phy.c 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2012 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../ps.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "rf.h"
  36. #include "dm.h"
  37. #include "table.h"
  38. #include "sw.h"
  39. #include "hw.h"
  40. #define MAX_RF_IMR_INDEX 12
  41. #define MAX_RF_IMR_INDEX_NORMAL 13
  42. #define RF_REG_NUM_FOR_C_CUT_5G 6
  43. #define RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA 7
  44. #define RF_REG_NUM_FOR_C_CUT_2G 5
  45. #define RF_CHNL_NUM_5G 19
  46. #define RF_CHNL_NUM_5G_40M 17
  47. #define TARGET_CHNL_NUM_5G 221
  48. #define TARGET_CHNL_NUM_2G 14
  49. #define CV_CURVE_CNT 64
  50. static u32 rf_reg_for_5g_swchnl_normal[MAX_RF_IMR_INDEX_NORMAL] = {
  51. 0, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x0
  52. };
  53. static u8 rf_reg_for_c_cut_5g[RF_REG_NUM_FOR_C_CUT_5G] = {
  54. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G4, RF_SYN_G5, RF_SYN_G6
  55. };
  56. static u8 rf_reg_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  57. RF_SYN_G1, RF_SYN_G2, RF_SYN_G3, RF_SYN_G7, RF_SYN_G8
  58. };
  59. static u8 rf_for_c_cut_5g_internal_pa[RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  60. 0x0B, 0x48, 0x49, 0x4B, 0x03, 0x04, 0x0E
  61. };
  62. static u32 rf_reg_mask_for_c_cut_2g[RF_REG_NUM_FOR_C_CUT_2G] = {
  63. BIT(19) | BIT(18) | BIT(17) | BIT(14) | BIT(1),
  64. BIT(10) | BIT(9),
  65. BIT(18) | BIT(17) | BIT(16) | BIT(1),
  66. BIT(2) | BIT(1),
  67. BIT(15) | BIT(14) | BIT(13) | BIT(12) | BIT(11)
  68. };
  69. static u8 rf_chnl_5g[RF_CHNL_NUM_5G] = {
  70. 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108,
  71. 112, 116, 120, 124, 128, 132, 136, 140
  72. };
  73. static u8 rf_chnl_5g_40m[RF_CHNL_NUM_5G_40M] = {
  74. 38, 42, 46, 50, 54, 58, 62, 102, 106, 110, 114,
  75. 118, 122, 126, 130, 134, 138
  76. };
  77. static u32 rf_reg_pram_c_5g[5][RF_REG_NUM_FOR_C_CUT_5G] = {
  78. {0xE43BE, 0xFC638, 0x77C0A, 0xDE471, 0xd7110, 0x8EB04},
  79. {0xE43BE, 0xFC078, 0xF7C1A, 0xE0C71, 0xD7550, 0xAEB04},
  80. {0xE43BF, 0xFF038, 0xF7C0A, 0xDE471, 0xE5550, 0xAEB04},
  81. {0xE43BF, 0xFF079, 0xF7C1A, 0xDE471, 0xE5550, 0xAEB04},
  82. {0xE43BF, 0xFF038, 0xF7C1A, 0xDE471, 0xd7550, 0xAEB04}
  83. };
  84. static u32 rf_reg_param_for_c_cut_2g[3][RF_REG_NUM_FOR_C_CUT_2G] = {
  85. {0x643BC, 0xFC038, 0x77C1A, 0x41289, 0x01840},
  86. {0x643BC, 0xFC038, 0x07C1A, 0x41289, 0x01840},
  87. {0x243BC, 0xFC438, 0x07C1A, 0x4128B, 0x0FC41}
  88. };
  89. static u32 rf_syn_g4_for_c_cut_2g = 0xD1C31 & 0x7FF;
  90. static u32 rf_pram_c_5g_int_pa[3][RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA] = {
  91. {0x01a00, 0x40443, 0x00eb5, 0x89bec, 0x94a12, 0x94a12, 0x94a12},
  92. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a52, 0x94a52, 0x94a52},
  93. {0x01800, 0xc0443, 0x00730, 0x896ee, 0x94a12, 0x94a12, 0x94a12}
  94. };
  95. /* [mode][patha+b][reg] */
  96. static u32 rf_imr_param_normal[1][3][MAX_RF_IMR_INDEX_NORMAL] = {
  97. {
  98. /* channel 1-14. */
  99. {
  100. 0x70000, 0x00ff0, 0x4400f, 0x00ff0, 0x0, 0x0, 0x0,
  101. 0x0, 0x0, 0x64888, 0xe266c, 0x00090, 0x22fff
  102. },
  103. /* path 36-64 */
  104. {
  105. 0x70000, 0x22880, 0x4470f, 0x55880, 0x00070, 0x88000,
  106. 0x0, 0x88080, 0x70000, 0x64a82, 0xe466c, 0x00090,
  107. 0x32c9a
  108. },
  109. /* 100 -165 */
  110. {
  111. 0x70000, 0x44880, 0x4477f, 0x77880, 0x00070, 0x88000,
  112. 0x0, 0x880b0, 0x0, 0x64b82, 0xe466c, 0x00090, 0x32c9a
  113. }
  114. }
  115. };
  116. static u32 curveindex_5g[TARGET_CHNL_NUM_5G] = {0};
  117. static u32 curveindex_2g[TARGET_CHNL_NUM_2G] = {0};
  118. static u32 targetchnl_5g[TARGET_CHNL_NUM_5G] = {
  119. 25141, 25116, 25091, 25066, 25041,
  120. 25016, 24991, 24966, 24941, 24917,
  121. 24892, 24867, 24843, 24818, 24794,
  122. 24770, 24765, 24721, 24697, 24672,
