  814. BUG_ON(bytesleft);
  815. }
  816. /**
  817. * configure_dma - configures the channels for the next transfer
  818. * @pl022: SSP driver's private data structure
  819. */
  820. static int configure_dma(struct pl022 *pl022)
  821. {
  822. struct dma_slave_config rx_conf = {
  823. .src_addr = SSP_DR(pl022->phybase),
  824. .direction = DMA_DEV_TO_MEM,
  825. .device_fc = false,
  826. };
  827. struct dma_slave_config tx_conf = {
  828. .dst_addr = SSP_DR(pl022->phybase),
  829. .direction = DMA_MEM_TO_DEV,
  830. .device_fc = false,
  831. };
  832. unsigned int pages;
  833. int ret;
  834. int rx_sglen, tx_sglen;
  835. struct dma_chan *rxchan = pl022->dma_rx_channel;
  836. struct dma_chan *txchan = pl022->dma_tx_channel;
  837. struct dma_async_tx_descriptor *rxdesc;
  838. struct dma_async_tx_descriptor *txdesc;
  839. /* Check that the channels are available */
  840. if (!rxchan || !txchan)
  841. return -ENODEV;
  842. /*
  843. * If supplied, the DMA burstsize should equal the FIFO trigger level.
  844. * Notice that the DMA engine uses one-to-one mapping. Since we can
  845. * not trigger on 2 elements this needs explicit mapping rather than
  846. * calculation.
  847. */
  848. switch (pl022->rx_lev_trig) {
  849. case SSP_RX_1_OR_MORE_ELEM:
  850. rx_conf.src_maxburst = 1;
  851. break;
  852. case SSP_RX_4_OR_MORE_ELEM:
  853. rx_conf.src_maxburst = 4;
  854. break;
  855. case SSP_RX_8_OR_MORE_ELEM:
  856. rx_conf.src_maxburst = 8;
  857. break;
  858. case SSP_RX_16_OR_MORE_ELEM:
  859. rx_conf.src_maxburst = 16;
  860. break;
  861. case SSP_RX_32_OR_MORE_ELEM:
  862. rx_conf.src_maxburst = 32;
  863. break;
  864. default:
  865. rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
  866. break;
  867. }
  868. switch (pl022->tx_lev_trig) {
  869. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  870. tx_conf.dst_maxburst = 1;
  871. break;
  872. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  873. tx_conf.dst_maxburst = 4;
  874. break;
  875. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  876. tx_conf.dst_maxburst = 8;
  877. break;
  878. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  879. tx_conf.dst_maxburst = 16;
  880. break;
  881. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  882. tx_conf.dst_maxburst = 32;
  883. break;
  884. default:
  885. tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
  886. break;
  887. }
  888. switch (pl022->read) {
  889. case READING_NULL:
  890. /* Use the same as for writing */
  891. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  892. break;
  893. case READING_U8:
  894. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  895. break;
  896. case READING_U16:
  897. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  898. break;
  899. case READING_U32:
  900. rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  901. break;
  902. }
  903. switch (pl022->write) {
  904. case WRITING_NULL:
  905. /* Use the same as for reading */
  906. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
  907. break;
  908. case WRITING_U8:
  909. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  910. break;
  911. case WRITING_U16:
  912. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  913. break;
  914. case WRITING_U32:
  915. tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  916. break;
  917. }
  918. /* SPI pecularity: we need to read and write the same width */
  919. if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  920. rx_conf.src_addr_width = tx_conf.dst_addr_width;
  921. if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  922. tx_conf.dst_addr_width = rx_conf.src_addr_width;
  923. BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
  924. dmaengine_slave_config(rxchan, &rx_conf);
  925. dmaengine_slave_config(txchan, &tx_conf);
  926. /* Create sglists for the transfers */
  927. pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
  928. dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
  929. ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
  930. if (ret)
  931. goto err_alloc_rx_sg;
  932. ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
  933. if (ret)
  934. goto err_alloc_tx_sg;
  935. /* Fill in the scatterlists for the RX+TX buffers */
  936. setup_dma_scatter(pl022, pl022->rx,
  937. pl022->cur_transfer->len, &pl022->sgt_rx);
  938. setup_dma_scatter(pl022, pl022->tx,
  939. pl022->cur_transfer->len, &pl022->sgt_tx);
  940. /* Map DMA buffers */
  941. rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  942. pl022->sgt_rx.nents, DMA_FROM_DEVICE);
  943. if (!rx_sglen)
  944. goto err_rx_sgmap;
  945. tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  946. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  947. if (!tx_sglen)
  948. goto err_tx_sgmap;
  949. /* Send both scatterlists */
  950. rxdesc = dmaengine_prep_slave_sg(rxchan,
  951. pl022->sgt_rx.sgl,
  952. rx_sglen,
  953. DMA_DEV_TO_MEM,
  954. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  955. if (!rxdesc)
  956. goto err_rxdesc;
  957. txdesc = dmaengine_prep_slave_sg(txchan,
  958. pl022->sgt_tx.sgl,
  959. tx_sglen,
  960. DMA_MEM_TO_DEV,
  961. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  962. if (!txdesc)
  963. goto err_txdesc;
  964. /* Put the callback on the RX transfer only, that should finish last */
  965. rxdesc->callback = dma_callback;
  966. rxdesc->callback_param = pl022;
  967. /* Submit and fire RX and TX with TX last so we're ready to read! */
  968. dmaengine_submit(rxdesc);
  969. dmaengine_submit(txdesc);
  970. dma_async_issue_pending(rxchan);
  971. dma_async_issue_pending(txchan);
  972. pl022->dma_running = true;
  973. return 0;
  974. err_txdesc:
  975. dmaengine_terminate_all(txchan);
  976. err_rxdesc:
  977. dmaengine_terminate_all(rxchan);
  978. dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
  979. pl022->sgt_tx.nents, DMA_TO_DEVICE);
  980. err_tx_sgmap:
  981. dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
  982. pl022->sgt_tx.nents, DMA_FROM_DEVICE);
  983. err_rx_sgmap:
  984. sg_free_table(&pl022->sgt_tx);
  985. err_alloc_tx_sg:
  986. sg_free_table(&pl022->sgt_rx);
  987. err_alloc_rx_sg:
  988. return -ENOMEM;
  989. }
  990. static int pl022_dma_probe(struct pl022 *pl022)
  991. {
  992. dma_cap_mask_t mask;
  993. /* Try to acquire a generic DMA engine slave channel */
  994. dma_cap_zero(mask);
  995. dma_cap_set(DMA_SLAVE, mask);
  996. /*
  997. * We need both RX and TX channels to do DMA, else do none
  998. * of them.
