hpsa.c 145 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190
  1. /*
  2. * Disk Array driver for HP Smart Array SAS controllers
  3. * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; version 2 of the License.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12. * NON INFRINGEMENT. See the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. *
  18. * Questions/Comments/Bugfixes to iss_storagedev@hp.com
  19. *
  20. */
  21. #include <linux/module.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/types.h>
  24. #include <linux/pci.h>
  25. #include <linux/pci-aspm.h>
  26. #include <linux/kernel.h>
  27. #include <linux/slab.h>
  28. #include <linux/delay.h>
  29. #include <linux/fs.h>
  30. #include <linux/timer.h>
  31. #include <linux/seq_file.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/compat.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/io.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/completion.h>
  40. #include <linux/moduleparam.h>
  41. #include <scsi/scsi.h>
  42. #include <scsi/scsi_cmnd.h>
  43. #include <scsi/scsi_device.h>
  44. #include <scsi/scsi_host.h>
  45. #include <scsi/scsi_tcq.h>
  46. #include <linux/cciss_ioctl.h>
  47. #include <linux/string.h>
  48. #include <linux/bitmap.h>
  49. #include <linux/atomic.h>
  50. #include <linux/kthread.h>
  51. #include <linux/jiffies.h>
  52. #include "hpsa_cmd.h"
  53. #include "hpsa.h"
  54. /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
  55. #define HPSA_DRIVER_VERSION "2.0.2-1"
  56. #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
  57. #define HPSA "hpsa"
  58. /* How long to wait (in milliseconds) for board to go into simple mode */
  59. #define MAX_CONFIG_WAIT 30000
  60. #define MAX_IOCTL_CONFIG_WAIT 1000
  61. /*define how many times we will try a command because of bus resets */
  62. #define MAX_CMD_RETRIES 3
  63. /* Embedded module documentation macros - see modules.h */
  64. MODULE_AUTHOR("Hewlett-Packard Company");
  65. MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
  66. HPSA_DRIVER_VERSION);
  67. MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  68. MODULE_VERSION(HPSA_DRIVER_VERSION);
  69. MODULE_LICENSE("GPL");
  70. static int hpsa_allow_any;
  71. module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
  72. MODULE_PARM_DESC(hpsa_allow_any,
  73. "Allow hpsa driver to access unknown HP Smart Array hardware");
  74. static int hpsa_simple_mode;
  75. module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
  76. MODULE_PARM_DESC(hpsa_simple_mode,
  77. "Use 'simple mode' rather than 'performant mode'");
  78. /* define the PCI info for the cards we can control */
  79. static const struct pci_device_id hpsa_pci_device_id[] = {
  80. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
  81. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
  82. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
  83. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
  84. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
  85. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
  86. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
  87. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
  88. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
  89. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
  90. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
  91. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
  92. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
  93. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
  94. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
  95. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
  96. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
  97. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
  98. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
  99. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
  100. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
  101. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
  102. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
  103. {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d},
  104. {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
  105. PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
  106. {0,}
  107. };
  108. MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
  109. /* board_id = Subsystem Device ID & Vendor ID
  110. * product = Marketing Name for the board
  111. * access = Address of the struct of function pointers
  112. */
  113. static struct board_type products[] = {
  114. {0x3241103C, "Smart Array P212", &SA5_access},
  115. {0x3243103C, "Smart Array P410", &SA5_access},
  116. {0x3245103C, "Smart Array P410i", &SA5_access},
  117. {0x3247103C, "Smart Array P411", &SA5_access},
  118. {0x3249103C, "Smart Array P812", &SA5_access},
  119. {0x324a103C, "Smart Array P712m", &SA5_access},
  120. {0x324b103C, "Smart Array P711m", &SA5_access},
  121. {0x3350103C, "Smart Array P222", &SA5_access},
  122. {0x3351103C, "Smart Array P420", &SA5_access},
  123. {0x3352103C, "Smart Array P421", &SA5_access},
  124. {0x3353103C, "Smart Array P822", &SA5_access},
  125. {0x3354103C, "Smart Array P420i", &SA5_access},
  126. {0x3355103C, "Smart Array P220i", &SA5_access},
  127. {0x3356103C, "Smart Array P721m", &SA5_access},
  128. {0x1920103C, "Smart Array", &SA5_access},
  129. {0x1921103C, "Smart Array", &SA5_access},
  130. {0x1922103C, "Smart Array", &SA5_access},
  131. {0x1923103C, "Smart Array", &SA5_access},
  132. {0x1924103C, "Smart Array", &SA5_access},
  133. {0x1925103C, "Smart Array", &SA5_access},
  134. {0x1926103C, "Smart Array", &SA5_access},
  135. {0x1928103C, "Smart Array", &SA5_access},
  136. {0x334d103C, "Smart Array P822se", &SA5_access},
  137. {0xFFFF103C, "Unknown Smart Array", &SA5_access},
  138. };
  139. static int number_of_controllers;
  140. static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
  141. static spinlock_t lockup_detector_lock;
  142. static struct task_struct *hpsa_lockup_detector;
  143. static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
  144. static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
  145. static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
  146. static void start_io(struct ctlr_info *h);
  147. #ifdef CONFIG_COMPAT
  148. static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
  149. #endif
  150. static void cmd_free(struct ctlr_info *h, struct CommandList *c);
  151. static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
  152. static struct CommandList *cmd_alloc(struct ctlr_info *h);
  153. static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
  154. static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  155. void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
  156. int cmd_type);
  157. static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
  158. static void hpsa_scan_start(struct Scsi_Host *);
  159. static int hpsa_scan_finished(struct Scsi_Host *sh,
  160. unsigned long elapsed_time);
  161. static int hpsa_change_queue_depth(struct scsi_device *sdev,
  162. int qdepth, int reason);
  163. static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
  164. static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
  165. static int hpsa_slave_alloc(struct scsi_device *sdev);
  166. static void hpsa_slave_destroy(struct scsi_device *sdev);
  167. static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
  168. static int check_for_unit_attention(struct ctlr_info *h,
  169. struct CommandList *c);
  170. static void check_ioctl_unit_attention(struct ctlr_info *h,
  171. struct CommandList *c);
  172. /* performant mode helper functions */
  173. static void calc_bucket_map(int *bucket, int num_buckets,
  174. int nsgs, int *bucket_map);
  175. static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
  176. static inline u32 next_command(struct ctlr_info *h, u8 q);
  177. static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
  178. u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  179. u64 *cfg_offset);
  180. static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  181. unsigned long *memory_bar);
  182. static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
  183. static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
  184. int wait_for_ready);
  185. static inline void finish_cmd(struct CommandList *c);
  186. #define BOARD_NOT_READY 0
  187. #define BOARD_READY 1
  188. static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
  189. {
  190. unsigned long *priv = shost_priv(sdev->host);
  191. return (struct ctlr_info *) *priv;
  192. }
  193. static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
  194. {
  195. unsigned long *priv = shost_priv(sh);
  196. return (struct ctlr_info *) *priv;
  197. }
  198. static int check_for_unit_attention(struct ctlr_info *h,
  199. struct CommandList *c)
  200. {
  201. if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
  202. return 0;
  203. switch (c->err_info->SenseInfo[12]) {
  204. case STATE_CHANGED:
  205. dev_warn(&h->pdev->dev, HPSA "%d: a state change "
  206. "detected, command retried\n", h->ctlr);
  207. break;
  208. case LUN_FAILED:
  209. dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
  210. "detected, action required\n", h->ctlr);
  211. break;
  212. case REPORT_LUNS_CHANGED:
  213. dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
  214. "changed, action required\n", h->ctlr);
  215. /*
  216. * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
  217. * target (array) devices.
  218. */
  219. break;
  220. case POWER_OR_RESET:
  221. dev_warn(&h->pdev->dev, HPSA "%d: a power on "
  222. "or device reset detected\n", h->ctlr);
  223. break;
  224. case UNIT_ATTENTION_CLEARED:
  225. dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
  226. "cleared by another initiator\n", h->ctlr);
  227. break;
  228. default:
  229. dev_warn(&h->pdev->dev, HPSA "%d: unknown "
  230. "unit attention detected\n", h->ctlr);
  231. break;
  232. }
  233. return 1;
  234. }
  235. static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
  236. {
  237. if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
  238. (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
  239. c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
  240. return 0;
  241. dev_warn(&h->pdev->dev, HPSA "device busy");
  242. return 1;
  243. }
  244. static ssize_t host_store_rescan(struct device *dev,
  245. struct device_attribute *attr,
  246. const char *buf, size_t count)
  247. {
  248. struct ctlr_info *h;
  249. struct Scsi_Host *shost = class_to_shost(dev);
  250. h = shost_to_hba(shost);
  251. hpsa_scan_start(h->scsi_host);
  252. return count;
  253. }
  254. static ssize_t host_show_firmware_revision(struct device *dev,
  255. struct device_attribute *attr, char *buf)
  256. {
  257. struct ctlr_info *h;
  258. struct Scsi_Host *shost = class_to_shost(dev);
  259. unsigned char *fwrev;
  260. h = shost_to_hba(shost);
  261. if (!h->hba_inquiry_data)
  262. return 0;
  263. fwrev = &h->hba_inquiry_data[32];
  264. return snprintf(buf, 20, "%c%c%c%c\n",
  265. fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
  266. }
  267. static ssize_t host_show_commands_outstanding(struct device *dev,
  268. struct device_attribute *attr, char *buf)
  269. {
  270. struct Scsi_Host *shost = class_to_shost(dev);
  271. struct ctlr_info *h = shost_to_hba(shost);
  272. return snprintf(buf, 20, "%d\n", h->commands_outstanding);
  273. }
  274. static ssize_t host_show_transport_mode(struct device *dev,
  275. struct device_attribute *attr, char *buf)
  276. {
  277. struct ctlr_info *h;
  278. struct Scsi_Host *shost = class_to_shost(dev);
  279. h = shost_to_hba(shost);
  280. return snprintf(buf, 20, "%s\n",
  281. h->transMethod & CFGTBL_Trans_Performant ?
  282. "performant" : "simple");
  283. }
  284. /* List of controllers which cannot be hard reset on kexec with reset_devices */
  285. static u32 unresettable_controller[] = {
  286. 0x324a103C, /* Smart Array P712m */
  287. 0x324b103C, /* SmartArray P711m */
  288. 0x3223103C, /* Smart Array P800 */
  289. 0x3234103C, /* Smart Array P400 */
  290. 0x3235103C, /* Smart Array P400i */
  291. 0x3211103C, /* Smart Array E200i */
  292. 0x3212103C, /* Smart Array E200 */
  293. 0x3213103C, /* Smart Array E200i */
  294. 0x3214103C, /* Smart Array E200i */
  295. 0x3215103C, /* Smart Array E200i */
  296. 0x3237103C, /* Smart Array E500 */
  297. 0x323D103C, /* Smart Array P700m */
  298. 0x40800E11, /* Smart Array 5i */
  299. 0x409C0E11, /* Smart Array 6400 */
  300. 0x409D0E11, /* Smart Array 6400 EM */
  301. 0x40700E11, /* Smart Array 5300 */
  302. 0x40820E11, /* Smart Array 532 */
  303. 0x40830E11, /* Smart Array 5312 */
  304. 0x409A0E11, /* Smart Array 641 */
  305. 0x409B0E11, /* Smart Array 642 */
  306. 0x40910E11, /* Smart Array 6i */
  307. };
  308. /* List of controllers which cannot even be soft reset */
  309. static u32 soft_unresettable_controller[] = {
  310. 0x40800E11, /* Smart Array 5i */
  311. 0x40700E11, /* Smart Array 5300 */
  312. 0x40820E11, /* Smart Array 532 */
  313. 0x40830E11, /* Smart Array 5312 */
  314. 0x409A0E11, /* Smart Array 641 */
  315. 0x409B0E11, /* Smart Array 642 */
  316. 0x40910E11, /* Smart Array 6i */
  317. /* Exclude 640x boards. These are two pci devices in one slot
  318. * which share a battery backed cache module. One controls the
  319. * cache, the other accesses the cache through the one that controls
  320. * it. If we reset the one controlling the cache, the other will
  321. * likely not be happy. Just forbid resetting this conjoined mess.
  322. * The 640x isn't really supported by hpsa anyway.
  323. */
  324. 0x409C0E11, /* Smart Array 6400 */
  325. 0x409D0E11, /* Smart Array 6400 EM */
  326. };
  327. static int ctlr_is_hard_resettable(u32 board_id)
  328. {
  329. int i;
  330. for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
  331. if (unresettable_controller[i] == board_id)
  332. return 0;
  333. return 1;
  334. }
  335. static int ctlr_is_soft_resettable(u32 board_id)
  336. {
  337. int i;
  338. for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
  339. if (soft_unresettable_controller[i] == board_id)
  340. return 0;
  341. return 1;
  342. }
  343. static int ctlr_is_resettable(u32 board_id)
  344. {
  345. return ctlr_is_hard_resettable(board_id) ||
  346. ctlr_is_soft_resettable(board_id);
  347. }
  348. static ssize_t host_show_resettable(struct device *dev,
  349. struct device_attribute *attr, char *buf)
  350. {
  351. struct ctlr_info *h;
  352. struct Scsi_Host *shost = class_to_shost(dev);
  353. h = shost_to_hba(shost);
  354. return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
  355. }
  356. static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
  357. {
  358. return (scsi3addr[3] & 0xC0) == 0x40;
  359. }
  360. static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
  361. "1(ADM)", "UNKNOWN"
  362. };
  363. #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
  364. static ssize_t raid_level_show(struct device *dev,
  365. struct device_attribute *attr, char *buf)
  366. {
  367. ssize_t l = 0;
  368. unsigned char rlevel;
  369. struct ctlr_info *h;
  370. struct scsi_device *sdev;
  371. struct hpsa_scsi_dev_t *hdev;
  372. unsigned long flags;
  373. sdev = to_scsi_device(dev);
  374. h = sdev_to_hba(sdev);
  375. spin_lock_irqsave(&h->lock, flags);
  376. hdev = sdev->hostdata;
  377. if (!hdev) {
  378. spin_unlock_irqrestore(&h->lock, flags);
  379. return -ENODEV;
  380. }
  381. /* Is this even a logical drive? */
  382. if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
  383. spin_unlock_irqrestore(&h->lock, flags);
  384. l = snprintf(buf, PAGE_SIZE, "N/A\n");
  385. return l;
  386. }
  387. rlevel = hdev->raid_level;
  388. spin_unlock_irqrestore(&h->lock, flags);
  389. if (rlevel > RAID_UNKNOWN)
  390. rlevel = RAID_UNKNOWN;
  391. l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
  392. return l;
  393. }
  394. static ssize_t lunid_show(struct device *dev,
  395. struct device_attribute *attr, char *buf)
  396. {
  397. struct ctlr_info *h;
  398. struct scsi_device *sdev;
  399. struct hpsa_scsi_dev_t *hdev;
  400. unsigned long flags;
  401. unsigned char lunid[8];
  402. sdev = to_scsi_device(dev);
  403. h = sdev_to_hba(sdev);
  404. spin_lock_irqsave(&h->lock, flags);
  405. hdev = sdev->hostdata;
  406. if (!hdev) {
  407. spin_unlock_irqrestore(&h->lock, flags);
  408. return -ENODEV;
  409. }
  410. memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
  411. spin_unlock_irqrestore(&h->lock, flags);
  412. return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
  413. lunid[0], lunid[1], lunid[2], lunid[3],
  414. lunid[4], lunid[5], lunid[6], lunid[7]);
  415. }
  416. static ssize_t unique_id_show(struct device *dev,
  417. struct device_attribute *attr, char *buf)
  418. {
  419. struct ctlr_info *h;
  420. struct scsi_device *sdev;
  421. struct hpsa_scsi_dev_t *hdev;
  422. unsigned long flags;
  423. unsigned char sn[16];
  424. sdev = to_scsi_device(dev);
  425. h = sdev_to_hba(sdev);
  426. spin_lock_irqsave(&h->lock, flags);
  427. hdev = sdev->hostdata;
  428. if (!hdev) {
  429. spin_unlock_irqrestore(&h->lock, flags);
  430. return -ENODEV;
  431. }
  432. memcpy(sn, hdev->device_id, sizeof(sn));
  433. spin_unlock_irqrestore(&h->lock, flags);
  434. return snprintf(buf, 16 * 2 + 2,
  435. "%02X%02X%02X%02X%02X%02X%02X%02X"
  436. "%02X%02X%02X%02X%02X%02X%02X%02X\n",
  437. sn[0], sn[1], sn[2], sn[3],
  438. sn[4], sn[5], sn[6], sn[7],
  439. sn[8], sn[9], sn[10], sn[11],
  440. sn[12], sn[13], sn[14], sn[15]);
  441. }
  442. static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
  443. static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
  444. static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
  445. static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
  446. static DEVICE_ATTR(firmware_revision, S_IRUGO,
  447. host_show_firmware_revision, NULL);
  448. static DEVICE_ATTR(commands_outstanding, S_IRUGO,
  449. host_show_commands_outstanding, NULL);
  450. static DEVICE_ATTR(transport_mode, S_IRUGO,
  451. host_show_transport_mode, NULL);
  452. static DEVICE_ATTR(resettable, S_IRUGO,
  453. host_show_resettable, NULL);
  454. static struct device_attribute *hpsa_sdev_attrs[] = {
  455. &dev_attr_raid_level,
  456. &dev_attr_lunid,
  457. &dev_attr_unique_id,
  458. NULL,
  459. };
  460. static struct device_attribute *hpsa_shost_attrs[] = {
  461. &dev_attr_rescan,
  462. &dev_attr_firmware_revision,
  463. &dev_attr_commands_outstanding,
  464. &dev_attr_transport_mode,
  465. &dev_attr_resettable,
  466. NULL,
  467. };
  468. static struct scsi_host_template hpsa_driver_template = {
  469. .module = THIS_MODULE,
  470. .name = HPSA,
  471. .proc_name = HPSA,
  472. .queuecommand = hpsa_scsi_queue_command,
  473. .scan_start = hpsa_scan_start,
  474. .scan_finished = hpsa_scan_finished,
  475. .change_queue_depth = hpsa_change_queue_depth,
  476. .this_id = -1,
  477. .use_clustering = ENABLE_CLUSTERING,
  478. .eh_abort_handler = hpsa_eh_abort_handler,
  479. .eh_device_reset_handler = hpsa_eh_device_reset_handler,
  480. .ioctl = hpsa_ioctl,
  481. .slave_alloc = hpsa_slave_alloc,
  482. .slave_destroy = hpsa_slave_destroy,
  483. #ifdef CONFIG_COMPAT
  484. .compat_ioctl = hpsa_compat_ioctl,
  485. #endif
  486. .sdev_attrs = hpsa_sdev_attrs,
  487. .shost_attrs = hpsa_shost_attrs,
  488. .max_sectors = 8192,
  489. };
  490. /* Enqueuing and dequeuing functions for cmdlists. */
  491. static inline void addQ(struct list_head *list, struct CommandList *c)
  492. {
  493. list_add_tail(&c->list, list);
  494. }
  495. static inline u32 next_command(struct ctlr_info *h, u8 q)
  496. {
  497. u32 a;
  498. struct reply_pool *rq = &h->reply_queue[q];
  499. unsigned long flags;
  500. if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  501. return h->access.command_completed(h, q);
  502. if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
  503. a = rq->head[rq->current_entry];
  504. rq->current_entry++;
  505. spin_lock_irqsave(&h->lock, flags);
  506. h->commands_outstanding--;
  507. spin_unlock_irqrestore(&h->lock, flags);
  508. } else {
  509. a = FIFO_EMPTY;
  510. }
  511. /* Check for wraparound */
  512. if (rq->current_entry == h->max_commands) {
  513. rq->current_entry = 0;
  514. rq->wraparound ^= 1;
  515. }
  516. return a;
  517. }
  518. /* set_performant_mode: Modify the tag for cciss performant
  519. * set bit 0 for pull model, bits 3-1 for block fetch
  520. * register number
  521. */
  522. static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
  523. {
  524. if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
  525. c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
  526. if (likely(h->msix_vector))
  527. c->Header.ReplyQueue =
  528. smp_processor_id() % h->nreply_queues;
  529. }
  530. }
  531. static int is_firmware_flash_cmd(u8 *cdb)
  532. {
  533. return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
  534. }
  535. /*
  536. * During firmware flash, the heartbeat register may not update as frequently
  537. * as it should. So we dial down lockup detection during firmware flash. and
  538. * dial it back up when firmware flash completes.
  539. */
  540. #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
  541. #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
  542. static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
  543. struct CommandList *c)
  544. {
  545. if (!is_firmware_flash_cmd(c->Request.CDB))
  546. return;
  547. atomic_inc(&h->firmware_flash_in_progress);
  548. h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
  549. }
  550. static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
  551. struct CommandList *c)
  552. {
  553. if (is_firmware_flash_cmd(c->Request.CDB) &&
  554. atomic_dec_and_test(&h->firmware_flash_in_progress))
  555. h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
  556. }
  557. static void enqueue_cmd_and_start_io(struct ctlr_info *h,
  558. struct CommandList *c)
  559. {
  560. unsigned long flags;
  561. set_performant_mode(h, c);
  562. dial_down_lockup_detection_during_fw_flash(h, c);
  563. spin_lock_irqsave(&h->lock, flags);
  564. addQ(&h->reqQ, c);
  565. h->Qdepth++;
  566. spin_unlock_irqrestore(&h->lock, flags);
  567. start_io(h);
  568. }
  569. static inline void removeQ(struct CommandList *c)
  570. {
  571. if (WARN_ON(list_empty(&c->list)))
  572. return;
  573. list_del_init(&c->list);
  574. }
  575. static inline int is_hba_lunid(unsigned char scsi3addr[])
  576. {
  577. return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
  578. }
  579. static inline int is_scsi_rev_5(struct ctlr_info *h)
  580. {
  581. if (!h->hba_inquiry_data)
  582. return 0;
  583. if ((h->hba_inquiry_data[2] & 0x07) == 5)
  584. return 1;
  585. return 0;
  586. }
  587. static int hpsa_find_target_lun(struct ctlr_info *h,
  588. unsigned char scsi3addr[], int bus, int *target, int *lun)
  589. {
  590. /* finds an unused bus, target, lun for a new physical device
  591. * assumes h->devlock is held
  592. */
  593. int i, found = 0;
  594. DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
  595. bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
  596. for (i = 0; i < h->ndevices; i++) {
  597. if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
  598. __set_bit(h->dev[i]->target, lun_taken);
  599. }
  600. i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
  601. if (i < HPSA_MAX_DEVICES) {
  602. /* *bus = 1; */
  603. *target = i;
  604. *lun = 0;
  605. found = 1;
  606. }
  607. return !found;
  608. }
  609. /* Add an entry into h->dev[] array. */
  610. static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
  611. struct hpsa_scsi_dev_t *device,
  612. struct hpsa_scsi_dev_t *added[], int *nadded)
  613. {
  614. /* assumes h->devlock is held */
  615. int n = h->ndevices;
  616. int i;
  617. unsigned char addr1[8], addr2[8];
  618. struct hpsa_scsi_dev_t *sd;
  619. if (n >= HPSA_MAX_DEVICES) {
  620. dev_err(&h->pdev->dev, "too many devices, some will be "
  621. "inaccessible.\n");
  622. return -1;
  623. }
  624. /* physical devices do not have lun or target assigned until now. */
  625. if (device->lun != -1)
  626. /* Logical device, lun is already assigned. */
  627. goto lun_assigned;
  628. /* If this device a non-zero lun of a multi-lun device
  629. * byte 4 of the 8-byte LUN addr will contain the logical
  630. * unit no, zero otherise.
