microread.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728
  1. /*
  2. * HCI based Driver for Inside Secure microread NFC Chip
  3. *
  4. * Copyright (C) 2013 Intel Corporation. All rights reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the
  17. * Free Software Foundation, Inc.,
  18. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/delay.h>
  22. #include <linux/slab.h>
  23. #include <linux/crc-ccitt.h>
  24. #include <linux/nfc.h>
  25. #include <net/nfc/nfc.h>
  26. #include <net/nfc/hci.h>
  27. #include <net/nfc/llc.h>
  28. #include "microread.h"
  29. /* Proprietary gates, events, commands and registers */
  30. /* Admin */
  31. #define MICROREAD_GATE_ID_ADM NFC_HCI_ADMIN_GATE
  32. #define MICROREAD_GATE_ID_MGT 0x01
  33. #define MICROREAD_GATE_ID_OS 0x02
  34. #define MICROREAD_GATE_ID_TESTRF 0x03
  35. #define MICROREAD_GATE_ID_LOOPBACK NFC_HCI_LOOPBACK_GATE
  36. #define MICROREAD_GATE_ID_IDT NFC_HCI_ID_MGMT_GATE
  37. #define MICROREAD_GATE_ID_LMS NFC_HCI_LINK_MGMT_GATE
  38. /* Reader */
  39. #define MICROREAD_GATE_ID_MREAD_GEN 0x10
  40. #define MICROREAD_GATE_ID_MREAD_ISO_B NFC_HCI_RF_READER_B_GATE
  41. #define MICROREAD_GATE_ID_MREAD_NFC_T1 0x12
  42. #define MICROREAD_GATE_ID_MREAD_ISO_A NFC_HCI_RF_READER_A_GATE
  43. #define MICROREAD_GATE_ID_MREAD_NFC_T3 0x14
  44. #define MICROREAD_GATE_ID_MREAD_ISO_15_3 0x15
  45. #define MICROREAD_GATE_ID_MREAD_ISO_15_2 0x16
  46. #define MICROREAD_GATE_ID_MREAD_ISO_B_3 0x17
  47. #define MICROREAD_GATE_ID_MREAD_BPRIME 0x18
  48. #define MICROREAD_GATE_ID_MREAD_ISO_A_3 0x19
  49. /* Card */
  50. #define MICROREAD_GATE_ID_MCARD_GEN 0x20
  51. #define MICROREAD_GATE_ID_MCARD_ISO_B 0x21
  52. #define MICROREAD_GATE_ID_MCARD_BPRIME 0x22
  53. #define MICROREAD_GATE_ID_MCARD_ISO_A 0x23
  54. #define MICROREAD_GATE_ID_MCARD_NFC_T3 0x24
  55. #define MICROREAD_GATE_ID_MCARD_ISO_15_3 0x25
  56. #define MICROREAD_GATE_ID_MCARD_ISO_15_2 0x26
  57. #define MICROREAD_GATE_ID_MCARD_ISO_B_2 0x27
  58. #define MICROREAD_GATE_ID_MCARD_ISO_CUSTOM 0x28
  59. #define MICROREAD_GATE_ID_SECURE_ELEMENT 0x2F
  60. /* P2P */
  61. #define MICROREAD_GATE_ID_P2P_GEN 0x30
  62. #define MICROREAD_GATE_ID_P2P_TARGET 0x31
  63. #define MICROREAD_PAR_P2P_TARGET_MODE 0x01
  64. #define MICROREAD_PAR_P2P_TARGET_GT 0x04
  65. #define MICROREAD_GATE_ID_P2P_INITIATOR 0x32
  66. #define MICROREAD_PAR_P2P_INITIATOR_GI 0x01
  67. #define MICROREAD_PAR_P2P_INITIATOR_GT 0x03
  68. /* Those pipes are created/opened by default in the chip */
  69. #define MICROREAD_PIPE_ID_LMS 0x00
  70. #define MICROREAD_PIPE_ID_ADMIN 0x01
  71. #define MICROREAD_PIPE_ID_MGT 0x02
  72. #define MICROREAD_PIPE_ID_OS 0x03
  73. #define MICROREAD_PIPE_ID_HDS_LOOPBACK 0x04
  74. #define MICROREAD_PIPE_ID_HDS_IDT 0x05
  75. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B 0x08
  76. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_BPRIME 0x09
  77. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_A 0x0A
  78. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_3 0x0B
  79. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_15_2 0x0C
  80. #define MICROREAD_PIPE_ID_HDS_MCARD_NFC_T3 0x0D
  81. #define MICROREAD_PIPE_ID_HDS_MCARD_ISO_B_2 0x0E