  999. */
  1000. pl022->dma_rx_channel = dma_request_channel(mask,
  1001. pl022->master_info->dma_filter,
  1002. pl022->master_info->dma_rx_param);
  1003. if (!pl022->dma_rx_channel) {
  1004. dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
  1005. goto err_no_rxchan;
  1006. }
  1007. pl022->dma_tx_channel = dma_request_channel(mask,
  1008. pl022->master_info->dma_filter,
  1009. pl022->master_info->dma_tx_param);
  1010. if (!pl022->dma_tx_channel) {
  1011. dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
  1012. goto err_no_txchan;
  1013. }
  1014. pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1015. if (!pl022->dummypage) {
  1016. dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
  1017. goto err_no_dummypage;
  1018. }
  1019. dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
  1020. dma_chan_name(pl022->dma_rx_channel),
  1021. dma_chan_name(pl022->dma_tx_channel));
  1022. return 0;
  1023. err_no_dummypage:
  1024. dma_release_channel(pl022->dma_tx_channel);
  1025. err_no_txchan:
  1026. dma_release_channel(pl022->dma_rx_channel);
  1027. pl022->dma_rx_channel = NULL;
  1028. err_no_rxchan:
  1029. dev_err(&pl022->adev->dev,
  1030. "Failed to work in dma mode, work without dma!\n");
  1031. return -ENODEV;
  1032. }
  1033. static void terminate_dma(struct pl022 *pl022)
  1034. {
  1035. struct dma_chan *rxchan = pl022->dma_rx_channel;
  1036. struct dma_chan *txchan = pl022->dma_tx_channel;
  1037. dmaengine_terminate_all(rxchan);
  1038. dmaengine_terminate_all(txchan);
  1039. unmap_free_dma_scatter(pl022);
  1040. pl022->dma_running = false;
  1041. }
  1042. static void pl022_dma_remove(struct pl022 *pl022)
  1043. {
  1044. if (pl022->dma_running)
  1045. terminate_dma(pl022);
  1046. if (pl022->dma_tx_channel)
  1047. dma_release_channel(pl022->dma_tx_channel);
  1048. if (pl022->dma_rx_channel)
  1049. dma_release_channel(pl022->dma_rx_channel);
  1050. kfree(pl022->dummypage);
  1051. }
  1052. #else
  1053. static inline int configure_dma(struct pl022 *pl022)
  1054. {
  1055. return -ENODEV;
  1056. }
  1057. static inline int pl022_dma_probe(struct pl022 *pl022)
  1058. {
  1059. return 0;
  1060. }
  1061. static inline void pl022_dma_remove(struct pl022 *pl022)
  1062. {
  1063. }
  1064. #endif
  1065. /**
  1066. * pl022_interrupt_handler - Interrupt handler for SSP controller
  1067. *
  1068. * This function handles interrupts generated for an interrupt based transfer.
  1069. * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
  1070. * current message's state as STATE_ERROR and schedule the tasklet
  1071. * pump_transfers which will do the postprocessing of the current message by
  1072. * calling giveback(). Otherwise it reads data from RX FIFO till there is no
  1073. * more data, and writes data in TX FIFO till it is not full. If we complete
  1074. * the transfer we move to the next transfer and schedule the tasklet.
  1075. */
  1076. static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
  1077. {
  1078. struct pl022 *pl022 = dev_id;
  1079. struct spi_message *msg = pl022->cur_msg;
  1080. u16 irq_status = 0;
  1081. u16 flag = 0;
  1082. if (unlikely(!msg)) {
  1083. dev_err(&pl022->adev->dev,
  1084. "bad message state in interrupt handler");
  1085. /* Never fail */
  1086. return IRQ_HANDLED;
  1087. }
  1088. /* Read the Interrupt Status Register */
  1089. irq_status = readw(SSP_MIS(pl022->virtbase));
  1090. if (unlikely(!irq_status))
  1091. return IRQ_NONE;
  1092. /*
  1093. * This handles the FIFO interrupts, the timeout
  1094. * interrupts are flatly ignored, they cannot be
  1095. * trusted.
  1096. */
  1097. if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
  1098. /*
  1099. * Overrun interrupt - bail out since our Data has been
  1100. * corrupted
  1101. */
  1102. dev_err(&pl022->adev->dev, "FIFO overrun\n");
  1103. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
  1104. dev_err(&pl022->adev->dev,
  1105. "RXFIFO is full\n");
  1106. if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
  1107. dev_err(&pl022->adev->dev,
  1108. "TXFIFO is full\n");
  1109. /*
  1110. * Disable and clear interrupts, disable SSP,
  1111. * mark message with bad status so it can be
  1112. * retried.
  1113. */
  1114. writew(DISABLE_ALL_INTERRUPTS,
  1115. SSP_IMSC(pl022->virtbase));
  1116. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1117. writew((readw(SSP_CR1(pl022->virtbase)) &
  1118. (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
  1119. msg->state = STATE_ERROR;
  1120. /* Schedule message queue handler */
  1121. tasklet_schedule(&pl022->pump_transfers);
  1122. return IRQ_HANDLED;
  1123. }
  1124. readwriter(pl022);
  1125. if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
  1126. flag = 1;
  1127. /* Disable Transmit interrupt, enable receive interrupt */
  1128. writew((readw(SSP_IMSC(pl022->virtbase)) &
  1129. ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
  1130. SSP_IMSC(pl022->virtbase));
  1131. }
  1132. /*
  1133. * Since all transactions must write as much as shall be read,
  1134. * we can conclude the entire transaction once RX is complete.
  1135. * At this point, all TX will always be finished.
  1136. */
  1137. if (pl022->rx >= pl022->rx_end) {
  1138. writew(DISABLE_ALL_INTERRUPTS,
  1139. SSP_IMSC(pl022->virtbase));
  1140. writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
  1141. if (unlikely(pl022->rx > pl022->rx_end)) {
  1142. dev_warn(&pl022->adev->dev, "read %u surplus "
  1143. "bytes (did you request an odd "
  1144. "number of bytes on a 16bit bus?)\n",
  1145. (u32) (pl022->rx - pl022->rx_end));
  1146. }
  1147. /* Update total bytes transferred */
  1148. msg->actual_length += pl022->cur_transfer->len;
  1149. if (pl022->cur_transfer->cs_change)
  1150. pl022_cs_control(pl022, SSP_CHIP_DESELECT);
  1151. /* Move to next transfer */
  1152. msg->state = next_transfer(pl022);
  1153. tasklet_schedule(&pl022->pump_transfers);
  1154. return IRQ_HANDLED;
  1155. }
  1156. return IRQ_HANDLED;
  1157. }
  1158. /**
  1159. * This sets up the pointers to memory for the next message to
  1160. * send out on the SPI bus.
  1161. */
  1162. static int set_up_next_transfer(struct pl022 *pl022,
  1163. struct spi_transfer *transfer)
  1164. {
  1165. int residue;
  1166. /* Sanity check the message for this bus width */
  1167. residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
  1168. if (unlikely(residue != 0)) {
  1169. dev_err(&pl022->adev->dev,
  1170. "message of %u bytes to transmit but the current "
  1171. "chip bus has a data width of %u bytes!\n",
  1172. pl022->cur_transfer->len,
  1173. pl022->cur_chip->n_bytes);
  1174. dev_err(&pl022->adev->dev, "skipping this message\n");
  1175. return -EIO;
  1176. }
  1177. pl022->tx = (void *)transfer->tx_buf;
  1178. pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
  1179. pl022->rx = (void *)transfer->rx_buf;
  1180. pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
  1181. pl022->write =
  1182. pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
  1183. pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
  1184. return 0;
  1185. }
  1186. /**
  1187. * pump_transfers - Tasklet function which schedules next transfer
  1188. * when running in interrupt or DMA transfer mode.