  123. 24648, 24624, 24600, 24576, 24552,
  124. 24528, 24504, 24480, 24457, 24433,
  125. 24409, 24385, 24362, 24338, 24315,
  126. 24291, 24268, 24245, 24221, 24198,
  127. 24175, 24151, 24128, 24105, 24082,
  128. 24059, 24036, 24013, 23990, 23967,
  129. 23945, 23922, 23899, 23876, 23854,
  130. 23831, 23809, 23786, 23764, 23741,
  131. 23719, 23697, 23674, 23652, 23630,
  132. 23608, 23586, 23564, 23541, 23519,
  133. 23498, 23476, 23454, 23432, 23410,
  134. 23388, 23367, 23345, 23323, 23302,
  135. 23280, 23259, 23237, 23216, 23194,
  136. 23173, 23152, 23130, 23109, 23088,
  137. 23067, 23046, 23025, 23003, 22982,
  138. 22962, 22941, 22920, 22899, 22878,
  139. 22857, 22837, 22816, 22795, 22775,
  140. 22754, 22733, 22713, 22692, 22672,
  141. 22652, 22631, 22611, 22591, 22570,
  142. 22550, 22530, 22510, 22490, 22469,
  143. 22449, 22429, 22409, 22390, 22370,
  144. 22350, 22336, 22310, 22290, 22271,
  145. 22251, 22231, 22212, 22192, 22173,
  146. 22153, 22134, 22114, 22095, 22075,
  147. 22056, 22037, 22017, 21998, 21979,
  148. 21960, 21941, 21921, 21902, 21883,
  149. 21864, 21845, 21826, 21807, 21789,
  150. 21770, 21751, 21732, 21713, 21695,
  151. 21676, 21657, 21639, 21620, 21602,
  152. 21583, 21565, 21546, 21528, 21509,
  153. 21491, 21473, 21454, 21436, 21418,
  154. 21400, 21381, 21363, 21345, 21327,
  155. 21309, 21291, 21273, 21255, 21237,
  156. 21219, 21201, 21183, 21166, 21148,
  157. 21130, 21112, 21095, 21077, 21059,
  158. 21042, 21024, 21007, 20989, 20972,
  159. 25679, 25653, 25627, 25601, 25575,
  160. 25549, 25523, 25497, 25471, 25446,
  161. 25420, 25394, 25369, 25343, 25318,
  162. 25292, 25267, 25242, 25216, 25191,
  163. 25166
  164. };
  165. /* channel 1~14 */
  166. static u32 targetchnl_2g[TARGET_CHNL_NUM_2G] = {
  167. 26084, 26030, 25976, 25923, 25869, 25816, 25764,
  168. 25711, 25658, 25606, 25554, 25502, 25451, 25328
  169. };
  170. static u32 _rtl92d_phy_calculate_bit_shift(u32 bitmask)
  171. {
  172. u32 i;
  173. for (i = 0; i <= 31; i++) {
  174. if (((bitmask >> i) & 0x1) == 1)
  175. break;
  176. }
  177. return i;
  178. }
  179. u32 rtl92d_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  180. {
  181. struct rtl_priv *rtlpriv = rtl_priv(hw);
  182. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  183. u32 returnvalue, originalvalue, bitshift;
  184. u8 dbi_direct;
  185. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "regaddr(%#x), bitmask(%#x)\n",
  186. regaddr, bitmask);
  187. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob) {
  188. /* mac1 use phy0 read radio_b. */
  189. /* mac0 use phy1 read radio_b. */
  190. if (rtlhal->during_mac1init_radioa)
  191. dbi_direct = BIT(3);
  192. else if (rtlhal->during_mac0init_radiob)
  193. dbi_direct = BIT(3) | BIT(2);
  194. originalvalue = rtl92de_read_dword_dbi(hw, (u16)regaddr,
  195. dbi_direct);
  196. } else {
  197. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  198. }
  199. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  200. returnvalue = (originalvalue & bitmask) >> bitshift;
  201. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  202. "BBR MASK=0x%x Addr[0x%x]=0x%x\n",
  203. bitmask, regaddr, originalvalue);
  204. return returnvalue;
  205. }
  206. void rtl92d_phy_set_bb_reg(struct ieee80211_hw *hw,
  207. u32 regaddr, u32 bitmask, u32 data)
  208. {
  209. struct rtl_priv *rtlpriv = rtl_priv(hw);
  210. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  211. u8 dbi_direct = 0;
  212. u32 originalvalue, bitshift;
  213. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  214. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  215. regaddr, bitmask, data);
  216. if (rtlhal->during_mac1init_radioa)
  217. dbi_direct = BIT(3);
  218. else if (rtlhal->during_mac0init_radiob)
  219. /* mac0 use phy1 write radio_b. */