  631. */
  632. if (device->scsi3addr[4] == 0) {
  633. /* This is not a non-zero lun of a multi-lun device */
  634. if (hpsa_find_target_lun(h, device->scsi3addr,
  635. device->bus, &device->target, &device->lun) != 0)
  636. return -1;
  637. goto lun_assigned;
  638. }
  639. /* This is a non-zero lun of a multi-lun device.
  640. * Search through our list and find the device which
  641. * has the same 8 byte LUN address, excepting byte 4.
  642. * Assign the same bus and target for this new LUN.
  643. * Use the logical unit number from the firmware.
  644. */
  645. memcpy(addr1, device->scsi3addr, 8);
  646. addr1[4] = 0;
  647. for (i = 0; i < n; i++) {
  648. sd = h->dev[i];
  649. memcpy(addr2, sd->scsi3addr, 8);
  650. addr2[4] = 0;
  651. /* differ only in byte 4? */
  652. if (memcmp(addr1, addr2, 8) == 0) {
  653. device->bus = sd->bus;
  654. device->target = sd->target;
  655. device->lun = device->scsi3addr[4];
  656. break;
  657. }
  658. }
  659. if (device->lun == -1) {
  660. dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
  661. " suspect firmware bug or unsupported hardware "
  662. "configuration.\n");
  663. return -1;
  664. }
  665. lun_assigned:
  666. h->dev[n] = device;
  667. h->ndevices++;
  668. added[*nadded] = device;
  669. (*nadded)++;
  670. /* initially, (before registering with scsi layer) we don't
  671. * know our hostno and we don't want to print anything first
  672. * time anyway (the scsi layer's inquiries will show that info)
  673. */
  674. /* if (hostno != -1) */
  675. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
  676. scsi_device_type(device->devtype), hostno,
  677. device->bus, device->target, device->lun);
  678. return 0;
  679. }
  680. /* Update an entry in h->dev[] array. */
  681. static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
  682. int entry, struct hpsa_scsi_dev_t *new_entry)
  683. {
  684. /* assumes h->devlock is held */
  685. BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
  686. /* Raid level changed. */
  687. h->dev[entry]->raid_level = new_entry->raid_level;
  688. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
  689. scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
  690. new_entry->target, new_entry->lun);
  691. }
  692. /* Replace an entry from h->dev[] array. */
  693. static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
  694. int entry, struct hpsa_scsi_dev_t *new_entry,
  695. struct hpsa_scsi_dev_t *added[], int *nadded,
  696. struct hpsa_scsi_dev_t *removed[], int *nremoved)
  697. {
  698. /* assumes h->devlock is held */
  699. BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
  700. removed[*nremoved] = h->dev[entry];
  701. (*nremoved)++;
  702. /*
  703. * New physical devices won't have target/lun assigned yet
  704. * so we need to preserve the values in the slot we are replacing.
  705. */
  706. if (new_entry->target == -1) {
  707. new_entry->target = h->dev[entry]->target;
  708. new_entry->lun = h->dev[entry]->lun;
  709. }
  710. h->dev[entry] = new_entry;
  711. added[*nadded] = new_entry;
  712. (*nadded)++;
  713. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
  714. scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
  715. new_entry->target, new_entry->lun);
  716. }
  717. /* Remove an entry from h->dev[] array. */
  718. static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
  719. struct hpsa_scsi_dev_t *removed[], int *nremoved)
  720. {
  721. /* assumes h->devlock is held */
  722. int i;
  723. struct hpsa_scsi_dev_t *sd;
  724. BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
  725. sd = h->dev[entry];
  726. removed[*nremoved] = h->dev[entry];
  727. (*nremoved)++;
  728. for (i = entry; i < h->ndevices-1; i++)
  729. h->dev[i] = h->dev[i+1];
  730. h->ndevices--;
  731. dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
  732. scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
  733. sd->lun);
  734. }
  735. #define SCSI3ADDR_EQ(a, b) ( \
  736. (a)[7] == (b)[7] && \
  737. (a)[6] == (b)[6] && \
  738. (a)[5] == (b)[5] && \
  739. (a)[4] == (b)[4] && \
  740. (a)[3] == (b)[3] && \
  741. (a)[2] == (b)[2] && \
  742. (a)[1] == (b)[1] && \
  743. (a)[0] == (b)[0])
  744. static void fixup_botched_add(struct ctlr_info *h,
  745. struct hpsa_scsi_dev_t *added)
  746. {
  747. /* called when scsi_add_device fails in order to re-adjust
  748. * h->dev[] to match the mid layer's view.
  749. */
  750. unsigned long flags;
  751. int i, j;
  752. spin_lock_irqsave(&h->lock, flags);
  753. for (i = 0; i < h->ndevices; i++) {
  754. if (h->dev[i] == added) {
  755. for (j = i; j < h->ndevices-1; j++)
  756. h->dev[j] = h->dev[j+1];
  757. h->ndevices--;
  758. break;
  759. }
  760. }
  761. spin_unlock_irqrestore(&h->lock, flags);
  762. kfree(added);
  763. }
  764. static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
  765. struct hpsa_scsi_dev_t *dev2)
  766. {
  767. /* we compare everything except lun and target as these
  768. * are not yet assigned. Compare parts likely
  769. * to differ first
  770. */
  771. if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
  772. sizeof(dev1->scsi3addr)) != 0)
  773. return 0;
  774. if (memcmp(dev1->device_id, dev2->device_id,
  775. sizeof(dev1->device_id)) != 0)
  776. return 0;
  777. if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
  778. return 0;
  779. if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
  780. return 0;
  781. if (dev1->devtype != dev2->devtype)
  782. return 0;
  783. if (dev1->bus != dev2->bus)
  784. return 0;
  785. return 1;
  786. }
  787. static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
  788. struct hpsa_scsi_dev_t *dev2)
  789. {
  790. /* Device attributes that can change, but don't mean
  791. * that the device is a different device, nor that the OS
  792. * needs to be told anything about the change.
  793. */
  794. if (dev1->raid_level != dev2->raid_level)
  795. return 1;
  796. return 0;
  797. }
  798. /* Find needle in haystack. If exact match found, return DEVICE_SAME,
  799. * and return needle location in *index. If scsi3addr matches, but not
  800. * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
  801. * location in *index.
  802. * In the case of a minor device attribute change, such as RAID level, just
  803. * return DEVICE_UPDATED, along with the updated device's location in index.
  804. * If needle not found, return DEVICE_NOT_FOUND.
  805. */
  806. static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
  807. struct hpsa_scsi_dev_t *haystack[], int haystack_size,
  808. int *index)
  809. {
  810. int i;
  811. #define DEVICE_NOT_FOUND 0
  812. #define DEVICE_CHANGED 1
  813. #define DEVICE_SAME 2
  814. #define DEVICE_UPDATED 3
  815. for (i = 0; i < haystack_size; i++) {
  816. if (haystack[i] == NULL) /* previously removed. */
  817. continue;
  818. if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
  819. *index = i;
  820. if (device_is_the_same(needle, haystack[i])) {
  821. if (device_updated(needle, haystack[i]))
  822. return DEVICE_UPDATED;
  823. return DEVICE_SAME;
  824. } else {
  825. return DEVICE_CHANGED;
  826. }
  827. }
  828. }
  829. *index = -1;
  830. return DEVICE_NOT_FOUND;
  831. }
  832. static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
  833. struct hpsa_scsi_dev_t *sd[], int nsds)
  834. {
  835. /* sd contains scsi3 addresses and devtypes, and inquiry
  836. * data. This function takes what's in sd to be the current
  837. * reality and updates h->dev[] to reflect that reality.
  838. */
  839. int i, entry, device_change, changes = 0;
  840. struct hpsa_scsi_dev_t *csd;
  841. unsigned long flags;
  842. struct hpsa_scsi_dev_t **added, **removed;
  843. int nadded, nremoved;
  844. struct Scsi_Host *sh = NULL;
  845. added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
  846. removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
  847. if (!added || !removed) {
  848. dev_warn(&h->pdev->dev, "out of memory in "
  849. "adjust_hpsa_scsi_table\n");
  850. goto free_and_out;
  851. }
  852. spin_lock_irqsave(&h->devlock, flags);
  853. /* find any devices in h->dev[] that are not in
  854. * sd[] and remove them from h->dev[], and for any
  855. * devices which have changed, remove the old device
  856. * info and add the new device info.
  857. * If minor device attributes change, just update
  858. * the existing device structure.
  859. */
  860. i = 0;
  861. nremoved = 0;
  862. nadded = 0;
  863. while (i < h->ndevices) {
  864. csd = h->dev[i];
  865. device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
  866. if (device_change == DEVICE_NOT_FOUND) {
  867. changes++;
  868. hpsa_scsi_remove_entry(h, hostno, i,
  869. removed, &nremoved);
  870. continue; /* remove ^^^, hence i not incremented */
  871. } else if (device_change == DEVICE_CHANGED) {
  872. changes++;
  873. hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
  874. added, &nadded, removed, &nremoved);
  875. /* Set it to NULL to prevent it from being freed
  876. * at the bottom of hpsa_update_scsi_devices()
  877. */
  878. sd[entry] = NULL;
  879. } else if (device_change == DEVICE_UPDATED) {
  880. hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
  881. }
  882. i++;
  883. }
  884. /* Now, make sure every device listed in sd[] is also
  885. * listed in h->dev[], adding them if they aren't found
  886. */
  887. for (i = 0; i < nsds; i++) {
  888. if (!sd[i]) /* if already added above. */
  889. continue;
  890. device_change = hpsa_scsi_find_entry(sd[i], h->dev,
  891. h->ndevices, &entry);
  892. if (device_change == DEVICE_NOT_FOUND) {
  893. changes++;
  894. if (hpsa_scsi_add_entry(h, hostno, sd[i],
  895. added, &nadded) != 0)
  896. break;
  897. sd[i] = NULL; /* prevent from being freed later. */
  898. } else if (device_change == DEVICE_CHANGED) {
  899. /* should never happen... */
  900. changes++;
  901. dev_warn(&h->pdev->dev,
  902. "device unexpectedly changed.\n");
  903. /* but if it does happen, we just ignore that device */
  904. }
  905. }
  906. spin_unlock_irqrestore(&h->devlock, flags);
  907. /* Don't notify scsi mid layer of any changes the first time through
  908. * (or if there are no changes) scsi_scan_host will do it later the
  909. * first time through.
  910. */
  911. if (hostno == -1 || !changes)
  912. goto free_and_out;
  913. sh = h->scsi_host;
  914. /* Notify scsi mid layer of any removed devices */
  915. for (i = 0; i < nremoved; i++) {
  916. struct scsi_device *sdev =
  917. scsi_device_lookup(sh, removed[i]->bus,
  918. removed[i]->target, removed[i]->lun);
  919. if (sdev != NULL) {
  920. scsi_remove_device(sdev);
  921. scsi_device_put(sdev);
  922. } else {
  923. /* We don't expect to get here.
  924. * future cmds to this device will get selection
  925. * timeout as if the device was gone.
  926. */
  927. dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
  928. " for removal.", hostno, removed[i]->bus,
  929. removed[i]->target, removed[i]->lun);
  930. }
  931. kfree(removed[i]);
  932. removed[i] = NULL;
  933. }
  934. /* Notify scsi mid layer of any added devices */
  935. for (i = 0; i < nadded; i++) {
  936. if (scsi_add_device(sh, added[i]->bus,
  937. added[i]->target, added[i]->lun) == 0)
  938. continue;
  939. dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
  940. "device not added.\n", hostno, added[i]->bus,
  941. added[i]->target, added[i]->lun);
  942. /* now we have to remove it from h->dev,
  943. * since it didn't get added to scsi mid layer
  944. */
  945. fixup_botched_add(h, added[i]);
  946. }
  947. free_and_out:
  948. kfree(added);
  949. kfree(removed);
  950. }
  951. /*
  952. * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
  953. * Assume's h->devlock is held.
  954. */
  955. static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
  956. int bus, int target, int lun)
  957. {
  958. int i;
  959. struct hpsa_scsi_dev_t *sd;
  960. for (i = 0; i < h->ndevices; i++) {
  961. sd = h->dev[i];
  962. if (sd->bus == bus && sd->target == target && sd->lun == lun)
  963. return sd;
  964. }
  965. return NULL;
  966. }
  967. /* link sdev->hostdata to our per-device structure. */
  968. static int hpsa_slave_alloc(struct scsi_device *sdev)
  969. {
  970. struct hpsa_scsi_dev_t *sd;
  971. unsigned long flags;
  972. struct ctlr_info *h;
  973. h = sdev_to_hba(sdev);
  974. spin_lock_irqsave(&h->devlock, flags);
  975. sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
  976. sdev_id(sdev), sdev->lun);
  977. if (sd != NULL)
  978. sdev->hostdata = sd;
  979. spin_unlock_irqrestore(&h->devlock, flags);
  980. return 0;
  981. }
  982. static void hpsa_slave_destroy(struct scsi_device *sdev)
  983. {
  984. /* nothing to do. */
  985. }
  986. static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
  987. {
  988. int i;
  989. if (!h->cmd_sg_list)
  990. return;
  991. for (i = 0; i < h->nr_cmds; i++) {
  992. kfree(h->cmd_sg_list[i]);
  993. h->cmd_sg_list[i] = NULL;
  994. }
  995. kfree(h->cmd_sg_list);
  996. h->cmd_sg_list = NULL;
  997. }
  998. static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
  999. {
  1000. int i;
  1001. if (h->chainsize <= 0)
  1002. return 0;
  1003. h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
  1004. GFP_KERNEL);
  1005. if (!h->cmd_sg_list)
  1006. return -ENOMEM;
  1007. for (i = 0; i < h->nr_cmds; i++) {
  1008. h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
  1009. h->chainsize, GFP_KERNEL);
  1010. if (!h->cmd_sg_list[i])
  1011. goto clean;
  1012. }
  1013. return 0;
  1014. clean:
  1015. hpsa_free_sg_chain_blocks(h);
  1016. return -ENOMEM;
  1017. }
  1018. static int hpsa_map_sg_chain_block(struct ctlr_info *h,
  1019. struct CommandList *c)
  1020. {
  1021. struct SGDescriptor *chain_sg, *chain_block;
  1022. u64 temp64;
  1023. chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
  1024. chain_block = h->cmd_sg_list[c->cmdindex];
  1025. chain_sg->Ext = HPSA_SG_CHAIN;
  1026. chain_sg->Len = sizeof(*chain_sg) *
  1027. (c->Header.SGTotal - h->max_cmd_sg_entries);
  1028. temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
  1029. PCI_DMA_TODEVICE);
  1030. if (dma_mapping_error(&h->pdev->dev, temp64)) {
  1031. /* prevent subsequent unmapping */
  1032. chain_sg->Addr.lower = 0;
  1033. chain_sg->Addr.upper = 0;
  1034. return -1;
  1035. }
  1036. chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
  1037. chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
  1038. return 0;
  1039. }
  1040. static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
  1041. struct CommandList *c)
  1042. {
  1043. struct SGDescriptor *chain_sg;
  1044. union u64bit temp64;
  1045. if (c->Header.SGTotal <= h->max_cmd_sg_entries)
  1046. return;
  1047. chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
  1048. temp64.val32.lower = chain_sg->Addr.lower;
  1049. temp64.val32.upper = chain_sg->Addr.upper;
  1050. pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
  1051. }
  1052. static void complete_scsi_command(struct CommandList *cp)
  1053. {
  1054. struct scsi_cmnd *cmd;
  1055. struct ctlr_info *h;
  1056. struct ErrorInfo *ei;
  1057. unsigned char sense_key;
  1058. unsigned char asc; /* additional sense code */
  1059. unsigned char ascq; /* additional sense code qualifier */
  1060. unsigned long sense_data_size;
  1061. ei = cp->err_info;
  1062. cmd = (struct scsi_cmnd *) cp->scsi_cmd;
  1063. h = cp->h;
  1064. scsi_dma_unmap(cmd); /* undo the DMA mappings */
  1065. if (cp->Header.SGTotal > h->max_cmd_sg_entries)
  1066. hpsa_unmap_sg_chain_block(h, cp);
  1067. cmd->result = (DID_OK << 16); /* host byte */
  1068. cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
  1069. cmd->result |= ei->ScsiStatus;
  1070. /* copy the sense data whether we need to or not. */
  1071. if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
  1072. sense_data_size = SCSI_SENSE_BUFFERSIZE;
  1073. else
  1074. sense_data_size = sizeof(ei->SenseInfo);
  1075. if (ei->SenseLen < sense_data_size)
  1076. sense_data_size = ei->SenseLen;
  1077. memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
  1078. scsi_set_resid(cmd, ei->ResidualCnt);
  1079. if (ei->CommandStatus == 0) {
  1080. cmd->scsi_done(cmd);
  1081. cmd_free(h, cp);
  1082. return;
  1083. }
  1084. /* an error has occurred */
  1085. switch (ei->CommandStatus) {
  1086. case CMD_TARGET_STATUS:
  1087. if (ei->ScsiStatus) {
  1088. /* Get sense key */
  1089. sense_key = 0xf & ei->SenseInfo[2];
  1090. /* Get additional sense code */
  1091. asc = ei->SenseInfo[12];
  1092. /* Get addition sense code qualifier */
  1093. ascq = ei->SenseInfo[13];
  1094. }
  1095. if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
  1096. if (check_for_unit_attention(h, cp)) {
  1097. cmd->result = DID_SOFT_ERROR << 16;
  1098. break;
  1099. }
  1100. if (sense_key == ILLEGAL_REQUEST) {
  1101. /*
  1102. * SCSI REPORT_LUNS is commonly unsupported on
  1103. * Smart Array. Suppress noisy complaint.
  1104. */
  1105. if (cp->Request.CDB[0] == REPORT_LUNS)
  1106. break;
  1107. /* If ASC/ASCQ indicate Logical Unit
  1108. * Not Supported condition,
  1109. */
  1110. if ((asc == 0x25) && (ascq == 0x0)) {
  1111. dev_warn(&h->pdev->dev, "cp %p "
  1112. "has check condition\n", cp);
  1113. break;
  1114. }
  1115. }
  1116. if (sense_key == NOT_READY) {
  1117. /* If Sense is Not Ready, Logical Unit
  1118. * Not ready, Manual Intervention
  1119. * required
  1120. */
  1121. if ((asc == 0x04) && (ascq == 0x03)) {
  1122. dev_warn(&h->pdev->dev, "cp %p "
  1123. "has check condition: unit "
  1124. "not ready, manual "
  1125. "intervention required\n", cp);
  1126. break;
  1127. }
  1128. }
  1129. if (sense_key == ABORTED_COMMAND) {
  1130. /* Aborted command is retryable */
  1131. dev_warn(&h->pdev->dev, "cp %p "
  1132. "has check condition: aborted command: "
  1133. "ASC: 0x%x, ASCQ: 0x%x\n",
  1134. cp, asc, ascq);
  1135. cmd->result = DID_SOFT_ERROR << 16;
  1136. break;
  1137. }
  1138. /* Must be some other type of check condition */
  1139. dev_dbg(&h->pdev->dev, "cp %p has check condition: "
  1140. "unknown type: "
  1141. "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
  1142. "Returning result: 0x%x, "
  1143. "cmd=[%02x %02x %02x %02x %02x "
  1144. "%02x %02x %02x %02x %02x %02x "
  1145. "%02x %02x %02x %02x %02x]\n",
  1146. cp, sense_key, asc, ascq,
  1147. cmd->result,
  1148. cmd->cmnd[0], cmd->cmnd[1],
  1149. cmd->cmnd[2], cmd->cmnd[3],
  1150. cmd->cmnd[4], cmd->cmnd[5],
  1151. cmd->cmnd[6], cmd->cmnd[7],
  1152. cmd->cmnd[8], cmd->cmnd[9],
  1153. cmd->cmnd[10], cmd->cmnd[11],
  1154. cmd->cmnd[12], cmd->cmnd[13],
  1155. cmd->cmnd[14], cmd->cmnd[15]);
  1156. break;
  1157. }
  1158. /* Problem was not a check condition
  1159. * Pass it up to the upper layers...
  1160. */
  1161. if (ei->ScsiStatus) {
  1162. dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
  1163. "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
  1164. "Returning result: 0x%x\n",
  1165. cp, ei->ScsiStatus,
  1166. sense_key, asc, ascq,
  1167. cmd->result);
  1168. } else { /* scsi status is zero??? How??? */
  1169. dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
  1170. "Returning no connection.\n", cp),
  1171. /* Ordinarily, this case should never happen,
  1172. * but there is a bug in some released firmware
  1173. * revisions that allows it to happen if, for
  1174. * example, a 4100 backplane loses power and
  1175. * the tape drive is in it. We assume that
  1176. * it's a fatal error of some kind because we
  1177. * can't show that it wasn't. We will make it
  1178. * look like selection timeout since that is
  1179. * the most common reason for this to occur,
  1180. * and it's severe enough.
  1181. */
  1182. cmd->result = DID_NO_CONNECT << 16;
  1183. }
  1184. break;
  1185. case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
  1186. break;
  1187. case CMD_DATA_OVERRUN:
  1188. dev_warn(&h->pdev->dev, "cp %p has"
  1189. " completed with data overrun "
  1190. "reported\n", cp);
  1191. break;
  1192. case CMD_INVALID: {
  1193. /* print_bytes(cp, sizeof(*cp), 1, 0);
  1194. print_cmd(cp); */
  1195. /* We get CMD_INVALID if you address a non-existent device
  1196. * instead of a selection timeout (no response). You will
  1197. * see this if you yank out a drive, then try to access it.
