spi-dw.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /*
  2. * Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/module.h>
  22. #include <linux/highmem.h>
  23. #include <linux/delay.h>
  24. #include <linux/slab.h>
  25. #include <linux/spi/spi.h>
  26. #include "spi-dw.h"
  27. #ifdef CONFIG_DEBUG_FS
  28. #include <linux/debugfs.h>
  29. #endif
  30. #define START_STATE ((void *)0)
  31. #define RUNNING_STATE ((void *)1)
  32. #define DONE_STATE ((void *)2)
  33. #define ERROR_STATE ((void *)-1)
  34. #define QUEUE_RUNNING 0
  35. #define QUEUE_STOPPED 1
  36. #define MRST_SPI_DEASSERT 0
  37. #define MRST_SPI_ASSERT 1
  38. /* Slave spi_dev related */
  39. struct chip_data {
  40. u16 cr0;
  41. u8 cs; /* chip select pin */
  42. u8 n_bytes; /* current is a 1/2/4 byte op */
  43. u8 tmode; /* TR/TO/RO/EEPROM */
  44. u8 type; /* SPI/SSP/MicroWire */
  45. u8 poll_mode; /* 1 means use poll mode */
  46. u32 dma_width;
  47. u32 rx_threshold;
  48. u32 tx_threshold;
  49. u8 enable_dma;
  50. u8 bits_per_word;
  51. u16 clk_div; /* baud rate divider */
  52. u32 speed_hz; /* baud rate */
  53. void (*cs_control)(u32 command);
  54. };
  55. #ifdef CONFIG_DEBUG_FS
  56. #define SPI_REGS_BUFSIZE 1024
  57. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  58. size_t count, loff_t *ppos)
  59. {
  60. struct dw_spi *dws;
  61. char *buf;
  62. u32 len = 0;
  63. ssize_t ret;
  64. dws = file->private_data;
  65. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  66. if (!buf)
  67. return 0;
  68. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  69. "MRST SPI0 registers:\n");
  70. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  71. "=================================\n");
  72. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  73. "CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
  96. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  97. "DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
  98. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  99. "DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
  100. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  101. "DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
  102. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  103. "=================================\n");
  104. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  105. kfree(buf);
  106. return ret;
  107. }
  108. static const struct file_operations mrst_spi_regs_ops = {
  109. .owner = THIS_MODULE,
  110. .open = simple_open,
  111. .read = spi_show_regs,
  112. .llseek = default_llseek,
  113. };
  114. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  115. {
  116. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  117. if (!dws->debugfs)
  118. return -ENOMEM;
  119. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  120. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  121. return 0;
  122. }
  123. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  124. {
  125. if (dws->debugfs)
  126. debugfs_remove_recursive(dws->debugfs);
  127. }
  128. #else
  129. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  130. {
  131. return 0;
  132. }
  133. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  134. {
  135. }
  136. #endif /* CONFIG_DEBUG_FS */
  137. /* Return the max entries we can fill into tx fifo */
  138. static inline u32 tx_max(struct dw_spi *dws)
  139. {
  140. u32 tx_left, tx_room, rxtx_gap;
  141. tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
  142. tx_room = dws->fifo_len - dw_readw(dws, DW_SPI_TXFLR);
  143. /*
  144. * Another concern is about the tx/rx mismatch, we
  145. * though to use (dws->fifo_len - rxflr - txflr) as
  146. * one maximum value for tx, but it doesn't cover the
  147. * data which is out of tx/rx fifo and inside the
  148. * shift registers. So a control from sw point of
  149. * view is taken.