  82. #define MICROREAD_PIPE_ID_HDS_MCARD_CUSTOM 0x0F
  83. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B 0x10
  84. #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1 0x11
  85. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A 0x12
  86. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_3 0x13
  87. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_15_2 0x14
  88. #define MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3 0x15
  89. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_B_3 0x16
  90. #define MICROREAD_PIPE_ID_HDS_MREAD_BPRIME 0x17
  91. #define MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3 0x18
  92. #define MICROREAD_PIPE_ID_HDS_MREAD_GEN 0x1B
  93. #define MICROREAD_PIPE_ID_HDS_STACKED_ELEMENT 0x1C
  94. #define MICROREAD_PIPE_ID_HDS_INSTANCES 0x1D
  95. #define MICROREAD_PIPE_ID_HDS_TESTRF 0x1E
  96. #define MICROREAD_PIPE_ID_HDS_P2P_TARGET 0x1F
  97. #define MICROREAD_PIPE_ID_HDS_P2P_INITIATOR 0x20
  98. /* Events */
  99. #define MICROREAD_EVT_MREAD_DISCOVERY_OCCURED NFC_HCI_EVT_TARGET_DISCOVERED
  100. #define MICROREAD_EVT_MREAD_CARD_FOUND 0x3D
  101. #define MICROREAD_EMCF_A_ATQA 0
  102. #define MICROREAD_EMCF_A_SAK 2
  103. #define MICROREAD_EMCF_A_LEN 3
  104. #define MICROREAD_EMCF_A_UID 4
  105. #define MICROREAD_EMCF_A3_ATQA 0
  106. #define MICROREAD_EMCF_A3_SAK 2
  107. #define MICROREAD_EMCF_A3_LEN 3
  108. #define MICROREAD_EMCF_A3_UID 4
  109. #define MICROREAD_EMCF_B_UID 0
  110. #define MICROREAD_EMCF_T1_ATQA 0
  111. #define MICROREAD_EMCF_T1_UID 4
  112. #define MICROREAD_EMCF_T3_UID 0
  113. #define MICROREAD_EVT_MREAD_DISCOVERY_START NFC_HCI_EVT_READER_REQUESTED
  114. #define MICROREAD_EVT_MREAD_DISCOVERY_START_SOME 0x3E
  115. #define MICROREAD_EVT_MREAD_DISCOVERY_STOP NFC_HCI_EVT_END_OPERATION
  116. #define MICROREAD_EVT_MREAD_SIM_REQUESTS 0x3F
  117. #define MICROREAD_EVT_MCARD_EXCHANGE NFC_HCI_EVT_TARGET_DISCOVERED
  118. #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF 0x20
  119. #define MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF 0x21
  120. #define MICROREAD_EVT_MCARD_FIELD_ON 0x11
  121. #define MICROREAD_EVT_P2P_TARGET_ACTIVATED 0x13
  122. #define MICROREAD_EVT_P2P_TARGET_DEACTIVATED 0x12
  123. #define MICROREAD_EVT_MCARD_FIELD_OFF 0x14
  124. /* Commands */
  125. #define MICROREAD_CMD_MREAD_EXCHANGE 0x10
  126. #define MICROREAD_CMD_MREAD_SUBSCRIBE 0x3F
  127. /* Hosts IDs */
  128. #define MICROREAD_ELT_ID_HDS NFC_HCI_TERMINAL_HOST_ID
  129. #define MICROREAD_ELT_ID_SIM NFC_HCI_UICC_HOST_ID
  130. #define MICROREAD_ELT_ID_SE1 0x03
  131. #define MICROREAD_ELT_ID_SE2 0x04
  132. #define MICROREAD_ELT_ID_SE3 0x05
  133. static struct nfc_hci_gate microread_gates[] = {
  134. {MICROREAD_GATE_ID_ADM, MICROREAD_PIPE_ID_ADMIN},
  135. {MICROREAD_GATE_ID_LOOPBACK, MICROREAD_PIPE_ID_HDS_LOOPBACK},
  136. {MICROREAD_GATE_ID_IDT, MICROREAD_PIPE_ID_HDS_IDT},
  137. {MICROREAD_GATE_ID_LMS, MICROREAD_PIPE_ID_LMS},
  138. {MICROREAD_GATE_ID_MREAD_ISO_B, MICROREAD_PIPE_ID_HDS_MREAD_ISO_B},
  139. {MICROREAD_GATE_ID_MREAD_ISO_A, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A},
  140. {MICROREAD_GATE_ID_MREAD_ISO_A_3, MICROREAD_PIPE_ID_HDS_MREAD_ISO_A_3},
  141. {MICROREAD_GATE_ID_MGT, MICROREAD_PIPE_ID_MGT},