  220. dbi_direct = BIT(3) | BIT(2);
  221. if (bitmask != BMASKDWORD) {
  222. if (rtlhal->during_mac1init_radioa ||
  223. rtlhal->during_mac0init_radiob)
  224. originalvalue = rtl92de_read_dword_dbi(hw,
  225. (u16) regaddr,
  226. dbi_direct);
  227. else
  228. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  229. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  230. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  231. }
  232. if (rtlhal->during_mac1init_radioa || rtlhal->during_mac0init_radiob)
  233. rtl92de_write_dword_dbi(hw, (u16) regaddr, data, dbi_direct);
  234. else
  235. rtl_write_dword(rtlpriv, regaddr, data);
  236. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  237. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  238. regaddr, bitmask, data);
  239. }
  240. static u32 _rtl92d_phy_rf_serial_read(struct ieee80211_hw *hw,
  241. enum radio_path rfpath, u32 offset)
  242. {
  243. struct rtl_priv *rtlpriv = rtl_priv(hw);
  244. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  245. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  246. u32 newoffset;
  247. u32 tmplong, tmplong2;
  248. u8 rfpi_enable = 0;
  249. u32 retvalue;
  250. newoffset = offset;
  251. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD);
  252. if (rfpath == RF90_PATH_A)
  253. tmplong2 = tmplong;
  254. else
  255. tmplong2 = rtl_get_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD);
  256. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  257. (newoffset << 23) | BLSSIREADEDGE;
  258. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
  259. tmplong & (~BLSSIREADEDGE));
  260. udelay(10);
  261. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, BMASKDWORD, tmplong2);
  262. udelay(50);
  263. udelay(50);
  264. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, BMASKDWORD,
  265. tmplong | BLSSIREADEDGE);
  266. udelay(10);
  267. if (rfpath == RF90_PATH_A)
  268. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  269. BIT(8));
  270. else if (rfpath == RF90_PATH_B)
  271. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  272. BIT(8));
  273. if (rfpi_enable)
  274. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rbpi,
  275. BLSSIREADBACKDATA);
  276. else
  277. retvalue = rtl_get_bbreg(hw, pphyreg->rf_rb,
  278. BLSSIREADBACKDATA);
  279. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x] = 0x%x\n",
  280. rfpath, pphyreg->rf_rb, retvalue);
  281. return retvalue;
  282. }
  283. static void _rtl92d_phy_rf_serial_write(struct ieee80211_hw *hw,
  284. enum radio_path rfpath,
  285. u32 offset, u32 data)
  286. {
  287. u32 data_and_addr;
  288. u32 newoffset;
  289. struct rtl_priv *rtlpriv = rtl_priv(hw);
  290. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  291. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  292. newoffset = offset;
  293. /* T65 RF */
  294. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  295. rtl_set_bbreg(hw, pphyreg->rf3wire_offset, BMASKDWORD, data_and_addr);
  296. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]=0x%x\n",
  297. rfpath, pphyreg->rf3wire_offset, data_and_addr);
  298. }
  299. u32 rtl92d_phy_query_rf_reg(struct ieee80211_hw *hw,
  300. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  301. {
  302. struct rtl_priv *rtlpriv = rtl_priv(hw);
  303. u32 original_value, readback_value, bitshift;
  304. unsigned long flags;
  305. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  306. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  307. regaddr, rfpath, bitmask);
  308. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  309. original_value = _rtl92d_phy_rf_serial_read(hw, rfpath, regaddr);
  310. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  311. readback_value = (original_value & bitmask) >> bitshift;