  150. */
  151. rxtx_gap = ((dws->rx_end - dws->rx) - (dws->tx_end - dws->tx))
  152. / dws->n_bytes;
  153. return min3(tx_left, tx_room, (u32) (dws->fifo_len - rxtx_gap));
  154. }
  155. /* Return the max entries we should read out of rx fifo */
  156. static inline u32 rx_max(struct dw_spi *dws)
  157. {
  158. u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
  159. return min(rx_left, (u32)dw_readw(dws, DW_SPI_RXFLR));
  160. }
  161. static void dw_writer(struct dw_spi *dws)
  162. {
  163. u32 max = tx_max(dws);
  164. u16 txw = 0;
  165. while (max--) {
  166. /* Set the tx word if the transfer's original "tx" is not null */
  167. if (dws->tx_end - dws->len) {
  168. if (dws->n_bytes == 1)
  169. txw = *(u8 *)(dws->tx);
  170. else
  171. txw = *(u16 *)(dws->tx);
  172. }
  173. dw_writew(dws, DW_SPI_DR, txw);
  174. dws->tx += dws->n_bytes;
  175. }
  176. }
  177. static void dw_reader(struct dw_spi *dws)
  178. {
  179. u32 max = rx_max(dws);
  180. u16 rxw;
  181. while (max--) {
  182. rxw = dw_readw(dws, DW_SPI_DR);
  183. /* Care rx only if the transfer's original "rx" is not null */
  184. if (dws->rx_end - dws->len) {
  185. if (dws->n_bytes == 1)
  186. *(u8 *)(dws->rx) = rxw;
  187. else
  188. *(u16 *)(dws->rx) = rxw;
  189. }
  190. dws->rx += dws->n_bytes;
  191. }
  192. }
  193. static void *next_transfer(struct dw_spi *dws)
  194. {
  195. struct spi_message *msg = dws->cur_msg;
  196. struct spi_transfer *trans = dws->cur_transfer;
  197. /* Move to next transfer */
  198. if (trans->transfer_list.next != &msg->transfers) {
  199. dws->cur_transfer =
  200. list_entry(trans->transfer_list.next,
  201. struct spi_transfer,
  202. transfer_list);
  203. return RUNNING_STATE;
  204. } else
  205. return DONE_STATE;
  206. }
  207. /*
  208. * Note: first step is the protocol driver prepares
  209. * a dma-capable memory, and this func just need translate
  210. * the virt addr to physical
  211. */
  212. static int map_dma_buffers(struct dw_spi *dws)
  213. {
  214. if (!dws->cur_msg->is_dma_mapped
  215. || !dws->dma_inited
  216. || !dws->cur_chip->enable_dma
  217. || !dws->dma_ops)
  218. return 0;
  219. if (dws->cur_transfer->tx_dma)
  220. dws->tx_dma = dws->cur_transfer->tx_dma;
  221. if (dws->cur_transfer->rx_dma)
  222. dws->rx_dma = dws->cur_transfer->rx_dma;
  223. return 1;
  224. }
  225. /* Caller already set message->status; dma and pio irqs are blocked */
  226. static void giveback(struct dw_spi *dws)
  227. {
  228. struct spi_transfer *last_transfer;
  229. unsigned long flags;
  230. struct spi_message *msg;
  231. spin_lock_irqsave(&dws->lock, flags);
  232. msg = dws->cur_msg;
  233. dws->cur_msg = NULL;
  234. dws->cur_transfer = NULL;
  235. dws->prev_chip = dws->cur_chip;
  236. dws->cur_chip = NULL;
  237. dws->dma_mapped = 0;
  238. queue_work(dws->workqueue, &dws->pump_messages);
  239. spin_unlock_irqrestore(&dws->lock, flags);
  240. last_transfer = list_entry(msg->transfers.prev,
  241. struct spi_transfer,
  242. transfer_list);
  243. if (!last_transfer->cs_change && dws->cs_control)
  244. dws->cs_control(MRST_SPI_DEASSERT);
  245. msg->state = NULL;
  246. if (msg->complete)
  247. msg->complete(msg->context);
  248. }
  249. static void int_error_stop(struct dw_spi *dws, const char *msg)
