mv_init.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * Marvell 88SE64xx/88SE94xx pci init
  3. *
  4. * Copyright 2007 Red Hat, Inc.
  5. * Copyright 2008 Marvell. <kewei@marvell.com>
  6. * Copyright 2009-2011 Marvell. <yuxiangl@marvell.com>
  7. *
  8. * This file is licensed under GPLv2.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; version 2 of the
  13. * License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
  23. * USA
  24. */
  25. #include "mv_sas.h"
  26. static int lldd_max_execute_num = 1;
  27. module_param_named(collector, lldd_max_execute_num, int, S_IRUGO);
  28. MODULE_PARM_DESC(collector, "\n"
  29. "\tIf greater than one, tells the SAS Layer to run in Task Collector\n"
  30. "\tMode. If 1 or 0, tells the SAS Layer to run in Direct Mode.\n"
  31. "\tThe mvsas SAS LLDD supports both modes.\n"
  32. "\tDefault: 1 (Direct Mode).\n");
  33. int interrupt_coalescing = 0x80;
  34. static struct scsi_transport_template *mvs_stt;
  35. struct kmem_cache *mvs_task_list_cache;
  36. static const struct mvs_chip_info mvs_chips[] = {
  37. [chip_6320] = { 1, 2, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  38. [chip_6440] = { 1, 4, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  39. [chip_6485] = { 1, 8, 0x800, 33, 32, 6, 10, &mvs_64xx_dispatch, },
  40. [chip_9180] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  41. [chip_9480] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  42. [chip_9445] = { 1, 4, 0x800, 17, 64, 8, 11, &mvs_94xx_dispatch, },
  43. [chip_9485] = { 2, 4, 0x800, 17, 64, 8, 11, &mvs_94xx_dispatch, },
  44. [chip_1300] = { 1, 4, 0x400, 17, 16, 6, 9, &mvs_64xx_dispatch, },
  45. [chip_1320] = { 2, 4, 0x800, 17, 64, 8, 9, &mvs_94xx_dispatch, },
  46. };
  47. struct device_attribute *mvst_host_attrs[];
  48. #define SOC_SAS_NUM 2
  49. static struct scsi_host_template mvs_sht = {
  50. .module = THIS_MODULE,
  51. .name = DRV_NAME,
  52. .queuecommand = sas_queuecommand,
  53. .target_alloc = sas_target_alloc,
  54. .slave_configure = sas_slave_configure,
  55. .scan_finished = mvs_scan_finished,
  56. .scan_start = mvs_scan_start,
  57. .change_queue_depth = sas_change_queue_depth,
  58. .change_queue_type = sas_change_queue_type,
  59. .bios_param = sas_bios_param,
  60. .can_queue = 1,
  61. .cmd_per_lun = 1,
  62. .this_id = -1,
  63. .sg_tablesize = SG_ALL,
  64. .max_sectors = SCSI_DEFAULT_MAX_SECTORS,
  65. .use_clustering = ENABLE_CLUSTERING,
  66. .eh_device_reset_handler = sas_eh_device_reset_handler,
  67. .eh_bus_reset_handler = sas_eh_bus_reset_handler,
  68. .target_destroy = sas_target_destroy,
  69. .ioctl = sas_ioctl,
  70. .shost_attrs = mvst_host_attrs,
  71. };
  72. static struct sas_domain_function_template mvs_transport_ops = {
  73. .lldd_dev_found = mvs_dev_found,
  74. .lldd_dev_gone = mvs_dev_gone,
  75. .lldd_execute_task = mvs_queue_command,
  76. .lldd_control_phy = mvs_phy_control,
  77. .lldd_abort_task = mvs_abort_task,
  78. .lldd_abort_task_set = mvs_abort_task_set,
  79. .lldd_clear_aca = mvs_clear_aca,
  80. .lldd_clear_task_set = mvs_clear_task_set,
  81. .lldd_I_T_nexus_reset = mvs_I_T_nexus_reset,
  82. .lldd_lu_reset = mvs_lu_reset,
  83. .lldd_query_task = mvs_query_task,
  84. .lldd_port_formed = mvs_port_formed,
