spi-bfin5xx.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2010 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct bfin_spi_master_data;
  40. struct bfin_spi_transfer_ops {
  41. void (*write) (struct bfin_spi_master_data *);
  42. void (*read) (struct bfin_spi_master_data *);
  43. void (*duplex) (struct bfin_spi_master_data *);
  44. };
  45. struct bfin_spi_master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. struct bfin_spi_regs __iomem *regs;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct bfin_spi_slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. u16 ctrl_reg;
  87. u16 flag_reg;
  88. int cs_change;
  89. const struct bfin_spi_transfer_ops *ops;
  90. };
  91. struct bfin_spi_slave_data {
  92. u16 ctl_reg;
  93. u16 baud;
  94. u16 flag;
  95. u8 chip_select_num;
  96. u8 enable_dma;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. u8 pio_interrupt; /* use spi data irq */
  101. const struct bfin_spi_transfer_ops *ops;
  102. };
  103. static void bfin_spi_enable(struct bfin_spi_master_data *drv_data)
  104. {
  105. bfin_write_or(&drv_data->regs->ctl, BIT_CTL_ENABLE);
  106. }
  107. static void bfin_spi_disable(struct bfin_spi_master_data *drv_data)
  108. {
  109. bfin_write_and(&drv_data->regs->ctl, ~BIT_CTL_ENABLE);
  110. }
  111. /* Caculate the SPI_BAUD register value based on input HZ */
  112. static u16 hz_to_spi_baud(u32 speed_hz)
  113. {
  114. u_long sclk = get_sclk();
  115. u16 spi_baud = (sclk / (2 * speed_hz));
  116. if ((sclk % (2 * speed_hz)) > 0)
  117. spi_baud++;
  118. if (spi_baud < MIN_SPI_BAUD_VAL)
  119. spi_baud = MIN_SPI_BAUD_VAL;
  120. return spi_baud;
  121. }
  122. static int bfin_spi_flush(struct bfin_spi_master_data *drv_data)
  123. {
  124. unsigned long limit = loops_per_jiffy << 1;
  125. /* wait for stop and clear stat */
  126. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF) && --limit)
  127. cpu_relax();
  128. bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
  129. return limit;
  130. }
  131. /* Chip select operation functions for cs_change flag */
  132. static void bfin_spi_cs_active(struct bfin_spi_master_data *drv_data, struct bfin_spi_slave_data *chip)
  133. {
  134. if (likely(chip->chip_select_num < MAX_CTRL_CS))
  135. bfin_write_and(&drv_data->regs->flg, ~chip->flag);
  136. else
  137. gpio_set_value(chip->cs_gpio, 0);
  138. }
  139. static void bfin_spi_cs_deactive(struct bfin_spi_master_data *drv_data,
  140. struct bfin_spi_slave_data *chip)
  141. {
  142. if (likely(chip->chip_select_num < MAX_CTRL_CS))
  143. bfin_write_or(&drv_data->regs->flg, chip->flag);
  144. else
  145. gpio_set_value(chip->cs_gpio, 1);
  146. /* Move delay here for consistency */
  147. if (chip->cs_chg_udelay)
  148. udelay(chip->cs_chg_udelay);
  149. }
  150. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  151. static inline void bfin_spi_cs_enable(struct bfin_spi_master_data *drv_data,
  152. struct bfin_spi_slave_data *chip)
  153. {
  154. if (chip->chip_select_num < MAX_CTRL_CS)
  155. bfin_write_or(&drv_data->regs->flg, chip->flag >> 8);
  156. }
  157. static inline void bfin_spi_cs_disable(struct bfin_spi_master_data *drv_data,
  158. struct bfin_spi_slave_data *chip)
  159. {
  160. if (chip->chip_select_num < MAX_CTRL_CS)
  161. bfin_write_and(&drv_data->regs->flg, ~(chip->flag >> 8));
  162. }
  163. /* stop controller and re-config current chip*/
  164. static void bfin_spi_restore_state(struct bfin_spi_master_data *drv_data)
  165. {
  166. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  167. /* Clear status and disable clock */
  168. bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
  169. bfin_spi_disable(drv_data);
  170. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  171. SSYNC();
  172. /* Load the registers */
  173. bfin_write(&drv_data->regs->ctl, chip->ctl_reg);
  174. bfin_write(&drv_data->regs->baud, chip->baud);
  175. bfin_spi_enable(drv_data);
  176. bfin_spi_cs_active(drv_data, chip);
  177. }
  178. /* used to kick off transfer in rx mode and read unwanted RX data */
  179. static inline void bfin_spi_dummy_read(struct bfin_spi_master_data *drv_data)
  180. {
  181. (void) bfin_read(&drv_data->regs->rdbr);
  182. }
  183. static void bfin_spi_u8_writer(struct bfin_spi_master_data *drv_data)
  184. {
  185. /* clear RXS (we check for RXS inside the loop) */
  186. bfin_spi_dummy_read(drv_data);
  187. while (drv_data->tx < drv_data->tx_end) {
  188. bfin_write(&drv_data->regs->tdbr, (*(u8 *) (drv_data->tx++)));
  189. /* wait until transfer finished.
  190. checking SPIF or TXS may not guarantee transfer completion */
  191. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  192. cpu_relax();
  193. /* discard RX data and clear RXS */
  194. bfin_spi_dummy_read(drv_data);
  195. }
  196. }
  197. static void bfin_spi_u8_reader(struct bfin_spi_master_data *drv_data)
  198. {
  199. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  200. /* discard old RX data and clear RXS */
  201. bfin_spi_dummy_read(drv_data);
  202. while (drv_data->rx < drv_data->rx_end) {
  203. bfin_write(&drv_data->regs->tdbr, tx_val);
  204. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  205. cpu_relax();
  206. *(u8 *) (drv_data->rx++) = bfin_read(&drv_data->regs->rdbr);
  207. }
  208. }
  209. static void bfin_spi_u8_duplex(struct bfin_spi_master_data *drv_data)
  210. {
  211. /* discard old RX data and clear RXS */
  212. bfin_spi_dummy_read(drv_data);
  213. while (drv_data->rx < drv_data->rx_end) {
  214. bfin_write(&drv_data->regs->tdbr, (*(u8 *) (drv_data->tx++)));
  215. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  216. cpu_relax();
  217. *(u8 *) (drv_data->rx++) = bfin_read(&drv_data->regs->rdbr);
  218. }
  219. }
  220. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
  221. .write = bfin_spi_u8_writer,
  222. .read = bfin_spi_u8_reader,
  223. .duplex = bfin_spi_u8_duplex,
  224. };
  225. static void bfin_spi_u16_writer(struct bfin_spi_master_data *drv_data)
  226. {
  227. /* clear RXS (we check for RXS inside the loop) */
  228. bfin_spi_dummy_read(drv_data);
  229. while (drv_data->tx < drv_data->tx_end) {
  230. bfin_write(&drv_data->regs->tdbr, (*(u16 *) (drv_data->tx)));
  231. drv_data->tx += 2;
  232. /* wait until transfer finished.