  250. {
  251. /* Stop the hw */
  252. spi_enable_chip(dws, 0);
  253. dev_err(&dws->master->dev, "%s\n", msg);
  254. dws->cur_msg->state = ERROR_STATE;
  255. tasklet_schedule(&dws->pump_transfers);
  256. }
  257. void dw_spi_xfer_done(struct dw_spi *dws)
  258. {
  259. /* Update total byte transferred return count actual bytes read */
  260. dws->cur_msg->actual_length += dws->len;
  261. /* Move to next transfer */
  262. dws->cur_msg->state = next_transfer(dws);
  263. /* Handle end of message */
  264. if (dws->cur_msg->state == DONE_STATE) {
  265. dws->cur_msg->status = 0;
  266. giveback(dws);
  267. } else
  268. tasklet_schedule(&dws->pump_transfers);
  269. }
  270. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  271. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  272. {
  273. u16 irq_status = dw_readw(dws, DW_SPI_ISR);
  274. /* Error handling */
  275. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  276. dw_readw(dws, DW_SPI_TXOICR);
  277. dw_readw(dws, DW_SPI_RXOICR);
  278. dw_readw(dws, DW_SPI_RXUICR);
  279. int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
  280. return IRQ_HANDLED;
  281. }
  282. dw_reader(dws);
  283. if (dws->rx_end == dws->rx) {
  284. spi_mask_intr(dws, SPI_INT_TXEI);
  285. dw_spi_xfer_done(dws);
  286. return IRQ_HANDLED;
  287. }
  288. if (irq_status & SPI_INT_TXEI) {
  289. spi_mask_intr(dws, SPI_INT_TXEI);
  290. dw_writer(dws);
  291. /* Enable TX irq always, it will be disabled when RX finished */
  292. spi_umask_intr(dws, SPI_INT_TXEI);
  293. }
  294. return IRQ_HANDLED;
  295. }
  296. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  297. {
  298. struct dw_spi *dws = dev_id;
  299. u16 irq_status = dw_readw(dws, DW_SPI_ISR) & 0x3f;
  300. if (!irq_status)
  301. return IRQ_NONE;
  302. if (!dws->cur_msg) {
  303. spi_mask_intr(dws, SPI_INT_TXEI);
  304. return IRQ_HANDLED;
  305. }
  306. return dws->transfer_handler(dws);
  307. }
  308. /* Must be called inside pump_transfers() */
  309. static void poll_transfer(struct dw_spi *dws)
  310. {
  311. do {
  312. dw_writer(dws);
  313. dw_reader(dws);
  314. cpu_relax();
  315. } while (dws->rx_end > dws->rx);
  316. dw_spi_xfer_done(dws);
  317. }
  318. static void pump_transfers(unsigned long data)
  319. {
  320. struct dw_spi *dws = (struct dw_spi *)data;
  321. struct spi_message *message = NULL;
  322. struct spi_transfer *transfer = NULL;
  323. struct spi_transfer *previous = NULL;
  324. struct spi_device *spi = NULL;
  325. struct chip_data *chip = NULL;
  326. u8 bits = 0;
  327. u8 imask = 0;
  328. u8 cs_change = 0;
  329. u16 txint_level = 0;
  330. u16 clk_div = 0;
  331. u32 speed = 0;
  332. u32 cr0 = 0;
  333. /* Get current state information */
  334. message = dws->cur_msg;
  335. transfer = dws->cur_transfer;
  336. chip = dws->cur_chip;
  337. spi = message->spi;
  338. if (unlikely(!chip->clk_div))
  339. chip->clk_div = dws->max_freq / chip->speed_hz;
  340. if (message->state == ERROR_STATE) {
  341. message->status = -EIO;
  342. goto early_exit;
  343. }
  344. /* Handle end of message */
  345. if (message->state == DONE_STATE) {
  346. message->status = 0;
  347. goto early_exit;
  348. }
  349. /* Delay if requested at end of transfer*/