  312. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  313. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  314. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  315. regaddr, rfpath, bitmask, original_value);
  316. return readback_value;
  317. }
  318. void rtl92d_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
  319. u32 regaddr, u32 bitmask, u32 data)
  320. {
  321. struct rtl_priv *rtlpriv = rtl_priv(hw);
  322. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  323. u32 original_value, bitshift;
  324. unsigned long flags;
  325. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  326. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  327. regaddr, bitmask, data, rfpath);
  328. if (bitmask == 0)
  329. return;
  330. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  331. if (rtlphy->rf_mode != RF_OP_BY_FW) {
  332. if (bitmask != BRFREGOFFSETMASK) {
  333. original_value = _rtl92d_phy_rf_serial_read(hw,
  334. rfpath, regaddr);
  335. bitshift = _rtl92d_phy_calculate_bit_shift(bitmask);
  336. data = ((original_value & (~bitmask)) |
  337. (data << bitshift));
  338. }
  339. _rtl92d_phy_rf_serial_write(hw, rfpath, regaddr, data);
  340. }
  341. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  342. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  343. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  344. regaddr, bitmask, data, rfpath);
  345. }
  346. bool rtl92d_phy_mac_config(struct ieee80211_hw *hw)
  347. {
  348. struct rtl_priv *rtlpriv = rtl_priv(hw);
  349. u32 i;
  350. u32 arraylength;
  351. u32 *ptrarray;
  352. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl819XMACPHY_Array\n");
  353. arraylength = MAC_2T_ARRAYLENGTH;
  354. ptrarray = rtl8192de_mac_2tarray;
  355. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Img:Rtl819XMAC_Array\n");
  356. for (i = 0; i < arraylength; i = i + 2)
  357. rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
  358. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY) {
  359. /* improve 2-stream TX EVM */
  360. /* rtl_write_byte(rtlpriv, 0x14,0x71); */
  361. /* AMPDU aggregation number 9 */
  362. /* rtl_write_word(rtlpriv, REG_MAX_AGGR_NUM, MAX_AGGR_NUM); */
  363. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x0B);
  364. } else {
  365. /* 92D need to test to decide the num. */
  366. rtl_write_byte(rtlpriv, REG_MAX_AGGR_NUM, 0x07);
  367. }
  368. return true;
  369. }
  370. static void _rtl92d_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  371. {
  372. struct rtl_priv *rtlpriv = rtl_priv(hw);
  373. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  374. /* RF Interface Sowrtware Control */
  375. /* 16 LSBs if read 32-bit from 0x870 */
  376. rtlphy->phyreg_def[RF90_PATH_A].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  377. /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
  378. rtlphy->phyreg_def[RF90_PATH_B].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  379. /* 16 LSBs if read 32-bit from 0x874 */
  380. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  381. /* 16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
  382. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  383. /* RF Interface Readback Value */
  384. /* 16 LSBs if read 32-bit from 0x8E0 */
  385. rtlphy->phyreg_def[RF90_PATH_A].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  386. /* 16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
  387. rtlphy->phyreg_def[RF90_PATH_B].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  388. /* 16 LSBs if read 32-bit from 0x8E4 */
  389. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  390. /* 16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
  391. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  392. /* RF Interface Output (and Enable) */
  393. /* 16 LSBs if read 32-bit from 0x860 */