  233. checking SPIF or TXS may not guarantee transfer completion */
  234. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  235. cpu_relax();
  236. /* discard RX data and clear RXS */
  237. bfin_spi_dummy_read(drv_data);
  238. }
  239. }
  240. static void bfin_spi_u16_reader(struct bfin_spi_master_data *drv_data)
  241. {
  242. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  243. /* discard old RX data and clear RXS */
  244. bfin_spi_dummy_read(drv_data);
  245. while (drv_data->rx < drv_data->rx_end) {
  246. bfin_write(&drv_data->regs->tdbr, tx_val);
  247. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  248. cpu_relax();
  249. *(u16 *) (drv_data->rx) = bfin_read(&drv_data->regs->rdbr);
  250. drv_data->rx += 2;
  251. }
  252. }
  253. static void bfin_spi_u16_duplex(struct bfin_spi_master_data *drv_data)
  254. {
  255. /* discard old RX data and clear RXS */
  256. bfin_spi_dummy_read(drv_data);
  257. while (drv_data->rx < drv_data->rx_end) {
  258. bfin_write(&drv_data->regs->tdbr, (*(u16 *) (drv_data->tx)));
  259. drv_data->tx += 2;
  260. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  261. cpu_relax();
  262. *(u16 *) (drv_data->rx) = bfin_read(&drv_data->regs->rdbr);
  263. drv_data->rx += 2;
  264. }
  265. }
  266. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
  267. .write = bfin_spi_u16_writer,
  268. .read = bfin_spi_u16_reader,
  269. .duplex = bfin_spi_u16_duplex,
  270. };
  271. /* test if there is more transfer to be done */
  272. static void *bfin_spi_next_transfer(struct bfin_spi_master_data *drv_data)
  273. {
  274. struct spi_message *msg = drv_data->cur_msg;
  275. struct spi_transfer *trans = drv_data->cur_transfer;
  276. /* Move to next transfer */
  277. if (trans->transfer_list.next != &msg->transfers) {
  278. drv_data->cur_transfer =
  279. list_entry(trans->transfer_list.next,
  280. struct spi_transfer, transfer_list);
  281. return RUNNING_STATE;
  282. } else
  283. return DONE_STATE;
  284. }
  285. /*
  286. * caller already set message->status;
  287. * dma and pio irqs are blocked give finished message back
  288. */
  289. static void bfin_spi_giveback(struct bfin_spi_master_data *drv_data)
  290. {
  291. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  292. struct spi_transfer *last_transfer;
  293. unsigned long flags;
  294. struct spi_message *msg;
  295. spin_lock_irqsave(&drv_data->lock, flags);
  296. msg = drv_data->cur_msg;
  297. drv_data->cur_msg = NULL;
  298. drv_data->cur_transfer = NULL;
  299. drv_data->cur_chip = NULL;
  300. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  301. spin_unlock_irqrestore(&drv_data->lock, flags);
  302. last_transfer = list_entry(msg->transfers.prev,
  303. struct spi_transfer, transfer_list);
  304. msg->state = NULL;
  305. if (!drv_data->cs_change)
  306. bfin_spi_cs_deactive(drv_data, chip);
  307. /* Not stop spi in autobuffer mode */
  308. if (drv_data->tx_dma != 0xFFFF)
  309. bfin_spi_disable(drv_data);
  310. if (msg->complete)
  311. msg->complete(msg->context);
  312. }
  313. /* spi data irq handler */
  314. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  315. {
  316. struct bfin_spi_master_data *drv_data = dev_id;
  317. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  318. struct spi_message *msg = drv_data->cur_msg;
  319. int n_bytes = drv_data->n_bytes;
  320. int loop = 0;
  321. /* wait until transfer finished. */
  322. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_RXS))
  323. cpu_relax();
  324. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  325. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  326. /* last read */
  327. if (drv_data->rx) {
  328. dev_dbg(&drv_data->pdev->dev, "last read\n");
  329. if (!(n_bytes % 2)) {
  330. u16 *buf = (u16 *)drv_data->rx;
  331. for (loop = 0; loop < n_bytes / 2; loop++)
  332. *buf++ = bfin_read(&drv_data->regs->rdbr);
  333. } else {
  334. u8 *buf = (u8 *)drv_data->rx;
  335. for (loop = 0; loop < n_bytes; loop++)
  336. *buf++ = bfin_read(&drv_data->regs->rdbr);
  337. }
  338. drv_data->rx += n_bytes;
  339. }
  340. msg->actual_length += drv_data->len_in_bytes;
  341. if (drv_data->cs_change)
  342. bfin_spi_cs_deactive(drv_data, chip);
  343. /* Move to next transfer */
  344. msg->state = bfin_spi_next_transfer(drv_data);
  345. disable_irq_nosync(drv_data->spi_irq);
  346. /* Schedule transfer tasklet */
  347. tasklet_schedule(&drv_data->pump_transfers);
  348. return IRQ_HANDLED;
  349. }
  350. if (drv_data->rx && drv_data->tx) {
  351. /* duplex */
  352. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  353. if (!(n_bytes % 2)) {
  354. u16 *buf = (u16 *)drv_data->rx;
  355. u16 *buf2 = (u16 *)drv_data->tx;
  356. for (loop = 0; loop < n_bytes / 2; loop++) {
  357. *buf++ = bfin_read(&drv_data->regs->rdbr);
  358. bfin_write(&drv_data->regs->tdbr, *buf2++);
  359. }
  360. } else {
  361. u8 *buf = (u8 *)drv_data->rx;
  362. u8 *buf2 = (u8 *)drv_data->tx;
  363. for (loop = 0; loop < n_bytes; loop++) {
  364. *buf++ = bfin_read(&drv_data->regs->rdbr);
  365. bfin_write(&drv_data->regs->tdbr, *buf2++);
  366. }
  367. }
  368. } else if (drv_data->rx) {
  369. /* read */
  370. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  371. if (!(n_bytes % 2)) {
  372. u16 *buf = (u16 *)drv_data->rx;
  373. for (loop = 0; loop < n_bytes / 2; loop++) {
  374. *buf++ = bfin_read(&drv_data->regs->rdbr);
  375. bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
  376. }
  377. } else {
  378. u8 *buf = (u8 *)drv_data->rx;
  379. for (loop = 0; loop < n_bytes; loop++) {