  350. if (message->state == RUNNING_STATE) {
  351. previous = list_entry(transfer->transfer_list.prev,
  352. struct spi_transfer,
  353. transfer_list);
  354. if (previous->delay_usecs)
  355. udelay(previous->delay_usecs);
  356. }
  357. dws->n_bytes = chip->n_bytes;
  358. dws->dma_width = chip->dma_width;
  359. dws->cs_control = chip->cs_control;
  360. dws->rx_dma = transfer->rx_dma;
  361. dws->tx_dma = transfer->tx_dma;
  362. dws->tx = (void *)transfer->tx_buf;
  363. dws->tx_end = dws->tx + transfer->len;
  364. dws->rx = transfer->rx_buf;
  365. dws->rx_end = dws->rx + transfer->len;
  366. dws->cs_change = transfer->cs_change;
  367. dws->len = dws->cur_transfer->len;
  368. if (chip != dws->prev_chip)
  369. cs_change = 1;
  370. cr0 = chip->cr0;
  371. /* Handle per transfer options for bpw and speed */
  372. if (transfer->speed_hz) {
  373. speed = chip->speed_hz;
  374. if (transfer->speed_hz != speed) {
  375. speed = transfer->speed_hz;
  376. if (speed > dws->max_freq) {
  377. printk(KERN_ERR "MRST SPI0: unsupported"
  378. "freq: %dHz\n", speed);
  379. message->status = -EIO;
  380. goto early_exit;
  381. }
  382. /* clk_div doesn't support odd number */
  383. clk_div = dws->max_freq / speed;
  384. clk_div = (clk_div + 1) & 0xfffe;
  385. chip->speed_hz = speed;
  386. chip->clk_div = clk_div;
  387. }
  388. }
  389. if (transfer->bits_per_word) {
  390. bits = transfer->bits_per_word;
  391. switch (bits) {
  392. case 8:
  393. case 16:
  394. dws->n_bytes = dws->dma_width = bits >> 3;
  395. break;
  396. default:
  397. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  398. "%db\n", bits);
  399. message->status = -EIO;
  400. goto early_exit;
  401. }
  402. cr0 = (bits - 1)
  403. | (chip->type << SPI_FRF_OFFSET)
  404. | (spi->mode << SPI_MODE_OFFSET)
  405. | (chip->tmode << SPI_TMOD_OFFSET);
  406. }
  407. message->state = RUNNING_STATE;
  408. /*
  409. * Adjust transfer mode if necessary. Requires platform dependent
  410. * chipselect mechanism.
  411. */
  412. if (dws->cs_control) {
  413. if (dws->rx && dws->tx)
  414. chip->tmode = SPI_TMOD_TR;
  415. else if (dws->rx)
  416. chip->tmode = SPI_TMOD_RO;
  417. else
  418. chip->tmode = SPI_TMOD_TO;
  419. cr0 &= ~SPI_TMOD_MASK;
  420. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  421. }
  422. /* Check if current transfer is a DMA transaction */
  423. dws->dma_mapped = map_dma_buffers(dws);
  424. /*
  425. * Interrupt mode
  426. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  427. */
  428. if (!dws->dma_mapped && !chip->poll_mode) {
  429. int templen = dws->len / dws->n_bytes;
  430. txint_level = dws->fifo_len / 2;
  431. txint_level = (templen > txint_level) ? txint_level : templen;
  432. imask |= SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI;
  433. dws->transfer_handler = interrupt_transfer;
  434. }
  435. /*
  436. * Reprogram registers only if
  437. * 1. chip select changes
  438. * 2. clk_div is changed
  439. * 3. control value changes
  440. */
  441. if (dw_readw(dws, DW_SPI_CTRL0) != cr0 || cs_change || clk_div || imask) {
  442. spi_enable_chip(dws, 0);
  443. if (dw_readw(dws, DW_SPI_CTRL0) != cr0)
  444. dw_writew(dws, DW_SPI_CTRL0, cr0);