  85. .lldd_port_deformed = mvs_port_deformed,
  86. };
  87. static void mvs_phy_init(struct mvs_info *mvi, int phy_id)
  88. {
  89. struct mvs_phy *phy = &mvi->phy[phy_id];
  90. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  91. phy->mvi = mvi;
  92. phy->port = NULL;
  93. init_timer(&phy->timer);
  94. sas_phy->enabled = (phy_id < mvi->chip->n_phy) ? 1 : 0;
  95. sas_phy->class = SAS;
  96. sas_phy->iproto = SAS_PROTOCOL_ALL;
  97. sas_phy->tproto = 0;
  98. sas_phy->type = PHY_TYPE_PHYSICAL;
  99. sas_phy->role = PHY_ROLE_INITIATOR;
  100. sas_phy->oob_mode = OOB_NOT_CONNECTED;
  101. sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
  102. sas_phy->id = phy_id;
  103. sas_phy->sas_addr = &mvi->sas_addr[0];
  104. sas_phy->frame_rcvd = &phy->frame_rcvd[0];
  105. sas_phy->ha = (struct sas_ha_struct *)mvi->shost->hostdata;
  106. sas_phy->lldd_phy = phy;
  107. }
  108. static void mvs_free(struct mvs_info *mvi)
  109. {
  110. struct mvs_wq *mwq;
  111. int slot_nr;
  112. if (!mvi)
  113. return;
  114. if (mvi->flags & MVF_FLAG_SOC)
  115. slot_nr = MVS_SOC_SLOTS;
  116. else
  117. slot_nr = MVS_CHIP_SLOT_SZ;
  118. if (mvi->dma_pool)
  119. pci_pool_destroy(mvi->dma_pool);
  120. if (mvi->tx)
  121. dma_free_coherent(mvi->dev,
  122. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  123. mvi->tx, mvi->tx_dma);
  124. if (mvi->rx_fis)
  125. dma_free_coherent(mvi->dev, MVS_RX_FISL_SZ,
  126. mvi->rx_fis, mvi->rx_fis_dma);
  127. if (mvi->rx)
  128. dma_free_coherent(mvi->dev,
  129. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  130. mvi->rx, mvi->rx_dma);
  131. if (mvi->slot)
  132. dma_free_coherent(mvi->dev,
  133. sizeof(*mvi->slot) * slot_nr,
  134. mvi->slot, mvi->slot_dma);
  135. if (mvi->bulk_buffer)
  136. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  137. mvi->bulk_buffer, mvi->bulk_buffer_dma);
  138. if (mvi->bulk_buffer1)
  139. dma_free_coherent(mvi->dev, TRASH_BUCKET_SIZE,
  140. mvi->bulk_buffer1, mvi->bulk_buffer_dma1);
  141. MVS_CHIP_DISP->chip_iounmap(mvi);
  142. if (mvi->shost)
  143. scsi_host_put(mvi->shost);
  144. list_for_each_entry(mwq, &mvi->wq_list, entry)
  145. cancel_delayed_work(&mwq->work_q);
  146. kfree(mvi->tags);
  147. kfree(mvi);
  148. }
  149. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  150. static void mvs_tasklet(unsigned long opaque)
  151. {
  152. u32 stat;
  153. u16 core_nr, i = 0;
  154. struct mvs_info *mvi;
  155. struct sas_ha_struct *sha = (struct sas_ha_struct *)opaque;
  156. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  157. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  158. if (unlikely(!mvi))
  159. BUG_ON(1);
  160. stat = MVS_CHIP_DISP->isr_status(mvi, mvi->pdev->irq);
  161. if (!stat)
  162. goto out;
  163. for (i = 0; i < core_nr; i++) {
  164. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  165. MVS_CHIP_DISP->isr(mvi, mvi->pdev->irq, stat);
  166. }
  167. out:
  168. MVS_CHIP_DISP->interrupt_enable(mvi);
  169. }
  170. #endif
  171. static irqreturn_t mvs_interrupt(int irq, void *opaque)
  172. {
  173. u32 core_nr;
  174. u32 stat;
  175. struct mvs_info *mvi;
  176. struct sas_ha_struct *sha = opaque;
  177. #ifndef CONFIG_SCSI_MVSAS_TASKLET