  1189. * @data: SSP driver private data structure
  1190. *
  1191. */
  1192. static void pump_transfers(unsigned long data)
  1193. {
  1194. struct pl022 *pl022 = (struct pl022 *) data;
  1195. struct spi_message *message = NULL;
  1196. struct spi_transfer *transfer = NULL;
  1197. struct spi_transfer *previous = NULL;
  1198. /* Get current state information */
  1199. message = pl022->cur_msg;
  1200. transfer = pl022->cur_transfer;
  1201. /* Handle for abort */
  1202. if (message->state == STATE_ERROR) {
  1203. message->status = -EIO;
  1204. giveback(pl022);
  1205. return;
  1206. }
  1207. /* Handle end of message */
  1208. if (message->state == STATE_DONE) {
  1209. message->status = 0;
  1210. giveback(pl022);
  1211. return;
  1212. }
  1213. /* Delay if requested at end of transfer before CS change */
  1214. if (message->state == STATE_RUNNING) {
  1215. previous = list_entry(transfer->transfer_list.prev,
  1216. struct spi_transfer,
  1217. transfer_list);
  1218. if (previous->delay_usecs)
  1219. /*
  1220. * FIXME: This runs in interrupt context.
  1221. * Is this really smart?
  1222. */
  1223. udelay(previous->delay_usecs);
  1224. /* Reselect chip select only if cs_change was requested */
  1225. if (previous->cs_change)
  1226. pl022_cs_control(pl022, SSP_CHIP_SELECT);
  1227. } else {
  1228. /* STATE_START */
  1229. message->state = STATE_RUNNING;
  1230. }
  1231. if (set_up_next_transfer(pl022, transfer)) {
  1232. message->state = STATE_ERROR;
  1233. message->status = -EIO;
  1234. giveback(pl022);
  1235. return;
  1236. }
  1237. /* Flush the FIFOs and let's go! */
  1238. flush(pl022);
  1239. if (pl022->cur_chip->enable_dma) {
  1240. if (configure_dma(pl022)) {
  1241. dev_dbg(&pl022->adev->dev,
  1242. "configuration of DMA failed, fall back to interrupt mode\n");
  1243. goto err_config_dma;
  1244. }
  1245. return;
  1246. }
  1247. err_config_dma:
  1248. /* enable all interrupts except RX */
  1249. writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
  1250. }
  1251. static void do_interrupt_dma_transfer(struct pl022 *pl022)
  1252. {
  1253. /*
  1254. * Default is to enable all interrupts except RX -
  1255. * this will be enabled once TX is complete
  1256. */
  1257. u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
  1258. /* Enable target chip, if not already active */
  1259. if (!pl022->next_msg_cs_active)
  1260. pl022_cs_control(pl022, SSP_CHIP_SELECT);
  1261. if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
  1262. /* Error path */
  1263. pl022->cur_msg->state = STATE_ERROR;
  1264. pl022->cur_msg->status = -EIO;
  1265. giveback(pl022);
  1266. return;
  1267. }
  1268. /* If we're using DMA, set up DMA here */
  1269. if (pl022->cur_chip->enable_dma) {
  1270. /* Configure DMA transfer */
  1271. if (configure_dma(pl022)) {
  1272. dev_dbg(&pl022->adev->dev,
  1273. "configuration of DMA failed, fall back to interrupt mode\n");
  1274. goto err_config_dma;
  1275. }
  1276. /* Disable interrupts in DMA mode, IRQ from DMA controller */
  1277. irqflags = DISABLE_ALL_INTERRUPTS;
  1278. }
  1279. err_config_dma:
  1280. /* Enable SSP, turn on interrupts */
  1281. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1282. SSP_CR1(pl022->virtbase));
  1283. writew(irqflags, SSP_IMSC(pl022->virtbase));
  1284. }
  1285. static void do_polling_transfer(struct pl022 *pl022)
  1286. {
  1287. struct spi_message *message = NULL;
  1288. struct spi_transfer *transfer = NULL;
  1289. struct spi_transfer *previous = NULL;
  1290. struct chip_data *chip;
  1291. unsigned long time, timeout;
  1292. chip = pl022->cur_chip;
  1293. message = pl022->cur_msg;
  1294. while (message->state != STATE_DONE) {
  1295. /* Handle for abort */
  1296. if (message->state == STATE_ERROR)
  1297. break;
  1298. transfer = pl022->cur_transfer;
  1299. /* Delay if requested at end of transfer */
  1300. if (message->state == STATE_RUNNING) {
  1301. previous =
  1302. list_entry(transfer->transfer_list.prev,
  1303. struct spi_transfer, transfer_list);
  1304. if (previous->delay_usecs)
  1305. udelay(previous->delay_usecs);
  1306. if (previous->cs_change)
  1307. pl022_cs_control(pl022, SSP_CHIP_SELECT);
  1308. } else {
  1309. /* STATE_START */
  1310. message->state = STATE_RUNNING;
  1311. if (!pl022->next_msg_cs_active)
  1312. pl022_cs_control(pl022, SSP_CHIP_SELECT);
  1313. }
  1314. /* Configuration Changing Per Transfer */
  1315. if (set_up_next_transfer(pl022, transfer)) {
  1316. /* Error path */
  1317. message->state = STATE_ERROR;
  1318. break;
  1319. }
  1320. /* Flush FIFOs and enable SSP */
  1321. flush(pl022);
  1322. writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
  1323. SSP_CR1(pl022->virtbase));
  1324. dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
  1325. timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
  1326. while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
  1327. time = jiffies;
  1328. readwriter(pl022);
  1329. if (time_after(time, timeout)) {
  1330. dev_warn(&pl022->adev->dev,
  1331. "%s: timeout!\n", __func__);
  1332. message->state = STATE_ERROR;
  1333. goto out;
  1334. }
  1335. cpu_relax();
  1336. }
  1337. /* Update total byte transferred */
  1338. message->actual_length += pl022->cur_transfer->len;
  1339. if (pl022->cur_transfer->cs_change)
  1340. pl022_cs_control(pl022, SSP_CHIP_DESELECT);
  1341. /* Move to next transfer */
  1342. message->state = next_transfer(pl022);
  1343. }
  1344. out:
  1345. /* Handle end of message */
  1346. if (message->state == STATE_DONE)
  1347. message->status = 0;
  1348. else
  1349. message->status = -EIO;
  1350. giveback(pl022);
  1351. return;
  1352. }
  1353. static int pl022_transfer_one_message(struct spi_master *master,
  1354. struct spi_message *msg)
  1355. {
  1356. struct pl022 *pl022 = spi_master_get_devdata(master);
  1357. /* Initial message state */
  1358. pl022->cur_msg = msg;
  1359. msg->state = STATE_START;
  1360. pl022->cur_transfer = list_entry(msg->transfers.next,
  1361. struct spi_transfer, transfer_list);
  1362. /* Setup the SPI using the per chip configuration */
  1363. pl022->cur_chip = spi_get_ctldata(msg->spi);
  1364. pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
  1365. restore_state(pl022);
  1366. flush(pl022);
  1367. if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
  1368. do_polling_transfer(pl022);
  1369. else
  1370. do_interrupt_dma_transfer(pl022);
  1371. return 0;
  1372. }
  1373. static int pl022_prepare_transfer_hardware(struct spi_master *master)
  1374. {
  1375. struct pl022 *pl022 = spi_master_get_devdata(master);
  1376. /*
  1377. * Just make sure we have all we need to run the transfer by syncing
  1378. * with the runtime PM framework.