  445. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  446. spi_chip_sel(dws, spi->chip_select);
  447. /* Set the interrupt mask, for poll mode just disable all int */
  448. spi_mask_intr(dws, 0xff);
  449. if (imask)
  450. spi_umask_intr(dws, imask);
  451. if (txint_level)
  452. dw_writew(dws, DW_SPI_TXFLTR, txint_level);
  453. spi_enable_chip(dws, 1);
  454. if (cs_change)
  455. dws->prev_chip = chip;
  456. }
  457. if (dws->dma_mapped)
  458. dws->dma_ops->dma_transfer(dws, cs_change);
  459. if (chip->poll_mode)
  460. poll_transfer(dws);
  461. return;
  462. early_exit:
  463. giveback(dws);
  464. return;
  465. }
  466. static void pump_messages(struct work_struct *work)
  467. {
  468. struct dw_spi *dws =
  469. container_of(work, struct dw_spi, pump_messages);
  470. unsigned long flags;
  471. /* Lock queue and check for queue work */
  472. spin_lock_irqsave(&dws->lock, flags);
  473. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  474. dws->busy = 0;
  475. spin_unlock_irqrestore(&dws->lock, flags);
  476. return;
  477. }
  478. /* Make sure we are not already running a message */
  479. if (dws->cur_msg) {
  480. spin_unlock_irqrestore(&dws->lock, flags);
  481. return;
  482. }
  483. /* Extract head of queue */
  484. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  485. list_del_init(&dws->cur_msg->queue);
  486. /* Initial message state*/
  487. dws->cur_msg->state = START_STATE;
  488. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  489. struct spi_transfer,
  490. transfer_list);
  491. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  492. /* Mark as busy and launch transfers */
  493. tasklet_schedule(&dws->pump_transfers);
  494. dws->busy = 1;
  495. spin_unlock_irqrestore(&dws->lock, flags);
  496. }
  497. /* spi_device use this to queue in their spi_msg */
  498. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  499. {
  500. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  501. unsigned long flags;
  502. spin_lock_irqsave(&dws->lock, flags);
  503. if (dws->run == QUEUE_STOPPED) {
  504. spin_unlock_irqrestore(&dws->lock, flags);
  505. return -ESHUTDOWN;
  506. }
  507. msg->actual_length = 0;
  508. msg->status = -EINPROGRESS;
  509. msg->state = START_STATE;
  510. list_add_tail(&msg->queue, &dws->queue);
  511. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  512. if (dws->cur_transfer || dws->cur_msg)
  513. queue_work(dws->workqueue,
  514. &dws->pump_messages);
  515. else {
  516. /* If no other data transaction in air, just go */
  517. spin_unlock_irqrestore(&dws->lock, flags);
  518. pump_messages(&dws->pump_messages);
  519. return 0;
  520. }
  521. }
  522. spin_unlock_irqrestore(&dws->lock, flags);
  523. return 0;
  524. }
  525. /* This may be called twice for each spi dev */
  526. static int dw_spi_setup(struct spi_device *spi)
  527. {
  528. struct dw_spi_chip *chip_info = NULL;
  529. struct chip_data *chip;
  530. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  531. return -EINVAL;
  532. /* Only alloc on first setup */
  533. chip = spi_get_ctldata(spi);
  534. if (!chip) {
  535. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  536. if (!chip)
  537. return -ENOMEM;
  538. }
  539. /*
  540. * Protocol drivers may change the chip settings, so...