  380. *buf++ = bfin_read(&drv_data->regs->rdbr);
  381. bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
  382. }
  383. }
  384. } else if (drv_data->tx) {
  385. /* write */
  386. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  387. if (!(n_bytes % 2)) {
  388. u16 *buf = (u16 *)drv_data->tx;
  389. for (loop = 0; loop < n_bytes / 2; loop++) {
  390. bfin_read(&drv_data->regs->rdbr);
  391. bfin_write(&drv_data->regs->tdbr, *buf++);
  392. }
  393. } else {
  394. u8 *buf = (u8 *)drv_data->tx;
  395. for (loop = 0; loop < n_bytes; loop++) {
  396. bfin_read(&drv_data->regs->rdbr);
  397. bfin_write(&drv_data->regs->tdbr, *buf++);
  398. }
  399. }
  400. }
  401. if (drv_data->tx)
  402. drv_data->tx += n_bytes;
  403. if (drv_data->rx)
  404. drv_data->rx += n_bytes;
  405. return IRQ_HANDLED;
  406. }
  407. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  408. {
  409. struct bfin_spi_master_data *drv_data = dev_id;
  410. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  411. struct spi_message *msg = drv_data->cur_msg;
  412. unsigned long timeout;
  413. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  414. u16 spistat = bfin_read(&drv_data->regs->stat);
  415. dev_dbg(&drv_data->pdev->dev,
  416. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  417. dmastat, spistat);
  418. if (drv_data->rx != NULL) {
  419. u16 cr = bfin_read(&drv_data->regs->ctl);
  420. /* discard old RX data and clear RXS */
  421. bfin_spi_dummy_read(drv_data);
  422. bfin_write(&drv_data->regs->ctl, cr & ~BIT_CTL_ENABLE); /* Disable SPI */
  423. bfin_write(&drv_data->regs->ctl, cr & ~BIT_CTL_TIMOD); /* Restore State */
  424. bfin_write(&drv_data->regs->stat, BIT_STAT_CLR); /* Clear Status */
  425. }
  426. clear_dma_irqstat(drv_data->dma_channel);
  427. /*
  428. * wait for the last transaction shifted out. HRM states:
  429. * at this point there may still be data in the SPI DMA FIFO waiting
  430. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  431. * register until it goes low for 2 successive reads
  432. */
  433. if (drv_data->tx != NULL) {
  434. while ((bfin_read(&drv_data->regs->stat) & BIT_STAT_TXS) ||
  435. (bfin_read(&drv_data->regs->stat) & BIT_STAT_TXS))
  436. cpu_relax();
  437. }
  438. dev_dbg(&drv_data->pdev->dev,
  439. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  440. dmastat, bfin_read(&drv_data->regs->stat));
  441. timeout = jiffies + HZ;
  442. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF))
  443. if (!time_before(jiffies, timeout)) {
  444. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  445. break;
  446. } else
  447. cpu_relax();
  448. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  449. msg->state = ERROR_STATE;
  450. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  451. } else {
  452. msg->actual_length += drv_data->len_in_bytes;
  453. if (drv_data->cs_change)
  454. bfin_spi_cs_deactive(drv_data, chip);
  455. /* Move to next transfer */
  456. msg->state = bfin_spi_next_transfer(drv_data);
  457. }
  458. /* Schedule transfer tasklet */
  459. tasklet_schedule(&drv_data->pump_transfers);
  460. /* free the irq handler before next transfer */
  461. dev_dbg(&drv_data->pdev->dev,
  462. "disable dma channel irq%d\n",
  463. drv_data->dma_channel);
  464. dma_disable_irq_nosync(drv_data->dma_channel);
  465. return IRQ_HANDLED;
  466. }
  467. static void bfin_spi_pump_transfers(unsigned long data)
  468. {
  469. struct bfin_spi_master_data *drv_data = (struct bfin_spi_master_data *)data;
  470. struct spi_message *message = NULL;
  471. struct spi_transfer *transfer = NULL;
  472. struct spi_transfer *previous = NULL;
  473. struct bfin_spi_slave_data *chip = NULL;
  474. unsigned int bits_per_word;
  475. u16 cr, cr_width, dma_width, dma_config;
  476. u32 tranf_success = 1;
  477. u8 full_duplex = 0;
  478. /* Get current state information */
  479. message = drv_data->cur_msg;
  480. transfer = drv_data->cur_transfer;
  481. chip = drv_data->cur_chip;
  482. /*
  483. * if msg is error or done, report it back using complete() callback
  484. */
  485. /* Handle for abort */
  486. if (message->state == ERROR_STATE) {
  487. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  488. message->status = -EIO;
  489. bfin_spi_giveback(drv_data);
  490. return;
  491. }
  492. /* Handle end of message */
  493. if (message->state == DONE_STATE) {
  494. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  495. message->status = 0;
  496. bfin_spi_flush(drv_data);
  497. bfin_spi_giveback(drv_data);
  498. return;
  499. }
  500. /* Delay if requested at end of transfer */
  501. if (message->state == RUNNING_STATE) {
  502. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  503. previous = list_entry(transfer->transfer_list.prev,
  504. struct spi_transfer, transfer_list);
  505. if (previous->delay_usecs)
  506. udelay(previous->delay_usecs);
  507. }
  508. /* Flush any existing transfers that may be sitting in the hardware */
  509. if (bfin_spi_flush(drv_data) == 0) {
  510. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  511. message->status = -EIO;
  512. bfin_spi_giveback(drv_data);
  513. return;
  514. }
  515. if (transfer->len == 0) {
  516. /* Move to next transfer of this msg */
  517. message->state = bfin_spi_next_transfer(drv_data);
  518. /* Schedule next transfer tasklet */
  519. tasklet_schedule(&drv_data->pump_transfers);
  520. return;
  521. }
  522. if (transfer->tx_buf != NULL) {
  523. drv_data->tx = (void *)transfer->tx_buf;
  524. drv_data->tx_end = drv_data->tx + transfer->len;