  1379. */
  1380. pm_runtime_get_sync(&pl022->adev->dev);
  1381. return 0;
  1382. }
  1383. static int pl022_unprepare_transfer_hardware(struct spi_master *master)
  1384. {
  1385. struct pl022 *pl022 = spi_master_get_devdata(master);
  1386. /* nothing more to do - disable spi/ssp and power off */
  1387. writew((readw(SSP_CR1(pl022->virtbase)) &
  1388. (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
  1389. if (pl022->master_info->autosuspend_delay > 0) {
  1390. pm_runtime_mark_last_busy(&pl022->adev->dev);
  1391. pm_runtime_put_autosuspend(&pl022->adev->dev);
  1392. } else {
  1393. pm_runtime_put(&pl022->adev->dev);
  1394. }
  1395. return 0;
  1396. }
  1397. static int verify_controller_parameters(struct pl022 *pl022,
  1398. struct pl022_config_chip const *chip_info)
  1399. {
  1400. if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
  1401. || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
  1402. dev_err(&pl022->adev->dev,
  1403. "interface is configured incorrectly\n");
  1404. return -EINVAL;
  1405. }
  1406. if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
  1407. (!pl022->vendor->unidir)) {
  1408. dev_err(&pl022->adev->dev,
  1409. "unidirectional mode not supported in this "
  1410. "hardware version\n");
  1411. return -EINVAL;
  1412. }
  1413. if ((chip_info->hierarchy != SSP_MASTER)
  1414. && (chip_info->hierarchy != SSP_SLAVE)) {
  1415. dev_err(&pl022->adev->dev,
  1416. "hierarchy is configured incorrectly\n");
  1417. return -EINVAL;
  1418. }
  1419. if ((chip_info->com_mode != INTERRUPT_TRANSFER)
  1420. && (chip_info->com_mode != DMA_TRANSFER)
  1421. && (chip_info->com_mode != POLLING_TRANSFER)) {
  1422. dev_err(&pl022->adev->dev,
  1423. "Communication mode is configured incorrectly\n");
  1424. return -EINVAL;
  1425. }
  1426. switch (chip_info->rx_lev_trig) {
  1427. case SSP_RX_1_OR_MORE_ELEM:
  1428. case SSP_RX_4_OR_MORE_ELEM:
  1429. case SSP_RX_8_OR_MORE_ELEM:
  1430. /* These are always OK, all variants can handle this */
  1431. break;
  1432. case SSP_RX_16_OR_MORE_ELEM:
  1433. if (pl022->vendor->fifodepth < 16) {
  1434. dev_err(&pl022->adev->dev,
  1435. "RX FIFO Trigger Level is configured incorrectly\n");
  1436. return -EINVAL;
  1437. }
  1438. break;
  1439. case SSP_RX_32_OR_MORE_ELEM:
  1440. if (pl022->vendor->fifodepth < 32) {
  1441. dev_err(&pl022->adev->dev,
  1442. "RX FIFO Trigger Level is configured incorrectly\n");
  1443. return -EINVAL;
  1444. }
  1445. break;
  1446. default:
  1447. dev_err(&pl022->adev->dev,
  1448. "RX FIFO Trigger Level is configured incorrectly\n");
  1449. return -EINVAL;
  1450. break;
  1451. }
  1452. switch (chip_info->tx_lev_trig) {
  1453. case SSP_TX_1_OR_MORE_EMPTY_LOC:
  1454. case SSP_TX_4_OR_MORE_EMPTY_LOC:
  1455. case SSP_TX_8_OR_MORE_EMPTY_LOC:
  1456. /* These are always OK, all variants can handle this */
  1457. break;
  1458. case SSP_TX_16_OR_MORE_EMPTY_LOC:
  1459. if (pl022->vendor->fifodepth < 16) {
  1460. dev_err(&pl022->adev->dev,
  1461. "TX FIFO Trigger Level is configured incorrectly\n");
  1462. return -EINVAL;
  1463. }
  1464. break;
  1465. case SSP_TX_32_OR_MORE_EMPTY_LOC:
  1466. if (pl022->vendor->fifodepth < 32) {
  1467. dev_err(&pl022->adev->dev,
  1468. "TX FIFO Trigger Level is configured incorrectly\n");
  1469. return -EINVAL;
  1470. }
  1471. break;
  1472. default:
  1473. dev_err(&pl022->adev->dev,
  1474. "TX FIFO Trigger Level is configured incorrectly\n");
  1475. return -EINVAL;
  1476. break;
  1477. }
  1478. if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
  1479. if ((chip_info->ctrl_len < SSP_BITS_4)
  1480. || (chip_info->ctrl_len > SSP_BITS_32)) {
  1481. dev_err(&pl022->adev->dev,
  1482. "CTRL LEN is configured incorrectly\n");
  1483. return -EINVAL;
  1484. }
  1485. if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
  1486. && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
  1487. dev_err(&pl022->adev->dev,
  1488. "Wait State is configured incorrectly\n");
  1489. return -EINVAL;
  1490. }
  1491. /* Half duplex is only available in the ST Micro version */
  1492. if (pl022->vendor->extended_cr) {
  1493. if ((chip_info->duplex !=
  1494. SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1495. && (chip_info->duplex !=
  1496. SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
  1497. dev_err(&pl022->adev->dev,
  1498. "Microwire duplex mode is configured incorrectly\n");
  1499. return -EINVAL;
  1500. }
  1501. } else {
  1502. if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
  1503. dev_err(&pl022->adev->dev,
  1504. "Microwire half duplex mode requested,"
  1505. " but this is only available in the"
  1506. " ST version of PL022\n");
  1507. return -EINVAL;
  1508. }
  1509. }
  1510. return 0;
  1511. }
  1512. static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
  1513. {
  1514. return rate / (cpsdvsr * (1 + scr));
  1515. }
  1516. static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
  1517. ssp_clock_params * clk_freq)
  1518. {
  1519. /* Lets calculate the frequency parameters */
  1520. u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
  1521. u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
  1522. best_scr = 0, tmp, found = 0;
  1523. rate = clk_get_rate(pl022->clk);
  1524. /* cpsdvscr = 2 & scr 0 */
  1525. max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
  1526. /* cpsdvsr = 254 & scr = 255 */
  1527. min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
  1528. if (freq > max_tclk)
  1529. dev_warn(&pl022->adev->dev,
  1530. "Max speed that can be programmed is %d Hz, you requested %d\n",
  1531. max_tclk, freq);
  1532. if (freq < min_tclk) {
  1533. dev_err(&pl022->adev->dev,
  1534. "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
  1535. freq, min_tclk);
  1536. return -EINVAL;
  1537. }
  1538. /*
  1539. * best_freq will give closest possible available rate (<= requested
  1540. * freq) for all values of scr & cpsdvsr.