  541. * if chip_info exists, use it
  542. */
  543. chip_info = spi->controller_data;
  544. /* chip_info doesn't always exist */
  545. if (chip_info) {
  546. if (chip_info->cs_control)
  547. chip->cs_control = chip_info->cs_control;
  548. chip->poll_mode = chip_info->poll_mode;
  549. chip->type = chip_info->type;
  550. chip->rx_threshold = 0;
  551. chip->tx_threshold = 0;
  552. chip->enable_dma = chip_info->enable_dma;
  553. }
  554. if (spi->bits_per_word <= 8) {
  555. chip->n_bytes = 1;
  556. chip->dma_width = 1;
  557. } else if (spi->bits_per_word <= 16) {
  558. chip->n_bytes = 2;
  559. chip->dma_width = 2;
  560. } else {
  561. /* Never take >16b case for MRST SPIC */
  562. dev_err(&spi->dev, "invalid wordsize\n");
  563. return -EINVAL;
  564. }
  565. chip->bits_per_word = spi->bits_per_word;
  566. if (!spi->max_speed_hz) {
  567. dev_err(&spi->dev, "No max speed HZ parameter\n");
  568. return -EINVAL;
  569. }
  570. chip->speed_hz = spi->max_speed_hz;
  571. chip->tmode = 0; /* Tx & Rx */
  572. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  573. chip->cr0 = (chip->bits_per_word - 1)
  574. | (chip->type << SPI_FRF_OFFSET)
  575. | (spi->mode << SPI_MODE_OFFSET)
  576. | (chip->tmode << SPI_TMOD_OFFSET);
  577. spi_set_ctldata(spi, chip);
  578. return 0;
  579. }
  580. static void dw_spi_cleanup(struct spi_device *spi)
  581. {
  582. struct chip_data *chip = spi_get_ctldata(spi);
  583. kfree(chip);
  584. }
  585. static int init_queue(struct dw_spi *dws)
  586. {
  587. INIT_LIST_HEAD(&dws->queue);
  588. spin_lock_init(&dws->lock);
  589. dws->run = QUEUE_STOPPED;
  590. dws->busy = 0;
  591. tasklet_init(&dws->pump_transfers,
  592. pump_transfers, (unsigned long)dws);
  593. INIT_WORK(&dws->pump_messages, pump_messages);
  594. dws->workqueue = create_singlethread_workqueue(
  595. dev_name(dws->master->dev.parent));
  596. if (dws->workqueue == NULL)
  597. return -EBUSY;
  598. return 0;
  599. }
  600. static int start_queue(struct dw_spi *dws)
  601. {
  602. unsigned long flags;
  603. spin_lock_irqsave(&dws->lock, flags);
  604. if (dws->run == QUEUE_RUNNING || dws->busy) {
  605. spin_unlock_irqrestore(&dws->lock, flags);
  606. return -EBUSY;
  607. }
  608. dws->run = QUEUE_RUNNING;
  609. dws->cur_msg = NULL;
  610. dws->cur_transfer = NULL;
  611. dws->cur_chip = NULL;
  612. dws->prev_chip = NULL;
  613. spin_unlock_irqrestore(&dws->lock, flags);
  614. queue_work(dws->workqueue, &dws->pump_messages);
  615. return 0;
  616. }
  617. static int stop_queue(struct dw_spi *dws)
  618. {
  619. unsigned long flags;
  620. unsigned limit = 50;
  621. int status = 0;
  622. spin_lock_irqsave(&dws->lock, flags);
  623. dws->run = QUEUE_STOPPED;
  624. while ((!list_empty(&dws->queue) || dws->busy) && limit--) {
  625. spin_unlock_irqrestore(&dws->lock, flags);
  626. msleep(10);
  627. spin_lock_irqsave(&dws->lock, flags);
  628. }
  629. if (!list_empty(&dws->queue) || dws->busy)
  630. status = -EBUSY;
  631. spin_unlock_irqrestore(&dws->lock, flags);
  632. return status;
  633. }
  634. static int destroy_queue(struct dw_spi *dws)
  635. {
  636. int status;
  637. status = stop_queue(dws);
  638. if (status != 0)
  639. return status;
  640. destroy_workqueue(dws->workqueue);
  641. return 0;
  642. }
  643. /* Restart the controller, disable all interrupts, clean rx fifo */
  644. static void spi_hw_init(struct dw_spi *dws)
  645. {
  646. spi_enable_chip(dws, 0);
  647. spi_mask_intr(dws, 0xff);
  648. spi_enable_chip(dws, 1);
  649. /*
  650. * Try to detect the FIFO depth if not set by interface driver,
  651. * the depth could be from 2 to 256 from HW spec
  652. */
  653. if (!dws->fifo_len) {
  654. u32 fifo;
  655. for (fifo = 2; fifo <= 257; fifo++) {
  656. dw_writew(dws, DW_SPI_TXFLTR, fifo);
