zfcp_qdio.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * zfcp device driver
  3. *
  4. * Setup and helper functions to access QDIO.
  5. *
  6. * Copyright IBM Corp. 2002, 2010
  7. */
  8. #define KMSG_COMPONENT "zfcp"
  9. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  10. #include <linux/slab.h>
  11. #include <linux/module.h>
  12. #include "zfcp_ext.h"
  13. #include "zfcp_qdio.h"
  14. #define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer))
  15. static bool enable_multibuffer;
  16. module_param_named(datarouter, enable_multibuffer, bool, 0400);
  17. MODULE_PARM_DESC(datarouter, "Enable hardware data router support");
  18. static int zfcp_qdio_buffers_enqueue(struct qdio_buffer **sbal)
  19. {
  20. int pos;
  21. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos += QBUFF_PER_PAGE) {
  22. sbal[pos] = (struct qdio_buffer *) get_zeroed_page(GFP_KERNEL);
  23. if (!sbal[pos])
  24. return -ENOMEM;
  25. }
  26. for (pos = 0; pos < QDIO_MAX_BUFFERS_PER_Q; pos++)
  27. if (pos % QBUFF_PER_PAGE)
  28. sbal[pos] = sbal[pos - 1] + 1;
  29. return 0;
  30. }
  31. static void zfcp_qdio_handler_error(struct zfcp_qdio *qdio, char *id,
  32. unsigned int qdio_err)
  33. {
  34. struct zfcp_adapter *adapter = qdio->adapter;
  35. dev_warn(&adapter->ccw_device->dev, "A QDIO problem occurred\n");
  36. if (qdio_err & QDIO_ERROR_SLSB_STATE) {
  37. zfcp_qdio_siosl(adapter);
  38. zfcp_erp_adapter_shutdown(adapter, 0, id);
  39. return;
  40. }
  41. zfcp_erp_adapter_reopen(adapter,
  42. ZFCP_STATUS_ADAPTER_LINK_UNPLUGGED |
  43. ZFCP_STATUS_COMMON_ERP_FAILED, id);
  44. }
  45. static void zfcp_qdio_zero_sbals(struct qdio_buffer *sbal[], int first, int cnt)
  46. {
  47. int i, sbal_idx;
  48. for (i = first; i < first + cnt; i++) {
  49. sbal_idx = i % QDIO_MAX_BUFFERS_PER_Q;
  50. memset(sbal[sbal_idx], 0, sizeof(struct qdio_buffer));
  51. }
  52. }
  53. /* this needs to be called prior to updating the queue fill level */
  54. static inline void zfcp_qdio_account(struct zfcp_qdio *qdio)
  55. {
  56. unsigned long long now, span;
  57. int used;
  58. now = get_tod_clock_monotonic();
  59. span = (now - qdio->req_q_time) >> 12;
  60. used = QDIO_MAX_BUFFERS_PER_Q - atomic_read(&qdio->req_q_free);
  61. qdio->req_q_util += used * span;
  62. qdio->req_q_time = now;
  63. }
  64. static void zfcp_qdio_int_req(struct ccw_device *cdev, unsigned int qdio_err,
  65. int queue_no, int idx, int count,
  66. unsigned long parm)
  67. {
  68. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  69. if (unlikely(qdio_err)) {
  70. zfcp_qdio_handler_error(qdio, "qdireq1", qdio_err);
  71. return;
  72. }
  73. /* cleanup all SBALs being program-owned now */
  74. zfcp_qdio_zero_sbals(qdio->req_q, idx, count);
  75. spin_lock_irq(&qdio->stat_lock);
  76. zfcp_qdio_account(qdio);
  77. spin_unlock_irq(&qdio->stat_lock);
  78. atomic_add(count, &qdio->req_q_free);
  79. wake_up(&qdio->req_q_wq);
  80. }
  81. static void zfcp_qdio_int_resp(struct ccw_device *cdev, unsigned int qdio_err,
  82. int queue_no, int idx, int count,
  83. unsigned long parm)
  84. {
  85. struct zfcp_qdio *qdio = (struct zfcp_qdio *) parm;
  86. struct zfcp_adapter *adapter = qdio->adapter;
  87. int sbal_no, sbal_idx;
  88. if (unlikely(qdio_err)) {
  89. if (zfcp_adapter_multi_buffer_active(adapter)) {
  90. void *pl[ZFCP_QDIO_MAX_SBALS_PER_REQ + 1];
  91. struct qdio_buffer_element *sbale;
  92. u64 req_id;
  93. u8 scount;
  94. memset(pl, 0,
  95. ZFCP_QDIO_MAX_SBALS_PER_REQ * sizeof(void *));
  96. sbale = qdio->res_q[idx]->element;
  97. req_id = (u64) sbale->addr;
  98. scount = min(sbale->scount + 1,
  99. ZFCP_QDIO_MAX_SBALS_PER_REQ + 1);
  100. /* incl. signaling SBAL */
  101. for (sbal_no = 0; sbal_no < scount; sbal_no++) {
  102. sbal_idx = (idx + sbal_no) %
  103. QDIO_MAX_BUFFERS_PER_Q;