  525. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  526. transfer->tx_buf, drv_data->tx_end);
  527. } else {
  528. drv_data->tx = NULL;
  529. }
  530. if (transfer->rx_buf != NULL) {
  531. full_duplex = transfer->tx_buf != NULL;
  532. drv_data->rx = transfer->rx_buf;
  533. drv_data->rx_end = drv_data->rx + transfer->len;
  534. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  535. transfer->rx_buf, drv_data->rx_end);
  536. } else {
  537. drv_data->rx = NULL;
  538. }
  539. drv_data->rx_dma = transfer->rx_dma;
  540. drv_data->tx_dma = transfer->tx_dma;
  541. drv_data->len_in_bytes = transfer->len;
  542. drv_data->cs_change = transfer->cs_change;
  543. /* Bits per word setup */
  544. bits_per_word = transfer->bits_per_word;
  545. if (bits_per_word % 16 == 0) {
  546. drv_data->n_bytes = bits_per_word/8;
  547. drv_data->len = (transfer->len) >> 1;
  548. cr_width = BIT_CTL_WORDSIZE;
  549. drv_data->ops = &bfin_bfin_spi_transfer_ops_u16;
  550. } else if (bits_per_word % 8 == 0) {
  551. drv_data->n_bytes = bits_per_word/8;
  552. drv_data->len = transfer->len;
  553. cr_width = 0;
  554. drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
  555. } else {
  556. dev_err(&drv_data->pdev->dev, "transfer: unsupported bits_per_word\n");
  557. message->status = -EINVAL;
  558. bfin_spi_giveback(drv_data);
  559. return;
  560. }
  561. cr = bfin_read(&drv_data->regs->ctl) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
  562. cr |= cr_width;
  563. bfin_write(&drv_data->regs->ctl, cr);
  564. dev_dbg(&drv_data->pdev->dev,
  565. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  566. drv_data->ops, chip->ops, &bfin_bfin_spi_transfer_ops_u8);
  567. message->state = RUNNING_STATE;
  568. dma_config = 0;
  569. /* Speed setup (surely valid because already checked) */
  570. if (transfer->speed_hz)
  571. bfin_write(&drv_data->regs->baud, hz_to_spi_baud(transfer->speed_hz));
  572. else
  573. bfin_write(&drv_data->regs->baud, chip->baud);
  574. bfin_write(&drv_data->regs->stat, BIT_STAT_CLR);
  575. bfin_spi_cs_active(drv_data, chip);
  576. dev_dbg(&drv_data->pdev->dev,
  577. "now pumping a transfer: width is %d, len is %d\n",
  578. cr_width, transfer->len);
  579. /*
  580. * Try to map dma buffer and do a dma transfer. If successful use,
  581. * different way to r/w according to the enable_dma settings and if
  582. * we are not doing a full duplex transfer (since the hardware does
  583. * not support full duplex DMA transfers).
  584. */
  585. if (!full_duplex && drv_data->cur_chip->enable_dma
  586. && drv_data->len > 6) {
  587. unsigned long dma_start_addr, flags;
  588. disable_dma(drv_data->dma_channel);
  589. clear_dma_irqstat(drv_data->dma_channel);
  590. /* config dma channel */
  591. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  592. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  593. if (cr_width == BIT_CTL_WORDSIZE) {
  594. set_dma_x_modify(drv_data->dma_channel, 2);
  595. dma_width = WDSIZE_16;
  596. } else {
  597. set_dma_x_modify(drv_data->dma_channel, 1);
  598. dma_width = WDSIZE_8;
  599. }
  600. /* poll for SPI completion before start */
  601. while (!(bfin_read(&drv_data->regs->stat) & BIT_STAT_SPIF))
  602. cpu_relax();
  603. /* dirty hack for autobuffer DMA mode */
  604. if (drv_data->tx_dma == 0xFFFF) {
  605. dev_dbg(&drv_data->pdev->dev,
  606. "doing autobuffer DMA out.\n");
  607. /* no irq in autobuffer mode */
  608. dma_config =
  609. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  610. set_dma_config(drv_data->dma_channel, dma_config);
  611. set_dma_start_addr(drv_data->dma_channel,
  612. (unsigned long)drv_data->tx);
  613. enable_dma(drv_data->dma_channel);
  614. /* start SPI transfer */
  615. bfin_write(&drv_data->regs->ctl, cr | BIT_CTL_TIMOD_DMA_TX);
  616. /* just return here, there can only be one transfer
  617. * in this mode
  618. */
  619. message->status = 0;
  620. bfin_spi_giveback(drv_data);
  621. return;
  622. }
  623. /* In dma mode, rx or tx must be NULL in one transfer */
  624. dma_config = (RESTART | dma_width | DI_EN);
  625. if (drv_data->rx != NULL) {
  626. /* set transfer mode, and enable SPI */
  627. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  628. drv_data->rx, drv_data->len_in_bytes);
  629. /* invalidate caches, if needed */
  630. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  631. invalidate_dcache_range((unsigned long) drv_data->rx,
  632. (unsigned long) (drv_data->rx +
  633. drv_data->len_in_bytes));
  634. dma_config |= WNR;
  635. dma_start_addr = (unsigned long)drv_data->rx;
  636. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  637. } else if (drv_data->tx != NULL) {
  638. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  639. /* flush caches, if needed */
  640. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  641. flush_dcache_range((unsigned long) drv_data->tx,
  642. (unsigned long) (drv_data->tx +
  643. drv_data->len_in_bytes));
  644. dma_start_addr = (unsigned long)drv_data->tx;
  645. cr |= BIT_CTL_TIMOD_DMA_TX;
  646. } else
  647. BUG();
  648. /* oh man, here there be monsters ... and i dont mean the
  649. * fluffy cute ones from pixar, i mean the kind that'll eat
  650. * your data, kick your dog, and love it all. do *not* try
  651. * and change these lines unless you (1) heavily test DMA
  652. * with SPI flashes on a loaded system (e.g. ping floods),
  653. * (2) know just how broken the DMA engine interaction with
  654. * the SPI peripheral is, and (3) have someone else to blame
  655. * when you screw it all up anyways.