  178. u32 i;
  179. #endif
  180. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  181. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  182. if (unlikely(!mvi))
  183. return IRQ_NONE;
  184. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  185. MVS_CHIP_DISP->interrupt_disable(mvi);
  186. #endif
  187. stat = MVS_CHIP_DISP->isr_status(mvi, irq);
  188. if (!stat) {
  189. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  190. MVS_CHIP_DISP->interrupt_enable(mvi);
  191. #endif
  192. return IRQ_NONE;
  193. }
  194. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  195. tasklet_schedule(&((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet);
  196. #else
  197. for (i = 0; i < core_nr; i++) {
  198. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  199. MVS_CHIP_DISP->isr(mvi, irq, stat);
  200. }
  201. #endif
  202. return IRQ_HANDLED;
  203. }
  204. static int mvs_alloc(struct mvs_info *mvi, struct Scsi_Host *shost)
  205. {
  206. int i = 0, slot_nr;
  207. char pool_name[32];
  208. if (mvi->flags & MVF_FLAG_SOC)
  209. slot_nr = MVS_SOC_SLOTS;
  210. else
  211. slot_nr = MVS_CHIP_SLOT_SZ;
  212. spin_lock_init(&mvi->lock);
  213. for (i = 0; i < mvi->chip->n_phy; i++) {
  214. mvs_phy_init(mvi, i);
  215. mvi->port[i].wide_port_phymap = 0;
  216. mvi->port[i].port_attached = 0;
  217. INIT_LIST_HEAD(&mvi->port[i].list);
  218. }
  219. for (i = 0; i < MVS_MAX_DEVICES; i++) {
  220. mvi->devices[i].taskfileset = MVS_ID_NOT_MAPPED;
  221. mvi->devices[i].dev_type = NO_DEVICE;
  222. mvi->devices[i].device_id = i;
  223. mvi->devices[i].dev_status = MVS_DEV_NORMAL;
  224. init_timer(&mvi->devices[i].timer);
  225. }
  226. /*
  227. * alloc and init our DMA areas
  228. */
  229. mvi->tx = dma_alloc_coherent(mvi->dev,
  230. sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ,
  231. &mvi->tx_dma, GFP_KERNEL);
  232. if (!mvi->tx)
  233. goto err_out;
  234. memset(mvi->tx, 0, sizeof(*mvi->tx) * MVS_CHIP_SLOT_SZ);
  235. mvi->rx_fis = dma_alloc_coherent(mvi->dev, MVS_RX_FISL_SZ,
  236. &mvi->rx_fis_dma, GFP_KERNEL);
  237. if (!mvi->rx_fis)
  238. goto err_out;
  239. memset(mvi->rx_fis, 0, MVS_RX_FISL_SZ);
  240. mvi->rx = dma_alloc_coherent(mvi->dev,
  241. sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1),
  242. &mvi->rx_dma, GFP_KERNEL);
  243. if (!mvi->rx)
  244. goto err_out;
  245. memset(mvi->rx, 0, sizeof(*mvi->rx) * (MVS_RX_RING_SZ + 1));
  246. mvi->rx[0] = cpu_to_le32(0xfff);
  247. mvi->rx_cons = 0xfff;
  248. mvi->slot = dma_alloc_coherent(mvi->dev,
  249. sizeof(*mvi->slot) * slot_nr,
  250. &mvi->slot_dma, GFP_KERNEL);
  251. if (!mvi->slot)
  252. goto err_out;
  253. memset(mvi->slot, 0, sizeof(*mvi->slot) * slot_nr);
  254. mvi->bulk_buffer = dma_alloc_coherent(mvi->dev,
  255. TRASH_BUCKET_SIZE,
  256. &mvi->bulk_buffer_dma, GFP_KERNEL);
  257. if (!mvi->bulk_buffer)
  258. goto err_out;
  259. mvi->bulk_buffer1 = dma_alloc_coherent(mvi->dev,
  260. TRASH_BUCKET_SIZE,
  261. &mvi->bulk_buffer_dma1, GFP_KERNEL);
  262. if (!mvi->bulk_buffer1)
  263. goto err_out;
  264. sprintf(pool_name, "%s%d", "mvs_dma_pool", mvi->id);
  265. mvi->dma_pool = pci_pool_create(pool_name, mvi->pdev, MVS_SLOT_BUF_SZ, 16, 0);
  266. if (!mvi->dma_pool) {