  1198. * This is kind of a shame because it means that any other
  1199. * CMD_INVALID (e.g. driver bug) will get interpreted as a
  1200. * missing target. */
  1201. cmd->result = DID_NO_CONNECT << 16;
  1202. }
  1203. break;
  1204. case CMD_PROTOCOL_ERR:
  1205. cmd->result = DID_ERROR << 16;
  1206. dev_warn(&h->pdev->dev, "cp %p has "
  1207. "protocol error\n", cp);
  1208. break;
  1209. case CMD_HARDWARE_ERR:
  1210. cmd->result = DID_ERROR << 16;
  1211. dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
  1212. break;
  1213. case CMD_CONNECTION_LOST:
  1214. cmd->result = DID_ERROR << 16;
  1215. dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
  1216. break;
  1217. case CMD_ABORTED:
  1218. cmd->result = DID_ABORT << 16;
  1219. dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
  1220. cp, ei->ScsiStatus);
  1221. break;
  1222. case CMD_ABORT_FAILED:
  1223. cmd->result = DID_ERROR << 16;
  1224. dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
  1225. break;
  1226. case CMD_UNSOLICITED_ABORT:
  1227. cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
  1228. dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
  1229. "abort\n", cp);
  1230. break;
  1231. case CMD_TIMEOUT:
  1232. cmd->result = DID_TIME_OUT << 16;
  1233. dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
  1234. break;
  1235. case CMD_UNABORTABLE:
  1236. cmd->result = DID_ERROR << 16;
  1237. dev_warn(&h->pdev->dev, "Command unabortable\n");
  1238. break;
  1239. default:
  1240. cmd->result = DID_ERROR << 16;
  1241. dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
  1242. cp, ei->CommandStatus);
  1243. }
  1244. cmd->scsi_done(cmd);
  1245. cmd_free(h, cp);
  1246. }
  1247. static void hpsa_pci_unmap(struct pci_dev *pdev,
  1248. struct CommandList *c, int sg_used, int data_direction)
  1249. {
  1250. int i;
  1251. union u64bit addr64;
  1252. for (i = 0; i < sg_used; i++) {
  1253. addr64.val32.lower = c->SG[i].Addr.lower;
  1254. addr64.val32.upper = c->SG[i].Addr.upper;
  1255. pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
  1256. data_direction);
  1257. }
  1258. }
  1259. static int hpsa_map_one(struct pci_dev *pdev,
  1260. struct CommandList *cp,
  1261. unsigned char *buf,
  1262. size_t buflen,
  1263. int data_direction)
  1264. {
  1265. u64 addr64;
  1266. if (buflen == 0 || data_direction == PCI_DMA_NONE) {
  1267. cp->Header.SGList = 0;
  1268. cp->Header.SGTotal = 0;
  1269. return 0;
  1270. }
  1271. addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
  1272. if (dma_mapping_error(&pdev->dev, addr64)) {
  1273. /* Prevent subsequent unmap of something never mapped */
  1274. cp->Header.SGList = 0;
  1275. cp->Header.SGTotal = 0;
  1276. return -1;
  1277. }
  1278. cp->SG[0].Addr.lower =
  1279. (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
  1280. cp->SG[0].Addr.upper =
  1281. (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
  1282. cp->SG[0].Len = buflen;
  1283. cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
  1284. cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
  1285. return 0;
  1286. }
  1287. static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
  1288. struct CommandList *c)
  1289. {
  1290. DECLARE_COMPLETION_ONSTACK(wait);
  1291. c->waiting = &wait;
  1292. enqueue_cmd_and_start_io(h, c);
  1293. wait_for_completion(&wait);
  1294. }
  1295. static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
  1296. struct CommandList *c)
  1297. {
  1298. unsigned long flags;
  1299. /* If controller lockup detected, fake a hardware error. */
  1300. spin_lock_irqsave(&h->lock, flags);
  1301. if (unlikely(h->lockup_detected)) {
  1302. spin_unlock_irqrestore(&h->lock, flags);
  1303. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  1304. } else {
  1305. spin_unlock_irqrestore(&h->lock, flags);
  1306. hpsa_scsi_do_simple_cmd_core(h, c);
  1307. }
  1308. }
  1309. #define MAX_DRIVER_CMD_RETRIES 25
  1310. static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
  1311. struct CommandList *c, int data_direction)
  1312. {
  1313. int backoff_time = 10, retry_count = 0;
  1314. do {
  1315. memset(c->err_info, 0, sizeof(*c->err_info));
  1316. hpsa_scsi_do_simple_cmd_core(h, c);
  1317. retry_count++;
  1318. if (retry_count > 3) {
  1319. msleep(backoff_time);
  1320. if (backoff_time < 1000)
  1321. backoff_time *= 2;
  1322. }
  1323. } while ((check_for_unit_attention(h, c) ||
  1324. check_for_busy(h, c)) &&
  1325. retry_count <= MAX_DRIVER_CMD_RETRIES);
  1326. hpsa_pci_unmap(h->pdev, c, 1, data_direction);
  1327. }
  1328. static void hpsa_scsi_interpret_error(struct CommandList *cp)
  1329. {
  1330. struct ErrorInfo *ei;
  1331. struct device *d = &cp->h->pdev->dev;
  1332. ei = cp->err_info;
  1333. switch (ei->CommandStatus) {
  1334. case CMD_TARGET_STATUS:
  1335. dev_warn(d, "cmd %p has completed with errors\n", cp);
  1336. dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
  1337. ei->ScsiStatus);
  1338. if (ei->ScsiStatus == 0)
  1339. dev_warn(d, "SCSI status is abnormally zero. "
  1340. "(probably indicates selection timeout "
  1341. "reported incorrectly due to a known "
  1342. "firmware bug, circa July, 2001.)\n");
  1343. break;
  1344. case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
  1345. dev_info(d, "UNDERRUN\n");
  1346. break;
  1347. case CMD_DATA_OVERRUN:
  1348. dev_warn(d, "cp %p has completed with data overrun\n", cp);
  1349. break;
  1350. case CMD_INVALID: {
  1351. /* controller unfortunately reports SCSI passthru's
  1352. * to non-existent targets as invalid commands.
  1353. */
  1354. dev_warn(d, "cp %p is reported invalid (probably means "
  1355. "target device no longer present)\n", cp);
  1356. /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
  1357. print_cmd(cp); */
  1358. }
  1359. break;
  1360. case CMD_PROTOCOL_ERR:
  1361. dev_warn(d, "cp %p has protocol error \n", cp);
  1362. break;
  1363. case CMD_HARDWARE_ERR:
  1364. /* cmd->result = DID_ERROR << 16; */
  1365. dev_warn(d, "cp %p had hardware error\n", cp);
  1366. break;
  1367. case CMD_CONNECTION_LOST:
  1368. dev_warn(d, "cp %p had connection lost\n", cp);
  1369. break;
  1370. case CMD_ABORTED:
  1371. dev_warn(d, "cp %p was aborted\n", cp);
  1372. break;
  1373. case CMD_ABORT_FAILED:
  1374. dev_warn(d, "cp %p reports abort failed\n", cp);
  1375. break;
  1376. case CMD_UNSOLICITED_ABORT:
  1377. dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
  1378. break;
  1379. case CMD_TIMEOUT:
  1380. dev_warn(d, "cp %p timed out\n", cp);
  1381. break;
  1382. case CMD_UNABORTABLE:
  1383. dev_warn(d, "Command unabortable\n");
  1384. break;
  1385. default:
  1386. dev_warn(d, "cp %p returned unknown status %x\n", cp,
  1387. ei->CommandStatus);
  1388. }
  1389. }
  1390. static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
  1391. unsigned char page, unsigned char *buf,
  1392. unsigned char bufsize)
  1393. {
  1394. int rc = IO_OK;
  1395. struct CommandList *c;
  1396. struct ErrorInfo *ei;
  1397. c = cmd_special_alloc(h);
  1398. if (c == NULL) { /* trouble... */
  1399. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1400. return -ENOMEM;
  1401. }
  1402. if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
  1403. page, scsi3addr, TYPE_CMD)) {
  1404. rc = -1;
  1405. goto out;
  1406. }
  1407. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
  1408. ei = c->err_info;
  1409. if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
  1410. hpsa_scsi_interpret_error(c);
  1411. rc = -1;
  1412. }
  1413. out:
  1414. cmd_special_free(h, c);
  1415. return rc;
  1416. }
  1417. static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
  1418. {
  1419. int rc = IO_OK;
  1420. struct CommandList *c;
  1421. struct ErrorInfo *ei;
  1422. c = cmd_special_alloc(h);
  1423. if (c == NULL) { /* trouble... */
  1424. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1425. return -ENOMEM;
  1426. }
  1427. /* fill_cmd can't fail here, no data buffer to map. */
  1428. (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
  1429. NULL, 0, 0, scsi3addr, TYPE_MSG);
  1430. hpsa_scsi_do_simple_cmd_core(h, c);
  1431. /* no unmap needed here because no data xfer. */
  1432. ei = c->err_info;
  1433. if (ei->CommandStatus != 0) {
  1434. hpsa_scsi_interpret_error(c);
  1435. rc = -1;
  1436. }
  1437. cmd_special_free(h, c);
  1438. return rc;
  1439. }
  1440. static void hpsa_get_raid_level(struct ctlr_info *h,
  1441. unsigned char *scsi3addr, unsigned char *raid_level)
  1442. {
  1443. int rc;
  1444. unsigned char *buf;
  1445. *raid_level = RAID_UNKNOWN;
  1446. buf = kzalloc(64, GFP_KERNEL);
  1447. if (!buf)
  1448. return;
  1449. rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
  1450. if (rc == 0)
  1451. *raid_level = buf[8];
  1452. if (*raid_level > RAID_UNKNOWN)
  1453. *raid_level = RAID_UNKNOWN;
  1454. kfree(buf);
  1455. return;
  1456. }
  1457. /* Get the device id from inquiry page 0x83 */
  1458. static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
  1459. unsigned char *device_id, int buflen)
  1460. {
  1461. int rc;
  1462. unsigned char *buf;
  1463. if (buflen > 16)
  1464. buflen = 16;
  1465. buf = kzalloc(64, GFP_KERNEL);
  1466. if (!buf)
  1467. return -1;
  1468. rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
  1469. if (rc == 0)
  1470. memcpy(device_id, &buf[8], buflen);
  1471. kfree(buf);
  1472. return rc != 0;
  1473. }
  1474. static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
  1475. struct ReportLUNdata *buf, int bufsize,
  1476. int extended_response)
  1477. {
  1478. int rc = IO_OK;
  1479. struct CommandList *c;
  1480. unsigned char scsi3addr[8];
  1481. struct ErrorInfo *ei;
  1482. c = cmd_special_alloc(h);
  1483. if (c == NULL) { /* trouble... */
  1484. dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  1485. return -1;
  1486. }
  1487. /* address the controller */
  1488. memset(scsi3addr, 0, sizeof(scsi3addr));
  1489. if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
  1490. buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
  1491. rc = -1;
  1492. goto out;
  1493. }
  1494. if (extended_response)
  1495. c->Request.CDB[1] = extended_response;
  1496. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
  1497. ei = c->err_info;
  1498. if (ei->CommandStatus != 0 &&
  1499. ei->CommandStatus != CMD_DATA_UNDERRUN) {
  1500. hpsa_scsi_interpret_error(c);
  1501. rc = -1;
  1502. }
  1503. out:
  1504. cmd_special_free(h, c);
  1505. return rc;
  1506. }
  1507. static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
  1508. struct ReportLUNdata *buf,
  1509. int bufsize, int extended_response)
  1510. {
  1511. return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
  1512. }
  1513. static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
  1514. struct ReportLUNdata *buf, int bufsize)
  1515. {
  1516. return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
  1517. }
  1518. static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
  1519. int bus, int target, int lun)
  1520. {
  1521. device->bus = bus;
  1522. device->target = target;
  1523. device->lun = lun;
  1524. }
  1525. static int hpsa_update_device_info(struct ctlr_info *h,
  1526. unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
  1527. unsigned char *is_OBDR_device)
  1528. {
  1529. #define OBDR_SIG_OFFSET 43
  1530. #define OBDR_TAPE_SIG "$DR-10"
  1531. #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
  1532. #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
  1533. unsigned char *inq_buff;
  1534. unsigned char *obdr_sig;
  1535. inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
  1536. if (!inq_buff)
  1537. goto bail_out;
  1538. /* Do an inquiry to the device to see what it is. */
  1539. if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
  1540. (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
  1541. /* Inquiry failed (msg printed already) */
  1542. dev_err(&h->pdev->dev,
  1543. "hpsa_update_device_info: inquiry failed\n");
  1544. goto bail_out;
  1545. }
  1546. this_device->devtype = (inq_buff[0] & 0x1f);
  1547. memcpy(this_device->scsi3addr, scsi3addr, 8);
  1548. memcpy(this_device->vendor, &inq_buff[8],
  1549. sizeof(this_device->vendor));
  1550. memcpy(this_device->model, &inq_buff[16],
  1551. sizeof(this_device->model));
  1552. memset(this_device->device_id, 0,
  1553. sizeof(this_device->device_id));
  1554. hpsa_get_device_id(h, scsi3addr, this_device->device_id,
  1555. sizeof(this_device->device_id));
  1556. if (this_device->devtype == TYPE_DISK &&
  1557. is_logical_dev_addr_mode(scsi3addr))
  1558. hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
  1559. else
  1560. this_device->raid_level = RAID_UNKNOWN;
  1561. if (is_OBDR_device) {
  1562. /* See if this is a One-Button-Disaster-Recovery device
  1563. * by looking for "$DR-10" at offset 43 in inquiry data.
  1564. */
  1565. obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
  1566. *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
  1567. strncmp(obdr_sig, OBDR_TAPE_SIG,
  1568. OBDR_SIG_LEN) == 0);
  1569. }
  1570. kfree(inq_buff);
  1571. return 0;
  1572. bail_out:
  1573. kfree(inq_buff);
  1574. return 1;
  1575. }
  1576. static unsigned char *ext_target_model[] = {
  1577. "MSA2012",
  1578. "MSA2024",
  1579. "MSA2312",
  1580. "MSA2324",
  1581. "P2000 G3 SAS",
  1582. NULL,
  1583. };
  1584. static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
  1585. {
  1586. int i;
  1587. for (i = 0; ext_target_model[i]; i++)
  1588. if (strncmp(device->model, ext_target_model[i],
  1589. strlen(ext_target_model[i])) == 0)
  1590. return 1;
  1591. return 0;
  1592. }
  1593. /* Helper function to assign bus, target, lun mapping of devices.
  1594. * Puts non-external target logical volumes on bus 0, external target logical
  1595. * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
  1596. * Logical drive target and lun are assigned at this time, but
  1597. * physical device lun and target assignment are deferred (assigned
  1598. * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
  1599. */
  1600. static void figure_bus_target_lun(struct ctlr_info *h,
  1601. u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
  1602. {
  1603. u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
  1604. if (!is_logical_dev_addr_mode(lunaddrbytes)) {
  1605. /* physical device, target and lun filled in later */
  1606. if (is_hba_lunid(lunaddrbytes))
  1607. hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
  1608. else
  1609. /* defer target, lun assignment for physical devices */
  1610. hpsa_set_bus_target_lun(device, 2, -1, -1);
  1611. return;
  1612. }
  1613. /* It's a logical device */
  1614. if (is_ext_target(h, device)) {
  1615. /* external target way, put logicals on bus 1
  1616. * and match target/lun numbers box
  1617. * reports, other smart array, bus 0, target 0, match lunid
  1618. */
  1619. hpsa_set_bus_target_lun(device,
  1620. 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
  1621. return;
  1622. }
  1623. hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
  1624. }
  1625. /*
  1626. * If there is no lun 0 on a target, linux won't find any devices.
  1627. * For the external targets (arrays), we have to manually detect the enclosure
  1628. * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
  1629. * it for some reason. *tmpdevice is the target we're adding,
  1630. * this_device is a pointer into the current element of currentsd[]
  1631. * that we're building up in update_scsi_devices(), below.
  1632. * lunzerobits is a bitmap that tracks which targets already have a
  1633. * lun 0 assigned.
  1634. * Returns 1 if an enclosure was added, 0 if not.
  1635. */
  1636. static int add_ext_target_dev(struct ctlr_info *h,
  1637. struct hpsa_scsi_dev_t *tmpdevice,
  1638. struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
  1639. unsigned long lunzerobits[], int *n_ext_target_devs)
  1640. {
  1641. unsigned char scsi3addr[8];
  1642. if (test_bit(tmpdevice->target, lunzerobits))
  1643. return 0; /* There is already a lun 0 on this target. */
  1644. if (!is_logical_dev_addr_mode(lunaddrbytes))
  1645. return 0; /* It's the logical targets that may lack lun 0. */
  1646. if (!is_ext_target(h, tmpdevice))
  1647. return 0; /* Only external target devices have this problem. */
  1648. if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
  1649. return 0;
  1650. memset(scsi3addr, 0, 8);
  1651. scsi3addr[3] = tmpdevice->target;
  1652. if (is_hba_lunid(scsi3addr))
  1653. return 0; /* Don't add the RAID controller here. */
  1654. if (is_scsi_rev_5(h))
  1655. return 0; /* p1210m doesn't need to do this. */
  1656. if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
  1657. dev_warn(&h->pdev->dev, "Maximum number of external "
  1658. "target devices exceeded. Check your hardware "
  1659. "configuration.");
  1660. return 0;
  1661. }
  1662. if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
  1663. return 0;
  1664. (*n_ext_target_devs)++;
  1665. hpsa_set_bus_target_lun(this_device,
  1666. tmpdevice->bus, tmpdevice->target, 0);
  1667. set_bit(tmpdevice->target, lunzerobits);
  1668. return 1;
  1669. }
  1670. /*
  1671. * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
  1672. * logdev. The number of luns in physdev and logdev are returned in
  1673. * *nphysicals and *nlogicals, respectively.
  1674. * Returns 0 on success, -1 otherwise.
  1675. */
  1676. static int hpsa_gather_lun_info(struct ctlr_info *h,
  1677. int reportlunsize,
  1678. struct ReportLUNdata *physdev, u32 *nphysicals,
  1679. struct ReportLUNdata *logdev, u32 *nlogicals)
  1680. {
  1681. if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
  1682. dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
  1683. return -1;
  1684. }
  1685. *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
  1686. if (*nphysicals > HPSA_MAX_PHYS_LUN) {
  1687. dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
  1688. " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
  1689. *nphysicals - HPSA_MAX_PHYS_LUN);
  1690. *nphysicals = HPSA_MAX_PHYS_LUN;
  1691. }
  1692. if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
  1693. dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
  1694. return -1;
  1695. }
  1696. *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
  1697. /* Reject Logicals in excess of our max capability. */
  1698. if (*nlogicals > HPSA_MAX_LUN) {
  1699. dev_warn(&h->pdev->dev,
  1700. "maximum logical LUNs (%d) exceeded. "
  1701. "%d LUNs ignored.\n", HPSA_MAX_LUN,
  1702. *nlogicals - HPSA_MAX_LUN);
  1703. *nlogicals = HPSA_MAX_LUN;
  1704. }
  1705. if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
  1706. dev_warn(&h->pdev->dev,
  1707. "maximum logical + physical LUNs (%d) exceeded. "
  1708. "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
  1709. *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
  1710. *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
  1711. }
  1712. return 0;
  1713. }
  1714. u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
  1715. int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
  1716. struct ReportLUNdata *logdev_list)
  1717. {
  1718. /* Helper function, figure out where the LUN ID info is coming from
  1719. * given index i, lists of physical and logical devices, where in
  1720. * the list the raid controller is supposed to appear (first or last)
  1721. */
  1722. int logicals_start = nphysicals + (raid_ctlr_position == 0);
  1723. int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
  1724. if (i == raid_ctlr_position)
  1725. return RAID_CTLR_LUNID;
  1726. if (i < logicals_start)
  1727. return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
  1728. if (i < last_device)
  1729. return &logdev_list->LUN[i - nphysicals -
  1730. (raid_ctlr_position == 0)][0];
  1731. BUG();
  1732. return NULL;
  1733. }
  1734. static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
  1735. {
  1736. /* the idea here is we could get notified
  1737. * that some devices have changed, so we do a report
  1738. * physical luns and report logical luns cmd, and adjust
  1739. * our list of devices accordingly.
  1740. *
  1741. * The scsi3addr's of devices won't change so long as the
  1742. * adapter is not reset. That means we can rescan and
  1743. * tell which devices we already know about, vs. new
  1744. * devices, vs. disappearing devices.
  1745. */
  1746. struct ReportLUNdata *physdev_list = NULL;
  1747. struct ReportLUNdata *logdev_list = NULL;
  1748. u32 nphysicals = 0;
  1749. u32 nlogicals = 0;
  1750. u32 ndev_allocated = 0;
  1751. struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
  1752. int ncurrent = 0;
  1753. int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
  1754. int i, n_ext_target_devs, ndevs_to_allocate;
  1755. int raid_ctlr_position;
  1756. DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
  1757. currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
  1758. physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
  1759. logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
  1760. tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
  1761. if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
  1762. dev_err(&h->pdev->dev, "out of memory\n");
  1763. goto out;
  1764. }
  1765. memset(lunzerobits, 0, sizeof(lunzerobits));
  1766. if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
  1767. logdev_list, &nlogicals))
  1768. goto out;
  1769. /* We might see up to the maximum number of logical and physical disks
  1770. * plus external target devices, and a device for the local RAID
  1771. * controller.