  656. */
  657. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  658. set_dma_config(drv_data->dma_channel, dma_config);
  659. local_irq_save(flags);
  660. SSYNC();
  661. bfin_write(&drv_data->regs->ctl, cr);
  662. enable_dma(drv_data->dma_channel);
  663. dma_enable_irq(drv_data->dma_channel);
  664. local_irq_restore(flags);
  665. return;
  666. }
  667. /*
  668. * We always use SPI_WRITE mode (transfer starts with TDBR write).
  669. * SPI_READ mode (transfer starts with RDBR read) seems to have
  670. * problems with setting up the output value in TDBR prior to the
  671. * start of the transfer.
  672. */
  673. bfin_write(&drv_data->regs->ctl, cr | BIT_CTL_TXMOD);
  674. if (chip->pio_interrupt) {
  675. /* SPI irq should have been disabled by now */
  676. /* discard old RX data and clear RXS */
  677. bfin_spi_dummy_read(drv_data);
  678. /* start transfer */
  679. if (drv_data->tx == NULL)
  680. bfin_write(&drv_data->regs->tdbr, chip->idle_tx_val);
  681. else {
  682. int loop;
  683. if (bits_per_word % 16 == 0) {
  684. u16 *buf = (u16 *)drv_data->tx;
  685. for (loop = 0; loop < bits_per_word / 16;
  686. loop++) {
  687. bfin_write(&drv_data->regs->tdbr, *buf++);
  688. }
  689. } else if (bits_per_word % 8 == 0) {
  690. u8 *buf = (u8 *)drv_data->tx;
  691. for (loop = 0; loop < bits_per_word / 8; loop++)
  692. bfin_write(&drv_data->regs->tdbr, *buf++);
  693. }
  694. drv_data->tx += drv_data->n_bytes;
  695. }
  696. /* once TDBR is empty, interrupt is triggered */
  697. enable_irq(drv_data->spi_irq);
  698. return;
  699. }
  700. /* IO mode */
  701. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  702. if (full_duplex) {
  703. /* full duplex mode */
  704. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  705. (drv_data->rx_end - drv_data->rx));
  706. dev_dbg(&drv_data->pdev->dev,
  707. "IO duplex: cr is 0x%x\n", cr);
  708. drv_data->ops->duplex(drv_data);
  709. if (drv_data->tx != drv_data->tx_end)
  710. tranf_success = 0;
  711. } else if (drv_data->tx != NULL) {
  712. /* write only half duplex */
  713. dev_dbg(&drv_data->pdev->dev,
  714. "IO write: cr is 0x%x\n", cr);
  715. drv_data->ops->write(drv_data);
  716. if (drv_data->tx != drv_data->tx_end)
  717. tranf_success = 0;
  718. } else if (drv_data->rx != NULL) {
  719. /* read only half duplex */
  720. dev_dbg(&drv_data->pdev->dev,
  721. "IO read: cr is 0x%x\n", cr);
  722. drv_data->ops->read(drv_data);
  723. if (drv_data->rx != drv_data->rx_end)
  724. tranf_success = 0;
  725. }
  726. if (!tranf_success) {
  727. dev_dbg(&drv_data->pdev->dev,
  728. "IO write error!\n");
  729. message->state = ERROR_STATE;
  730. } else {
  731. /* Update total byte transferred */
  732. message->actual_length += drv_data->len_in_bytes;
  733. /* Move to next transfer of this msg */
  734. message->state = bfin_spi_next_transfer(drv_data);
  735. if (drv_data->cs_change && message->state != DONE_STATE) {
  736. bfin_spi_flush(drv_data);
  737. bfin_spi_cs_deactive(drv_data, chip);
  738. }
  739. }
  740. /* Schedule next transfer tasklet */
  741. tasklet_schedule(&drv_data->pump_transfers);
  742. }
  743. /* pop a msg from queue and kick off real transfer */
  744. static void bfin_spi_pump_messages(struct work_struct *work)
  745. {
  746. struct bfin_spi_master_data *drv_data;
  747. unsigned long flags;
  748. drv_data = container_of(work, struct bfin_spi_master_data, pump_messages);
  749. /* Lock queue and check for queue work */
  750. spin_lock_irqsave(&drv_data->lock, flags);
  751. if (list_empty(&drv_data->queue) || !drv_data->running) {
  752. /* pumper kicked off but no work to do */
  753. drv_data->busy = 0;
  754. spin_unlock_irqrestore(&drv_data->lock, flags);
  755. return;
  756. }
  757. /* Make sure we are not already running a message */
  758. if (drv_data->cur_msg) {
  759. spin_unlock_irqrestore(&drv_data->lock, flags);
  760. return;
  761. }
  762. /* Extract head of queue */
  763. drv_data->cur_msg = list_entry(drv_data->queue.next,
  764. struct spi_message, queue);
  765. /* Setup the SSP using the per chip configuration */
  766. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  767. bfin_spi_restore_state(drv_data);
  768. list_del_init(&drv_data->cur_msg->queue);
  769. /* Initial message state */
  770. drv_data->cur_msg->state = START_STATE;
  771. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  772. struct spi_transfer, transfer_list);
  773. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  774. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  775. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  776. drv_data->cur_chip->ctl_reg);
  777. dev_dbg(&drv_data->pdev->dev,
  778. "the first transfer len is %d\n",
  779. drv_data->cur_transfer->len);
  780. /* Mark as busy and launch transfers */
  781. tasklet_schedule(&drv_data->pump_transfers);
  782. drv_data->busy = 1;
  783. spin_unlock_irqrestore(&drv_data->lock, flags);
  784. }
  785. /*
  786. * got a msg to transfer, queue it in drv_data->queue.