  657. if (fifo != dw_readw(dws, DW_SPI_TXFLTR))
  658. break;
  659. }
  660. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  661. dw_writew(dws, DW_SPI_TXFLTR, 0);
  662. }
  663. }
  664. int dw_spi_add_host(struct dw_spi *dws)
  665. {
  666. struct spi_master *master;
  667. int ret;
  668. BUG_ON(dws == NULL);
  669. master = spi_alloc_master(dws->parent_dev, 0);
  670. if (!master) {
  671. ret = -ENOMEM;
  672. goto exit;
  673. }
  674. dws->master = master;
  675. dws->type = SSI_MOTO_SPI;
  676. dws->prev_chip = NULL;
  677. dws->dma_inited = 0;
  678. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  679. snprintf(dws->name, sizeof(dws->name), "dw_spi%d",
  680. dws->bus_num);
  681. ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED,
  682. dws->name, dws);
  683. if (ret < 0) {
  684. dev_err(&master->dev, "can not get IRQ\n");
  685. goto err_free_master;
  686. }
  687. master->mode_bits = SPI_CPOL | SPI_CPHA;
  688. master->bus_num = dws->bus_num;
  689. master->num_chipselect = dws->num_cs;
  690. master->cleanup = dw_spi_cleanup;
  691. master->setup = dw_spi_setup;
  692. master->transfer = dw_spi_transfer;
  693. /* Basic HW init */
  694. spi_hw_init(dws);
  695. if (dws->dma_ops && dws->dma_ops->dma_init) {
  696. ret = dws->dma_ops->dma_init(dws);
  697. if (ret) {
  698. dev_warn(&master->dev, "DMA init failed\n");
  699. dws->dma_inited = 0;
  700. }
  701. }
  702. /* Initial and start queue */
  703. ret = init_queue(dws);
  704. if (ret) {
  705. dev_err(&master->dev, "problem initializing queue\n");
  706. goto err_diable_hw;
  707. }
  708. ret = start_queue(dws);
  709. if (ret) {
  710. dev_err(&master->dev, "problem starting queue\n");
  711. goto err_diable_hw;
  712. }
  713. spi_master_set_devdata(master, dws);
  714. ret = spi_register_master(master);
  715. if (ret) {
  716. dev_err(&master->dev, "problem registering spi master\n");
  717. goto err_queue_alloc;
  718. }
  719. mrst_spi_debugfs_init(dws);
  720. return 0;
  721. err_queue_alloc:
  722. destroy_queue(dws);
  723. if (dws->dma_ops && dws->dma_ops->dma_exit)
  724. dws->dma_ops->dma_exit(dws);
  725. err_diable_hw:
  726. spi_enable_chip(dws, 0);
  727. free_irq(dws->irq, dws);
  728. err_free_master:
  729. spi_master_put(master);
  730. exit:
  731. return ret;
  732. }
  733. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  734. void dw_spi_remove_host(struct dw_spi *dws)
  735. {
  736. int status = 0;
  737. if (!dws)
  738. return;
  739. mrst_spi_debugfs_remove(dws);
  740. /* Remove the queue */
  741. status = destroy_queue(dws);
  742. if (status != 0)
  743. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  744. "complete, message memory not freed\n");
  745. if (dws->dma_ops && dws->dma_ops->dma_exit)
  746. dws->dma_ops->dma_exit(dws);
  747. spi_enable_chip(dws, 0);
  748. /* Disable clk */
  749. spi_set_clk(dws, 0);
  750. free_irq(dws->irq, dws);
  751. /* Disconnect from the SPI framework */
  752. spi_unregister_master(dws->master);
  753. }
  754. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  755. int dw_spi_suspend_host(struct dw_spi *dws)
  756. {
  757. int ret = 0;
  758. ret = stop_queue(dws);
  759. if (ret)
  760. return ret;
  761. spi_enable_chip(dws, 0);
  762. spi_set_clk(dws, 0);
  763. return ret;
  764. }
  765. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  766. int dw_spi_resume_host(struct dw_spi *dws)
  767. {
  768. int ret;
  769. spi_hw_init(dws);
  770. ret = start_queue(dws);
  771. if (ret)
  772. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  773. return ret;
  774. }
  775. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  776. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  777. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  778. MODULE_LICENSE("GPL v2");