  104. pl[sbal_no] = qdio->res_q[sbal_idx];
  105. }
  106. zfcp_dbf_hba_def_err(adapter, req_id, scount, pl);
  107. }
  108. zfcp_qdio_handler_error(qdio, "qdires1", qdio_err);
  109. return;
  110. }
  111. /*
  112. * go through all SBALs from input queue currently
  113. * returned by QDIO layer
  114. */
  115. for (sbal_no = 0; sbal_no < count; sbal_no++) {
  116. sbal_idx = (idx + sbal_no) % QDIO_MAX_BUFFERS_PER_Q;
  117. /* go through all SBALEs of SBAL */
  118. zfcp_fsf_reqid_check(qdio, sbal_idx);
  119. }
  120. /*
  121. * put SBALs back to response queue
  122. */
  123. if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, idx, count))
  124. zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdires2");
  125. }
  126. static struct qdio_buffer_element *
  127. zfcp_qdio_sbal_chain(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
  128. {
  129. struct qdio_buffer_element *sbale;
  130. /* set last entry flag in current SBALE of current SBAL */
  131. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  132. sbale->eflags |= SBAL_EFLAGS_LAST_ENTRY;
  133. /* don't exceed last allowed SBAL */
  134. if (q_req->sbal_last == q_req->sbal_limit)
  135. return NULL;
  136. /* set chaining flag in first SBALE of current SBAL */
  137. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  138. sbale->sflags |= SBAL_SFLAGS0_MORE_SBALS;
  139. /* calculate index of next SBAL */
  140. q_req->sbal_last++;
  141. q_req->sbal_last %= QDIO_MAX_BUFFERS_PER_Q;
  142. /* keep this requests number of SBALs up-to-date */
  143. q_req->sbal_number++;
  144. BUG_ON(q_req->sbal_number > ZFCP_QDIO_MAX_SBALS_PER_REQ);
  145. /* start at first SBALE of new SBAL */
  146. q_req->sbale_curr = 0;
  147. /* set storage-block type for new SBAL */
  148. sbale = zfcp_qdio_sbale_curr(qdio, q_req);
  149. sbale->sflags |= q_req->sbtype;
  150. return sbale;
  151. }
  152. static struct qdio_buffer_element *
  153. zfcp_qdio_sbale_next(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
  154. {
  155. if (q_req->sbale_curr == qdio->max_sbale_per_sbal - 1)
  156. return zfcp_qdio_sbal_chain(qdio, q_req);
  157. q_req->sbale_curr++;
  158. return zfcp_qdio_sbale_curr(qdio, q_req);
  159. }
  160. /**
  161. * zfcp_qdio_sbals_from_sg - fill SBALs from scatter-gather list
  162. * @qdio: pointer to struct zfcp_qdio
  163. * @q_req: pointer to struct zfcp_qdio_req
  164. * @sg: scatter-gather list
  165. * @max_sbals: upper bound for number of SBALs to be used
  166. * Returns: zero or -EINVAL on error
  167. */
  168. int zfcp_qdio_sbals_from_sg(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req,
  169. struct scatterlist *sg)
  170. {
  171. struct qdio_buffer_element *sbale;
  172. /* set storage-block type for this request */
  173. sbale = zfcp_qdio_sbale_req(qdio, q_req);
  174. sbale->sflags |= q_req->sbtype;
  175. for (; sg; sg = sg_next(sg)) {
  176. sbale = zfcp_qdio_sbale_next(qdio, q_req);
  177. if (!sbale) {
  178. atomic_inc(&qdio->req_q_full);
  179. zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first,
  180. q_req->sbal_number);
  181. return -EINVAL;
  182. }
  183. sbale->addr = sg_virt(sg);
  184. sbale->length = sg->length;
  185. }
  186. return 0;
  187. }
  188. static int zfcp_qdio_sbal_check(struct zfcp_qdio *qdio)
  189. {
  190. spin_lock_irq(&qdio->req_q_lock);
  191. if (atomic_read(&qdio->req_q_free) ||
  192. !(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
  193. return 1;
  194. spin_unlock_irq(&qdio->req_q_lock);
  195. return 0;
  196. }
  197. /**
  198. * zfcp_qdio_sbal_get - get free sbal in request queue, wait if necessary
  199. * @qdio: pointer to struct zfcp_qdio
  200. *
  201. * The req_q_lock must be held by the caller of this function, and
  202. * this function may only be called from process context; it will
  203. * sleep when waiting for a free sbal.