  1772. */
  1773. ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
  1774. /* Allocate the per device structures */
  1775. for (i = 0; i < ndevs_to_allocate; i++) {
  1776. if (i >= HPSA_MAX_DEVICES) {
  1777. dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
  1778. " %d devices ignored.\n", HPSA_MAX_DEVICES,
  1779. ndevs_to_allocate - HPSA_MAX_DEVICES);
  1780. break;
  1781. }
  1782. currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
  1783. if (!currentsd[i]) {
  1784. dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
  1785. __FILE__, __LINE__);
  1786. goto out;
  1787. }
  1788. ndev_allocated++;
  1789. }
  1790. if (unlikely(is_scsi_rev_5(h)))
  1791. raid_ctlr_position = 0;
  1792. else
  1793. raid_ctlr_position = nphysicals + nlogicals;
  1794. /* adjust our table of devices */
  1795. n_ext_target_devs = 0;
  1796. for (i = 0; i < nphysicals + nlogicals + 1; i++) {
  1797. u8 *lunaddrbytes, is_OBDR = 0;
  1798. /* Figure out where the LUN ID info is coming from */
  1799. lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
  1800. i, nphysicals, nlogicals, physdev_list, logdev_list);
  1801. /* skip masked physical devices. */
  1802. if (lunaddrbytes[3] & 0xC0 &&
  1803. i < nphysicals + (raid_ctlr_position == 0))
  1804. continue;
  1805. /* Get device type, vendor, model, device id */
  1806. if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
  1807. &is_OBDR))
  1808. continue; /* skip it if we can't talk to it. */
  1809. figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
  1810. this_device = currentsd[ncurrent];
  1811. /*
  1812. * For external target devices, we have to insert a LUN 0 which
  1813. * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
  1814. * is nonetheless an enclosure device there. We have to
  1815. * present that otherwise linux won't find anything if
  1816. * there is no lun 0.
  1817. */
  1818. if (add_ext_target_dev(h, tmpdevice, this_device,
  1819. lunaddrbytes, lunzerobits,
  1820. &n_ext_target_devs)) {
  1821. ncurrent++;
  1822. this_device = currentsd[ncurrent];
  1823. }
  1824. *this_device = *tmpdevice;
  1825. switch (this_device->devtype) {
  1826. case TYPE_ROM:
  1827. /* We don't *really* support actual CD-ROM devices,
  1828. * just "One Button Disaster Recovery" tape drive
  1829. * which temporarily pretends to be a CD-ROM drive.
  1830. * So we check that the device is really an OBDR tape
  1831. * device by checking for "$DR-10" in bytes 43-48 of
  1832. * the inquiry data.
  1833. */
  1834. if (is_OBDR)
  1835. ncurrent++;
  1836. break;
  1837. case TYPE_DISK:
  1838. if (i < nphysicals)
  1839. break;
  1840. ncurrent++;
  1841. break;
  1842. case TYPE_TAPE:
  1843. case TYPE_MEDIUM_CHANGER:
  1844. ncurrent++;
  1845. break;
  1846. case TYPE_RAID:
  1847. /* Only present the Smartarray HBA as a RAID controller.
  1848. * If it's a RAID controller other than the HBA itself
  1849. * (an external RAID controller, MSA500 or similar)
  1850. * don't present it.
  1851. */
  1852. if (!is_hba_lunid(lunaddrbytes))
  1853. break;
  1854. ncurrent++;
  1855. break;
  1856. default:
  1857. break;
  1858. }
  1859. if (ncurrent >= HPSA_MAX_DEVICES)
  1860. break;
  1861. }
  1862. adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
  1863. out:
  1864. kfree(tmpdevice);
  1865. for (i = 0; i < ndev_allocated; i++)
  1866. kfree(currentsd[i]);
  1867. kfree(currentsd);
  1868. kfree(physdev_list);
  1869. kfree(logdev_list);
  1870. }
  1871. /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
  1872. * dma mapping and fills in the scatter gather entries of the
  1873. * hpsa command, cp.
  1874. */
  1875. static int hpsa_scatter_gather(struct ctlr_info *h,
  1876. struct CommandList *cp,
  1877. struct scsi_cmnd *cmd)
  1878. {
  1879. unsigned int len;
  1880. struct scatterlist *sg;
  1881. u64 addr64;
  1882. int use_sg, i, sg_index, chained;
  1883. struct SGDescriptor *curr_sg;
  1884. BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
  1885. use_sg = scsi_dma_map(cmd);
  1886. if (use_sg < 0)
  1887. return use_sg;
  1888. if (!use_sg)
  1889. goto sglist_finished;
  1890. curr_sg = cp->SG;
  1891. chained = 0;
  1892. sg_index = 0;
  1893. scsi_for_each_sg(cmd, sg, use_sg, i) {
  1894. if (i == h->max_cmd_sg_entries - 1 &&
  1895. use_sg > h->max_cmd_sg_entries) {
  1896. chained = 1;
  1897. curr_sg = h->cmd_sg_list[cp->cmdindex];
  1898. sg_index = 0;
  1899. }
  1900. addr64 = (u64) sg_dma_address(sg);
  1901. len = sg_dma_len(sg);
  1902. curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
  1903. curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
  1904. curr_sg->Len = len;
  1905. curr_sg->Ext = 0; /* we are not chaining */
  1906. curr_sg++;
  1907. }
  1908. if (use_sg + chained > h->maxSG)
  1909. h->maxSG = use_sg + chained;
  1910. if (chained) {
  1911. cp->Header.SGList = h->max_cmd_sg_entries;
  1912. cp->Header.SGTotal = (u16) (use_sg + 1);
  1913. if (hpsa_map_sg_chain_block(h, cp)) {
  1914. scsi_dma_unmap(cmd);
  1915. return -1;
  1916. }
  1917. return 0;
  1918. }
  1919. sglist_finished:
  1920. cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
  1921. cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
  1922. return 0;
  1923. }
  1924. static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
  1925. void (*done)(struct scsi_cmnd *))
  1926. {
  1927. struct ctlr_info *h;
  1928. struct hpsa_scsi_dev_t *dev;
  1929. unsigned char scsi3addr[8];
  1930. struct CommandList *c;
  1931. unsigned long flags;
  1932. /* Get the ptr to our adapter structure out of cmd->host. */
  1933. h = sdev_to_hba(cmd->device);
  1934. dev = cmd->device->hostdata;
  1935. if (!dev) {
  1936. cmd->result = DID_NO_CONNECT << 16;
  1937. done(cmd);
  1938. return 0;
  1939. }
  1940. memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
  1941. spin_lock_irqsave(&h->lock, flags);
  1942. if (unlikely(h->lockup_detected)) {
  1943. spin_unlock_irqrestore(&h->lock, flags);
  1944. cmd->result = DID_ERROR << 16;
  1945. done(cmd);
  1946. return 0;
  1947. }
  1948. spin_unlock_irqrestore(&h->lock, flags);
  1949. c = cmd_alloc(h);
  1950. if (c == NULL) { /* trouble... */
  1951. dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
  1952. return SCSI_MLQUEUE_HOST_BUSY;
  1953. }
  1954. /* Fill in the command list header */
  1955. cmd->scsi_done = done; /* save this for use by completion code */
  1956. /* save c in case we have to abort it */
  1957. cmd->host_scribble = (unsigned char *) c;
  1958. c->cmd_type = CMD_SCSI;
  1959. c->scsi_cmd = cmd;
  1960. c->Header.ReplyQueue = 0; /* unused in simple mode */
  1961. memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
  1962. c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
  1963. c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
  1964. /* Fill in the request block... */
  1965. c->Request.Timeout = 0;
  1966. memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
  1967. BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
  1968. c->Request.CDBLen = cmd->cmd_len;
  1969. memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
  1970. c->Request.Type.Type = TYPE_CMD;
  1971. c->Request.Type.Attribute = ATTR_SIMPLE;
  1972. switch (cmd->sc_data_direction) {
  1973. case DMA_TO_DEVICE:
  1974. c->Request.Type.Direction = XFER_WRITE;
  1975. break;
  1976. case DMA_FROM_DEVICE:
  1977. c->Request.Type.Direction = XFER_READ;
  1978. break;
  1979. case DMA_NONE:
  1980. c->Request.Type.Direction = XFER_NONE;
  1981. break;
  1982. case DMA_BIDIRECTIONAL:
  1983. /* This can happen if a buggy application does a scsi passthru
  1984. * and sets both inlen and outlen to non-zero. ( see
  1985. * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
  1986. */
  1987. c->Request.Type.Direction = XFER_RSVD;
  1988. /* This is technically wrong, and hpsa controllers should
  1989. * reject it with CMD_INVALID, which is the most correct
  1990. * response, but non-fibre backends appear to let it
  1991. * slide by, and give the same results as if this field
  1992. * were set correctly. Either way is acceptable for
  1993. * our purposes here.
  1994. */
  1995. break;
  1996. default:
  1997. dev_err(&h->pdev->dev, "unknown data direction: %d\n",
  1998. cmd->sc_data_direction);
  1999. BUG();
  2000. break;
  2001. }
  2002. if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
  2003. cmd_free(h, c);
  2004. return SCSI_MLQUEUE_HOST_BUSY;
  2005. }
  2006. enqueue_cmd_and_start_io(h, c);
  2007. /* the cmd'll come back via intr handler in complete_scsi_command() */
  2008. return 0;
  2009. }
  2010. static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
  2011. static void hpsa_scan_start(struct Scsi_Host *sh)
  2012. {
  2013. struct ctlr_info *h = shost_to_hba(sh);
  2014. unsigned long flags;
  2015. /* wait until any scan already in progress is finished. */
  2016. while (1) {
  2017. spin_lock_irqsave(&h->scan_lock, flags);
  2018. if (h->scan_finished)
  2019. break;
  2020. spin_unlock_irqrestore(&h->scan_lock, flags);
  2021. wait_event(h->scan_wait_queue, h->scan_finished);
  2022. /* Note: We don't need to worry about a race between this
  2023. * thread and driver unload because the midlayer will
  2024. * have incremented the reference count, so unload won't
  2025. * happen if we're in here.
  2026. */
  2027. }
  2028. h->scan_finished = 0; /* mark scan as in progress */
  2029. spin_unlock_irqrestore(&h->scan_lock, flags);
  2030. hpsa_update_scsi_devices(h, h->scsi_host->host_no);
  2031. spin_lock_irqsave(&h->scan_lock, flags);
  2032. h->scan_finished = 1; /* mark scan as finished. */
  2033. wake_up_all(&h->scan_wait_queue);
  2034. spin_unlock_irqrestore(&h->scan_lock, flags);
  2035. }
  2036. static int hpsa_scan_finished(struct Scsi_Host *sh,
  2037. unsigned long elapsed_time)
  2038. {
  2039. struct ctlr_info *h = shost_to_hba(sh);
  2040. unsigned long flags;
  2041. int finished;
  2042. spin_lock_irqsave(&h->scan_lock, flags);
  2043. finished = h->scan_finished;
  2044. spin_unlock_irqrestore(&h->scan_lock, flags);
  2045. return finished;
  2046. }
  2047. static int hpsa_change_queue_depth(struct scsi_device *sdev,
  2048. int qdepth, int reason)
  2049. {
  2050. struct ctlr_info *h = sdev_to_hba(sdev);
  2051. if (reason != SCSI_QDEPTH_DEFAULT)
  2052. return -ENOTSUPP;
  2053. if (qdepth < 1)
  2054. qdepth = 1;
  2055. else
  2056. if (qdepth > h->nr_cmds)
  2057. qdepth = h->nr_cmds;
  2058. scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
  2059. return sdev->queue_depth;
  2060. }
  2061. static void hpsa_unregister_scsi(struct ctlr_info *h)
  2062. {
  2063. /* we are being forcibly unloaded, and may not refuse. */
  2064. scsi_remove_host(h->scsi_host);
  2065. scsi_host_put(h->scsi_host);
  2066. h->scsi_host = NULL;
  2067. }
  2068. static int hpsa_register_scsi(struct ctlr_info *h)
  2069. {
  2070. struct Scsi_Host *sh;
  2071. int error;
  2072. sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
  2073. if (sh == NULL)
  2074. goto fail;
  2075. sh->io_port = 0;
  2076. sh->n_io_port = 0;
  2077. sh->this_id = -1;
  2078. sh->max_channel = 3;
  2079. sh->max_cmd_len = MAX_COMMAND_SIZE;
  2080. sh->max_lun = HPSA_MAX_LUN;
  2081. sh->max_id = HPSA_MAX_LUN;
  2082. sh->can_queue = h->nr_cmds;
  2083. sh->cmd_per_lun = h->nr_cmds;
  2084. sh->sg_tablesize = h->maxsgentries;
  2085. h->scsi_host = sh;
  2086. sh->hostdata[0] = (unsigned long) h;
  2087. sh->irq = h->intr[h->intr_mode];
  2088. sh->unique_id = sh->irq;
  2089. error = scsi_add_host(sh, &h->pdev->dev);
  2090. if (error)
  2091. goto fail_host_put;
  2092. scsi_scan_host(sh);
  2093. return 0;
  2094. fail_host_put:
  2095. dev_err(&h->pdev->dev, "%s: scsi_add_host"
  2096. " failed for controller %d\n", __func__, h->ctlr);
  2097. scsi_host_put(sh);
  2098. return error;
  2099. fail:
  2100. dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
  2101. " failed for controller %d\n", __func__, h->ctlr);
  2102. return -ENOMEM;
  2103. }
  2104. static int wait_for_device_to_become_ready(struct ctlr_info *h,
  2105. unsigned char lunaddr[])
  2106. {
  2107. int rc = 0;
  2108. int count = 0;
  2109. int waittime = 1; /* seconds */
  2110. struct CommandList *c;
  2111. c = cmd_special_alloc(h);
  2112. if (!c) {
  2113. dev_warn(&h->pdev->dev, "out of memory in "
  2114. "wait_for_device_to_become_ready.\n");
  2115. return IO_ERROR;
  2116. }
  2117. /* Send test unit ready until device ready, or give up. */
  2118. while (count < HPSA_TUR_RETRY_LIMIT) {
  2119. /* Wait for a bit. do this first, because if we send
  2120. * the TUR right away, the reset will just abort it.
  2121. */
  2122. msleep(1000 * waittime);
  2123. count++;
  2124. /* Increase wait time with each try, up to a point. */
  2125. if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
  2126. waittime = waittime * 2;
  2127. /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
  2128. (void) fill_cmd(c, TEST_UNIT_READY, h,
  2129. NULL, 0, 0, lunaddr, TYPE_CMD);
  2130. hpsa_scsi_do_simple_cmd_core(h, c);
  2131. /* no unmap needed here because no data xfer. */
  2132. if (c->err_info->CommandStatus == CMD_SUCCESS)
  2133. break;
  2134. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  2135. c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
  2136. (c->err_info->SenseInfo[2] == NO_SENSE ||
  2137. c->err_info->SenseInfo[2] == UNIT_ATTENTION))
  2138. break;
  2139. dev_warn(&h->pdev->dev, "waiting %d secs "
  2140. "for device to become ready.\n", waittime);
  2141. rc = 1; /* device not ready. */
  2142. }
  2143. if (rc)
  2144. dev_warn(&h->pdev->dev, "giving up on device.\n");
  2145. else
  2146. dev_warn(&h->pdev->dev, "device is ready.\n");
  2147. cmd_special_free(h, c);
  2148. return rc;
  2149. }
  2150. /* Need at least one of these error handlers to keep ../scsi/hosts.c from
  2151. * complaining. Doing a host- or bus-reset can't do anything good here.
  2152. */
  2153. static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
  2154. {
  2155. int rc;
  2156. struct ctlr_info *h;
  2157. struct hpsa_scsi_dev_t *dev;
  2158. /* find the controller to which the command to be aborted was sent */
  2159. h = sdev_to_hba(scsicmd->device);
  2160. if (h == NULL) /* paranoia */
  2161. return FAILED;
  2162. dev = scsicmd->device->hostdata;
  2163. if (!dev) {
  2164. dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
  2165. "device lookup failed.\n");
  2166. return FAILED;
  2167. }
  2168. dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
  2169. h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
  2170. /* send a reset to the SCSI LUN which the command was sent to */
  2171. rc = hpsa_send_reset(h, dev->scsi3addr);
  2172. if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
  2173. return SUCCESS;
  2174. dev_warn(&h->pdev->dev, "resetting device failed.\n");
  2175. return FAILED;
  2176. }
  2177. static void swizzle_abort_tag(u8 *tag)
  2178. {
  2179. u8 original_tag[8];
  2180. memcpy(original_tag, tag, 8);
  2181. tag[0] = original_tag[3];
  2182. tag[1] = original_tag[2];
  2183. tag[2] = original_tag[1];
  2184. tag[3] = original_tag[0];
  2185. tag[4] = original_tag[7];
  2186. tag[5] = original_tag[6];
  2187. tag[6] = original_tag[5];
  2188. tag[7] = original_tag[4];
  2189. }
  2190. static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
  2191. struct CommandList *abort, int swizzle)
  2192. {
  2193. int rc = IO_OK;
  2194. struct CommandList *c;
  2195. struct ErrorInfo *ei;
  2196. c = cmd_special_alloc(h);
  2197. if (c == NULL) { /* trouble... */
  2198. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  2199. return -ENOMEM;
  2200. }
  2201. /* fill_cmd can't fail here, no buffer to map */
  2202. (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
  2203. 0, 0, scsi3addr, TYPE_MSG);
  2204. if (swizzle)
  2205. swizzle_abort_tag(&c->Request.CDB[4]);
  2206. hpsa_scsi_do_simple_cmd_core(h, c);
  2207. dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
  2208. __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
  2209. /* no unmap needed here because no data xfer. */
  2210. ei = c->err_info;
  2211. switch (ei->CommandStatus) {
  2212. case CMD_SUCCESS:
  2213. break;
  2214. case CMD_UNABORTABLE: /* Very common, don't make noise. */
  2215. rc = -1;
  2216. break;
  2217. default:
  2218. dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
  2219. __func__, abort->Header.Tag.upper,
  2220. abort->Header.Tag.lower);
  2221. hpsa_scsi_interpret_error(c);
  2222. rc = -1;
  2223. break;
  2224. }
  2225. cmd_special_free(h, c);
  2226. dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
  2227. abort->Header.Tag.upper, abort->Header.Tag.lower);
  2228. return rc;
  2229. }
  2230. /*
  2231. * hpsa_find_cmd_in_queue
  2232. *
  2233. * Used to determine whether a command (find) is still present
  2234. * in queue_head. Optionally excludes the last element of queue_head.
  2235. *
  2236. * This is used to avoid unnecessary aborts. Commands in h->reqQ have
  2237. * not yet been submitted, and so can be aborted by the driver without
  2238. * sending an abort to the hardware.
  2239. *
  2240. * Returns pointer to command if found in queue, NULL otherwise.
  2241. */
  2242. static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
  2243. struct scsi_cmnd *find, struct list_head *queue_head)
  2244. {
  2245. unsigned long flags;
  2246. struct CommandList *c = NULL; /* ptr into cmpQ */
  2247. if (!find)
  2248. return 0;
  2249. spin_lock_irqsave(&h->lock, flags);
  2250. list_for_each_entry(c, queue_head, list) {
  2251. if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
  2252. continue;
  2253. if (c->scsi_cmd == find) {
  2254. spin_unlock_irqrestore(&h->lock, flags);
  2255. return c;
  2256. }
  2257. }
  2258. spin_unlock_irqrestore(&h->lock, flags);
  2259. return NULL;
  2260. }
  2261. static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
  2262. u8 *tag, struct list_head *queue_head)
  2263. {
  2264. unsigned long flags;
  2265. struct CommandList *c;
  2266. spin_lock_irqsave(&h->lock, flags);
  2267. list_for_each_entry(c, queue_head, list) {
  2268. if (memcmp(&c->Header.Tag, tag, 8) != 0)
  2269. continue;
  2270. spin_unlock_irqrestore(&h->lock, flags);
  2271. return c;
  2272. }
  2273. spin_unlock_irqrestore(&h->lock, flags);
  2274. return NULL;
  2275. }
  2276. /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
  2277. * tell which kind we're dealing with, so we send the abort both ways. There
  2278. * shouldn't be any collisions between swizzled and unswizzled tags due to the
  2279. * way we construct our tags but we check anyway in case the assumptions which
  2280. * make this true someday become false.
  2281. */
  2282. static int hpsa_send_abort_both_ways(struct ctlr_info *h,
  2283. unsigned char *scsi3addr, struct CommandList *abort)
  2284. {
  2285. u8 swizzled_tag[8];
  2286. struct CommandList *c;
  2287. int rc = 0, rc2 = 0;
  2288. /* we do not expect to find the swizzled tag in our queue, but
  2289. * check anyway just to be sure the assumptions which make this
  2290. * the case haven't become wrong.
  2291. */
  2292. memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
  2293. swizzle_abort_tag(swizzled_tag);
  2294. c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
  2295. if (c != NULL) {
  2296. dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
  2297. return hpsa_send_abort(h, scsi3addr, abort, 0);
  2298. }
  2299. rc = hpsa_send_abort(h, scsi3addr, abort, 0);
  2300. /* if the command is still in our queue, we can't conclude that it was
  2301. * aborted (it might have just completed normally) but in any case
  2302. * we don't need to try to abort it another way.
  2303. */
  2304. c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
  2305. if (c)
  2306. rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
  2307. return rc && rc2;
  2308. }
  2309. /* Send an abort for the specified command.
  2310. * If the device and controller support it,
  2311. * send a task abort request.
  2312. */
  2313. static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
  2314. {
  2315. int i, rc;
  2316. struct ctlr_info *h;
  2317. struct hpsa_scsi_dev_t *dev;
  2318. struct CommandList *abort; /* pointer to command to be aborted */
  2319. struct CommandList *found;
  2320. struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
  2321. char msg[256]; /* For debug messaging. */
  2322. int ml = 0;
  2323. /* Find the controller of the command to be aborted */
  2324. h = sdev_to_hba(sc->device);
  2325. if (WARN(h == NULL,
  2326. "ABORT REQUEST FAILED, Controller lookup failed.\n"))
  2327. return FAILED;
  2328. /* Check that controller supports some kind of task abort */
  2329. if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
  2330. !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
  2331. return FAILED;
  2332. memset(msg, 0, sizeof(msg));
  2333. ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
  2334. h->scsi_host->host_no, sc->device->channel,
  2335. sc->device->id, sc->device->lun);
  2336. /* Find the device of the command to be aborted */
  2337. dev = sc->device->hostdata;
  2338. if (!dev) {
  2339. dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
  2340. msg);
  2341. return FAILED;
  2342. }
  2343. /* Get SCSI command to be aborted */
  2344. abort = (struct CommandList *) sc->host_scribble;
  2345. if (abort == NULL) {
  2346. dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
  2347. msg);
  2348. return FAILED;
  2349. }
  2350. ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
  2351. abort->Header.Tag.upper, abort->Header.Tag.lower);
  2352. as = (struct scsi_cmnd *) abort->scsi_cmd;
  2353. if (as != NULL)
  2354. ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
  2355. as->cmnd[0], as->serial_number);
  2356. dev_dbg(&h->pdev->dev, "%s\n", msg);
  2357. dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
  2358. h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
  2359. /* Search reqQ to See if command is queued but not submitted,
  2360. * if so, complete the command with aborted status and remove
  2361. * it from the reqQ.