  1541. */
  1542. while ((cpsdvsr <= CPSDVR_MAX) && !found) {
  1543. while (scr <= SCR_MAX) {
  1544. tmp = spi_rate(rate, cpsdvsr, scr);
  1545. if (tmp > freq) {
  1546. /* we need lower freq */
  1547. scr++;
  1548. continue;
  1549. }
  1550. /*
  1551. * If found exact value, mark found and break.
  1552. * If found more closer value, update and break.
  1553. */
  1554. if (tmp > best_freq) {
  1555. best_freq = tmp;
  1556. best_cpsdvsr = cpsdvsr;
  1557. best_scr = scr;
  1558. if (tmp == freq)
  1559. found = 1;
  1560. }
  1561. /*
  1562. * increased scr will give lower rates, which are not
  1563. * required
  1564. */
  1565. break;
  1566. }
  1567. cpsdvsr += 2;
  1568. scr = SCR_MIN;
  1569. }
  1570. WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
  1571. freq);
  1572. clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
  1573. clk_freq->scr = (u8) (best_scr & 0xFF);
  1574. dev_dbg(&pl022->adev->dev,
  1575. "SSP Target Frequency is: %u, Effective Frequency is %u\n",
  1576. freq, best_freq);
  1577. dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
  1578. clk_freq->cpsdvsr, clk_freq->scr);
  1579. return 0;
  1580. }
  1581. /*
  1582. * A piece of default chip info unless the platform
  1583. * supplies it.
  1584. */
  1585. static const struct pl022_config_chip pl022_default_chip_info = {
  1586. .com_mode = POLLING_TRANSFER,
  1587. .iface = SSP_INTERFACE_MOTOROLA_SPI,
  1588. .hierarchy = SSP_SLAVE,
  1589. .slave_tx_disable = DO_NOT_DRIVE_TX,
  1590. .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
  1591. .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
  1592. .ctrl_len = SSP_BITS_8,
  1593. .wait_state = SSP_MWIRE_WAIT_ZERO,
  1594. .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
  1595. .cs_control = null_cs_control,
  1596. };
  1597. /**
  1598. * pl022_setup - setup function registered to SPI master framework
  1599. * @spi: spi device which is requesting setup
  1600. *
  1601. * This function is registered to the SPI framework for this SPI master
  1602. * controller. If it is the first time when setup is called by this device,
  1603. * this function will initialize the runtime state for this chip and save
  1604. * the same in the device structure. Else it will update the runtime info
  1605. * with the updated chip info. Nothing is really being written to the
  1606. * controller hardware here, that is not done until the actual transfer
  1607. * commence.
  1608. */
  1609. static int pl022_setup(struct spi_device *spi)
  1610. {
  1611. struct pl022_config_chip const *chip_info;
  1612. struct pl022_config_chip chip_info_dt;
  1613. struct chip_data *chip;
  1614. struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
  1615. int status = 0;
  1616. struct pl022 *pl022 = spi_master_get_devdata(spi->master);
  1617. unsigned int bits = spi->bits_per_word;
  1618. u32 tmp;
  1619. struct device_node *np = spi->dev.of_node;
  1620. if (!spi->max_speed_hz)
  1621. return -EINVAL;
  1622. /* Get controller_state if one is supplied */
  1623. chip = spi_get_ctldata(spi);
  1624. if (chip == NULL) {
  1625. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1626. if (!chip) {
  1627. dev_err(&spi->dev,
  1628. "cannot allocate controller state\n");
  1629. return -ENOMEM;
  1630. }
  1631. dev_dbg(&spi->dev,
  1632. "allocated memory for controller's runtime state\n");
  1633. }
  1634. /* Get controller data if one is supplied */
  1635. chip_info = spi->controller_data;
  1636. if (chip_info == NULL) {
  1637. if (np) {
  1638. chip_info_dt = pl022_default_chip_info;
  1639. chip_info_dt.hierarchy = SSP_MASTER;
  1640. of_property_read_u32(np, "pl022,interface",
  1641. &chip_info_dt.iface);
  1642. of_property_read_u32(np, "pl022,com-mode",
  1643. &chip_info_dt.com_mode);
  1644. of_property_read_u32(np, "pl022,rx-level-trig",
  1645. &chip_info_dt.rx_lev_trig);
  1646. of_property_read_u32(np, "pl022,tx-level-trig",
  1647. &chip_info_dt.tx_lev_trig);
  1648. of_property_read_u32(np, "pl022,ctrl-len",
  1649. &chip_info_dt.ctrl_len);
  1650. of_property_read_u32(np, "pl022,wait-state",
  1651. &chip_info_dt.wait_state);
  1652. of_property_read_u32(np, "pl022,duplex",
  1653. &chip_info_dt.duplex);
  1654. chip_info = &chip_info_dt;
  1655. } else {
  1656. chip_info = &pl022_default_chip_info;
  1657. /* spi_board_info.controller_data not is supplied */
  1658. dev_dbg(&spi->dev,
  1659. "using default controller_data settings\n");
  1660. }
  1661. } else
  1662. dev_dbg(&spi->dev,
  1663. "using user supplied controller_data settings\n");
  1664. /*
  1665. * We can override with custom divisors, else we use the board
  1666. * frequency setting
  1667. */
  1668. if ((0 == chip_info->clk_freq.cpsdvsr)
  1669. && (0 == chip_info->clk_freq.scr)) {
  1670. status = calculate_effective_freq(pl022,
  1671. spi->max_speed_hz,
  1672. &clk_freq);
  1673. if (status < 0)
  1674. goto err_config_params;
  1675. } else {
  1676. memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
  1677. if ((clk_freq.cpsdvsr % 2) != 0)
  1678. clk_freq.cpsdvsr =
  1679. clk_freq.cpsdvsr - 1;
  1680. }
  1681. if ((clk_freq.cpsdvsr < CPSDVR_MIN)
  1682. || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
  1683. status = -EINVAL;
  1684. dev_err(&spi->dev,
  1685. "cpsdvsr is configured incorrectly\n");
  1686. goto err_config_params;
  1687. }
  1688. status = verify_controller_parameters(pl022, chip_info);
  1689. if (status) {
  1690. dev_err(&spi->dev, "controller data is incorrect");
  1691. goto err_config_params;
  1692. }
  1693. pl022->rx_lev_trig = chip_info->rx_lev_trig;
  1694. pl022->tx_lev_trig = chip_info->tx_lev_trig;
  1695. /* Now set controller state based on controller data */
  1696. chip->xfer_type = chip_info->com_mode;
  1697. if (!chip_info->cs_control) {
  1698. chip->cs_control = null_cs_control;
  1699. if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
  1700. dev_warn(&spi->dev,
  1701. "invalid chip select\n");
  1702. } else
  1703. chip->cs_control = chip_info->cs_control;
  1704. /* Check bits per word with vendor specific range */
  1705. if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
  1706. status = -ENOTSUPP;
  1707. dev_err(&spi->dev, "illegal data size for this controller!\n");
  1708. dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
  1709. pl022->vendor->max_bpw);