  267. printk(KERN_DEBUG "failed to create dma pool %s.\n", pool_name);
  268. goto err_out;
  269. }
  270. mvi->tags_num = slot_nr;
  271. /* Initialize tags */
  272. mvs_tag_init(mvi);
  273. return 0;
  274. err_out:
  275. return 1;
  276. }
  277. int mvs_ioremap(struct mvs_info *mvi, int bar, int bar_ex)
  278. {
  279. unsigned long res_start, res_len, res_flag, res_flag_ex = 0;
  280. struct pci_dev *pdev = mvi->pdev;
  281. if (bar_ex != -1) {
  282. /*
  283. * ioremap main and peripheral registers
  284. */
  285. res_start = pci_resource_start(pdev, bar_ex);
  286. res_len = pci_resource_len(pdev, bar_ex);
  287. if (!res_start || !res_len)
  288. goto err_out;
  289. res_flag_ex = pci_resource_flags(pdev, bar_ex);
  290. if (res_flag_ex & IORESOURCE_MEM) {
  291. if (res_flag_ex & IORESOURCE_CACHEABLE)
  292. mvi->regs_ex = ioremap(res_start, res_len);
  293. else
  294. mvi->regs_ex = ioremap_nocache(res_start,
  295. res_len);
  296. } else
  297. mvi->regs_ex = (void *)res_start;
  298. if (!mvi->regs_ex)
  299. goto err_out;
  300. }
  301. res_start = pci_resource_start(pdev, bar);
  302. res_len = pci_resource_len(pdev, bar);
  303. if (!res_start || !res_len)
  304. goto err_out;
  305. res_flag = pci_resource_flags(pdev, bar);
  306. if (res_flag & IORESOURCE_CACHEABLE)
  307. mvi->regs = ioremap(res_start, res_len);
  308. else
  309. mvi->regs = ioremap_nocache(res_start, res_len);
  310. if (!mvi->regs) {
  311. if (mvi->regs_ex && (res_flag_ex & IORESOURCE_MEM))
  312. iounmap(mvi->regs_ex);
  313. mvi->regs_ex = NULL;
  314. goto err_out;
  315. }
  316. return 0;
  317. err_out:
  318. return -1;
  319. }
  320. void mvs_iounmap(void __iomem *regs)
  321. {
  322. iounmap(regs);
  323. }
  324. static struct mvs_info *mvs_pci_alloc(struct pci_dev *pdev,
  325. const struct pci_device_id *ent,
  326. struct Scsi_Host *shost, unsigned int id)
  327. {
  328. struct mvs_info *mvi = NULL;
  329. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  330. mvi = kzalloc(sizeof(*mvi) +
  331. (1L << mvs_chips[ent->driver_data].slot_width) *
  332. sizeof(struct mvs_slot_info), GFP_KERNEL);
  333. if (!mvi)
  334. return NULL;
  335. mvi->pdev = pdev;
  336. mvi->dev = &pdev->dev;
  337. mvi->chip_id = ent->driver_data;
  338. mvi->chip = &mvs_chips[mvi->chip_id];
  339. INIT_LIST_HEAD(&mvi->wq_list);
  340. ((struct mvs_prv_info *)sha->lldd_ha)->mvi[id] = mvi;
  341. ((struct mvs_prv_info *)sha->lldd_ha)->n_phy = mvi->chip->n_phy;
  342. mvi->id = id;
  343. mvi->sas = sha;
  344. mvi->shost = shost;
  345. mvi->tags = kzalloc(MVS_CHIP_SLOT_SZ>>3, GFP_KERNEL);
  346. if (!mvi->tags)
  347. goto err_out;
  348. if (MVS_CHIP_DISP->chip_ioremap(mvi))
  349. goto err_out;
  350. if (!mvs_alloc(mvi, shost))
  351. return mvi;
  352. err_out:
  353. mvs_free(mvi);
  354. return NULL;
  355. }
  356. static int pci_go_64(struct pci_dev *pdev)
  357. {
  358. int rc;
  359. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  360. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  361. if (rc) {
  362. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  363. if (rc) {
  364. dev_printk(KERN_ERR, &pdev->dev,
  365. "64-bit DMA enable failed\n");
  366. return rc;
  367. }
  368. }
  369. } else {