  787. * And kick off message pumper
  788. */
  789. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  790. {
  791. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  792. unsigned long flags;
  793. spin_lock_irqsave(&drv_data->lock, flags);
  794. if (!drv_data->running) {
  795. spin_unlock_irqrestore(&drv_data->lock, flags);
  796. return -ESHUTDOWN;
  797. }
  798. msg->actual_length = 0;
  799. msg->status = -EINPROGRESS;
  800. msg->state = START_STATE;
  801. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  802. list_add_tail(&msg->queue, &drv_data->queue);
  803. if (drv_data->running && !drv_data->busy)
  804. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  805. spin_unlock_irqrestore(&drv_data->lock, flags);
  806. return 0;
  807. }
  808. #define MAX_SPI_SSEL 7
  809. static const u16 ssel[][MAX_SPI_SSEL] = {
  810. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  811. P_SPI0_SSEL4, P_SPI0_SSEL5,
  812. P_SPI0_SSEL6, P_SPI0_SSEL7},
  813. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  814. P_SPI1_SSEL4, P_SPI1_SSEL5,
  815. P_SPI1_SSEL6, P_SPI1_SSEL7},
  816. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  817. P_SPI2_SSEL4, P_SPI2_SSEL5,
  818. P_SPI2_SSEL6, P_SPI2_SSEL7},
  819. };
  820. /* setup for devices (may be called multiple times -- not just first setup) */
  821. static int bfin_spi_setup(struct spi_device *spi)
  822. {
  823. struct bfin5xx_spi_chip *chip_info;
  824. struct bfin_spi_slave_data *chip = NULL;
  825. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  826. u16 bfin_ctl_reg;
  827. int ret = -EINVAL;
  828. /* Only alloc (or use chip_info) on first setup */
  829. chip_info = NULL;
  830. chip = spi_get_ctldata(spi);
  831. if (chip == NULL) {
  832. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  833. if (!chip) {
  834. dev_err(&spi->dev, "cannot allocate chip data\n");
  835. ret = -ENOMEM;
  836. goto error;
  837. }
  838. chip->enable_dma = 0;
  839. chip_info = spi->controller_data;
  840. }
  841. /* Let people set non-standard bits directly */
  842. bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
  843. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
  844. /* chip_info isn't always needed */
  845. if (chip_info) {
  846. /* Make sure people stop trying to set fields via ctl_reg
  847. * when they should actually be using common SPI framework.
  848. * Currently we let through: WOM EMISO PSSE GM SZ.
  849. * Not sure if a user actually needs/uses any of these,
  850. * but let's assume (for now) they do.
  851. */
  852. if (chip_info->ctl_reg & ~bfin_ctl_reg) {
  853. dev_err(&spi->dev, "do not set bits in ctl_reg "
  854. "that the SPI framework manages\n");
  855. goto error;
  856. }
  857. chip->enable_dma = chip_info->enable_dma != 0
  858. && drv_data->master_info->enable_dma;
  859. chip->ctl_reg = chip_info->ctl_reg;
  860. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  861. chip->idle_tx_val = chip_info->idle_tx_val;
  862. chip->pio_interrupt = chip_info->pio_interrupt;
  863. } else {
  864. /* force a default base state */
  865. chip->ctl_reg &= bfin_ctl_reg;
  866. }
  867. if (spi->bits_per_word % 8) {
  868. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  869. spi->bits_per_word);
  870. goto error;
  871. }
  872. /* translate common spi framework into our register */
  873. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  874. dev_err(&spi->dev, "unsupported spi modes detected\n");
  875. goto error;
  876. }
  877. if (spi->mode & SPI_CPOL)
  878. chip->ctl_reg |= BIT_CTL_CPOL;
  879. if (spi->mode & SPI_CPHA)
  880. chip->ctl_reg |= BIT_CTL_CPHA;
  881. if (spi->mode & SPI_LSB_FIRST)
  882. chip->ctl_reg |= BIT_CTL_LSBF;
  883. /* we dont support running in slave mode (yet?) */
  884. chip->ctl_reg |= BIT_CTL_MASTER;
  885. /*
  886. * Notice: for blackfin, the speed_hz is the value of register
  887. * SPI_BAUD, not the real baudrate
  888. */
  889. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  890. chip->chip_select_num = spi->chip_select;
  891. if (chip->chip_select_num < MAX_CTRL_CS) {
  892. if (!(spi->mode & SPI_CPHA))
  893. dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
  894. " Slave Select not under software control!\n"
  895. " See Documentation/blackfin/bfin-spi-notes.txt");
  896. chip->flag = (1 << spi->chip_select) << 8;
  897. } else
  898. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  899. if (chip->enable_dma && chip->pio_interrupt) {
  900. dev_err(&spi->dev, "enable_dma is set, "
  901. "do not set pio_interrupt\n");
  902. goto error;
  903. }
  904. /*
  905. * if any one SPI chip is registered and wants DMA, request the
  906. * DMA channel for it
  907. */
  908. if (chip->enable_dma && !drv_data->dma_requested) {
  909. /* register dma irq handler */
  910. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  911. if (ret) {
  912. dev_err(&spi->dev,
  913. "Unable to request BlackFin SPI DMA channel\n");
  914. goto error;
  915. }
  916. drv_data->dma_requested = 1;
  917. ret = set_dma_callback(drv_data->dma_channel,
  918. bfin_spi_dma_irq_handler, drv_data);
  919. if (ret) {
  920. dev_err(&spi->dev, "Unable to set dma callback\n");
  921. goto error;
  922. }
  923. dma_disable_irq(drv_data->dma_channel);
  924. }
  925. if (chip->pio_interrupt && !drv_data->irq_requested) {
  926. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  927. 0, "BFIN_SPI", drv_data);
  928. if (ret) {
  929. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  930. goto error;
  931. }
  932. drv_data->irq_requested = 1;
  933. /* we use write mode, spi irq has to be disabled here */
  934. disable_irq(drv_data->spi_irq);
  935. }
  936. if (chip->chip_select_num >= MAX_CTRL_CS) {
  937. /* Only request on first setup */
  938. if (spi_get_ctldata(spi) == NULL) {
  939. ret = gpio_request(chip->cs_gpio, spi->modalias);
  940. if (ret) {
  941. dev_err(&spi->dev, "gpio_request() error\n");
  942. goto pin_error;
  943. }
  944. gpio_direction_output(chip->cs_gpio, 1);
  945. }
  946. }
  947. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  948. spi->modalias, spi->bits_per_word, chip->enable_dma);
  949. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  950. chip->ctl_reg, chip->flag);
  951. spi_set_ctldata(spi, chip);
  952. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  953. if (chip->chip_select_num < MAX_CTRL_CS) {
  954. ret = peripheral_request(ssel[spi->master->bus_num]
  955. [chip->chip_select_num-1], spi->modalias);
  956. if (ret) {
  957. dev_err(&spi->dev, "peripheral_request() error\n");
  958. goto pin_error;
  959. }
  960. }
  961. bfin_spi_cs_enable(drv_data, chip);
  962. bfin_spi_cs_deactive(drv_data, chip);
  963. return 0;
  964. pin_error:
  965. if (chip->chip_select_num >= MAX_CTRL_CS)
  966. gpio_free(chip->cs_gpio);
  967. else
  968. peripheral_free(ssel[spi->master->bus_num]
  969. [chip->chip_select_num - 1]);
  970. error:
  971. if (chip) {
  972. if (drv_data->dma_requested)
  973. free_dma(drv_data->dma_channel);
  974. drv_data->dma_requested = 0;
  975. kfree(chip);
  976. /* prevent free 'chip' twice */
  977. spi_set_ctldata(spi, NULL);
  978. }
  979. return ret;
  980. }
  981. /*
  982. * callback for spi framework.