  142. {MICROREAD_GATE_ID_OS, MICROREAD_PIPE_ID_OS},
  143. {MICROREAD_GATE_ID_MREAD_NFC_T1, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T1},
  144. {MICROREAD_GATE_ID_MREAD_NFC_T3, MICROREAD_PIPE_ID_HDS_MREAD_NFC_T3},
  145. {MICROREAD_GATE_ID_P2P_TARGET, MICROREAD_PIPE_ID_HDS_P2P_TARGET},
  146. {MICROREAD_GATE_ID_P2P_INITIATOR, MICROREAD_PIPE_ID_HDS_P2P_INITIATOR}
  147. };
  148. /* Largest headroom needed for outgoing custom commands */
  149. #define MICROREAD_CMDS_HEADROOM 2
  150. #define MICROREAD_CMD_TAILROOM 2
  151. struct microread_info {
  152. struct nfc_phy_ops *phy_ops;
  153. void *phy_id;
  154. struct nfc_hci_dev *hdev;
  155. int async_cb_type;
  156. data_exchange_cb_t async_cb;
  157. void *async_cb_context;
  158. };
  159. static int microread_open(struct nfc_hci_dev *hdev)
  160. {
  161. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  162. return info->phy_ops->enable(info->phy_id);
  163. }
  164. static void microread_close(struct nfc_hci_dev *hdev)
  165. {
  166. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  167. info->phy_ops->disable(info->phy_id);
  168. }
  169. static int microread_hci_ready(struct nfc_hci_dev *hdev)
  170. {
  171. int r;
  172. u8 param[4];
  173. param[0] = 0x03;
  174. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  175. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 1, NULL);
  176. if (r)
  177. return r;
  178. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_A_3,
  179. MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
  180. if (r)
  181. return r;
  182. param[0] = 0x00;
  183. param[1] = 0x03;
  184. param[2] = 0x00;
  185. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_ISO_B,
  186. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 3, NULL);
  187. if (r)
  188. return r;
  189. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T1,
  190. MICROREAD_CMD_MREAD_SUBSCRIBE, NULL, 0, NULL);
  191. if (r)
  192. return r;
  193. param[0] = 0xFF;
  194. param[1] = 0xFF;
  195. param[2] = 0x00;
  196. param[3] = 0x00;
  197. r = nfc_hci_send_cmd(hdev, MICROREAD_GATE_ID_MREAD_NFC_T3,
  198. MICROREAD_CMD_MREAD_SUBSCRIBE, param, 4, NULL);
  199. return r;
  200. }
  201. static int microread_xmit(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  202. {
  203. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  204. return info->phy_ops->write(info->phy_id, skb);
  205. }
  206. static int microread_start_poll(struct nfc_hci_dev *hdev,
  207. u32 im_protocols, u32 tm_protocols)
  208. {
  209. int r;
  210. u8 param[2];
  211. u8 mode;
  212. param[0] = 0x00;
  213. param[1] = 0x00;
  214. if (im_protocols & NFC_PROTO_ISO14443_MASK)
  215. param[0] |= (1 << 2);
  216. if (im_protocols & NFC_PROTO_ISO14443_B_MASK)
  217. param[0] |= 1;
  218. if (im_protocols & NFC_PROTO_MIFARE_MASK)
  219. param[1] |= 1;
  220. if (im_protocols & NFC_PROTO_JEWEL_MASK)
  221. param[0] |= (1 << 1);
  222. if (im_protocols & NFC_PROTO_FELICA_MASK)
  223. param[0] |= (1 << 5);
  224. if (im_protocols & NFC_PROTO_NFC_DEP_MASK)
  225. param[1] |= (1 << 1);
  226. if ((im_protocols | tm_protocols) & NFC_PROTO_NFC_DEP_MASK) {
  227. hdev->gb = nfc_get_local_general_bytes(hdev->ndev,