  370. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  371. if (rc) {
  372. dev_printk(KERN_ERR, &pdev->dev,
  373. "32-bit DMA enable failed\n");
  374. return rc;
  375. }
  376. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  377. if (rc) {
  378. dev_printk(KERN_ERR, &pdev->dev,
  379. "32-bit consistent DMA enable failed\n");
  380. return rc;
  381. }
  382. }
  383. return rc;
  384. }
  385. static int mvs_prep_sas_ha_init(struct Scsi_Host *shost,
  386. const struct mvs_chip_info *chip_info)
  387. {
  388. int phy_nr, port_nr; unsigned short core_nr;
  389. struct asd_sas_phy **arr_phy;
  390. struct asd_sas_port **arr_port;
  391. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  392. core_nr = chip_info->n_host;
  393. phy_nr = core_nr * chip_info->n_phy;
  394. port_nr = phy_nr;
  395. memset(sha, 0x00, sizeof(struct sas_ha_struct));
  396. arr_phy = kcalloc(phy_nr, sizeof(void *), GFP_KERNEL);
  397. arr_port = kcalloc(port_nr, sizeof(void *), GFP_KERNEL);
  398. if (!arr_phy || !arr_port)
  399. goto exit_free;
  400. sha->sas_phy = arr_phy;
  401. sha->sas_port = arr_port;
  402. sha->core.shost = shost;
  403. sha->lldd_ha = kzalloc(sizeof(struct mvs_prv_info), GFP_KERNEL);
  404. if (!sha->lldd_ha)
  405. goto exit_free;
  406. ((struct mvs_prv_info *)sha->lldd_ha)->n_host = core_nr;
  407. shost->transportt = mvs_stt;
  408. shost->max_id = MVS_MAX_DEVICES;
  409. shost->max_lun = ~0;
  410. shost->max_channel = 1;
  411. shost->max_cmd_len = 16;
  412. return 0;
  413. exit_free:
  414. kfree(arr_phy);
  415. kfree(arr_port);
  416. return -1;
  417. }
  418. static void mvs_post_sas_ha_init(struct Scsi_Host *shost,
  419. const struct mvs_chip_info *chip_info)
  420. {
  421. int can_queue, i = 0, j = 0;
  422. struct mvs_info *mvi = NULL;
  423. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  424. unsigned short nr_core = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  425. for (j = 0; j < nr_core; j++) {
  426. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[j];
  427. for (i = 0; i < chip_info->n_phy; i++) {
  428. sha->sas_phy[j * chip_info->n_phy + i] =
  429. &mvi->phy[i].sas_phy;
  430. sha->sas_port[j * chip_info->n_phy + i] =
  431. &mvi->port[i].sas_port;
  432. }
  433. }
  434. sha->sas_ha_name = DRV_NAME;
  435. sha->dev = mvi->dev;
  436. sha->lldd_module = THIS_MODULE;
  437. sha->sas_addr = &mvi->sas_addr[0];
  438. sha->num_phys = nr_core * chip_info->n_phy;
  439. sha->lldd_max_execute_num = lldd_max_execute_num;
  440. if (mvi->flags & MVF_FLAG_SOC)
  441. can_queue = MVS_SOC_CAN_QUEUE;
  442. else
  443. can_queue = MVS_CHIP_SLOT_SZ;
  444. sha->lldd_queue_size = can_queue;
  445. shost->sg_tablesize = min_t(u16, SG_ALL, MVS_MAX_SG);
  446. shost->can_queue = can_queue;
  447. mvi->shost->cmd_per_lun = MVS_QUEUE_SIZE;
  448. sha->core.shost = mvi->shost;
  449. }
  450. static void mvs_init_sas_add(struct mvs_info *mvi)
  451. {
  452. u8 i;
  453. for (i = 0; i < mvi->chip->n_phy; i++) {
  454. mvi->phy[i].dev_sas_addr = 0x5005043011ab0000ULL;
  455. mvi->phy[i].dev_sas_addr =
  456. cpu_to_be64((u64)(*(u64 *)&mvi->phy[i].dev_sas_addr));
  457. }
  458. memcpy(mvi->sas_addr, &mvi->phy[0].dev_sas_addr, SAS_ADDR_SIZE);
  459. }