  2362. */
  2363. found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
  2364. if (found) {
  2365. found->err_info->CommandStatus = CMD_ABORTED;
  2366. finish_cmd(found);
  2367. dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
  2368. msg);
  2369. return SUCCESS;
  2370. }
  2371. /* not in reqQ, if also not in cmpQ, must have already completed */
  2372. found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
  2373. if (!found) {
  2374. dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
  2375. msg);
  2376. return SUCCESS;
  2377. }
  2378. /*
  2379. * Command is in flight, or possibly already completed
  2380. * by the firmware (but not to the scsi mid layer) but we can't
  2381. * distinguish which. Send the abort down.
  2382. */
  2383. rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
  2384. if (rc != 0) {
  2385. dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
  2386. dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
  2387. h->scsi_host->host_no,
  2388. dev->bus, dev->target, dev->lun);
  2389. return FAILED;
  2390. }
  2391. dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
  2392. /* If the abort(s) above completed and actually aborted the
  2393. * command, then the command to be aborted should already be
  2394. * completed. If not, wait around a bit more to see if they
  2395. * manage to complete normally.
  2396. */
  2397. #define ABORT_COMPLETE_WAIT_SECS 30
  2398. for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
  2399. found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
  2400. if (!found)
  2401. return SUCCESS;
  2402. msleep(100);
  2403. }
  2404. dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
  2405. msg, ABORT_COMPLETE_WAIT_SECS);
  2406. return FAILED;
  2407. }
  2408. /*
  2409. * For operations that cannot sleep, a command block is allocated at init,
  2410. * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
  2411. * which ones are free or in use. Lock must be held when calling this.
  2412. * cmd_free() is the complement.
  2413. */
  2414. static struct CommandList *cmd_alloc(struct ctlr_info *h)
  2415. {
  2416. struct CommandList *c;
  2417. int i;
  2418. union u64bit temp64;
  2419. dma_addr_t cmd_dma_handle, err_dma_handle;
  2420. unsigned long flags;
  2421. spin_lock_irqsave(&h->lock, flags);
  2422. do {
  2423. i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
  2424. if (i == h->nr_cmds) {
  2425. spin_unlock_irqrestore(&h->lock, flags);
  2426. return NULL;
  2427. }
  2428. } while (test_and_set_bit
  2429. (i & (BITS_PER_LONG - 1),
  2430. h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
  2431. h->nr_allocs++;
  2432. spin_unlock_irqrestore(&h->lock, flags);
  2433. c = h->cmd_pool + i;
  2434. memset(c, 0, sizeof(*c));
  2435. cmd_dma_handle = h->cmd_pool_dhandle
  2436. + i * sizeof(*c);
  2437. c->err_info = h->errinfo_pool + i;
  2438. memset(c->err_info, 0, sizeof(*c->err_info));
  2439. err_dma_handle = h->errinfo_pool_dhandle
  2440. + i * sizeof(*c->err_info);
  2441. c->cmdindex = i;
  2442. INIT_LIST_HEAD(&c->list);
  2443. c->busaddr = (u32) cmd_dma_handle;
  2444. temp64.val = (u64) err_dma_handle;
  2445. c->ErrDesc.Addr.lower = temp64.val32.lower;
  2446. c->ErrDesc.Addr.upper = temp64.val32.upper;
  2447. c->ErrDesc.Len = sizeof(*c->err_info);
  2448. c->h = h;
  2449. return c;
  2450. }
  2451. /* For operations that can wait for kmalloc to possibly sleep,
  2452. * this routine can be called. Lock need not be held to call
  2453. * cmd_special_alloc. cmd_special_free() is the complement.
  2454. */
  2455. static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
  2456. {
  2457. struct CommandList *c;
  2458. union u64bit temp64;
  2459. dma_addr_t cmd_dma_handle, err_dma_handle;
  2460. c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
  2461. if (c == NULL)
  2462. return NULL;
  2463. memset(c, 0, sizeof(*c));
  2464. c->cmdindex = -1;
  2465. c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
  2466. &err_dma_handle);
  2467. if (c->err_info == NULL) {
  2468. pci_free_consistent(h->pdev,
  2469. sizeof(*c), c, cmd_dma_handle);
  2470. return NULL;
  2471. }
  2472. memset(c->err_info, 0, sizeof(*c->err_info));
  2473. INIT_LIST_HEAD(&c->list);
  2474. c->busaddr = (u32) cmd_dma_handle;
  2475. temp64.val = (u64) err_dma_handle;
  2476. c->ErrDesc.Addr.lower = temp64.val32.lower;
  2477. c->ErrDesc.Addr.upper = temp64.val32.upper;
  2478. c->ErrDesc.Len = sizeof(*c->err_info);
  2479. c->h = h;
  2480. return c;
  2481. }
  2482. static void cmd_free(struct ctlr_info *h, struct CommandList *c)
  2483. {
  2484. int i;
  2485. unsigned long flags;
  2486. i = c - h->cmd_pool;
  2487. spin_lock_irqsave(&h->lock, flags);
  2488. clear_bit(i & (BITS_PER_LONG - 1),
  2489. h->cmd_pool_bits + (i / BITS_PER_LONG));
  2490. h->nr_frees++;
  2491. spin_unlock_irqrestore(&h->lock, flags);
  2492. }
  2493. static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
  2494. {
  2495. union u64bit temp64;
  2496. temp64.val32.lower = c->ErrDesc.Addr.lower;
  2497. temp64.val32.upper = c->ErrDesc.Addr.upper;
  2498. pci_free_consistent(h->pdev, sizeof(*c->err_info),
  2499. c->err_info, (dma_addr_t) temp64.val);
  2500. pci_free_consistent(h->pdev, sizeof(*c),
  2501. c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
  2502. }
  2503. #ifdef CONFIG_COMPAT
  2504. static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
  2505. {
  2506. IOCTL32_Command_struct __user *arg32 =
  2507. (IOCTL32_Command_struct __user *) arg;
  2508. IOCTL_Command_struct arg64;
  2509. IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
  2510. int err;
  2511. u32 cp;
  2512. memset(&arg64, 0, sizeof(arg64));
  2513. err = 0;
  2514. err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  2515. sizeof(arg64.LUN_info));
  2516. err |= copy_from_user(&arg64.Request, &arg32->Request,
  2517. sizeof(arg64.Request));
  2518. err |= copy_from_user(&arg64.error_info, &arg32->error_info,
  2519. sizeof(arg64.error_info));
  2520. err |= get_user(arg64.buf_size, &arg32->buf_size);
  2521. err |= get_user(cp, &arg32->buf);
  2522. arg64.buf = compat_ptr(cp);
  2523. err |= copy_to_user(p, &arg64, sizeof(arg64));
  2524. if (err)
  2525. return -EFAULT;
  2526. err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
  2527. if (err)
  2528. return err;
  2529. err |= copy_in_user(&arg32->error_info, &p->error_info,
  2530. sizeof(arg32->error_info));
  2531. if (err)
  2532. return -EFAULT;
  2533. return err;
  2534. }
  2535. static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
  2536. int cmd, void *arg)
  2537. {
  2538. BIG_IOCTL32_Command_struct __user *arg32 =
  2539. (BIG_IOCTL32_Command_struct __user *) arg;
  2540. BIG_IOCTL_Command_struct arg64;
  2541. BIG_IOCTL_Command_struct __user *p =
  2542. compat_alloc_user_space(sizeof(arg64));
  2543. int err;
  2544. u32 cp;
  2545. memset(&arg64, 0, sizeof(arg64));
  2546. err = 0;
  2547. err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
  2548. sizeof(arg64.LUN_info));
  2549. err |= copy_from_user(&arg64.Request, &arg32->Request,
  2550. sizeof(arg64.Request));
  2551. err |= copy_from_user(&arg64.error_info, &arg32->error_info,
  2552. sizeof(arg64.error_info));
  2553. err |= get_user(arg64.buf_size, &arg32->buf_size);
  2554. err |= get_user(arg64.malloc_size, &arg32->malloc_size);
  2555. err |= get_user(cp, &arg32->buf);
  2556. arg64.buf = compat_ptr(cp);
  2557. err |= copy_to_user(p, &arg64, sizeof(arg64));
  2558. if (err)
  2559. return -EFAULT;
  2560. err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
  2561. if (err)
  2562. return err;
  2563. err |= copy_in_user(&arg32->error_info, &p->error_info,
  2564. sizeof(arg32->error_info));
  2565. if (err)
  2566. return -EFAULT;
  2567. return err;
  2568. }
  2569. static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
  2570. {
  2571. switch (cmd) {
  2572. case CCISS_GETPCIINFO:
  2573. case CCISS_GETINTINFO:
  2574. case CCISS_SETINTINFO:
  2575. case CCISS_GETNODENAME:
  2576. case CCISS_SETNODENAME:
  2577. case CCISS_GETHEARTBEAT:
  2578. case CCISS_GETBUSTYPES:
  2579. case CCISS_GETFIRMVER:
  2580. case CCISS_GETDRIVVER:
  2581. case CCISS_REVALIDVOLS:
  2582. case CCISS_DEREGDISK:
  2583. case CCISS_REGNEWDISK:
  2584. case CCISS_REGNEWD:
  2585. case CCISS_RESCANDISK:
  2586. case CCISS_GETLUNINFO:
  2587. return hpsa_ioctl(dev, cmd, arg);
  2588. case CCISS_PASSTHRU32:
  2589. return hpsa_ioctl32_passthru(dev, cmd, arg);
  2590. case CCISS_BIG_PASSTHRU32:
  2591. return hpsa_ioctl32_big_passthru(dev, cmd, arg);
  2592. default:
  2593. return -ENOIOCTLCMD;
  2594. }
  2595. }
  2596. #endif
  2597. static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
  2598. {
  2599. struct hpsa_pci_info pciinfo;
  2600. if (!argp)
  2601. return -EINVAL;
  2602. pciinfo.domain = pci_domain_nr(h->pdev->bus);
  2603. pciinfo.bus = h->pdev->bus->number;
  2604. pciinfo.dev_fn = h->pdev->devfn;
  2605. pciinfo.board_id = h->board_id;
  2606. if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
  2607. return -EFAULT;
  2608. return 0;
  2609. }
  2610. static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
  2611. {
  2612. DriverVer_type DriverVer;
  2613. unsigned char vmaj, vmin, vsubmin;
  2614. int rc;
  2615. rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
  2616. &vmaj, &vmin, &vsubmin);
  2617. if (rc != 3) {
  2618. dev_info(&h->pdev->dev, "driver version string '%s' "
  2619. "unrecognized.", HPSA_DRIVER_VERSION);
  2620. vmaj = 0;
  2621. vmin = 0;
  2622. vsubmin = 0;
  2623. }
  2624. DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
  2625. if (!argp)
  2626. return -EINVAL;
  2627. if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
  2628. return -EFAULT;
  2629. return 0;
  2630. }
  2631. static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
  2632. {
  2633. IOCTL_Command_struct iocommand;
  2634. struct CommandList *c;
  2635. char *buff = NULL;
  2636. union u64bit temp64;
  2637. int rc = 0;
  2638. if (!argp)
  2639. return -EINVAL;
  2640. if (!capable(CAP_SYS_RAWIO))
  2641. return -EPERM;
  2642. if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
  2643. return -EFAULT;
  2644. if ((iocommand.buf_size < 1) &&
  2645. (iocommand.Request.Type.Direction != XFER_NONE)) {
  2646. return -EINVAL;
  2647. }
  2648. if (iocommand.buf_size > 0) {
  2649. buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
  2650. if (buff == NULL)
  2651. return -EFAULT;
  2652. if (iocommand.Request.Type.Direction == XFER_WRITE) {
  2653. /* Copy the data into the buffer we created */
  2654. if (copy_from_user(buff, iocommand.buf,
  2655. iocommand.buf_size)) {
  2656. rc = -EFAULT;
  2657. goto out_kfree;
  2658. }
  2659. } else {
  2660. memset(buff, 0, iocommand.buf_size);
  2661. }
  2662. }
  2663. c = cmd_special_alloc(h);
  2664. if (c == NULL) {
  2665. rc = -ENOMEM;
  2666. goto out_kfree;
  2667. }
  2668. /* Fill in the command type */
  2669. c->cmd_type = CMD_IOCTL_PEND;
  2670. /* Fill in Command Header */
  2671. c->Header.ReplyQueue = 0; /* unused in simple mode */
  2672. if (iocommand.buf_size > 0) { /* buffer to fill */
  2673. c->Header.SGList = 1;
  2674. c->Header.SGTotal = 1;
  2675. } else { /* no buffers to fill */
  2676. c->Header.SGList = 0;
  2677. c->Header.SGTotal = 0;
  2678. }
  2679. memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
  2680. /* use the kernel address the cmd block for tag */
  2681. c->Header.Tag.lower = c->busaddr;
  2682. /* Fill in Request block */
  2683. memcpy(&c->Request, &iocommand.Request,
  2684. sizeof(c->Request));
  2685. /* Fill in the scatter gather information */
  2686. if (iocommand.buf_size > 0) {
  2687. temp64.val = pci_map_single(h->pdev, buff,
  2688. iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
  2689. if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
  2690. c->SG[0].Addr.lower = 0;
  2691. c->SG[0].Addr.upper = 0;
  2692. c->SG[0].Len = 0;
  2693. rc = -ENOMEM;
  2694. goto out;
  2695. }
  2696. c->SG[0].Addr.lower = temp64.val32.lower;
  2697. c->SG[0].Addr.upper = temp64.val32.upper;
  2698. c->SG[0].Len = iocommand.buf_size;
  2699. c->SG[0].Ext = 0; /* we are not chaining*/
  2700. }
  2701. hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
  2702. if (iocommand.buf_size > 0)
  2703. hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
  2704. check_ioctl_unit_attention(h, c);
  2705. /* Copy the error information out */
  2706. memcpy(&iocommand.error_info, c->err_info,
  2707. sizeof(iocommand.error_info));
  2708. if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
  2709. rc = -EFAULT;
  2710. goto out;
  2711. }
  2712. if (iocommand.Request.Type.Direction == XFER_READ &&
  2713. iocommand.buf_size > 0) {
  2714. /* Copy the data out of the buffer we created */
  2715. if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
  2716. rc = -EFAULT;
  2717. goto out;
  2718. }
  2719. }
  2720. out:
  2721. cmd_special_free(h, c);
  2722. out_kfree:
  2723. kfree(buff);
  2724. return rc;
  2725. }
  2726. static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
  2727. {
  2728. BIG_IOCTL_Command_struct *ioc;
  2729. struct CommandList *c;
  2730. unsigned char **buff = NULL;
  2731. int *buff_size = NULL;
  2732. union u64bit temp64;
  2733. BYTE sg_used = 0;
  2734. int status = 0;
  2735. int i;
  2736. u32 left;
  2737. u32 sz;
  2738. BYTE __user *data_ptr;
  2739. if (!argp)
  2740. return -EINVAL;
  2741. if (!capable(CAP_SYS_RAWIO))
  2742. return -EPERM;
  2743. ioc = (BIG_IOCTL_Command_struct *)
  2744. kmalloc(sizeof(*ioc), GFP_KERNEL);
  2745. if (!ioc) {
  2746. status = -ENOMEM;
  2747. goto cleanup1;
  2748. }
  2749. if (copy_from_user(ioc, argp, sizeof(*ioc))) {
  2750. status = -EFAULT;
  2751. goto cleanup1;
  2752. }
  2753. if ((ioc->buf_size < 1) &&
  2754. (ioc->Request.Type.Direction != XFER_NONE)) {
  2755. status = -EINVAL;
  2756. goto cleanup1;
  2757. }
  2758. /* Check kmalloc limits using all SGs */
  2759. if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
  2760. status = -EINVAL;
  2761. goto cleanup1;
  2762. }
  2763. if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
  2764. status = -EINVAL;
  2765. goto cleanup1;
  2766. }
  2767. buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
  2768. if (!buff) {
  2769. status = -ENOMEM;
  2770. goto cleanup1;
  2771. }
  2772. buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
  2773. if (!buff_size) {
  2774. status = -ENOMEM;
  2775. goto cleanup1;
  2776. }
  2777. left = ioc->buf_size;
  2778. data_ptr = ioc->buf;
  2779. while (left) {
  2780. sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
  2781. buff_size[sg_used] = sz;
  2782. buff[sg_used] = kmalloc(sz, GFP_KERNEL);
  2783. if (buff[sg_used] == NULL) {
  2784. status = -ENOMEM;
  2785. goto cleanup1;
  2786. }
  2787. if (ioc->Request.Type.Direction == XFER_WRITE) {
  2788. if (copy_from_user(buff[sg_used], data_ptr, sz)) {
  2789. status = -ENOMEM;
  2790. goto cleanup1;
  2791. }
  2792. } else
  2793. memset(buff[sg_used], 0, sz);
  2794. left -= sz;
  2795. data_ptr += sz;
  2796. sg_used++;
  2797. }
  2798. c = cmd_special_alloc(h);
  2799. if (c == NULL) {
  2800. status = -ENOMEM;
  2801. goto cleanup1;
  2802. }
  2803. c->cmd_type = CMD_IOCTL_PEND;
  2804. c->Header.ReplyQueue = 0;
  2805. c->Header.SGList = c->Header.SGTotal = sg_used;
  2806. memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
  2807. c->Header.Tag.lower = c->busaddr;
  2808. memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
  2809. if (ioc->buf_size > 0) {
  2810. int i;
  2811. for (i = 0; i < sg_used; i++) {
  2812. temp64.val = pci_map_single(h->pdev, buff[i],
  2813. buff_size[i], PCI_DMA_BIDIRECTIONAL);
  2814. if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
  2815. c->SG[i].Addr.lower = 0;
  2816. c->SG[i].Addr.upper = 0;
  2817. c->SG[i].Len = 0;
  2818. hpsa_pci_unmap(h->pdev, c, i,
  2819. PCI_DMA_BIDIRECTIONAL);
  2820. status = -ENOMEM;
  2821. goto cleanup1;
  2822. }
  2823. c->SG[i].Addr.lower = temp64.val32.lower;
  2824. c->SG[i].Addr.upper = temp64.val32.upper;
  2825. c->SG[i].Len = buff_size[i];
  2826. /* we are not chaining */
  2827. c->SG[i].Ext = 0;
  2828. }
  2829. }
  2830. hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
  2831. if (sg_used)
  2832. hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
  2833. check_ioctl_unit_attention(h, c);
  2834. /* Copy the error information out */
  2835. memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
  2836. if (copy_to_user(argp, ioc, sizeof(*ioc))) {
  2837. cmd_special_free(h, c);
  2838. status = -EFAULT;
  2839. goto cleanup1;
  2840. }
  2841. if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
  2842. /* Copy the data out of the buffer we created */
  2843. BYTE __user *ptr = ioc->buf;
  2844. for (i = 0; i < sg_used; i++) {
  2845. if (copy_to_user(ptr, buff[i], buff_size[i])) {
  2846. cmd_special_free(h, c);
  2847. status = -EFAULT;
  2848. goto cleanup1;
  2849. }
  2850. ptr += buff_size[i];
  2851. }
  2852. }
  2853. cmd_special_free(h, c);
  2854. status = 0;
  2855. cleanup1:
  2856. if (buff) {
  2857. for (i = 0; i < sg_used; i++)
  2858. kfree(buff[i]);
  2859. kfree(buff);
  2860. }
  2861. kfree(buff_size);
  2862. kfree(ioc);
  2863. return status;
  2864. }
  2865. static void check_ioctl_unit_attention(struct ctlr_info *h,
  2866. struct CommandList *c)
  2867. {
  2868. if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
  2869. c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
  2870. (void) check_for_unit_attention(h, c);
  2871. }
  2872. /*
  2873. * ioctl
  2874. */
  2875. static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
  2876. {
  2877. struct ctlr_info *h;
  2878. void __user *argp = (void __user *)arg;
  2879. h = sdev_to_hba(dev);
  2880. switch (cmd) {
  2881. case CCISS_DEREGDISK:
  2882. case CCISS_REGNEWDISK:
  2883. case CCISS_REGNEWD:
  2884. hpsa_scan_start(h->scsi_host);
  2885. return 0;
  2886. case CCISS_GETPCIINFO:
  2887. return hpsa_getpciinfo_ioctl(h, argp);
  2888. case CCISS_GETDRIVVER:
  2889. return hpsa_getdrivver_ioctl(h, argp);
  2890. case CCISS_PASSTHRU:
  2891. return hpsa_passthru_ioctl(h, argp);
  2892. case CCISS_BIG_PASSTHRU:
  2893. return hpsa_big_passthru_ioctl(h, argp);
  2894. default:
  2895. return -ENOTTY;
  2896. }
  2897. }
  2898. static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
  2899. u8 reset_type)
  2900. {
  2901. struct CommandList *c;
  2902. c = cmd_alloc(h);
  2903. if (!c)
  2904. return -ENOMEM;
  2905. /* fill_cmd can't fail here, no data buffer to map */
  2906. (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
  2907. RAID_CTLR_LUNID, TYPE_MSG);
  2908. c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
  2909. c->waiting = NULL;
  2910. enqueue_cmd_and_start_io(h, c);
  2911. /* Don't wait for completion, the reset won't complete. Don't free
  2912. * the command either. This is the last command we will send before
  2913. * re-initializing everything, so it doesn't matter and won't leak.
  2914. */
  2915. return 0;
  2916. }
  2917. static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
  2918. void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
  2919. int cmd_type)
  2920. {
  2921. int pci_dir = XFER_NONE;
  2922. struct CommandList *a; /* for commands to be aborted */
  2923. c->cmd_type = CMD_IOCTL_PEND;
  2924. c->Header.ReplyQueue = 0;
  2925. if (buff != NULL && size > 0) {
  2926. c->Header.SGList = 1;
  2927. c->Header.SGTotal = 1;
  2928. } else {
  2929. c->Header.SGList = 0;
  2930. c->Header.SGTotal = 0;
  2931. }
  2932. c->Header.Tag.lower = c->busaddr;
  2933. memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
  2934. c->Request.Type.Type = cmd_type;
  2935. if (cmd_type == TYPE_CMD) {
  2936. switch (cmd) {
  2937. case HPSA_INQUIRY:
  2938. /* are we trying to read a vital product page */
  2939. if (page_code != 0) {
  2940. c->Request.CDB[1] = 0x01;
  2941. c->Request.CDB[2] = page_code;
  2942. }
  2943. c->Request.CDBLen = 6;
  2944. c->Request.Type.Attribute = ATTR_SIMPLE;
  2945. c->Request.Type.Direction = XFER_READ;
  2946. c->Request.Timeout = 0;
  2947. c->Request.CDB[0] = HPSA_INQUIRY;
  2948. c->Request.CDB[4] = size & 0xFF;
  2949. break;
  2950. case HPSA_REPORT_LOG:
  2951. case HPSA_REPORT_PHYS:
  2952. /* Talking to controller so It's a physical command
  2953. mode = 00 target = 0. Nothing to write.