  983. * clean driver specific data
  984. */
  985. static void bfin_spi_cleanup(struct spi_device *spi)
  986. {
  987. struct bfin_spi_slave_data *chip = spi_get_ctldata(spi);
  988. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  989. if (!chip)
  990. return;
  991. if (chip->chip_select_num < MAX_CTRL_CS) {
  992. peripheral_free(ssel[spi->master->bus_num]
  993. [chip->chip_select_num-1]);
  994. bfin_spi_cs_disable(drv_data, chip);
  995. } else
  996. gpio_free(chip->cs_gpio);
  997. kfree(chip);
  998. /* prevent free 'chip' twice */
  999. spi_set_ctldata(spi, NULL);
  1000. }
  1001. static int bfin_spi_init_queue(struct bfin_spi_master_data *drv_data)
  1002. {
  1003. INIT_LIST_HEAD(&drv_data->queue);
  1004. spin_lock_init(&drv_data->lock);
  1005. drv_data->running = false;
  1006. drv_data->busy = 0;
  1007. /* init transfer tasklet */
  1008. tasklet_init(&drv_data->pump_transfers,
  1009. bfin_spi_pump_transfers, (unsigned long)drv_data);
  1010. /* init messages workqueue */
  1011. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  1012. drv_data->workqueue = create_singlethread_workqueue(
  1013. dev_name(drv_data->master->dev.parent));
  1014. if (drv_data->workqueue == NULL)
  1015. return -EBUSY;
  1016. return 0;
  1017. }
  1018. static int bfin_spi_start_queue(struct bfin_spi_master_data *drv_data)
  1019. {
  1020. unsigned long flags;
  1021. spin_lock_irqsave(&drv_data->lock, flags);
  1022. if (drv_data->running || drv_data->busy) {
  1023. spin_unlock_irqrestore(&drv_data->lock, flags);
  1024. return -EBUSY;
  1025. }
  1026. drv_data->running = true;
  1027. drv_data->cur_msg = NULL;
  1028. drv_data->cur_transfer = NULL;
  1029. drv_data->cur_chip = NULL;
  1030. spin_unlock_irqrestore(&drv_data->lock, flags);
  1031. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1032. return 0;
  1033. }
  1034. static int bfin_spi_stop_queue(struct bfin_spi_master_data *drv_data)
  1035. {
  1036. unsigned long flags;
  1037. unsigned limit = 500;
  1038. int status = 0;
  1039. spin_lock_irqsave(&drv_data->lock, flags);
  1040. /*
  1041. * This is a bit lame, but is optimized for the common execution path.
  1042. * A wait_queue on the drv_data->busy could be used, but then the common
  1043. * execution path (pump_messages) would be required to call wake_up or
  1044. * friends on every SPI message. Do this instead
  1045. */
  1046. drv_data->running = false;
  1047. while ((!list_empty(&drv_data->queue) || drv_data->busy) && limit--) {
  1048. spin_unlock_irqrestore(&drv_data->lock, flags);
  1049. msleep(10);
  1050. spin_lock_irqsave(&drv_data->lock, flags);
  1051. }
  1052. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1053. status = -EBUSY;
  1054. spin_unlock_irqrestore(&drv_data->lock, flags);
  1055. return status;
  1056. }
  1057. static int bfin_spi_destroy_queue(struct bfin_spi_master_data *drv_data)
  1058. {
  1059. int status;
  1060. status = bfin_spi_stop_queue(drv_data);
  1061. if (status != 0)
  1062. return status;
  1063. destroy_workqueue(drv_data->workqueue);
  1064. return 0;
  1065. }
  1066. static int bfin_spi_probe(struct platform_device *pdev)
  1067. {
  1068. struct device *dev = &pdev->dev;
  1069. struct bfin5xx_spi_master *platform_info;
  1070. struct spi_master *master;
  1071. struct bfin_spi_master_data *drv_data;
  1072. struct resource *res;
  1073. int status = 0;
  1074. platform_info = dev->platform_data;
  1075. /* Allocate master with space for drv_data */
  1076. master = spi_alloc_master(dev, sizeof(*drv_data));
  1077. if (!master) {
  1078. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1079. return -ENOMEM;
  1080. }
  1081. drv_data = spi_master_get_devdata(master);
  1082. drv_data->master = master;
  1083. drv_data->master_info = platform_info;
  1084. drv_data->pdev = pdev;
  1085. drv_data->pin_req = platform_info->pin_req;
  1086. /* the spi->mode bits supported by this driver: */
  1087. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1088. master->bus_num = pdev->id;
  1089. master->num_chipselect = platform_info->num_chipselect;
  1090. master->cleanup = bfin_spi_cleanup;
  1091. master->setup = bfin_spi_setup;
  1092. master->transfer = bfin_spi_transfer;
  1093. /* Find and map our resources */
  1094. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1095. if (res == NULL) {
  1096. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1097. status = -ENOENT;
  1098. goto out_error_get_res;
  1099. }
  1100. drv_data->regs = ioremap(res->start, resource_size(res));
  1101. if (drv_data->regs == NULL) {
  1102. dev_err(dev, "Cannot map IO\n");
  1103. status = -ENXIO;
  1104. goto out_error_ioremap;
  1105. }
  1106. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1107. if (res == NULL) {
  1108. dev_err(dev, "No DMA channel specified\n");