  460. static int mvs_pci_init(struct pci_dev *pdev, const struct pci_device_id *ent)
  461. {
  462. unsigned int rc, nhost = 0;
  463. struct mvs_info *mvi;
  464. struct mvs_prv_info *mpi;
  465. irq_handler_t irq_handler = mvs_interrupt;
  466. struct Scsi_Host *shost = NULL;
  467. const struct mvs_chip_info *chip;
  468. dev_printk(KERN_INFO, &pdev->dev,
  469. "mvsas: driver version %s\n", DRV_VERSION);
  470. rc = pci_enable_device(pdev);
  471. if (rc)
  472. goto err_out_enable;
  473. pci_set_master(pdev);
  474. rc = pci_request_regions(pdev, DRV_NAME);
  475. if (rc)
  476. goto err_out_disable;
  477. rc = pci_go_64(pdev);
  478. if (rc)
  479. goto err_out_regions;
  480. shost = scsi_host_alloc(&mvs_sht, sizeof(void *));
  481. if (!shost) {
  482. rc = -ENOMEM;
  483. goto err_out_regions;
  484. }
  485. chip = &mvs_chips[ent->driver_data];
  486. SHOST_TO_SAS_HA(shost) =
  487. kcalloc(1, sizeof(struct sas_ha_struct), GFP_KERNEL);
  488. if (!SHOST_TO_SAS_HA(shost)) {
  489. kfree(shost);
  490. rc = -ENOMEM;
  491. goto err_out_regions;
  492. }
  493. rc = mvs_prep_sas_ha_init(shost, chip);
  494. if (rc) {
  495. kfree(shost);
  496. rc = -ENOMEM;
  497. goto err_out_regions;
  498. }
  499. pci_set_drvdata(pdev, SHOST_TO_SAS_HA(shost));
  500. do {
  501. mvi = mvs_pci_alloc(pdev, ent, shost, nhost);
  502. if (!mvi) {
  503. rc = -ENOMEM;
  504. goto err_out_regions;
  505. }
  506. memset(&mvi->hba_info_param, 0xFF,
  507. sizeof(struct hba_info_page));
  508. mvs_init_sas_add(mvi);
  509. mvi->instance = nhost;
  510. rc = MVS_CHIP_DISP->chip_init(mvi);
  511. if (rc) {
  512. mvs_free(mvi);
  513. goto err_out_regions;
  514. }
  515. nhost++;
  516. } while (nhost < chip->n_host);
  517. mpi = (struct mvs_prv_info *)(SHOST_TO_SAS_HA(shost)->lldd_ha);
  518. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  519. tasklet_init(&(mpi->mv_tasklet), mvs_tasklet,
  520. (unsigned long)SHOST_TO_SAS_HA(shost));
  521. #endif
  522. mvs_post_sas_ha_init(shost, chip);
  523. rc = scsi_add_host(shost, &pdev->dev);
  524. if (rc)
  525. goto err_out_shost;
  526. rc = sas_register_ha(SHOST_TO_SAS_HA(shost));
  527. if (rc)
  528. goto err_out_shost;
  529. rc = request_irq(pdev->irq, irq_handler, IRQF_SHARED,
  530. DRV_NAME, SHOST_TO_SAS_HA(shost));
  531. if (rc)
  532. goto err_not_sas;
  533. MVS_CHIP_DISP->interrupt_enable(mvi);
  534. scsi_scan_host(mvi->shost);
  535. return 0;
  536. err_not_sas:
  537. sas_unregister_ha(SHOST_TO_SAS_HA(shost));
  538. err_out_shost:
  539. scsi_remove_host(mvi->shost);
  540. err_out_regions:
  541. pci_release_regions(pdev);
  542. err_out_disable:
  543. pci_disable_device(pdev);
  544. err_out_enable:
  545. return rc;
  546. }
  547. static void mvs_pci_remove(struct pci_dev *pdev)
  548. {
  549. unsigned short core_nr, i = 0;
  550. struct sas_ha_struct *sha = pci_get_drvdata(pdev);
  551. struct mvs_info *mvi = NULL;
  552. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  553. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  554. #ifdef CONFIG_SCSI_MVSAS_TASKLET
  555. tasklet_kill(&((struct mvs_prv_info *)sha->lldd_ha)->mv_tasklet);
  556. #endif
  557. pci_set_drvdata(pdev, NULL);
  558. sas_unregister_ha(sha);
  559. sas_remove_host(mvi->shost);