  204. *
  205. * Returns: 0 on success, -EIO if there is no free sbal after waiting.
  206. */
  207. int zfcp_qdio_sbal_get(struct zfcp_qdio *qdio)
  208. {
  209. long ret;
  210. spin_unlock_irq(&qdio->req_q_lock);
  211. ret = wait_event_interruptible_timeout(qdio->req_q_wq,
  212. zfcp_qdio_sbal_check(qdio), 5 * HZ);
  213. if (!(atomic_read(&qdio->adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
  214. return -EIO;
  215. if (ret > 0)
  216. return 0;
  217. if (!ret) {
  218. atomic_inc(&qdio->req_q_full);
  219. /* assume hanging outbound queue, try queue recovery */
  220. zfcp_erp_adapter_reopen(qdio->adapter, 0, "qdsbg_1");
  221. }
  222. spin_lock_irq(&qdio->req_q_lock);
  223. return -EIO;
  224. }
  225. /**
  226. * zfcp_qdio_send - set PCI flag in first SBALE and send req to QDIO
  227. * @qdio: pointer to struct zfcp_qdio
  228. * @q_req: pointer to struct zfcp_qdio_req
  229. * Returns: 0 on success, error otherwise
  230. */
  231. int zfcp_qdio_send(struct zfcp_qdio *qdio, struct zfcp_qdio_req *q_req)
  232. {
  233. int retval;
  234. u8 sbal_number = q_req->sbal_number;
  235. spin_lock(&qdio->stat_lock);
  236. zfcp_qdio_account(qdio);
  237. spin_unlock(&qdio->stat_lock);
  238. retval = do_QDIO(qdio->adapter->ccw_device, QDIO_FLAG_SYNC_OUTPUT, 0,
  239. q_req->sbal_first, sbal_number);
  240. if (unlikely(retval)) {
  241. zfcp_qdio_zero_sbals(qdio->req_q, q_req->sbal_first,
  242. sbal_number);
  243. return retval;
  244. }
  245. /* account for transferred buffers */
  246. atomic_sub(sbal_number, &qdio->req_q_free);
  247. qdio->req_q_idx += sbal_number;
  248. qdio->req_q_idx %= QDIO_MAX_BUFFERS_PER_Q;
  249. return 0;
  250. }
  251. static void zfcp_qdio_setup_init_data(struct qdio_initialize *id,
  252. struct zfcp_qdio *qdio)
  253. {
  254. memset(id, 0, sizeof(*id));
  255. id->cdev = qdio->adapter->ccw_device;
  256. id->q_format = QDIO_ZFCP_QFMT;
  257. memcpy(id->adapter_name, dev_name(&id->cdev->dev), 8);
  258. ASCEBC(id->adapter_name, 8);
  259. id->qib_rflags = QIB_RFLAGS_ENABLE_DATA_DIV;
  260. if (enable_multibuffer)
  261. id->qdr_ac |= QDR_AC_MULTI_BUFFER_ENABLE;
  262. id->no_input_qs = 1;
  263. id->no_output_qs = 1;
  264. id->input_handler = zfcp_qdio_int_resp;
  265. id->output_handler = zfcp_qdio_int_req;
  266. id->int_parm = (unsigned long) qdio;
  267. id->input_sbal_addr_array = (void **) (qdio->res_q);
  268. id->output_sbal_addr_array = (void **) (qdio->req_q);
  269. id->scan_threshold =
  270. QDIO_MAX_BUFFERS_PER_Q - ZFCP_QDIO_MAX_SBALS_PER_REQ * 2;
  271. }
  272. /**
  273. * zfcp_qdio_allocate - allocate queue memory and initialize QDIO data
  274. * @adapter: pointer to struct zfcp_adapter
  275. * Returns: -ENOMEM on memory allocation error or return value from
  276. * qdio_allocate
  277. */