  1710. goto err_config_params;
  1711. } else if (bits <= 8) {
  1712. dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
  1713. chip->n_bytes = 1;
  1714. chip->read = READING_U8;
  1715. chip->write = WRITING_U8;
  1716. } else if (bits <= 16) {
  1717. dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
  1718. chip->n_bytes = 2;
  1719. chip->read = READING_U16;
  1720. chip->write = WRITING_U16;
  1721. } else {
  1722. dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
  1723. chip->n_bytes = 4;
  1724. chip->read = READING_U32;
  1725. chip->write = WRITING_U32;
  1726. }
  1727. /* Now Initialize all register settings required for this chip */
  1728. chip->cr0 = 0;
  1729. chip->cr1 = 0;
  1730. chip->dmacr = 0;
  1731. chip->cpsr = 0;
  1732. if ((chip_info->com_mode == DMA_TRANSFER)
  1733. && ((pl022->master_info)->enable_dma)) {
  1734. chip->enable_dma = true;
  1735. dev_dbg(&spi->dev, "DMA mode set in controller state\n");
  1736. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1737. SSP_DMACR_MASK_RXDMAE, 0);
  1738. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
  1739. SSP_DMACR_MASK_TXDMAE, 1);
  1740. } else {
  1741. chip->enable_dma = false;
  1742. dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
  1743. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1744. SSP_DMACR_MASK_RXDMAE, 0);
  1745. SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
  1746. SSP_DMACR_MASK_TXDMAE, 1);
  1747. }
  1748. chip->cpsr = clk_freq.cpsdvsr;
  1749. /* Special setup for the ST micro extended control registers */
  1750. if (pl022->vendor->extended_cr) {
  1751. u32 etx;
  1752. if (pl022->vendor->pl023) {
  1753. /* These bits are only in the PL023 */
  1754. SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
  1755. SSP_CR1_MASK_FBCLKDEL_ST, 13);
  1756. } else {
  1757. /* These bits are in the PL022 but not PL023 */
  1758. SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
  1759. SSP_CR0_MASK_HALFDUP_ST, 5);
  1760. SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
  1761. SSP_CR0_MASK_CSS_ST, 16);
  1762. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1763. SSP_CR0_MASK_FRF_ST, 21);
  1764. SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
  1765. SSP_CR1_MASK_MWAIT_ST, 6);
  1766. }
  1767. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1768. SSP_CR0_MASK_DSS_ST, 0);
  1769. if (spi->mode & SPI_LSB_FIRST) {
  1770. tmp = SSP_RX_LSB;
  1771. etx = SSP_TX_LSB;
  1772. } else {
  1773. tmp = SSP_RX_MSB;
  1774. etx = SSP_TX_MSB;
  1775. }
  1776. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
  1777. SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
  1778. SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
  1779. SSP_CR1_MASK_RXIFLSEL_ST, 7);
  1780. SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
  1781. SSP_CR1_MASK_TXIFLSEL_ST, 10);
  1782. } else {
  1783. SSP_WRITE_BITS(chip->cr0, bits - 1,
  1784. SSP_CR0_MASK_DSS, 0);
  1785. SSP_WRITE_BITS(chip->cr0, chip_info->iface,
  1786. SSP_CR0_MASK_FRF, 4);
  1787. }
  1788. /* Stuff that is common for all versions */
  1789. if (spi->mode & SPI_CPOL)
  1790. tmp = SSP_CLK_POL_IDLE_HIGH;
  1791. else
  1792. tmp = SSP_CLK_POL_IDLE_LOW;
  1793. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
  1794. if (spi->mode & SPI_CPHA)
  1795. tmp = SSP_CLK_SECOND_EDGE;
  1796. else
  1797. tmp = SSP_CLK_FIRST_EDGE;
  1798. SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
  1799. SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
  1800. /* Loopback is available on all versions except PL023 */
  1801. if (pl022->vendor->loopback) {
  1802. if (spi->mode & SPI_LOOP)
  1803. tmp = LOOPBACK_ENABLED;
  1804. else
  1805. tmp = LOOPBACK_DISABLED;
  1806. SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
  1807. }
  1808. SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
  1809. SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
  1810. SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
  1811. 3);
  1812. /* Save controller_state */
  1813. spi_set_ctldata(spi, chip);
  1814. return status;
  1815. err_config_params:
  1816. spi_set_ctldata(spi, NULL);
  1817. kfree(chip);
  1818. return status;
  1819. }
  1820. /**
  1821. * pl022_cleanup - cleanup function registered to SPI master framework
  1822. * @spi: spi device which is requesting cleanup
  1823. *
  1824. * This function is registered to the SPI framework for this SPI master
  1825. * controller. It will free the runtime state of chip.
  1826. */
  1827. static void pl022_cleanup(struct spi_device *spi)
  1828. {
  1829. struct chip_data *chip = spi_get_ctldata(spi);
  1830. spi_set_ctldata(spi, NULL);
  1831. kfree(chip);
  1832. }
  1833. static struct pl022_ssp_controller *
  1834. pl022_platform_data_dt_get(struct device *dev)
  1835. {
  1836. struct device_node *np = dev->of_node;
  1837. struct pl022_ssp_controller *pd;
  1838. u32 tmp;
  1839. if (!np) {
  1840. dev_err(dev, "no dt node defined\n");
  1841. return NULL;
  1842. }
  1843. pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
  1844. if (!pd) {
  1845. dev_err(dev, "cannot allocate platform data memory\n");
  1846. return NULL;
  1847. }
  1848. pd->bus_id = -1;
  1849. of_property_read_u32(np, "num-cs", &tmp);
  1850. pd->num_chipselect = tmp;
  1851. of_property_read_u32(np, "pl022,autosuspend-delay",
  1852. &pd->autosuspend_delay);
  1853. pd->rt = of_property_read_bool(np, "pl022,rt");
  1854. return pd;
  1855. }
  1856. static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
  1857. {
  1858. struct device *dev = &adev->dev;
  1859. struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
  1860. struct spi_master *master;
  1861. struct pl022 *pl022 = NULL; /*Data for this driver */
  1862. struct device_node *np = adev->dev.of_node;
  1863. int status = 0, i, num_cs;
  1864. dev_info(&adev->dev,
  1865. "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
  1866. if (!platform_info && IS_ENABLED(CONFIG_OF))
  1867. platform_info = pl022_platform_data_dt_get(dev);
  1868. if (!platform_info) {
  1869. dev_err(dev, "probe: no platform data defined\n");
  1870. return -ENODEV;
  1871. }
  1872. if (platform_info->num_chipselect) {
  1873. num_cs = platform_info->num_chipselect;
  1874. } else {
  1875. dev_err(dev, "probe: no chip select defined\n");
  1876. return -ENODEV;
  1877. }