  560. scsi_remove_host(mvi->shost);
  561. MVS_CHIP_DISP->interrupt_disable(mvi);
  562. free_irq(mvi->pdev->irq, sha);
  563. for (i = 0; i < core_nr; i++) {
  564. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  565. mvs_free(mvi);
  566. }
  567. kfree(sha->sas_phy);
  568. kfree(sha->sas_port);
  569. kfree(sha);
  570. pci_release_regions(pdev);
  571. pci_disable_device(pdev);
  572. return;
  573. }
  574. static struct pci_device_id mvs_pci_table[] = {
  575. { PCI_VDEVICE(MARVELL, 0x6320), chip_6320 },
  576. { PCI_VDEVICE(MARVELL, 0x6340), chip_6440 },
  577. {
  578. .vendor = PCI_VENDOR_ID_MARVELL,
  579. .device = 0x6440,
  580. .subvendor = PCI_ANY_ID,
  581. .subdevice = 0x6480,
  582. .class = 0,
  583. .class_mask = 0,
  584. .driver_data = chip_6485,
  585. },
  586. { PCI_VDEVICE(MARVELL, 0x6440), chip_6440 },
  587. { PCI_VDEVICE(MARVELL, 0x6485), chip_6485 },
  588. { PCI_VDEVICE(MARVELL, 0x9480), chip_9480 },
  589. { PCI_VDEVICE(MARVELL, 0x9180), chip_9180 },
  590. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1300), chip_1300 },
  591. { PCI_VDEVICE(ARECA, PCI_DEVICE_ID_ARECA_1320), chip_1320 },
  592. { PCI_VDEVICE(ADAPTEC2, 0x0450), chip_6440 },
  593. { PCI_VDEVICE(TTI, 0x2710), chip_9480 },
  594. { PCI_VDEVICE(TTI, 0x2720), chip_9480 },
  595. { PCI_VDEVICE(TTI, 0x2721), chip_9480 },
  596. { PCI_VDEVICE(TTI, 0x2722), chip_9480 },
  597. { PCI_VDEVICE(TTI, 0x2740), chip_9480 },
  598. { PCI_VDEVICE(TTI, 0x2744), chip_9480 },
  599. { PCI_VDEVICE(TTI, 0x2760), chip_9480 },
  600. {
  601. .vendor = 0x1b4b,
  602. .device = 0x9480,
  603. .subvendor = PCI_ANY_ID,
  604. .subdevice = 0x9480,
  605. .class = 0,
  606. .class_mask = 0,
  607. .driver_data = chip_9480,
  608. },
  609. {
  610. .vendor = 0x1b4b,
  611. .device = 0x9445,
  612. .subvendor = PCI_ANY_ID,
  613. .subdevice = 0x9480,
  614. .class = 0,
  615. .class_mask = 0,
  616. .driver_data = chip_9445,
  617. },
  618. {
  619. .vendor = 0x1b4b,
  620. .device = 0x9485,
  621. .subvendor = PCI_ANY_ID,
  622. .subdevice = 0x9480,
  623. .class = 0,
  624. .class_mask = 0,
  625. .driver_data = chip_9485,
  626. },
  627. { PCI_VDEVICE(OCZ, 0x1021), chip_9485}, /* OCZ RevoDrive3 */
  628. { PCI_VDEVICE(OCZ, 0x1022), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  629. { PCI_VDEVICE(OCZ, 0x1040), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  630. { PCI_VDEVICE(OCZ, 0x1041), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  631. { PCI_VDEVICE(OCZ, 0x1042), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  632. { PCI_VDEVICE(OCZ, 0x1043), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  633. { PCI_VDEVICE(OCZ, 0x1044), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  634. { PCI_VDEVICE(OCZ, 0x1080), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  635. { PCI_VDEVICE(OCZ, 0x1083), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  636. { PCI_VDEVICE(OCZ, 0x1084), chip_9485}, /* OCZ RevoDrive3/zDriveR4 (exact model unknown) */
  637. { } /* terminate list */
  638. };
  639. static struct pci_driver mvs_pci_driver = {
  640. .name = DRV_NAME,
  641. .id_table = mvs_pci_table,
  642. .probe = mvs_pci_init,
  643. .remove = mvs_pci_remove,
  644. };