  2954. */
  2955. c->Request.CDBLen = 12;
  2956. c->Request.Type.Attribute = ATTR_SIMPLE;
  2957. c->Request.Type.Direction = XFER_READ;
  2958. c->Request.Timeout = 0;
  2959. c->Request.CDB[0] = cmd;
  2960. c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
  2961. c->Request.CDB[7] = (size >> 16) & 0xFF;
  2962. c->Request.CDB[8] = (size >> 8) & 0xFF;
  2963. c->Request.CDB[9] = size & 0xFF;
  2964. break;
  2965. case HPSA_CACHE_FLUSH:
  2966. c->Request.CDBLen = 12;
  2967. c->Request.Type.Attribute = ATTR_SIMPLE;
  2968. c->Request.Type.Direction = XFER_WRITE;
  2969. c->Request.Timeout = 0;
  2970. c->Request.CDB[0] = BMIC_WRITE;
  2971. c->Request.CDB[6] = BMIC_CACHE_FLUSH;
  2972. c->Request.CDB[7] = (size >> 8) & 0xFF;
  2973. c->Request.CDB[8] = size & 0xFF;
  2974. break;
  2975. case TEST_UNIT_READY:
  2976. c->Request.CDBLen = 6;
  2977. c->Request.Type.Attribute = ATTR_SIMPLE;
  2978. c->Request.Type.Direction = XFER_NONE;
  2979. c->Request.Timeout = 0;
  2980. break;
  2981. default:
  2982. dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
  2983. BUG();
  2984. return -1;
  2985. }
  2986. } else if (cmd_type == TYPE_MSG) {
  2987. switch (cmd) {
  2988. case HPSA_DEVICE_RESET_MSG:
  2989. c->Request.CDBLen = 16;
  2990. c->Request.Type.Type = 1; /* It is a MSG not a CMD */
  2991. c->Request.Type.Attribute = ATTR_SIMPLE;
  2992. c->Request.Type.Direction = XFER_NONE;
  2993. c->Request.Timeout = 0; /* Don't time out */
  2994. memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
  2995. c->Request.CDB[0] = cmd;
  2996. c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
  2997. /* If bytes 4-7 are zero, it means reset the */
  2998. /* LunID device */
  2999. c->Request.CDB[4] = 0x00;
  3000. c->Request.CDB[5] = 0x00;
  3001. c->Request.CDB[6] = 0x00;
  3002. c->Request.CDB[7] = 0x00;
  3003. break;
  3004. case HPSA_ABORT_MSG:
  3005. a = buff; /* point to command to be aborted */
  3006. dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
  3007. a->Header.Tag.upper, a->Header.Tag.lower,
  3008. c->Header.Tag.upper, c->Header.Tag.lower);
  3009. c->Request.CDBLen = 16;
  3010. c->Request.Type.Type = TYPE_MSG;
  3011. c->Request.Type.Attribute = ATTR_SIMPLE;
  3012. c->Request.Type.Direction = XFER_WRITE;
  3013. c->Request.Timeout = 0; /* Don't time out */
  3014. c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
  3015. c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
  3016. c->Request.CDB[2] = 0x00; /* reserved */
  3017. c->Request.CDB[3] = 0x00; /* reserved */
  3018. /* Tag to abort goes in CDB[4]-CDB[11] */
  3019. c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
  3020. c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
  3021. c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
  3022. c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
  3023. c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
  3024. c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
  3025. c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
  3026. c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
  3027. c->Request.CDB[12] = 0x00; /* reserved */
  3028. c->Request.CDB[13] = 0x00; /* reserved */
  3029. c->Request.CDB[14] = 0x00; /* reserved */
  3030. c->Request.CDB[15] = 0x00; /* reserved */
  3031. break;
  3032. default:
  3033. dev_warn(&h->pdev->dev, "unknown message type %d\n",
  3034. cmd);
  3035. BUG();
  3036. }
  3037. } else {
  3038. dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
  3039. BUG();
  3040. }
  3041. switch (c->Request.Type.Direction) {
  3042. case XFER_READ:
  3043. pci_dir = PCI_DMA_FROMDEVICE;
  3044. break;
  3045. case XFER_WRITE:
  3046. pci_dir = PCI_DMA_TODEVICE;
  3047. break;
  3048. case XFER_NONE:
  3049. pci_dir = PCI_DMA_NONE;
  3050. break;
  3051. default:
  3052. pci_dir = PCI_DMA_BIDIRECTIONAL;
  3053. }
  3054. if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
  3055. return -1;
  3056. return 0;
  3057. }
  3058. /*
  3059. * Map (physical) PCI mem into (virtual) kernel space
  3060. */
  3061. static void __iomem *remap_pci_mem(ulong base, ulong size)
  3062. {
  3063. ulong page_base = ((ulong) base) & PAGE_MASK;
  3064. ulong page_offs = ((ulong) base) - page_base;
  3065. void __iomem *page_remapped = ioremap_nocache(page_base,
  3066. page_offs + size);
  3067. return page_remapped ? (page_remapped + page_offs) : NULL;
  3068. }
  3069. /* Takes cmds off the submission queue and sends them to the hardware,
  3070. * then puts them on the queue of cmds waiting for completion.
  3071. */
  3072. static void start_io(struct ctlr_info *h)
  3073. {
  3074. struct CommandList *c;
  3075. unsigned long flags;
  3076. spin_lock_irqsave(&h->lock, flags);
  3077. while (!list_empty(&h->reqQ)) {
  3078. c = list_entry(h->reqQ.next, struct CommandList, list);
  3079. /* can't do anything if fifo is full */
  3080. if ((h->access.fifo_full(h))) {
  3081. dev_warn(&h->pdev->dev, "fifo full\n");
  3082. break;
  3083. }
  3084. /* Get the first entry from the Request Q */
  3085. removeQ(c);
  3086. h->Qdepth--;
  3087. /* Put job onto the completed Q */
  3088. addQ(&h->cmpQ, c);
  3089. /* Must increment commands_outstanding before unlocking
  3090. * and submitting to avoid race checking for fifo full
  3091. * condition.
  3092. */
  3093. h->commands_outstanding++;
  3094. if (h->commands_outstanding > h->max_outstanding)
  3095. h->max_outstanding = h->commands_outstanding;
  3096. /* Tell the controller execute command */
  3097. spin_unlock_irqrestore(&h->lock, flags);
  3098. h->access.submit_command(h, c);
  3099. spin_lock_irqsave(&h->lock, flags);
  3100. }
  3101. spin_unlock_irqrestore(&h->lock, flags);
  3102. }
  3103. static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
  3104. {
  3105. return h->access.command_completed(h, q);
  3106. }
  3107. static inline bool interrupt_pending(struct ctlr_info *h)
  3108. {
  3109. return h->access.intr_pending(h);
  3110. }
  3111. static inline long interrupt_not_for_us(struct ctlr_info *h)
  3112. {
  3113. return (h->access.intr_pending(h) == 0) ||
  3114. (h->interrupts_enabled == 0);
  3115. }
  3116. static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
  3117. u32 raw_tag)
  3118. {
  3119. if (unlikely(tag_index >= h->nr_cmds)) {
  3120. dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
  3121. return 1;
  3122. }
  3123. return 0;
  3124. }
  3125. static inline void finish_cmd(struct CommandList *c)
  3126. {
  3127. unsigned long flags;
  3128. spin_lock_irqsave(&c->h->lock, flags);
  3129. removeQ(c);
  3130. spin_unlock_irqrestore(&c->h->lock, flags);
  3131. dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
  3132. if (likely(c->cmd_type == CMD_SCSI))
  3133. complete_scsi_command(c);
  3134. else if (c->cmd_type == CMD_IOCTL_PEND)
  3135. complete(c->waiting);
  3136. }
  3137. static inline u32 hpsa_tag_contains_index(u32 tag)
  3138. {
  3139. return tag & DIRECT_LOOKUP_BIT;
  3140. }
  3141. static inline u32 hpsa_tag_to_index(u32 tag)
  3142. {
  3143. return tag >> DIRECT_LOOKUP_SHIFT;
  3144. }
  3145. static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
  3146. {
  3147. #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
  3148. #define HPSA_SIMPLE_ERROR_BITS 0x03
  3149. if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
  3150. return tag & ~HPSA_SIMPLE_ERROR_BITS;
  3151. return tag & ~HPSA_PERF_ERROR_BITS;
  3152. }
  3153. /* process completion of an indexed ("direct lookup") command */
  3154. static inline void process_indexed_cmd(struct ctlr_info *h,
  3155. u32 raw_tag)
  3156. {
  3157. u32 tag_index;
  3158. struct CommandList *c;
  3159. tag_index = hpsa_tag_to_index(raw_tag);
  3160. if (!bad_tag(h, tag_index, raw_tag)) {
  3161. c = h->cmd_pool + tag_index;
  3162. finish_cmd(c);
  3163. }
  3164. }
  3165. /* process completion of a non-indexed command */
  3166. static inline void process_nonindexed_cmd(struct ctlr_info *h,
  3167. u32 raw_tag)
  3168. {
  3169. u32 tag;
  3170. struct CommandList *c = NULL;
  3171. unsigned long flags;
  3172. tag = hpsa_tag_discard_error_bits(h, raw_tag);
  3173. spin_lock_irqsave(&h->lock, flags);
  3174. list_for_each_entry(c, &h->cmpQ, list) {
  3175. if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
  3176. spin_unlock_irqrestore(&h->lock, flags);
  3177. finish_cmd(c);
  3178. return;
  3179. }
  3180. }
  3181. spin_unlock_irqrestore(&h->lock, flags);
  3182. bad_tag(h, h->nr_cmds + 1, raw_tag);
  3183. }
  3184. /* Some controllers, like p400, will give us one interrupt
  3185. * after a soft reset, even if we turned interrupts off.
  3186. * Only need to check for this in the hpsa_xxx_discard_completions
  3187. * functions.
  3188. */
  3189. static int ignore_bogus_interrupt(struct ctlr_info *h)
  3190. {
  3191. if (likely(!reset_devices))
  3192. return 0;
  3193. if (likely(h->interrupts_enabled))
  3194. return 0;
  3195. dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
  3196. "(known firmware bug.) Ignoring.\n");
  3197. return 1;
  3198. }
  3199. /*
  3200. * Convert &h->q[x] (passed to interrupt handlers) back to h.
  3201. * Relies on (h-q[x] == x) being true for x such that
  3202. * 0 <= x < MAX_REPLY_QUEUES.
  3203. */
  3204. static struct ctlr_info *queue_to_hba(u8 *queue)
  3205. {
  3206. return container_of((queue - *queue), struct ctlr_info, q[0]);
  3207. }
  3208. static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
  3209. {
  3210. struct ctlr_info *h = queue_to_hba(queue);
  3211. u8 q = *(u8 *) queue;
  3212. u32 raw_tag;
  3213. if (ignore_bogus_interrupt(h))
  3214. return IRQ_NONE;
  3215. if (interrupt_not_for_us(h))
  3216. return IRQ_NONE;
  3217. h->last_intr_timestamp = get_jiffies_64();
  3218. while (interrupt_pending(h)) {
  3219. raw_tag = get_next_completion(h, q);
  3220. while (raw_tag != FIFO_EMPTY)
  3221. raw_tag = next_command(h, q);
  3222. }
  3223. return IRQ_HANDLED;
  3224. }
  3225. static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
  3226. {
  3227. struct ctlr_info *h = queue_to_hba(queue);
  3228. u32 raw_tag;
  3229. u8 q = *(u8 *) queue;
  3230. if (ignore_bogus_interrupt(h))
  3231. return IRQ_NONE;
  3232. h->last_intr_timestamp = get_jiffies_64();
  3233. raw_tag = get_next_completion(h, q);
  3234. while (raw_tag != FIFO_EMPTY)
  3235. raw_tag = next_command(h, q);
  3236. return IRQ_HANDLED;
  3237. }
  3238. static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
  3239. {
  3240. struct ctlr_info *h = queue_to_hba((u8 *) queue);
  3241. u32 raw_tag;
  3242. u8 q = *(u8 *) queue;
  3243. if (interrupt_not_for_us(h))
  3244. return IRQ_NONE;
  3245. h->last_intr_timestamp = get_jiffies_64();
  3246. while (interrupt_pending(h)) {
  3247. raw_tag = get_next_completion(h, q);
  3248. while (raw_tag != FIFO_EMPTY) {
  3249. if (likely(hpsa_tag_contains_index(raw_tag)))
  3250. process_indexed_cmd(h, raw_tag);
  3251. else
  3252. process_nonindexed_cmd(h, raw_tag);
  3253. raw_tag = next_command(h, q);
  3254. }
  3255. }
  3256. return IRQ_HANDLED;
  3257. }
  3258. static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
  3259. {
  3260. struct ctlr_info *h = queue_to_hba(queue);
  3261. u32 raw_tag;
  3262. u8 q = *(u8 *) queue;
  3263. h->last_intr_timestamp = get_jiffies_64();
  3264. raw_tag = get_next_completion(h, q);
  3265. while (raw_tag != FIFO_EMPTY) {
  3266. if (likely(hpsa_tag_contains_index(raw_tag)))
  3267. process_indexed_cmd(h, raw_tag);
  3268. else
  3269. process_nonindexed_cmd(h, raw_tag);
  3270. raw_tag = next_command(h, q);
  3271. }
  3272. return IRQ_HANDLED;
  3273. }
  3274. /* Send a message CDB to the firmware. Careful, this only works
  3275. * in simple mode, not performant mode due to the tag lookup.
  3276. * We only ever use this immediately after a controller reset.
  3277. */
  3278. static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
  3279. unsigned char type)
  3280. {
  3281. struct Command {
  3282. struct CommandListHeader CommandHeader;
  3283. struct RequestBlock Request;
  3284. struct ErrDescriptor ErrorDescriptor;
  3285. };
  3286. struct Command *cmd;
  3287. static const size_t cmd_sz = sizeof(*cmd) +
  3288. sizeof(cmd->ErrorDescriptor);
  3289. dma_addr_t paddr64;
  3290. uint32_t paddr32, tag;
  3291. void __iomem *vaddr;
  3292. int i, err;
  3293. vaddr = pci_ioremap_bar(pdev, 0);
  3294. if (vaddr == NULL)
  3295. return -ENOMEM;
  3296. /* The Inbound Post Queue only accepts 32-bit physical addresses for the
  3297. * CCISS commands, so they must be allocated from the lower 4GiB of
  3298. * memory.
  3299. */
  3300. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3301. if (err) {
  3302. iounmap(vaddr);
  3303. return -ENOMEM;
  3304. }
  3305. cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
  3306. if (cmd == NULL) {
  3307. iounmap(vaddr);
  3308. return -ENOMEM;
  3309. }
  3310. /* This must fit, because of the 32-bit consistent DMA mask. Also,
  3311. * although there's no guarantee, we assume that the address is at
  3312. * least 4-byte aligned (most likely, it's page-aligned).
  3313. */
  3314. paddr32 = paddr64;
  3315. cmd->CommandHeader.ReplyQueue = 0;
  3316. cmd->CommandHeader.SGList = 0;
  3317. cmd->CommandHeader.SGTotal = 0;
  3318. cmd->CommandHeader.Tag.lower = paddr32;
  3319. cmd->CommandHeader.Tag.upper = 0;
  3320. memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
  3321. cmd->Request.CDBLen = 16;
  3322. cmd->Request.Type.Type = TYPE_MSG;
  3323. cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
  3324. cmd->Request.Type.Direction = XFER_NONE;
  3325. cmd->Request.Timeout = 0; /* Don't time out */
  3326. cmd->Request.CDB[0] = opcode;
  3327. cmd->Request.CDB[1] = type;
  3328. memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
  3329. cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
  3330. cmd->ErrorDescriptor.Addr.upper = 0;
  3331. cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
  3332. writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
  3333. for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
  3334. tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
  3335. if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
  3336. break;
  3337. msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
  3338. }
  3339. iounmap(vaddr);
  3340. /* we leak the DMA buffer here ... no choice since the controller could
  3341. * still complete the command.
  3342. */
  3343. if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
  3344. dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
  3345. opcode, type);
  3346. return -ETIMEDOUT;
  3347. }
  3348. pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
  3349. if (tag & HPSA_ERROR_BIT) {
  3350. dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
  3351. opcode, type);
  3352. return -EIO;
  3353. }
  3354. dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
  3355. opcode, type);
  3356. return 0;
  3357. }
  3358. #define hpsa_noop(p) hpsa_message(p, 3, 0)
  3359. static int hpsa_controller_hard_reset(struct pci_dev *pdev,
  3360. void * __iomem vaddr, u32 use_doorbell)
  3361. {
  3362. u16 pmcsr;
  3363. int pos;
  3364. if (use_doorbell) {
  3365. /* For everything after the P600, the PCI power state method
  3366. * of resetting the controller doesn't work, so we have this
  3367. * other way using the doorbell register.
  3368. */
  3369. dev_info(&pdev->dev, "using doorbell to reset controller\n");
  3370. writel(use_doorbell, vaddr + SA5_DOORBELL);
  3371. } else { /* Try to do it the PCI power state way */
  3372. /* Quoting from the Open CISS Specification: "The Power
  3373. * Management Control/Status Register (CSR) controls the power
  3374. * state of the device. The normal operating state is D0,
  3375. * CSR=00h. The software off state is D3, CSR=03h. To reset
  3376. * the controller, place the interface device in D3 then to D0,
  3377. * this causes a secondary PCI reset which will reset the
  3378. * controller." */
  3379. pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3380. if (pos == 0) {
  3381. dev_err(&pdev->dev,
  3382. "hpsa_reset_controller: "
  3383. "PCI PM not supported\n");
  3384. return -ENODEV;
  3385. }
  3386. dev_info(&pdev->dev, "using PCI PM to reset controller\n");
  3387. /* enter the D3hot power management state */
  3388. pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
  3389. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3390. pmcsr |= PCI_D3hot;
  3391. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3392. msleep(500);
  3393. /* enter the D0 power management state */
  3394. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3395. pmcsr |= PCI_D0;
  3396. pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
  3397. /*
  3398. * The P600 requires a small delay when changing states.
  3399. * Otherwise we may think the board did not reset and we bail.
  3400. * This for kdump only and is particular to the P600.
  3401. */
  3402. msleep(500);
  3403. }
  3404. return 0;
  3405. }
  3406. static void init_driver_version(char *driver_version, int len)
  3407. {
  3408. memset(driver_version, 0, len);
  3409. strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
  3410. }
  3411. static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
  3412. {
  3413. char *driver_version;
  3414. int i, size = sizeof(cfgtable->driver_version);
  3415. driver_version = kmalloc(size, GFP_KERNEL);
  3416. if (!driver_version)
  3417. return -ENOMEM;
  3418. init_driver_version(driver_version, size);
  3419. for (i = 0; i < size; i++)
  3420. writeb(driver_version[i], &cfgtable->driver_version[i]);
  3421. kfree(driver_version);
  3422. return 0;
  3423. }
  3424. static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
  3425. unsigned char *driver_ver)
  3426. {
  3427. int i;
  3428. for (i = 0; i < sizeof(cfgtable->driver_version); i++)
  3429. driver_ver[i] = readb(&cfgtable->driver_version[i]);
  3430. }
  3431. static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
  3432. {
  3433. char *driver_ver, *old_driver_ver;
  3434. int rc, size = sizeof(cfgtable->driver_version);
  3435. old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
  3436. if (!old_driver_ver)
  3437. return -ENOMEM;
  3438. driver_ver = old_driver_ver + size;
  3439. /* After a reset, the 32 bytes of "driver version" in the cfgtable
  3440. * should have been changed, otherwise we know the reset failed.
  3441. */
  3442. init_driver_version(old_driver_ver, size);
  3443. read_driver_ver_from_cfgtable(cfgtable, driver_ver);
  3444. rc = !memcmp(driver_ver, old_driver_ver, size);
  3445. kfree(old_driver_ver);
  3446. return rc;
  3447. }
  3448. /* This does a hard reset of the controller using PCI power management
  3449. * states or the using the doorbell register.
  3450. */
  3451. static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
  3452. {
  3453. u64 cfg_offset;
  3454. u32 cfg_base_addr;
  3455. u64 cfg_base_addr_index;
  3456. void __iomem *vaddr;
  3457. unsigned long paddr;
  3458. u32 misc_fw_support;
  3459. int rc;
  3460. struct CfgTable __iomem *cfgtable;
  3461. u32 use_doorbell;
  3462. u32 board_id;
  3463. u16 command_register;
  3464. /* For controllers as old as the P600, this is very nearly
  3465. * the same thing as
  3466. *
  3467. * pci_save_state(pci_dev);
  3468. * pci_set_power_state(pci_dev, PCI_D3hot);
  3469. * pci_set_power_state(pci_dev, PCI_D0);
  3470. * pci_restore_state(pci_dev);
  3471. *
  3472. * For controllers newer than the P600, the pci power state
  3473. * method of resetting doesn't work so we have another way
  3474. * using the doorbell register.
  3475. */
  3476. rc = hpsa_lookup_board_id(pdev, &board_id);
  3477. if (rc < 0 || !ctlr_is_resettable(board_id)) {
  3478. dev_warn(&pdev->dev, "Not resetting device.\n");
  3479. return -ENODEV;
  3480. }
  3481. /* if controller is soft- but not hard resettable... */
  3482. if (!ctlr_is_hard_resettable(board_id))
  3483. return -ENOTSUPP; /* try soft reset later. */
  3484. /* Save the PCI command register */
  3485. pci_read_config_word(pdev, 4, &command_register);
  3486. /* Turn the board off. This is so that later pci_restore_state()
  3487. * won't turn the board on before the rest of config space is ready.