  1878. /* Allocate master with space for data */
  1879. master = spi_alloc_master(dev, sizeof(struct pl022));
  1880. if (master == NULL) {
  1881. dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
  1882. return -ENOMEM;
  1883. }
  1884. pl022 = spi_master_get_devdata(master);
  1885. pl022->master = master;
  1886. pl022->master_info = platform_info;
  1887. pl022->adev = adev;
  1888. pl022->vendor = id->data;
  1889. pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
  1890. GFP_KERNEL);
  1891. pl022->pinctrl = devm_pinctrl_get(dev);
  1892. if (IS_ERR(pl022->pinctrl)) {
  1893. status = PTR_ERR(pl022->pinctrl);
  1894. goto err_no_pinctrl;
  1895. }
  1896. pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl,
  1897. PINCTRL_STATE_DEFAULT);
  1898. /* enable pins to be muxed in and configured */
  1899. if (!IS_ERR(pl022->pins_default)) {
  1900. status = pinctrl_select_state(pl022->pinctrl,
  1901. pl022->pins_default);
  1902. if (status)
  1903. dev_err(dev, "could not set default pins\n");
  1904. } else
  1905. dev_err(dev, "could not get default pinstate\n");
  1906. pl022->pins_idle = pinctrl_lookup_state(pl022->pinctrl,
  1907. PINCTRL_STATE_IDLE);
  1908. if (IS_ERR(pl022->pins_idle))
  1909. dev_dbg(dev, "could not get idle pinstate\n");
  1910. pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
  1911. PINCTRL_STATE_SLEEP);
  1912. if (IS_ERR(pl022->pins_sleep))
  1913. dev_dbg(dev, "could not get sleep pinstate\n");
  1914. /*
  1915. * Bus Number Which has been Assigned to this SSP controller
  1916. * on this board
  1917. */
  1918. master->bus_num = platform_info->bus_id;
  1919. master->num_chipselect = num_cs;
  1920. master->cleanup = pl022_cleanup;
  1921. master->setup = pl022_setup;
  1922. master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
  1923. master->transfer_one_message = pl022_transfer_one_message;
  1924. master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
  1925. master->rt = platform_info->rt;
  1926. master->dev.of_node = dev->of_node;
  1927. if (platform_info->num_chipselect && platform_info->chipselects) {
  1928. for (i = 0; i < num_cs; i++)
  1929. pl022->chipselects[i] = platform_info->chipselects[i];
  1930. } else if (IS_ENABLED(CONFIG_OF)) {
  1931. for (i = 0; i < num_cs; i++) {
  1932. int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
  1933. if (cs_gpio == -EPROBE_DEFER) {
  1934. status = -EPROBE_DEFER;
  1935. goto err_no_gpio;
  1936. }
  1937. pl022->chipselects[i] = cs_gpio;
  1938. if (gpio_is_valid(cs_gpio)) {
  1939. if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
  1940. dev_err(&adev->dev,
  1941. "could not request %d gpio\n",
  1942. cs_gpio);
  1943. else if (gpio_direction_output(cs_gpio, 1))
  1944. dev_err(&adev->dev,
  1945. "could set gpio %d as output\n",
  1946. cs_gpio);
  1947. }
  1948. }
  1949. }
  1950. /*
  1951. * Supports mode 0-3, loopback, and active low CS. Transfers are
  1952. * always MS bit first on the original pl022.
  1953. */
  1954. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  1955. if (pl022->vendor->extended_cr)
  1956. master->mode_bits |= SPI_LSB_FIRST;
  1957. dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
  1958. status = amba_request_regions(adev, NULL);
  1959. if (status)
  1960. goto err_no_ioregion;
  1961. pl022->phybase = adev->res.start;
  1962. pl022->virtbase = devm_ioremap(dev, adev->res.start,
  1963. resource_size(&adev->res));
  1964. if (pl022->virtbase == NULL) {
  1965. status = -ENOMEM;
  1966. goto err_no_ioremap;
  1967. }
  1968. printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
  1969. adev->res.start, pl022->virtbase);
  1970. pl022->clk = devm_clk_get(&adev->dev, NULL);
  1971. if (IS_ERR(pl022->clk)) {
  1972. status = PTR_ERR(pl022->clk);
  1973. dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
  1974. goto err_no_clk;
  1975. }
  1976. status = clk_prepare(pl022->clk);
  1977. if (status) {
  1978. dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
  1979. goto err_clk_prep;
  1980. }
  1981. status = clk_enable(pl022->clk);
  1982. if (status) {
  1983. dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
  1984. goto err_no_clk_en;
  1985. }
  1986. /* Initialize transfer pump */
  1987. tasklet_init(&pl022->pump_transfers, pump_transfers,
  1988. (unsigned long)pl022);
  1989. /* Disable SSP */
  1990. writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
  1991. SSP_CR1(pl022->virtbase));
  1992. load_ssp_default_config(pl022);
  1993. status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
  1994. 0, "pl022", pl022);
  1995. if (status < 0) {
  1996. dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
  1997. goto err_no_irq;
  1998. }
  1999. /* Get DMA channels */
  2000. if (platform_info->enable_dma) {
  2001. status = pl022_dma_probe(pl022);
  2002. if (status != 0)
  2003. platform_info->enable_dma = 0;
  2004. }
  2005. /* Register with the SPI framework */
  2006. amba_set_drvdata(adev, pl022);
  2007. status = spi_register_master(master);
  2008. if (status != 0) {
  2009. dev_err(&adev->dev,
  2010. "probe - problem registering spi master\n");
  2011. goto err_spi_register;
  2012. }
  2013. dev_dbg(dev, "probe succeeded\n");
  2014. /* let runtime pm put suspend */
  2015. if (platform_info->autosuspend_delay > 0) {
  2016. dev_info(&adev->dev,
  2017. "will use autosuspend for runtime pm, delay %dms\n",
  2018. platform_info->autosuspend_delay);
  2019. pm_runtime_set_autosuspend_delay(dev,
  2020. platform_info->autosuspend_delay);
  2021. pm_runtime_use_autosuspend(dev);
  2022. }
  2023. pm_runtime_put(dev);
  2024. return 0;
  2025. err_spi_register:
  2026. if (platform_info->enable_dma)
  2027. pl022_dma_remove(pl022);
  2028. err_no_irq:
  2029. clk_disable(pl022->clk);
  2030. err_no_clk_en:
  2031. clk_unprepare(pl022->clk);
  2032. err_clk_prep:
  2033. err_no_clk:
  2034. err_no_ioremap:
  2035. amba_release_regions(adev);
  2036. err_no_ioregion:
  2037. err_no_gpio:
  2038. err_no_pinctrl:
  2039. spi_master_put(master);
  2040. return status;
  2041. }
  2042. static int
  2043. pl022_remove(struct amba_device *adev)
  2044. {
  2045. struct pl022 *pl022 = amba_get_drvdata(adev);
  2046. if (!pl022)
  2047. return 0;
  2048. /*
  2049. * undo pm_runtime_put() in probe. I assume that we're not
  2050. * accessing the primecell here.