  278. static int zfcp_qdio_allocate(struct zfcp_qdio *qdio)
  279. {
  280. struct qdio_initialize init_data;
  281. if (zfcp_qdio_buffers_enqueue(qdio->req_q) ||
  282. zfcp_qdio_buffers_enqueue(qdio->res_q))
  283. return -ENOMEM;
  284. zfcp_qdio_setup_init_data(&init_data, qdio);
  285. init_waitqueue_head(&qdio->req_q_wq);
  286. return qdio_allocate(&init_data);
  287. }
  288. /**
  289. * zfcp_close_qdio - close qdio queues for an adapter
  290. * @qdio: pointer to structure zfcp_qdio
  291. */
  292. void zfcp_qdio_close(struct zfcp_qdio *qdio)
  293. {
  294. struct zfcp_adapter *adapter = qdio->adapter;
  295. int idx, count;
  296. if (!(atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP))
  297. return;
  298. /* clear QDIOUP flag, thus do_QDIO is not called during qdio_shutdown */
  299. spin_lock_irq(&qdio->req_q_lock);
  300. atomic_clear_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &adapter->status);
  301. spin_unlock_irq(&qdio->req_q_lock);
  302. wake_up(&qdio->req_q_wq);
  303. qdio_shutdown(adapter->ccw_device, QDIO_FLAG_CLEANUP_USING_CLEAR);
  304. /* cleanup used outbound sbals */
  305. count = atomic_read(&qdio->req_q_free);
  306. if (count < QDIO_MAX_BUFFERS_PER_Q) {
  307. idx = (qdio->req_q_idx + count) % QDIO_MAX_BUFFERS_PER_Q;
  308. count = QDIO_MAX_BUFFERS_PER_Q - count;
  309. zfcp_qdio_zero_sbals(qdio->req_q, idx, count);
  310. }
  311. qdio->req_q_idx = 0;
  312. atomic_set(&qdio->req_q_free, 0);
  313. }
  314. /**
  315. * zfcp_qdio_open - prepare and initialize response queue
  316. * @qdio: pointer to struct zfcp_qdio
  317. * Returns: 0 on success, otherwise -EIO
  318. */
  319. int zfcp_qdio_open(struct zfcp_qdio *qdio)
  320. {
  321. struct qdio_buffer_element *sbale;
  322. struct qdio_initialize init_data;
  323. struct zfcp_adapter *adapter = qdio->adapter;
  324. struct ccw_device *cdev = adapter->ccw_device;
  325. struct qdio_ssqd_desc ssqd;
  326. int cc;
  327. if (atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_QDIOUP)
  328. return -EIO;
  329. atomic_clear_mask(ZFCP_STATUS_ADAPTER_SIOSL_ISSUED,
  330. &qdio->adapter->status);
  331. zfcp_qdio_setup_init_data(&init_data, qdio);
  332. if (qdio_establish(&init_data))
  333. goto failed_establish;
  334. if (qdio_get_ssqd_desc(init_data.cdev, &ssqd))
  335. goto failed_qdio;
  336. if (ssqd.qdioac2 & CHSC_AC2_DATA_DIV_ENABLED)
  337. atomic_set_mask(ZFCP_STATUS_ADAPTER_DATA_DIV_ENABLED,
  338. &qdio->adapter->status);
  339. if (ssqd.qdioac2 & CHSC_AC2_MULTI_BUFFER_ENABLED) {
  340. atomic_set_mask(ZFCP_STATUS_ADAPTER_MB_ACT, &adapter->status);
  341. qdio->max_sbale_per_sbal = QDIO_MAX_ELEMENTS_PER_BUFFER;
  342. } else {
  343. atomic_clear_mask(ZFCP_STATUS_ADAPTER_MB_ACT, &adapter->status);
  344. qdio->max_sbale_per_sbal = QDIO_MAX_ELEMENTS_PER_BUFFER - 1;
  345. }
  346. qdio->max_sbale_per_req =