  228. &hdev->gb_len);
  229. if (hdev->gb == NULL || hdev->gb_len == 0) {
  230. im_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
  231. tm_protocols &= ~NFC_PROTO_NFC_DEP_MASK;
  232. }
  233. }
  234. r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  235. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
  236. if (r)
  237. return r;
  238. mode = 0xff;
  239. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  240. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  241. if (r)
  242. return r;
  243. if (im_protocols & NFC_PROTO_NFC_DEP_MASK) {
  244. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
  245. MICROREAD_PAR_P2P_INITIATOR_GI,
  246. hdev->gb, hdev->gb_len);
  247. if (r)
  248. return r;
  249. }
  250. if (tm_protocols & NFC_PROTO_NFC_DEP_MASK) {
  251. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  252. MICROREAD_PAR_P2P_TARGET_GT,
  253. hdev->gb, hdev->gb_len);
  254. if (r)
  255. return r;
  256. mode = 0x02;
  257. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  258. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  259. if (r)
  260. return r;
  261. }
  262. return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_MREAD_ISO_A,
  263. MICROREAD_EVT_MREAD_DISCOVERY_START_SOME,
  264. param, 2);
  265. }
  266. static int microread_dep_link_up(struct nfc_hci_dev *hdev,
  267. struct nfc_target *target, u8 comm_mode,
  268. u8 *gb, size_t gb_len)
  269. {
  270. struct sk_buff *rgb_skb = NULL;
  271. int r;
  272. r = nfc_hci_get_param(hdev, target->hci_reader_gate,
  273. MICROREAD_PAR_P2P_INITIATOR_GT, &rgb_skb);
  274. if (r < 0)
  275. return r;
  276. if (rgb_skb->len == 0 || rgb_skb->len > NFC_GB_MAXSIZE) {
  277. r = -EPROTO;
  278. goto exit;
  279. }
  280. r = nfc_set_remote_general_bytes(hdev->ndev, rgb_skb->data,
  281. rgb_skb->len);
  282. if (r == 0)
  283. r = nfc_dep_link_is_up(hdev->ndev, target->idx, comm_mode,
  284. NFC_RF_INITIATOR);
  285. exit:
  286. kfree_skb(rgb_skb);
  287. return r;
  288. }
  289. static int microread_dep_link_down(struct nfc_hci_dev *hdev)
  290. {
  291. return nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_INITIATOR,
  292. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL, 0);
  293. }
  294. static int microread_target_from_gate(struct nfc_hci_dev *hdev, u8 gate,
  295. struct nfc_target *target)
  296. {
  297. switch (gate) {
  298. case MICROREAD_GATE_ID_P2P_INITIATOR:
  299. target->supported_protocols = NFC_PROTO_NFC_DEP_MASK;
  300. break;
  301. default:
  302. return -EPROTO;
  303. }
  304. return 0;
  305. }
  306. static int microread_complete_target_discovered(struct nfc_hci_dev *hdev,
  307. u8 gate,
  308. struct nfc_target *target)
  309. {
  310. return 0;
  311. }
  312. #define MICROREAD_CB_TYPE_READER_ALL 1
  313. static void microread_im_transceive_cb(void *context, struct sk_buff *skb,
  314. int err)
  315. {
  316. struct microread_info *info = context;
  317. switch (info->async_cb_type) {
  318. case MICROREAD_CB_TYPE_READER_ALL:
  319. if (err == 0) {
  320. if (skb->len == 0) {
  321. err = -EPROTO;
  322. kfree_skb(skb);
  323. info->async_cb(info->async_cb_context, NULL,
  324. -EPROTO);
  325. return;
  326. }