  3488. */
  3489. pci_disable_device(pdev);
  3490. pci_save_state(pdev);
  3491. /* find the first memory BAR, so we can find the cfg table */
  3492. rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
  3493. if (rc)
  3494. return rc;
  3495. vaddr = remap_pci_mem(paddr, 0x250);
  3496. if (!vaddr)
  3497. return -ENOMEM;
  3498. /* find cfgtable in order to check if reset via doorbell is supported */
  3499. rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
  3500. &cfg_base_addr_index, &cfg_offset);
  3501. if (rc)
  3502. goto unmap_vaddr;
  3503. cfgtable = remap_pci_mem(pci_resource_start(pdev,
  3504. cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
  3505. if (!cfgtable) {
  3506. rc = -ENOMEM;
  3507. goto unmap_vaddr;
  3508. }
  3509. rc = write_driver_ver_to_cfgtable(cfgtable);
  3510. if (rc)
  3511. goto unmap_vaddr;
  3512. /* If reset via doorbell register is supported, use that.
  3513. * There are two such methods. Favor the newest method.
  3514. */
  3515. misc_fw_support = readl(&cfgtable->misc_fw_support);
  3516. use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
  3517. if (use_doorbell) {
  3518. use_doorbell = DOORBELL_CTLR_RESET2;
  3519. } else {
  3520. use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
  3521. if (use_doorbell) {
  3522. dev_warn(&pdev->dev, "Soft reset not supported. "
  3523. "Firmware update is required.\n");
  3524. rc = -ENOTSUPP; /* try soft reset */
  3525. goto unmap_cfgtable;
  3526. }
  3527. }
  3528. rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
  3529. if (rc)
  3530. goto unmap_cfgtable;
  3531. pci_restore_state(pdev);
  3532. rc = pci_enable_device(pdev);
  3533. if (rc) {
  3534. dev_warn(&pdev->dev, "failed to enable device.\n");
  3535. goto unmap_cfgtable;
  3536. }
  3537. pci_write_config_word(pdev, 4, command_register);
  3538. /* Some devices (notably the HP Smart Array 5i Controller)
  3539. need a little pause here */
  3540. msleep(HPSA_POST_RESET_PAUSE_MSECS);
  3541. /* Wait for board to become not ready, then ready. */
  3542. dev_info(&pdev->dev, "Waiting for board to reset.\n");
  3543. rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
  3544. if (rc) {
  3545. dev_warn(&pdev->dev,
  3546. "failed waiting for board to reset."
  3547. " Will try soft reset.\n");
  3548. rc = -ENOTSUPP; /* Not expected, but try soft reset later */
  3549. goto unmap_cfgtable;
  3550. }
  3551. rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
  3552. if (rc) {
  3553. dev_warn(&pdev->dev,
  3554. "failed waiting for board to become ready "
  3555. "after hard reset\n");
  3556. goto unmap_cfgtable;
  3557. }
  3558. rc = controller_reset_failed(vaddr);
  3559. if (rc < 0)
  3560. goto unmap_cfgtable;
  3561. if (rc) {
  3562. dev_warn(&pdev->dev, "Unable to successfully reset "
  3563. "controller. Will try soft reset.\n");
  3564. rc = -ENOTSUPP;
  3565. } else {
  3566. dev_info(&pdev->dev, "board ready after hard reset.\n");
  3567. }
  3568. unmap_cfgtable:
  3569. iounmap(cfgtable);
  3570. unmap_vaddr:
  3571. iounmap(vaddr);
  3572. return rc;
  3573. }
  3574. /*
  3575. * We cannot read the structure directly, for portability we must use
  3576. * the io functions.
  3577. * This is for debug only.
  3578. */
  3579. static void print_cfg_table(struct device *dev, struct CfgTable *tb)
  3580. {
  3581. #ifdef HPSA_DEBUG
  3582. int i;
  3583. char temp_name[17];
  3584. dev_info(dev, "Controller Configuration information\n");
  3585. dev_info(dev, "------------------------------------\n");
  3586. for (i = 0; i < 4; i++)
  3587. temp_name[i] = readb(&(tb->Signature[i]));
  3588. temp_name[4] = '\0';
  3589. dev_info(dev, " Signature = %s\n", temp_name);
  3590. dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
  3591. dev_info(dev, " Transport methods supported = 0x%x\n",
  3592. readl(&(tb->TransportSupport)));
  3593. dev_info(dev, " Transport methods active = 0x%x\n",
  3594. readl(&(tb->TransportActive)));
  3595. dev_info(dev, " Requested transport Method = 0x%x\n",
  3596. readl(&(tb->HostWrite.TransportRequest)));
  3597. dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
  3598. readl(&(tb->HostWrite.CoalIntDelay)));
  3599. dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
  3600. readl(&(tb->HostWrite.CoalIntCount)));
  3601. dev_info(dev, " Max outstanding commands = 0x%d\n",
  3602. readl(&(tb->CmdsOutMax)));
  3603. dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
  3604. for (i = 0; i < 16; i++)
  3605. temp_name[i] = readb(&(tb->ServerName[i]));
  3606. temp_name[16] = '\0';
  3607. dev_info(dev, " Server Name = %s\n", temp_name);
  3608. dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
  3609. readl(&(tb->HeartBeat)));
  3610. #endif /* HPSA_DEBUG */
  3611. }
  3612. static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
  3613. {
  3614. int i, offset, mem_type, bar_type;
  3615. if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
  3616. return 0;
  3617. offset = 0;
  3618. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3619. bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
  3620. if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
  3621. offset += 4;
  3622. else {
  3623. mem_type = pci_resource_flags(pdev, i) &
  3624. PCI_BASE_ADDRESS_MEM_TYPE_MASK;
  3625. switch (mem_type) {
  3626. case PCI_BASE_ADDRESS_MEM_TYPE_32:
  3627. case PCI_BASE_ADDRESS_MEM_TYPE_1M:
  3628. offset += 4; /* 32 bit */
  3629. break;
  3630. case PCI_BASE_ADDRESS_MEM_TYPE_64:
  3631. offset += 8;
  3632. break;
  3633. default: /* reserved in PCI 2.2 */
  3634. dev_warn(&pdev->dev,
  3635. "base address is invalid\n");
  3636. return -1;
  3637. break;
  3638. }
  3639. }
  3640. if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
  3641. return i + 1;
  3642. }
  3643. return -1;
  3644. }
  3645. /* If MSI/MSI-X is supported by the kernel we will try to enable it on
  3646. * controllers that are capable. If not, we use IO-APIC mode.
  3647. */
  3648. static void hpsa_interrupt_mode(struct ctlr_info *h)
  3649. {
  3650. #ifdef CONFIG_PCI_MSI
  3651. int err, i;
  3652. struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
  3653. for (i = 0; i < MAX_REPLY_QUEUES; i++) {
  3654. hpsa_msix_entries[i].vector = 0;
  3655. hpsa_msix_entries[i].entry = i;
  3656. }
  3657. /* Some boards advertise MSI but don't really support it */
  3658. if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
  3659. (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
  3660. goto default_int_mode;
  3661. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
  3662. dev_info(&h->pdev->dev, "MSIX\n");
  3663. err = pci_enable_msix(h->pdev, hpsa_msix_entries,
  3664. MAX_REPLY_QUEUES);
  3665. if (!err) {
  3666. for (i = 0; i < MAX_REPLY_QUEUES; i++)
  3667. h->intr[i] = hpsa_msix_entries[i].vector;
  3668. h->msix_vector = 1;
  3669. return;
  3670. }
  3671. if (err > 0) {
  3672. dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
  3673. "available\n", err);
  3674. goto default_int_mode;
  3675. } else {
  3676. dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
  3677. err);
  3678. goto default_int_mode;
  3679. }
  3680. }
  3681. if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
  3682. dev_info(&h->pdev->dev, "MSI\n");
  3683. if (!pci_enable_msi(h->pdev))
  3684. h->msi_vector = 1;
  3685. else
  3686. dev_warn(&h->pdev->dev, "MSI init failed\n");
  3687. }
  3688. default_int_mode:
  3689. #endif /* CONFIG_PCI_MSI */
  3690. /* if we get here we're going to use the default interrupt mode */
  3691. h->intr[h->intr_mode] = h->pdev->irq;
  3692. }
  3693. static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
  3694. {
  3695. int i;
  3696. u32 subsystem_vendor_id, subsystem_device_id;
  3697. subsystem_vendor_id = pdev->subsystem_vendor;
  3698. subsystem_device_id = pdev->subsystem_device;
  3699. *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
  3700. subsystem_vendor_id;
  3701. for (i = 0; i < ARRAY_SIZE(products); i++)
  3702. if (*board_id == products[i].board_id)
  3703. return i;
  3704. if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
  3705. subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
  3706. !hpsa_allow_any) {
  3707. dev_warn(&pdev->dev, "unrecognized board ID: "
  3708. "0x%08x, ignoring.\n", *board_id);
  3709. return -ENODEV;
  3710. }
  3711. return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
  3712. }
  3713. static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
  3714. unsigned long *memory_bar)
  3715. {
  3716. int i;
  3717. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
  3718. if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
  3719. /* addressing mode bits already removed */
  3720. *memory_bar = pci_resource_start(pdev, i);
  3721. dev_dbg(&pdev->dev, "memory BAR = %lx\n",
  3722. *memory_bar);
  3723. return 0;
  3724. }
  3725. dev_warn(&pdev->dev, "no memory BAR found\n");
  3726. return -ENODEV;
  3727. }
  3728. static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
  3729. int wait_for_ready)
  3730. {
  3731. int i, iterations;
  3732. u32 scratchpad;
  3733. if (wait_for_ready)
  3734. iterations = HPSA_BOARD_READY_ITERATIONS;
  3735. else
  3736. iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
  3737. for (i = 0; i < iterations; i++) {
  3738. scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
  3739. if (wait_for_ready) {
  3740. if (scratchpad == HPSA_FIRMWARE_READY)
  3741. return 0;
  3742. } else {
  3743. if (scratchpad != HPSA_FIRMWARE_READY)
  3744. return 0;
  3745. }
  3746. msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
  3747. }
  3748. dev_warn(&pdev->dev, "board not ready, timed out.\n");
  3749. return -ENODEV;
  3750. }
  3751. static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
  3752. u32 *cfg_base_addr, u64 *cfg_base_addr_index,
  3753. u64 *cfg_offset)
  3754. {
  3755. *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
  3756. *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
  3757. *cfg_base_addr &= (u32) 0x0000ffff;
  3758. *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
  3759. if (*cfg_base_addr_index == -1) {
  3760. dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
  3761. return -ENODEV;
  3762. }
  3763. return 0;
  3764. }
  3765. static int hpsa_find_cfgtables(struct ctlr_info *h)
  3766. {
  3767. u64 cfg_offset;
  3768. u32 cfg_base_addr;
  3769. u64 cfg_base_addr_index;
  3770. u32 trans_offset;
  3771. int rc;
  3772. rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
  3773. &cfg_base_addr_index, &cfg_offset);
  3774. if (rc)
  3775. return rc;
  3776. h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
  3777. cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
  3778. if (!h->cfgtable)
  3779. return -ENOMEM;
  3780. rc = write_driver_ver_to_cfgtable(h->cfgtable);
  3781. if (rc)
  3782. return rc;
  3783. /* Find performant mode table. */
  3784. trans_offset = readl(&h->cfgtable->TransMethodOffset);
  3785. h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
  3786. cfg_base_addr_index)+cfg_offset+trans_offset,
  3787. sizeof(*h->transtable));
  3788. if (!h->transtable)
  3789. return -ENOMEM;
  3790. return 0;
  3791. }
  3792. static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
  3793. {
  3794. h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
  3795. /* Limit commands in memory limited kdump scenario. */
  3796. if (reset_devices && h->max_commands > 32)
  3797. h->max_commands = 32;
  3798. if (h->max_commands < 16) {
  3799. dev_warn(&h->pdev->dev, "Controller reports "
  3800. "max supported commands of %d, an obvious lie. "
  3801. "Using 16. Ensure that firmware is up to date.\n",
  3802. h->max_commands);
  3803. h->max_commands = 16;
  3804. }
  3805. }
  3806. /* Interrogate the hardware for some limits:
  3807. * max commands, max SG elements without chaining, and with chaining,
  3808. * SG chain block size, etc.
  3809. */
  3810. static void hpsa_find_board_params(struct ctlr_info *h)
  3811. {
  3812. hpsa_get_max_perf_mode_cmds(h);
  3813. h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
  3814. h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
  3815. /*
  3816. * Limit in-command s/g elements to 32 save dma'able memory.
  3817. * Howvever spec says if 0, use 31
  3818. */
  3819. h->max_cmd_sg_entries = 31;
  3820. if (h->maxsgentries > 512) {
  3821. h->max_cmd_sg_entries = 32;
  3822. h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
  3823. h->maxsgentries--; /* save one for chain pointer */
  3824. } else {
  3825. h->maxsgentries = 31; /* default to traditional values */
  3826. h->chainsize = 0;
  3827. }
  3828. /* Find out what task management functions are supported and cache */
  3829. h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
  3830. }
  3831. static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
  3832. {
  3833. if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
  3834. dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
  3835. return false;
  3836. }
  3837. return true;
  3838. }
  3839. /* Need to enable prefetch in the SCSI core for 6400 in x86 */
  3840. static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
  3841. {
  3842. #ifdef CONFIG_X86
  3843. u32 prefetch;
  3844. prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
  3845. prefetch |= 0x100;
  3846. writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
  3847. #endif
  3848. }
  3849. /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
  3850. * in a prefetch beyond physical memory.
  3851. */
  3852. static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
  3853. {
  3854. u32 dma_prefetch;
  3855. if (h->board_id != 0x3225103C)
  3856. return;
  3857. dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
  3858. dma_prefetch |= 0x8000;
  3859. writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
  3860. }
  3861. static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
  3862. {
  3863. int i;
  3864. u32 doorbell_value;
  3865. unsigned long flags;
  3866. /* under certain very rare conditions, this can take awhile.
  3867. * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
  3868. * as we enter this code.)
  3869. */
  3870. for (i = 0; i < MAX_CONFIG_WAIT; i++) {
  3871. spin_lock_irqsave(&h->lock, flags);
  3872. doorbell_value = readl(h->vaddr + SA5_DOORBELL);
  3873. spin_unlock_irqrestore(&h->lock, flags);
  3874. if (!(doorbell_value & CFGTBL_ChangeReq))
  3875. break;
  3876. /* delay and try again */
  3877. usleep_range(10000, 20000);
  3878. }
  3879. }
  3880. static int hpsa_enter_simple_mode(struct ctlr_info *h)
  3881. {
  3882. u32 trans_support;
  3883. trans_support = readl(&(h->cfgtable->TransportSupport));
  3884. if (!(trans_support & SIMPLE_MODE))
  3885. return -ENOTSUPP;
  3886. h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
  3887. /* Update the field, and then ring the doorbell */
  3888. writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
  3889. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  3890. hpsa_wait_for_mode_change_ack(h);
  3891. print_cfg_table(&h->pdev->dev, h->cfgtable);
  3892. if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
  3893. dev_warn(&h->pdev->dev,
  3894. "unable to get board into simple mode\n");
  3895. return -ENODEV;
  3896. }
  3897. h->transMethod = CFGTBL_Trans_Simple;
  3898. return 0;
  3899. }
  3900. static int hpsa_pci_init(struct ctlr_info *h)
  3901. {
  3902. int prod_index, err;
  3903. prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
  3904. if (prod_index < 0)
  3905. return -ENODEV;
  3906. h->product_name = products[prod_index].product_name;
  3907. h->access = *(products[prod_index].access);
  3908. pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
  3909. PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
  3910. err = pci_enable_device(h->pdev);
  3911. if (err) {
  3912. dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
  3913. return err;
  3914. }
  3915. /* Enable bus mastering (pci_disable_device may disable this) */
  3916. pci_set_master(h->pdev);
  3917. err = pci_request_regions(h->pdev, HPSA);
  3918. if (err) {
  3919. dev_err(&h->pdev->dev,
  3920. "cannot obtain PCI resources, aborting\n");
  3921. return err;
  3922. }
  3923. hpsa_interrupt_mode(h);
  3924. err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
  3925. if (err)
  3926. goto err_out_free_res;
  3927. h->vaddr = remap_pci_mem(h->paddr, 0x250);
  3928. if (!h->vaddr) {
  3929. err = -ENOMEM;
  3930. goto err_out_free_res;
  3931. }
  3932. err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
  3933. if (err)
  3934. goto err_out_free_res;
  3935. err = hpsa_find_cfgtables(h);
  3936. if (err)
  3937. goto err_out_free_res;
  3938. hpsa_find_board_params(h);
  3939. if (!hpsa_CISS_signature_present(h)) {
  3940. err = -ENODEV;
  3941. goto err_out_free_res;
  3942. }
  3943. hpsa_enable_scsi_prefetch(h);
  3944. hpsa_p600_dma_prefetch_quirk(h);
  3945. err = hpsa_enter_simple_mode(h);
  3946. if (err)
  3947. goto err_out_free_res;
  3948. return 0;
  3949. err_out_free_res:
  3950. if (h->transtable)
  3951. iounmap(h->transtable);
  3952. if (h->cfgtable)
  3953. iounmap(h->cfgtable);
  3954. if (h->vaddr)
  3955. iounmap(h->vaddr);
  3956. pci_disable_device(h->pdev);
  3957. pci_release_regions(h->pdev);
  3958. return err;
  3959. }
  3960. static void hpsa_hba_inquiry(struct ctlr_info *h)
  3961. {
  3962. int rc;
  3963. #define HBA_INQUIRY_BYTE_COUNT 64
  3964. h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
  3965. if (!h->hba_inquiry_data)
  3966. return;
  3967. rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
  3968. h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
  3969. if (rc != 0) {
  3970. kfree(h->hba_inquiry_data);
  3971. h->hba_inquiry_data = NULL;
  3972. }
  3973. }
  3974. static int hpsa_init_reset_devices(struct pci_dev *pdev)
  3975. {
  3976. int rc, i;
  3977. if (!reset_devices)
  3978. return 0;
  3979. /* Reset the controller with a PCI power-cycle or via doorbell */
  3980. rc = hpsa_kdump_hard_reset_controller(pdev);
  3981. /* -ENOTSUPP here means we cannot reset the controller
  3982. * but it's already (and still) up and running in
  3983. * "performant mode". Or, it might be 640x, which can't reset
  3984. * due to concerns about shared bbwc between 6402/6404 pair.
  3985. */
  3986. if (rc == -ENOTSUPP)
  3987. return rc; /* just try to do the kdump anyhow. */
  3988. if (rc)
  3989. return -ENODEV;
  3990. /* Now try to get the controller to respond to a no-op */
  3991. dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
  3992. for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
  3993. if (hpsa_noop(pdev) == 0)
  3994. break;
  3995. else
  3996. dev_warn(&pdev->dev, "no-op failed%s\n",
  3997. (i < 11 ? "; re-trying" : ""));
  3998. }
  3999. return 0;
  4000. }
  4001. static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
  4002. {
  4003. h->cmd_pool_bits = kzalloc(
  4004. DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
  4005. sizeof(unsigned long), GFP_KERNEL);
  4006. h->cmd_pool = pci_alloc_consistent(h->pdev,
  4007. h->nr_cmds * sizeof(*h->cmd_pool),
  4008. &(h->cmd_pool_dhandle));
  4009. h->errinfo_pool = pci_alloc_consistent(h->pdev,
  4010. h->nr_cmds * sizeof(*h->errinfo_pool),
  4011. &(h->errinfo_pool_dhandle));
  4012. if ((h->cmd_pool_bits == NULL)
  4013. || (h->cmd_pool == NULL)
  4014. || (h->errinfo_pool == NULL)) {
  4015. dev_err(&h->pdev->dev, "out of memory in %s", __func__);
  4016. return -ENOMEM;
  4017. }
  4018. return 0;
  4019. }
  4020. static void hpsa_free_cmd_pool(struct ctlr_info *h)
  4021. {
  4022. kfree(h->cmd_pool_bits);
  4023. if (h->cmd_pool)
  4024. pci_free_consistent(h->pdev,
  4025. h->nr_cmds * sizeof(struct CommandList),
  4026. h->cmd_pool, h->cmd_pool_dhandle);
  4027. if (h->errinfo_pool)
  4028. pci_free_consistent(h->pdev,
  4029. h->nr_cmds * sizeof(struct ErrorInfo),
  4030. h->errinfo_pool,
  4031. h->errinfo_pool_dhandle);
  4032. }
  4033. static int hpsa_request_irq(struct ctlr_info *h,
  4034. irqreturn_t (*msixhandler)(int, void *),
  4035. irqreturn_t (*intxhandler)(int, void *))
  4036. {
  4037. int rc, i;
  4038. /*
  4039. * initialize h->q[x] = x so that interrupt handlers know which
  4040. * queue to process.