  645. static ssize_t
  646. mvs_show_driver_version(struct device *cdev,
  647. struct device_attribute *attr, char *buffer)
  648. {
  649. return snprintf(buffer, PAGE_SIZE, "%s\n", DRV_VERSION);
  650. }
  651. static DEVICE_ATTR(driver_version,
  652. S_IRUGO,
  653. mvs_show_driver_version,
  654. NULL);
  655. static ssize_t
  656. mvs_store_interrupt_coalescing(struct device *cdev,
  657. struct device_attribute *attr,
  658. const char *buffer, size_t size)
  659. {
  660. int val = 0;
  661. struct mvs_info *mvi = NULL;
  662. struct Scsi_Host *shost = class_to_shost(cdev);
  663. struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
  664. u8 i, core_nr;
  665. if (buffer == NULL)
  666. return size;
  667. if (sscanf(buffer, "%d", &val) != 1)
  668. return -EINVAL;
  669. if (val >= 0x10000) {
  670. mv_dprintk("interrupt coalescing timer %d us is"
  671. "too long\n", val);
  672. return strlen(buffer);
  673. }
  674. interrupt_coalescing = val;
  675. core_nr = ((struct mvs_prv_info *)sha->lldd_ha)->n_host;
  676. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[0];
  677. if (unlikely(!mvi))
  678. return -EINVAL;
  679. for (i = 0; i < core_nr; i++) {
  680. mvi = ((struct mvs_prv_info *)sha->lldd_ha)->mvi[i];
  681. if (MVS_CHIP_DISP->tune_interrupt)
  682. MVS_CHIP_DISP->tune_interrupt(mvi,
  683. interrupt_coalescing);
  684. }
  685. mv_dprintk("set interrupt coalescing time to %d us\n",
  686. interrupt_coalescing);
  687. return strlen(buffer);
  688. }
  689. static ssize_t mvs_show_interrupt_coalescing(struct device *cdev,
  690. struct device_attribute *attr, char *buffer)
  691. {
  692. return snprintf(buffer, PAGE_SIZE, "%d\n", interrupt_coalescing);
  693. }
  694. static DEVICE_ATTR(interrupt_coalescing,
  695. S_IRUGO|S_IWUSR,
  696. mvs_show_interrupt_coalescing,
  697. mvs_store_interrupt_coalescing);
  698. /* task handler */
  699. struct task_struct *mvs_th;
  700. static int __init mvs_init(void)
  701. {
  702. int rc;
  703. mvs_stt = sas_domain_attach_transport(&mvs_transport_ops);
  704. if (!mvs_stt)
  705. return -ENOMEM;
  706. mvs_task_list_cache = kmem_cache_create("mvs_task_list", sizeof(struct mvs_task_list),
  707. 0, SLAB_HWCACHE_ALIGN, NULL);
  708. if (!mvs_task_list_cache) {
  709. rc = -ENOMEM;
  710. mv_printk("%s: mvs_task_list_cache alloc failed! \n", __func__);
  711. goto err_out;
  712. }
  713. rc = pci_register_driver(&mvs_pci_driver);
  714. if (rc)
  715. goto err_out;
  716. return 0;
  717. err_out:
  718. sas_release_transport(mvs_stt);
  719. return rc;
  720. }
  721. static void __exit mvs_exit(void)
  722. {
  723. pci_unregister_driver(&mvs_pci_driver);
  724. sas_release_transport(mvs_stt);
  725. kmem_cache_destroy(mvs_task_list_cache);
  726. }
  727. struct device_attribute *mvst_host_attrs[] = {
  728. &dev_attr_driver_version,
  729. &dev_attr_interrupt_coalescing,
  730. NULL,
  731. };
  732. module_init(mvs_init);
  733. module_exit(mvs_exit);
  734. MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
  735. MODULE_DESCRIPTION("Marvell 88SE6440 SAS/SATA controller driver");
  736. MODULE_VERSION(DRV_VERSION);
  737. MODULE_LICENSE("GPL");
  738. #ifdef CONFIG_PCI
  739. MODULE_DEVICE_TABLE(pci, mvs_pci_table);
  740. #endif