  327. if (skb->data[skb->len - 1] != 0) {
  328. err = nfc_hci_result_to_errno(
  329. skb->data[skb->len - 1]);
  330. kfree_skb(skb);
  331. info->async_cb(info->async_cb_context, NULL,
  332. err);
  333. return;
  334. }
  335. skb_trim(skb, skb->len - 1); /* RF Error ind. */
  336. }
  337. info->async_cb(info->async_cb_context, skb, err);
  338. break;
  339. default:
  340. if (err == 0)
  341. kfree_skb(skb);
  342. break;
  343. }
  344. }
  345. /*
  346. * Returns:
  347. * <= 0: driver handled the data exchange
  348. * 1: driver doesn't especially handle, please do standard processing
  349. */
  350. static int microread_im_transceive(struct nfc_hci_dev *hdev,
  351. struct nfc_target *target,
  352. struct sk_buff *skb, data_exchange_cb_t cb,
  353. void *cb_context)
  354. {
  355. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  356. u8 control_bits;
  357. u16 crc;
  358. pr_info("data exchange to gate 0x%x\n", target->hci_reader_gate);
  359. if (target->hci_reader_gate == MICROREAD_GATE_ID_P2P_INITIATOR) {
  360. *skb_push(skb, 1) = 0;
  361. return nfc_hci_send_event(hdev, target->hci_reader_gate,
  362. MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_TO_RF,
  363. skb->data, skb->len);
  364. }
  365. switch (target->hci_reader_gate) {
  366. case MICROREAD_GATE_ID_MREAD_ISO_A:
  367. control_bits = 0xCB;
  368. break;
  369. case MICROREAD_GATE_ID_MREAD_ISO_A_3:
  370. control_bits = 0xCB;
  371. break;
  372. case MICROREAD_GATE_ID_MREAD_ISO_B:
  373. control_bits = 0xCB;
  374. break;
  375. case MICROREAD_GATE_ID_MREAD_NFC_T1:
  376. control_bits = 0x1B;
  377. crc = crc_ccitt(0xffff, skb->data, skb->len);
  378. crc = ~crc;
  379. *skb_put(skb, 1) = crc & 0xff;
  380. *skb_put(skb, 1) = crc >> 8;
  381. break;
  382. case MICROREAD_GATE_ID_MREAD_NFC_T3:
  383. control_bits = 0xDB;
  384. break;
  385. default:
  386. pr_info("Abort im_transceive to invalid gate 0x%x\n",
  387. target->hci_reader_gate);
  388. return 1;
  389. }
  390. *skb_push(skb, 1) = control_bits;
  391. info->async_cb_type = MICROREAD_CB_TYPE_READER_ALL;
  392. info->async_cb = cb;
  393. info->async_cb_context = cb_context;
  394. return nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
  395. MICROREAD_CMD_MREAD_EXCHANGE,
  396. skb->data, skb->len,
  397. microread_im_transceive_cb, info);
  398. }
  399. static int microread_tm_send(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  400. {
  401. int r;
  402. r = nfc_hci_send_event(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  403. MICROREAD_EVT_MCARD_EXCHANGE,
  404. skb->data, skb->len);
  405. kfree_skb(skb);
  406. return r;
  407. }
  408. static void microread_target_discovered(struct nfc_hci_dev *hdev, u8 gate,
  409. struct sk_buff *skb)
  410. {
  411. struct nfc_target *targets;
  412. int r = 0;
  413. pr_info("target discovered to gate 0x%x\n", gate);
  414. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  415. if (targets == NULL) {
  416. r = -ENOMEM;
  417. goto exit;
  418. }
  419. targets->hci_reader_gate = gate;
  420. switch (gate) {
  421. case MICROREAD_GATE_ID_MREAD_ISO_A:
  422. targets->supported_protocols =
  423. nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A_SAK]);