  4041. */
  4042. for (i = 0; i < MAX_REPLY_QUEUES; i++)
  4043. h->q[i] = (u8) i;
  4044. if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
  4045. /* If performant mode and MSI-X, use multiple reply queues */
  4046. for (i = 0; i < MAX_REPLY_QUEUES; i++)
  4047. rc = request_irq(h->intr[i], msixhandler,
  4048. 0, h->devname,
  4049. &h->q[i]);
  4050. } else {
  4051. /* Use single reply pool */
  4052. if (h->msix_vector || h->msi_vector) {
  4053. rc = request_irq(h->intr[h->intr_mode],
  4054. msixhandler, 0, h->devname,
  4055. &h->q[h->intr_mode]);
  4056. } else {
  4057. rc = request_irq(h->intr[h->intr_mode],
  4058. intxhandler, IRQF_SHARED, h->devname,
  4059. &h->q[h->intr_mode]);
  4060. }
  4061. }
  4062. if (rc) {
  4063. dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
  4064. h->intr[h->intr_mode], h->devname);
  4065. return -ENODEV;
  4066. }
  4067. return 0;
  4068. }
  4069. static int hpsa_kdump_soft_reset(struct ctlr_info *h)
  4070. {
  4071. if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
  4072. HPSA_RESET_TYPE_CONTROLLER)) {
  4073. dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
  4074. return -EIO;
  4075. }
  4076. dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
  4077. if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
  4078. dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
  4079. return -1;
  4080. }
  4081. dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
  4082. if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
  4083. dev_warn(&h->pdev->dev, "Board failed to become ready "
  4084. "after soft reset.\n");
  4085. return -1;
  4086. }
  4087. return 0;
  4088. }
  4089. static void free_irqs(struct ctlr_info *h)
  4090. {
  4091. int i;
  4092. if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
  4093. /* Single reply queue, only one irq to free */
  4094. i = h->intr_mode;
  4095. free_irq(h->intr[i], &h->q[i]);
  4096. return;
  4097. }
  4098. for (i = 0; i < MAX_REPLY_QUEUES; i++)
  4099. free_irq(h->intr[i], &h->q[i]);
  4100. }
  4101. static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
  4102. {
  4103. free_irqs(h);
  4104. #ifdef CONFIG_PCI_MSI
  4105. if (h->msix_vector) {
  4106. if (h->pdev->msix_enabled)
  4107. pci_disable_msix(h->pdev);
  4108. } else if (h->msi_vector) {
  4109. if (h->pdev->msi_enabled)
  4110. pci_disable_msi(h->pdev);
  4111. }
  4112. #endif /* CONFIG_PCI_MSI */
  4113. }
  4114. static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
  4115. {
  4116. hpsa_free_irqs_and_disable_msix(h);
  4117. hpsa_free_sg_chain_blocks(h);
  4118. hpsa_free_cmd_pool(h);
  4119. kfree(h->blockFetchTable);
  4120. pci_free_consistent(h->pdev, h->reply_pool_size,
  4121. h->reply_pool, h->reply_pool_dhandle);
  4122. if (h->vaddr)
  4123. iounmap(h->vaddr);
  4124. if (h->transtable)
  4125. iounmap(h->transtable);
  4126. if (h->cfgtable)
  4127. iounmap(h->cfgtable);
  4128. pci_release_regions(h->pdev);
  4129. kfree(h);
  4130. }
  4131. static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
  4132. {
  4133. assert_spin_locked(&lockup_detector_lock);
  4134. if (!hpsa_lockup_detector)
  4135. return;
  4136. if (h->lockup_detected)
  4137. return; /* already stopped the lockup detector */
  4138. list_del(&h->lockup_list);
  4139. }
  4140. /* Called when controller lockup detected. */
  4141. static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
  4142. {
  4143. struct CommandList *c = NULL;
  4144. assert_spin_locked(&h->lock);
  4145. /* Mark all outstanding commands as failed and complete them. */
  4146. while (!list_empty(list)) {
  4147. c = list_entry(list->next, struct CommandList, list);
  4148. c->err_info->CommandStatus = CMD_HARDWARE_ERR;
  4149. finish_cmd(c);
  4150. }
  4151. }
  4152. static void controller_lockup_detected(struct ctlr_info *h)
  4153. {
  4154. unsigned long flags;
  4155. assert_spin_locked(&lockup_detector_lock);
  4156. remove_ctlr_from_lockup_detector_list(h);
  4157. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  4158. spin_lock_irqsave(&h->lock, flags);
  4159. h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
  4160. spin_unlock_irqrestore(&h->lock, flags);
  4161. dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
  4162. h->lockup_detected);
  4163. pci_disable_device(h->pdev);
  4164. spin_lock_irqsave(&h->lock, flags);
  4165. fail_all_cmds_on_list(h, &h->cmpQ);
  4166. fail_all_cmds_on_list(h, &h->reqQ);
  4167. spin_unlock_irqrestore(&h->lock, flags);
  4168. }
  4169. static void detect_controller_lockup(struct ctlr_info *h)
  4170. {
  4171. u64 now;
  4172. u32 heartbeat;
  4173. unsigned long flags;
  4174. assert_spin_locked(&lockup_detector_lock);
  4175. now = get_jiffies_64();
  4176. /* If we've received an interrupt recently, we're ok. */
  4177. if (time_after64(h->last_intr_timestamp +
  4178. (h->heartbeat_sample_interval), now))
  4179. return;
  4180. /*
  4181. * If we've already checked the heartbeat recently, we're ok.
  4182. * This could happen if someone sends us a signal. We
  4183. * otherwise don't care about signals in this thread.
  4184. */
  4185. if (time_after64(h->last_heartbeat_timestamp +
  4186. (h->heartbeat_sample_interval), now))
  4187. return;
  4188. /* If heartbeat has not changed since we last looked, we're not ok. */
  4189. spin_lock_irqsave(&h->lock, flags);
  4190. heartbeat = readl(&h->cfgtable->HeartBeat);
  4191. spin_unlock_irqrestore(&h->lock, flags);
  4192. if (h->last_heartbeat == heartbeat) {
  4193. controller_lockup_detected(h);
  4194. return;
  4195. }
  4196. /* We're ok. */
  4197. h->last_heartbeat = heartbeat;
  4198. h->last_heartbeat_timestamp = now;
  4199. }
  4200. static int detect_controller_lockup_thread(void *notused)
  4201. {
  4202. struct ctlr_info *h;
  4203. unsigned long flags;
  4204. while (1) {
  4205. struct list_head *this, *tmp;
  4206. schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
  4207. if (kthread_should_stop())
  4208. break;
  4209. spin_lock_irqsave(&lockup_detector_lock, flags);
  4210. list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
  4211. h = list_entry(this, struct ctlr_info, lockup_list);
  4212. detect_controller_lockup(h);
  4213. }
  4214. spin_unlock_irqrestore(&lockup_detector_lock, flags);
  4215. }
  4216. return 0;
  4217. }
  4218. static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
  4219. {
  4220. unsigned long flags;
  4221. h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
  4222. spin_lock_irqsave(&lockup_detector_lock, flags);
  4223. list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
  4224. spin_unlock_irqrestore(&lockup_detector_lock, flags);
  4225. }
  4226. static void start_controller_lockup_detector(struct ctlr_info *h)
  4227. {
  4228. /* Start the lockup detector thread if not already started */
  4229. if (!hpsa_lockup_detector) {
  4230. spin_lock_init(&lockup_detector_lock);
  4231. hpsa_lockup_detector =
  4232. kthread_run(detect_controller_lockup_thread,
  4233. NULL, HPSA);
  4234. }
  4235. if (!hpsa_lockup_detector) {
  4236. dev_warn(&h->pdev->dev,
  4237. "Could not start lockup detector thread\n");
  4238. return;
  4239. }
  4240. add_ctlr_to_lockup_detector_list(h);
  4241. }
  4242. static void stop_controller_lockup_detector(struct ctlr_info *h)
  4243. {
  4244. unsigned long flags;
  4245. spin_lock_irqsave(&lockup_detector_lock, flags);
  4246. remove_ctlr_from_lockup_detector_list(h);
  4247. /* If the list of ctlr's to monitor is empty, stop the thread */
  4248. if (list_empty(&hpsa_ctlr_list)) {
  4249. spin_unlock_irqrestore(&lockup_detector_lock, flags);
  4250. kthread_stop(hpsa_lockup_detector);
  4251. spin_lock_irqsave(&lockup_detector_lock, flags);
  4252. hpsa_lockup_detector = NULL;
  4253. }
  4254. spin_unlock_irqrestore(&lockup_detector_lock, flags);
  4255. }
  4256. static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  4257. {
  4258. int dac, rc;
  4259. struct ctlr_info *h;
  4260. int try_soft_reset = 0;
  4261. unsigned long flags;
  4262. if (number_of_controllers == 0)
  4263. printk(KERN_INFO DRIVER_NAME "\n");
  4264. rc = hpsa_init_reset_devices(pdev);
  4265. if (rc) {
  4266. if (rc != -ENOTSUPP)
  4267. return rc;
  4268. /* If the reset fails in a particular way (it has no way to do
  4269. * a proper hard reset, so returns -ENOTSUPP) we can try to do
  4270. * a soft reset once we get the controller configured up to the
  4271. * point that it can accept a command.
  4272. */
  4273. try_soft_reset = 1;
  4274. rc = 0;
  4275. }
  4276. reinit_after_soft_reset:
  4277. /* Command structures must be aligned on a 32-byte boundary because
  4278. * the 5 lower bits of the address are used by the hardware. and by
  4279. * the driver. See comments in hpsa.h for more info.
  4280. */
  4281. #define COMMANDLIST_ALIGNMENT 32
  4282. BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
  4283. h = kzalloc(sizeof(*h), GFP_KERNEL);
  4284. if (!h)
  4285. return -ENOMEM;
  4286. h->pdev = pdev;
  4287. h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
  4288. INIT_LIST_HEAD(&h->cmpQ);
  4289. INIT_LIST_HEAD(&h->reqQ);
  4290. spin_lock_init(&h->lock);
  4291. spin_lock_init(&h->scan_lock);
  4292. rc = hpsa_pci_init(h);
  4293. if (rc != 0)
  4294. goto clean1;
  4295. sprintf(h->devname, HPSA "%d", number_of_controllers);
  4296. h->ctlr = number_of_controllers;
  4297. number_of_controllers++;
  4298. /* configure PCI DMA stuff */
  4299. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
  4300. if (rc == 0) {
  4301. dac = 1;
  4302. } else {
  4303. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  4304. if (rc == 0) {
  4305. dac = 0;
  4306. } else {
  4307. dev_err(&pdev->dev, "no suitable DMA available\n");
  4308. goto clean1;
  4309. }
  4310. }
  4311. /* make sure the board interrupts are off */
  4312. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  4313. if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
  4314. goto clean2;
  4315. dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
  4316. h->devname, pdev->device,
  4317. h->intr[h->intr_mode], dac ? "" : " not");
  4318. if (hpsa_allocate_cmd_pool(h))
  4319. goto clean4;
  4320. if (hpsa_allocate_sg_chain_blocks(h))
  4321. goto clean4;
  4322. init_waitqueue_head(&h->scan_wait_queue);
  4323. h->scan_finished = 1; /* no scan currently in progress */
  4324. pci_set_drvdata(pdev, h);
  4325. h->ndevices = 0;
  4326. h->scsi_host = NULL;
  4327. spin_lock_init(&h->devlock);
  4328. hpsa_put_ctlr_into_performant_mode(h);
  4329. /* At this point, the controller is ready to take commands.
  4330. * Now, if reset_devices and the hard reset didn't work, try
  4331. * the soft reset and see if that works.
  4332. */
  4333. if (try_soft_reset) {
  4334. /* This is kind of gross. We may or may not get a completion
  4335. * from the soft reset command, and if we do, then the value
  4336. * from the fifo may or may not be valid. So, we wait 10 secs
  4337. * after the reset throwing away any completions we get during
  4338. * that time. Unregister the interrupt handler and register
  4339. * fake ones to scoop up any residual completions.
  4340. */
  4341. spin_lock_irqsave(&h->lock, flags);
  4342. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  4343. spin_unlock_irqrestore(&h->lock, flags);
  4344. free_irqs(h);
  4345. rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
  4346. hpsa_intx_discard_completions);
  4347. if (rc) {
  4348. dev_warn(&h->pdev->dev, "Failed to request_irq after "
  4349. "soft reset.\n");
  4350. goto clean4;
  4351. }
  4352. rc = hpsa_kdump_soft_reset(h);
  4353. if (rc)
  4354. /* Neither hard nor soft reset worked, we're hosed. */
  4355. goto clean4;
  4356. dev_info(&h->pdev->dev, "Board READY.\n");
  4357. dev_info(&h->pdev->dev,
  4358. "Waiting for stale completions to drain.\n");
  4359. h->access.set_intr_mask(h, HPSA_INTR_ON);
  4360. msleep(10000);
  4361. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  4362. rc = controller_reset_failed(h->cfgtable);
  4363. if (rc)
  4364. dev_info(&h->pdev->dev,
  4365. "Soft reset appears to have failed.\n");
  4366. /* since the controller's reset, we have to go back and re-init
  4367. * everything. Easiest to just forget what we've done and do it
  4368. * all over again.
  4369. */
  4370. hpsa_undo_allocations_after_kdump_soft_reset(h);
  4371. try_soft_reset = 0;
  4372. if (rc)
  4373. /* don't go to clean4, we already unallocated */
  4374. return -ENODEV;
  4375. goto reinit_after_soft_reset;
  4376. }
  4377. /* Turn the interrupts on so we can service requests */
  4378. h->access.set_intr_mask(h, HPSA_INTR_ON);
  4379. hpsa_hba_inquiry(h);
  4380. hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
  4381. start_controller_lockup_detector(h);
  4382. return 1;
  4383. clean4:
  4384. hpsa_free_sg_chain_blocks(h);
  4385. hpsa_free_cmd_pool(h);
  4386. free_irqs(h);
  4387. clean2:
  4388. clean1:
  4389. kfree(h);
  4390. return rc;
  4391. }
  4392. static void hpsa_flush_cache(struct ctlr_info *h)
  4393. {
  4394. char *flush_buf;
  4395. struct CommandList *c;
  4396. flush_buf = kzalloc(4, GFP_KERNEL);
  4397. if (!flush_buf)
  4398. return;
  4399. c = cmd_special_alloc(h);
  4400. if (!c) {
  4401. dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
  4402. goto out_of_memory;
  4403. }
  4404. if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
  4405. RAID_CTLR_LUNID, TYPE_CMD)) {
  4406. goto out;
  4407. }
  4408. hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
  4409. if (c->err_info->CommandStatus != 0)
  4410. out:
  4411. dev_warn(&h->pdev->dev,
  4412. "error flushing cache on controller\n");
  4413. cmd_special_free(h, c);
  4414. out_of_memory:
  4415. kfree(flush_buf);
  4416. }
  4417. static void hpsa_shutdown(struct pci_dev *pdev)
  4418. {
  4419. struct ctlr_info *h;
  4420. h = pci_get_drvdata(pdev);
  4421. /* Turn board interrupts off and send the flush cache command
  4422. * sendcmd will turn off interrupt, and send the flush...
  4423. * To write all data in the battery backed cache to disks
  4424. */
  4425. hpsa_flush_cache(h);
  4426. h->access.set_intr_mask(h, HPSA_INTR_OFF);
  4427. hpsa_free_irqs_and_disable_msix(h);
  4428. }
  4429. static void hpsa_free_device_info(struct ctlr_info *h)
  4430. {
  4431. int i;
  4432. for (i = 0; i < h->ndevices; i++)
  4433. kfree(h->dev[i]);
  4434. }
  4435. static void hpsa_remove_one(struct pci_dev *pdev)
  4436. {
  4437. struct ctlr_info *h;
  4438. if (pci_get_drvdata(pdev) == NULL) {
  4439. dev_err(&pdev->dev, "unable to remove device\n");
  4440. return;
  4441. }
  4442. h = pci_get_drvdata(pdev);
  4443. stop_controller_lockup_detector(h);
  4444. hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
  4445. hpsa_shutdown(pdev);
  4446. iounmap(h->vaddr);
  4447. iounmap(h->transtable);
  4448. iounmap(h->cfgtable);
  4449. hpsa_free_device_info(h);
  4450. hpsa_free_sg_chain_blocks(h);
  4451. pci_free_consistent(h->pdev,
  4452. h->nr_cmds * sizeof(struct CommandList),
  4453. h->cmd_pool, h->cmd_pool_dhandle);
  4454. pci_free_consistent(h->pdev,
  4455. h->nr_cmds * sizeof(struct ErrorInfo),
  4456. h->errinfo_pool, h->errinfo_pool_dhandle);
  4457. pci_free_consistent(h->pdev, h->reply_pool_size,
  4458. h->reply_pool, h->reply_pool_dhandle);
  4459. kfree(h->cmd_pool_bits);
  4460. kfree(h->blockFetchTable);
  4461. kfree(h->hba_inquiry_data);
  4462. pci_disable_device(pdev);
  4463. pci_release_regions(pdev);
  4464. pci_set_drvdata(pdev, NULL);
  4465. kfree(h);
  4466. }
  4467. static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
  4468. __attribute__((unused)) pm_message_t state)
  4469. {
  4470. return -ENOSYS;
  4471. }
  4472. static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
  4473. {
  4474. return -ENOSYS;
  4475. }
  4476. static struct pci_driver hpsa_pci_driver = {
  4477. .name = HPSA,
  4478. .probe = hpsa_init_one,
  4479. .remove = hpsa_remove_one,
  4480. .id_table = hpsa_pci_device_id, /* id_table */
  4481. .shutdown = hpsa_shutdown,
  4482. .suspend = hpsa_suspend,
  4483. .resume = hpsa_resume,
  4484. };
  4485. /* Fill in bucket_map[], given nsgs (the max number of
  4486. * scatter gather elements supported) and bucket[],
  4487. * which is an array of 8 integers. The bucket[] array
  4488. * contains 8 different DMA transfer sizes (in 16
  4489. * byte increments) which the controller uses to fetch
  4490. * commands. This function fills in bucket_map[], which
  4491. * maps a given number of scatter gather elements to one of
  4492. * the 8 DMA transfer sizes. The point of it is to allow the
  4493. * controller to only do as much DMA as needed to fetch the
  4494. * command, with the DMA transfer size encoded in the lower
  4495. * bits of the command address.
  4496. */
  4497. static void calc_bucket_map(int bucket[], int num_buckets,
  4498. int nsgs, int *bucket_map)
  4499. {
  4500. int i, j, b, size;
  4501. /* even a command with 0 SGs requires 4 blocks */
  4502. #define MINIMUM_TRANSFER_BLOCKS 4
  4503. #define NUM_BUCKETS 8
  4504. /* Note, bucket_map must have nsgs+1 entries. */
  4505. for (i = 0; i <= nsgs; i++) {
  4506. /* Compute size of a command with i SG entries */
  4507. size = i + MINIMUM_TRANSFER_BLOCKS;
  4508. b = num_buckets; /* Assume the biggest bucket */
  4509. /* Find the bucket that is just big enough */
  4510. for (j = 0; j < 8; j++) {
  4511. if (bucket[j] >= size) {
  4512. b = j;
  4513. break;
  4514. }
  4515. }
  4516. /* for a command with i SG entries, use bucket b. */
  4517. bucket_map[i] = b;
  4518. }
  4519. }
  4520. static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
  4521. {
  4522. int i;
  4523. unsigned long register_value;
  4524. /* This is a bit complicated. There are 8 registers on
  4525. * the controller which we write to to tell it 8 different
  4526. * sizes of commands which there may be. It's a way of
  4527. * reducing the DMA done to fetch each command. Encoded into
  4528. * each command's tag are 3 bits which communicate to the controller
  4529. * which of the eight sizes that command fits within. The size of
  4530. * each command depends on how many scatter gather entries there are.
  4531. * Each SG entry requires 16 bytes. The eight registers are programmed
  4532. * with the number of 16-byte blocks a command of that size requires.
  4533. * The smallest command possible requires 5 such 16 byte blocks.
  4534. * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
  4535. * blocks. Note, this only extends to the SG entries contained
  4536. * within the command block, and does not extend to chained blocks
  4537. * of SG elements. bft[] contains the eight values we write to
  4538. * the registers. They are not evenly distributed, but have more
  4539. * sizes for small commands, and fewer sizes for larger commands.
  4540. */
  4541. int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
  4542. BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
  4543. /* 5 = 1 s/g entry or 4k
  4544. * 6 = 2 s/g entry or 8k
  4545. * 8 = 4 s/g entry or 16k
  4546. * 10 = 6 s/g entry or 24k
  4547. */
  4548. /* Controller spec: zero out this buffer. */
  4549. memset(h->reply_pool, 0, h->reply_pool_size);
  4550. bft[7] = SG_ENTRIES_IN_CMD + 4;
  4551. calc_bucket_map(bft, ARRAY_SIZE(bft),
  4552. SG_ENTRIES_IN_CMD, h->blockFetchTable);
  4553. for (i = 0; i < 8; i++)
  4554. writel(bft[i], &h->transtable->BlockFetch[i]);
  4555. /* size of controller ring buffer */
  4556. writel(h->max_commands, &h->transtable->RepQSize);
  4557. writel(h->nreply_queues, &h->transtable->RepQCount);
  4558. writel(0, &h->transtable->RepQCtrAddrLow32);
  4559. writel(0, &h->transtable->RepQCtrAddrHigh32);
  4560. for (i = 0; i < h->nreply_queues; i++) {
  4561. writel(0, &h->transtable->RepQAddr[i].upper);
  4562. writel(h->reply_pool_dhandle +
  4563. (h->max_commands * sizeof(u64) * i),
  4564. &h->transtable->RepQAddr[i].lower);
  4565. }
  4566. writel(CFGTBL_Trans_Performant | use_short_tags |
  4567. CFGTBL_Trans_enable_directed_msix,
  4568. &(h->cfgtable->HostWrite.TransportRequest));
  4569. writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
  4570. hpsa_wait_for_mode_change_ack(h);
  4571. register_value = readl(&(h->cfgtable->TransportActive));
  4572. if (!(register_value & CFGTBL_Trans_Performant)) {
  4573. dev_warn(&h->pdev->dev, "unable to get board into"
  4574. " performant mode\n");
  4575. return;
  4576. }
  4577. /* Change the access methods to the performant access methods */
  4578. h->access = SA5_performant_access;
  4579. h->transMethod = CFGTBL_Trans_Performant;
  4580. }
  4581. static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
  4582. {
  4583. u32 trans_support;
  4584. int i;
  4585. if (hpsa_simple_mode)
  4586. return;
  4587. trans_support = readl(&(h->cfgtable->TransportSupport));
  4588. if (!(trans_support & PERFORMANT_MODE))
  4589. return;
  4590. h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
  4591. hpsa_get_max_perf_mode_cmds(h);
  4592. /* Performant mode ring buffer and supporting data structures */
  4593. h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
  4594. h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
  4595. &(h->reply_pool_dhandle));
  4596. for (i = 0; i < h->nreply_queues; i++) {
  4597. h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
  4598. h->reply_queue[i].size = h->max_commands;
  4599. h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
  4600. h->reply_queue[i].current_entry = 0;
  4601. }
  4602. /* Need a block fetch table for performant mode */
  4603. h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
  4604. sizeof(u32)), GFP_KERNEL);
  4605. if ((h->reply_pool == NULL)
  4606. || (h->blockFetchTable == NULL))
  4607. goto clean_up;
  4608. hpsa_enter_performant_mode(h,
  4609. trans_support & CFGTBL_Trans_use_short_tags);
  4610. return;
  4611. clean_up:
  4612. if (h->reply_pool)
  4613. pci_free_consistent(h->pdev, h->reply_pool_size,
  4614. h->reply_pool, h->reply_pool_dhandle);
  4615. kfree(h->blockFetchTable);
  4616. }
  4617. /*
  4618. * This is it. Register the PCI driver information for the cards we control
  4619. * the OS will call our registered routines when it finds one of our cards.
  4620. */
  4621. static int __init hpsa_init(void)
  4622. {
  4623. return pci_register_driver(&hpsa_pci_driver);
  4624. }
  4625. static void __exit hpsa_cleanup(void)
  4626. {
  4627. pci_unregister_driver(&hpsa_pci_driver);
  4628. }
  4629. module_init(hpsa_init);
  4630. module_exit(hpsa_cleanup);