  2051. */
  2052. pm_runtime_get_noresume(&adev->dev);
  2053. load_ssp_default_config(pl022);
  2054. if (pl022->master_info->enable_dma)
  2055. pl022_dma_remove(pl022);
  2056. clk_disable(pl022->clk);
  2057. clk_unprepare(pl022->clk);
  2058. amba_release_regions(adev);
  2059. tasklet_disable(&pl022->pump_transfers);
  2060. spi_unregister_master(pl022->master);
  2061. amba_set_drvdata(adev, NULL);
  2062. return 0;
  2063. }
  2064. #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
  2065. /*
  2066. * These two functions are used from both suspend/resume and
  2067. * the runtime counterparts to handle external resources like
  2068. * clocks, pins and regulators when going to sleep.
  2069. */
  2070. static void pl022_suspend_resources(struct pl022 *pl022, bool runtime)
  2071. {
  2072. int ret;
  2073. struct pinctrl_state *pins_state;
  2074. clk_disable(pl022->clk);
  2075. pins_state = runtime ? pl022->pins_idle : pl022->pins_sleep;
  2076. /* Optionally let pins go into sleep states */
  2077. if (!IS_ERR(pins_state)) {
  2078. ret = pinctrl_select_state(pl022->pinctrl, pins_state);
  2079. if (ret)
  2080. dev_err(&pl022->adev->dev, "could not set %s pins\n",
  2081. runtime ? "idle" : "sleep");
  2082. }
  2083. }
  2084. static void pl022_resume_resources(struct pl022 *pl022, bool runtime)
  2085. {
  2086. int ret;
  2087. /* Optionaly enable pins to be muxed in and configured */
  2088. /* First go to the default state */
  2089. if (!IS_ERR(pl022->pins_default)) {
  2090. ret = pinctrl_select_state(pl022->pinctrl, pl022->pins_default);
  2091. if (ret)
  2092. dev_err(&pl022->adev->dev,
  2093. "could not set default pins\n");
  2094. }
  2095. if (!runtime) {
  2096. /* Then let's idle the pins until the next transfer happens */
  2097. if (!IS_ERR(pl022->pins_idle)) {
  2098. ret = pinctrl_select_state(pl022->pinctrl,
  2099. pl022->pins_idle);
  2100. if (ret)
  2101. dev_err(&pl022->adev->dev,
  2102. "could not set idle pins\n");
  2103. }
  2104. }
  2105. clk_enable(pl022->clk);
  2106. }
  2107. #endif
  2108. #ifdef CONFIG_SUSPEND
  2109. static int pl022_suspend(struct device *dev)
  2110. {
  2111. struct pl022 *pl022 = dev_get_drvdata(dev);
  2112. int ret;
  2113. ret = spi_master_suspend(pl022->master);
  2114. if (ret) {
  2115. dev_warn(dev, "cannot suspend master\n");
  2116. return ret;
  2117. }
  2118. pm_runtime_get_sync(dev);
  2119. pl022_suspend_resources(pl022, false);
  2120. dev_dbg(dev, "suspended\n");
  2121. return 0;
  2122. }
  2123. static int pl022_resume(struct device *dev)
  2124. {
  2125. struct pl022 *pl022 = dev_get_drvdata(dev);
  2126. int ret;
  2127. pl022_resume_resources(pl022, false);
  2128. pm_runtime_put(dev);
  2129. /* Start the queue running */
  2130. ret = spi_master_resume(pl022->master);
  2131. if (ret)
  2132. dev_err(dev, "problem starting queue (%d)\n", ret);
  2133. else
  2134. dev_dbg(dev, "resumed\n");
  2135. return ret;
  2136. }
  2137. #endif /* CONFIG_PM */
  2138. #ifdef CONFIG_PM_RUNTIME
  2139. static int pl022_runtime_suspend(struct device *dev)
  2140. {
  2141. struct pl022 *pl022 = dev_get_drvdata(dev);
  2142. pl022_suspend_resources(pl022, true);
  2143. return 0;
  2144. }
  2145. static int pl022_runtime_resume(struct device *dev)
  2146. {
  2147. struct pl022 *pl022 = dev_get_drvdata(dev);
  2148. pl022_resume_resources(pl022, true);
  2149. return 0;
  2150. }
  2151. #endif
  2152. static const struct dev_pm_ops pl022_dev_pm_ops = {
  2153. SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
  2154. SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
  2155. };
  2156. static struct vendor_data vendor_arm = {
  2157. .fifodepth = 8,
  2158. .max_bpw = 16,
  2159. .unidir = false,
  2160. .extended_cr = false,
  2161. .pl023 = false,
  2162. .loopback = true,
  2163. };
  2164. static struct vendor_data vendor_st = {
  2165. .fifodepth = 32,
  2166. .max_bpw = 32,
  2167. .unidir = false,
  2168. .extended_cr = true,
  2169. .pl023 = false,
  2170. .loopback = true,
  2171. };
  2172. static struct vendor_data vendor_st_pl023 = {
  2173. .fifodepth = 32,
  2174. .max_bpw = 32,
  2175. .unidir = false,
  2176. .extended_cr = true,
  2177. .pl023 = true,
  2178. .loopback = false,
  2179. };
  2180. static struct amba_id pl022_ids[] = {
  2181. {
  2182. /*
  2183. * ARM PL022 variant, this has a 16bit wide
  2184. * and 8 locations deep TX/RX FIFO
  2185. */
  2186. .id = 0x00041022,
  2187. .mask = 0x000fffff,
  2188. .data = &vendor_arm,
  2189. },
  2190. {
  2191. /*
  2192. * ST Micro derivative, this has 32bit wide
  2193. * and 32 locations deep TX/RX FIFO
  2194. */
  2195. .id = 0x01080022,
  2196. .mask = 0xffffffff,
  2197. .data = &vendor_st,
  2198. },
  2199. {
  2200. /*
  2201. * ST-Ericsson derivative "PL023" (this is not
  2202. * an official ARM number), this is a PL022 SSP block
  2203. * stripped to SPI mode only, it has 32bit wide
  2204. * and 32 locations deep TX/RX FIFO but no extended
  2205. * CR0/CR1 register
  2206. */
  2207. .id = 0x00080023,
  2208. .mask = 0xffffffff,
  2209. .data = &vendor_st_pl023,
  2210. },
  2211. { 0, 0 },
  2212. };
  2213. MODULE_DEVICE_TABLE(amba, pl022_ids);
  2214. static struct amba_driver pl022_driver = {
  2215. .drv = {
  2216. .name = "ssp-pl022",
  2217. .pm = &pl022_dev_pm_ops,
  2218. },
  2219. .id_table = pl022_ids,
  2220. .probe = pl022_probe,
  2221. .remove = pl022_remove,
  2222. };
  2223. static int __init pl022_init(void)
  2224. {
  2225. return amba_driver_register(&pl022_driver);
  2226. }
  2227. subsys_initcall(pl022_init);
  2228. static void __exit pl022_exit(void)
  2229. {
  2230. amba_driver_unregister(&pl022_driver);
  2231. }
  2232. module_exit(pl022_exit);
  2233. MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
  2234. MODULE_DESCRIPTION("PL022 SSP Controller Driver");
  2235. MODULE_LICENSE("GPL");