  424. targets->sens_res =
  425. be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A_ATQA]);
  426. targets->sel_res = skb->data[MICROREAD_EMCF_A_SAK];
  427. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A_UID],
  428. skb->data[MICROREAD_EMCF_A_LEN]);
  429. targets->nfcid1_len = skb->data[MICROREAD_EMCF_A_LEN];
  430. break;
  431. case MICROREAD_GATE_ID_MREAD_ISO_A_3:
  432. targets->supported_protocols =
  433. nfc_hci_sak_to_protocol(skb->data[MICROREAD_EMCF_A3_SAK]);
  434. targets->sens_res =
  435. be16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_A3_ATQA]);
  436. targets->sel_res = skb->data[MICROREAD_EMCF_A3_SAK];
  437. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_A3_UID],
  438. skb->data[MICROREAD_EMCF_A3_LEN]);
  439. targets->nfcid1_len = skb->data[MICROREAD_EMCF_A3_LEN];
  440. break;
  441. case MICROREAD_GATE_ID_MREAD_ISO_B:
  442. targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
  443. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_B_UID], 4);
  444. targets->nfcid1_len = 4;
  445. break;
  446. case MICROREAD_GATE_ID_MREAD_NFC_T1:
  447. targets->supported_protocols = NFC_PROTO_JEWEL_MASK;
  448. targets->sens_res =
  449. le16_to_cpu(*(u16 *)&skb->data[MICROREAD_EMCF_T1_ATQA]);
  450. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T1_UID], 4);
  451. targets->nfcid1_len = 4;
  452. break;
  453. case MICROREAD_GATE_ID_MREAD_NFC_T3:
  454. targets->supported_protocols = NFC_PROTO_FELICA_MASK;
  455. memcpy(targets->nfcid1, &skb->data[MICROREAD_EMCF_T3_UID], 8);
  456. targets->nfcid1_len = 8;
  457. break;
  458. default:
  459. pr_info("discard target discovered to gate 0x%x\n", gate);
  460. goto exit_free;
  461. }
  462. r = nfc_targets_found(hdev->ndev, targets, 1);
  463. exit_free:
  464. kfree(targets);
  465. exit:
  466. kfree_skb(skb);
  467. if (r)
  468. pr_err("Failed to handle discovered target err=%d", r);
  469. }
  470. static int microread_event_received(struct nfc_hci_dev *hdev, u8 gate,
  471. u8 event, struct sk_buff *skb)
  472. {
  473. int r;
  474. u8 mode;
  475. pr_info("Microread received event 0x%x to gate 0x%x\n", event, gate);
  476. switch (event) {
  477. case MICROREAD_EVT_MREAD_CARD_FOUND:
  478. microread_target_discovered(hdev, gate, skb);
  479. return 0;
  480. case MICROREAD_EVT_P2P_INITIATOR_EXCHANGE_FROM_RF:
  481. if (skb->len < 1) {
  482. kfree_skb(skb);
  483. return -EPROTO;
  484. }
  485. if (skb->data[skb->len - 1]) {
  486. kfree_skb(skb);
  487. return -EIO;
  488. }
  489. skb_trim(skb, skb->len - 1);
  490. r = nfc_tm_data_received(hdev->ndev, skb);
  491. break;
  492. case MICROREAD_EVT_MCARD_FIELD_ON:
  493. case MICROREAD_EVT_MCARD_FIELD_OFF:
  494. kfree_skb(skb);
  495. return 0;
  496. case MICROREAD_EVT_P2P_TARGET_ACTIVATED:
  497. r = nfc_tm_activated(hdev->ndev, NFC_PROTO_NFC_DEP_MASK,
  498. NFC_COMM_PASSIVE, skb->data,
  499. skb->len);
  500. kfree_skb(skb);
  501. break;
  502. case MICROREAD_EVT_MCARD_EXCHANGE:
  503. if (skb->len < 1) {
  504. kfree_skb(skb);
  505. return -EPROTO;
  506. }
  507. if (skb->data[skb->len-1]) {
  508. kfree_skb(skb);
  509. return -EIO;
  510. }
  511. skb_trim(skb, skb->len - 1);
  512. r = nfc_tm_data_received(hdev->ndev, skb);