  1109. status = -ENOENT;
  1110. goto out_error_free_io;
  1111. }
  1112. drv_data->dma_channel = res->start;
  1113. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1114. if (drv_data->spi_irq < 0) {
  1115. dev_err(dev, "No spi pio irq specified\n");
  1116. status = -ENOENT;
  1117. goto out_error_free_io;
  1118. }
  1119. /* Initial and start queue */
  1120. status = bfin_spi_init_queue(drv_data);
  1121. if (status != 0) {
  1122. dev_err(dev, "problem initializing queue\n");
  1123. goto out_error_queue_alloc;
  1124. }
  1125. status = bfin_spi_start_queue(drv_data);
  1126. if (status != 0) {
  1127. dev_err(dev, "problem starting queue\n");
  1128. goto out_error_queue_alloc;
  1129. }
  1130. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1131. if (status != 0) {
  1132. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1133. goto out_error_queue_alloc;
  1134. }
  1135. /* Reset SPI registers. If these registers were used by the boot loader,
  1136. * the sky may fall on your head if you enable the dma controller.
  1137. */
  1138. bfin_write(&drv_data->regs->ctl, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1139. bfin_write(&drv_data->regs->flg, 0xFF00);
  1140. /* Register with the SPI framework */
  1141. platform_set_drvdata(pdev, drv_data);
  1142. status = spi_register_master(master);
  1143. if (status != 0) {
  1144. dev_err(dev, "problem registering spi master\n");
  1145. goto out_error_queue_alloc;
  1146. }
  1147. dev_info(dev, "%s, Version %s, regs@%p, dma channel@%d\n",
  1148. DRV_DESC, DRV_VERSION, drv_data->regs,
  1149. drv_data->dma_channel);
  1150. return status;
  1151. out_error_queue_alloc:
  1152. bfin_spi_destroy_queue(drv_data);
  1153. out_error_free_io:
  1154. iounmap(drv_data->regs);
  1155. out_error_ioremap:
  1156. out_error_get_res:
  1157. spi_master_put(master);
  1158. return status;
  1159. }
  1160. /* stop hardware and remove the driver */
  1161. static int bfin_spi_remove(struct platform_device *pdev)
  1162. {
  1163. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1164. int status = 0;
  1165. if (!drv_data)
  1166. return 0;
  1167. /* Remove the queue */
  1168. status = bfin_spi_destroy_queue(drv_data);
  1169. if (status != 0)
  1170. return status;
  1171. /* Disable the SSP at the peripheral and SOC level */
  1172. bfin_spi_disable(drv_data);
  1173. /* Release DMA */
  1174. if (drv_data->master_info->enable_dma) {
  1175. if (dma_channel_active(drv_data->dma_channel))
  1176. free_dma(drv_data->dma_channel);
  1177. }
  1178. if (drv_data->irq_requested) {
  1179. free_irq(drv_data->spi_irq, drv_data);
  1180. drv_data->irq_requested = 0;
  1181. }
  1182. /* Disconnect from the SPI framework */
  1183. spi_unregister_master(drv_data->master);
  1184. peripheral_free_list(drv_data->pin_req);
  1185. /* Prevent double remove */
  1186. platform_set_drvdata(pdev, NULL);
  1187. return 0;
  1188. }
  1189. #ifdef CONFIG_PM
  1190. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1191. {
  1192. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1193. int status = 0;
  1194. status = bfin_spi_stop_queue(drv_data);
  1195. if (status != 0)
  1196. return status;
  1197. drv_data->ctrl_reg = bfin_read(&drv_data->regs->ctl);
  1198. drv_data->flag_reg = bfin_read(&drv_data->regs->flg);
  1199. /*
  1200. * reset SPI_CTL and SPI_FLG registers
  1201. */
  1202. bfin_write(&drv_data->regs->ctl, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1203. bfin_write(&drv_data->regs->flg, 0xFF00);
  1204. return 0;
  1205. }
  1206. static int bfin_spi_resume(struct platform_device *pdev)
  1207. {
  1208. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1209. int status = 0;
  1210. bfin_write(&drv_data->regs->ctl, drv_data->ctrl_reg);
  1211. bfin_write(&drv_data->regs->flg, drv_data->flag_reg);
  1212. /* Start the queue running */
  1213. status = bfin_spi_start_queue(drv_data);
  1214. if (status != 0) {
  1215. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1216. return status;
  1217. }
  1218. return 0;
  1219. }
  1220. #else
  1221. #define bfin_spi_suspend NULL
  1222. #define bfin_spi_resume NULL
  1223. #endif /* CONFIG_PM */
  1224. MODULE_ALIAS("platform:bfin-spi");
  1225. static struct platform_driver bfin_spi_driver = {
  1226. .driver = {
  1227. .name = DRV_NAME,
  1228. .owner = THIS_MODULE,
  1229. },
  1230. .suspend = bfin_spi_suspend,
  1231. .resume = bfin_spi_resume,
  1232. .remove = bfin_spi_remove,
  1233. };
  1234. static int __init bfin_spi_init(void)
  1235. {
  1236. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1237. }
  1238. subsys_initcall(bfin_spi_init);
  1239. static void __exit bfin_spi_exit(void)
  1240. {
  1241. platform_driver_unregister(&bfin_spi_driver);
  1242. }
  1243. module_exit(bfin_spi_exit);