  347. ZFCP_QDIO_MAX_SBALS_PER_REQ * qdio->max_sbale_per_sbal
  348. - 2;
  349. if (qdio_activate(cdev))
  350. goto failed_qdio;
  351. for (cc = 0; cc < QDIO_MAX_BUFFERS_PER_Q; cc++) {
  352. sbale = &(qdio->res_q[cc]->element[0]);
  353. sbale->length = 0;
  354. sbale->eflags = SBAL_EFLAGS_LAST_ENTRY;
  355. sbale->sflags = 0;
  356. sbale->addr = NULL;
  357. }
  358. if (do_QDIO(cdev, QDIO_FLAG_SYNC_INPUT, 0, 0, QDIO_MAX_BUFFERS_PER_Q))
  359. goto failed_qdio;
  360. /* set index of first available SBALS / number of available SBALS */
  361. qdio->req_q_idx = 0;
  362. atomic_set(&qdio->req_q_free, QDIO_MAX_BUFFERS_PER_Q);
  363. atomic_set_mask(ZFCP_STATUS_ADAPTER_QDIOUP, &qdio->adapter->status);
  364. if (adapter->scsi_host) {
  365. adapter->scsi_host->sg_tablesize = qdio->max_sbale_per_req;
  366. adapter->scsi_host->max_sectors = qdio->max_sbale_per_req * 8;
  367. }
  368. return 0;
  369. failed_qdio:
  370. qdio_shutdown(cdev, QDIO_FLAG_CLEANUP_USING_CLEAR);
  371. failed_establish:
  372. dev_err(&cdev->dev,
  373. "Setting up the QDIO connection to the FCP adapter failed\n");
  374. return -EIO;
  375. }
  376. void zfcp_qdio_destroy(struct zfcp_qdio *qdio)
  377. {
  378. int p;
  379. if (!qdio)
  380. return;
  381. if (qdio->adapter->ccw_device)
  382. qdio_free(qdio->adapter->ccw_device);
  383. for (p = 0; p < QDIO_MAX_BUFFERS_PER_Q; p += QBUFF_PER_PAGE) {
  384. free_page((unsigned long) qdio->req_q[p]);
  385. free_page((unsigned long) qdio->res_q[p]);
  386. }
  387. kfree(qdio);
  388. }
  389. int zfcp_qdio_setup(struct zfcp_adapter *adapter)
  390. {
  391. struct zfcp_qdio *qdio;
  392. qdio = kzalloc(sizeof(struct zfcp_qdio), GFP_KERNEL);
  393. if (!qdio)
  394. return -ENOMEM;
  395. qdio->adapter = adapter;
  396. if (zfcp_qdio_allocate(qdio)) {
  397. zfcp_qdio_destroy(qdio);
  398. return -ENOMEM;
  399. }
  400. spin_lock_init(&qdio->req_q_lock);
  401. spin_lock_init(&qdio->stat_lock);
  402. adapter->qdio = qdio;
  403. return 0;
  404. }
  405. /**
  406. * zfcp_qdio_siosl - Trigger logging in FCP channel
  407. * @adapter: The zfcp_adapter where to trigger logging
  408. *
  409. * Call the cio siosl function to trigger hardware logging. This
  410. * wrapper function sets a flag to ensure hardware logging is only
  411. * triggered once before going through qdio shutdown.
  412. *
  413. * The triggers are always run from qdio tasklet context, so no
  414. * additional synchronization is necessary.
  415. */
  416. void zfcp_qdio_siosl(struct zfcp_adapter *adapter)
  417. {
  418. int rc;
  419. if (atomic_read(&adapter->status) & ZFCP_STATUS_ADAPTER_SIOSL_ISSUED)
  420. return;
  421. rc = ccw_device_siosl(adapter->ccw_device);
  422. if (!rc)
  423. atomic_set_mask(ZFCP_STATUS_ADAPTER_SIOSL_ISSUED,
  424. &adapter->status);
  425. }