  513. break;
  514. case MICROREAD_EVT_P2P_TARGET_DEACTIVATED:
  515. kfree_skb(skb);
  516. mode = 0xff;
  517. r = nfc_hci_set_param(hdev, MICROREAD_GATE_ID_P2P_TARGET,
  518. MICROREAD_PAR_P2P_TARGET_MODE, &mode, 1);
  519. if (r)
  520. break;
  521. r = nfc_hci_send_event(hdev, gate,
  522. MICROREAD_EVT_MREAD_DISCOVERY_STOP, NULL,
  523. 0);
  524. break;
  525. default:
  526. return 1;
  527. }
  528. return r;
  529. }
  530. static struct nfc_hci_ops microread_hci_ops = {
  531. .open = microread_open,
  532. .close = microread_close,
  533. .hci_ready = microread_hci_ready,
  534. .xmit = microread_xmit,
  535. .start_poll = microread_start_poll,
  536. .dep_link_up = microread_dep_link_up,
  537. .dep_link_down = microread_dep_link_down,
  538. .target_from_gate = microread_target_from_gate,
  539. .complete_target_discovered = microread_complete_target_discovered,
  540. .im_transceive = microread_im_transceive,
  541. .tm_send = microread_tm_send,
  542. .check_presence = NULL,
  543. .event_received = microread_event_received,
  544. };
  545. int microread_probe(void *phy_id, struct nfc_phy_ops *phy_ops, char *llc_name,
  546. int phy_headroom, int phy_tailroom, int phy_payload,
  547. struct nfc_hci_dev **hdev)
  548. {
  549. struct microread_info *info;
  550. unsigned long quirks = 0;
  551. u32 protocols, se;
  552. struct nfc_hci_init_data init_data;
  553. int r;
  554. info = kzalloc(sizeof(struct microread_info), GFP_KERNEL);
  555. if (!info) {
  556. pr_err("Cannot allocate memory for microread_info.\n");
  557. r = -ENOMEM;
  558. goto err_info_alloc;
  559. }
  560. info->phy_ops = phy_ops;
  561. info->phy_id = phy_id;
  562. init_data.gate_count = ARRAY_SIZE(microread_gates);
  563. memcpy(init_data.gates, microread_gates, sizeof(microread_gates));
  564. strcpy(init_data.session_id, "MICROREA");
  565. set_bit(NFC_HCI_QUIRK_SHORT_CLEAR, &quirks);
  566. protocols = NFC_PROTO_JEWEL_MASK |
  567. NFC_PROTO_MIFARE_MASK |
  568. NFC_PROTO_FELICA_MASK |
  569. NFC_PROTO_ISO14443_MASK |
  570. NFC_PROTO_ISO14443_B_MASK |
  571. NFC_PROTO_NFC_DEP_MASK;
  572. se = NFC_SE_UICC | NFC_SE_EMBEDDED;
  573. info->hdev = nfc_hci_allocate_device(&microread_hci_ops, &init_data,
  574. quirks, protocols, se, llc_name,
  575. phy_headroom +
  576. MICROREAD_CMDS_HEADROOM,
  577. phy_tailroom +
  578. MICROREAD_CMD_TAILROOM,
  579. phy_payload);
  580. if (!info->hdev) {
  581. pr_err("Cannot allocate nfc hdev.\n");
  582. r = -ENOMEM;
  583. goto err_alloc_hdev;
  584. }
  585. nfc_hci_set_clientdata(info->hdev, info);
  586. r = nfc_hci_register_device(info->hdev);
  587. if (r)
  588. goto err_regdev;
  589. *hdev = info->hdev;
  590. return 0;
  591. err_regdev:
  592. nfc_hci_free_device(info->hdev);
  593. err_alloc_hdev:
  594. kfree(info);
  595. err_info_alloc:
  596. return r;
  597. }
  598. EXPORT_SYMBOL(microread_probe);
  599. void microread_remove(struct nfc_hci_dev *hdev)
  600. {
  601. struct microread_info *info = nfc_hci_get_clientdata(hdev);
  602. nfc_hci_unregister_device(hdev);
  603. nfc_hci_free_device(hdev);
  604. kfree(info);
  605. }
  606. EXPORT_SYMBOL(microread_remove);
  607. MODULE_LICENSE("GPL");
  608. MODULE_DESCRIPTION(DRIVER_DESC);