  394. rtlphy->phyreg_def[RF90_PATH_A].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  395. /* 16 LSBs if read 32-bit from 0x864 */
  396. rtlphy->phyreg_def[RF90_PATH_B].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  397. /* RF Interface (Output and) Enable */
  398. /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
  399. rtlphy->phyreg_def[RF90_PATH_A].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  400. /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
  401. rtlphy->phyreg_def[RF90_PATH_B].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  402. /* Addr of LSSI. Wirte RF register by driver */
  403. /* LSSI Parameter */
  404. rtlphy->phyreg_def[RF90_PATH_A].rf3wire_offset =
  405. RFPGA0_XA_LSSIPARAMETER;
  406. rtlphy->phyreg_def[RF90_PATH_B].rf3wire_offset =
  407. RFPGA0_XB_LSSIPARAMETER;
  408. /* RF parameter */
  409. /* BB Band Select */
  410. rtlphy->phyreg_def[RF90_PATH_A].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  411. rtlphy->phyreg_def[RF90_PATH_B].rflssi_select = RFPGA0_XAB_RFPARAMETER;
  412. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  413. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = RFPGA0_XCD_RFPARAMETER;
  414. /* Tx AGC Gain Stage (same for all path. Should we remove this?) */
  415. /* Tx gain stage */
  416. rtlphy->phyreg_def[RF90_PATH_A].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  417. /* Tx gain stage */
  418. rtlphy->phyreg_def[RF90_PATH_B].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  419. /* Tx gain stage */
  420. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  421. /* Tx gain stage */
  422. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  423. /* Tranceiver A~D HSSI Parameter-1 */
  424. /* wire control parameter1 */
  425. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  426. /* wire control parameter1 */
  427. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  428. /* Tranceiver A~D HSSI Parameter-2 */
  429. /* wire control parameter2 */
  430. rtlphy->phyreg_def[RF90_PATH_A].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  431. /* wire control parameter2 */
  432. rtlphy->phyreg_def[RF90_PATH_B].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  433. /* RF switch Control */
  434. /* TR/Ant switch control */
  435. rtlphy->phyreg_def[RF90_PATH_A].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  436. rtlphy->phyreg_def[RF90_PATH_B].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  437. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  438. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  439. /* AGC control 1 */
  440. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control1 = ROFDM0_XAAGCCORE1;
  441. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control1 = ROFDM0_XBAGCCORE1;
  442. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  443. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  444. /* AGC control 2 */
  445. rtlphy->phyreg_def[RF90_PATH_A].rfagc_control2 = ROFDM0_XAAGCCORE2;
  446. rtlphy->phyreg_def[RF90_PATH_B].rfagc_control2 = ROFDM0_XBAGCCORE2;
  447. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  448. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  449. /* RX AFE control 1 */
  450. rtlphy->phyreg_def[RF90_PATH_A].rfrxiq_imbal = ROFDM0_XARXIQIMBALANCE;
  451. rtlphy->phyreg_def[RF90_PATH_B].rfrxiq_imbal = ROFDM0_XBRXIQIMBALANCE;
  452. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBALANCE;
  453. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBALANCE;
  454. /*RX AFE control 1 */
  455. rtlphy->phyreg_def[RF90_PATH_A].rfrx_afe = ROFDM0_XARXAFE;
  456. rtlphy->phyreg_def[RF90_PATH_B].rfrx_afe = ROFDM0_XBRXAFE;
  457. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  458. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  459. /* Tx AFE control 1 */
  460. rtlphy->phyreg_def[RF90_PATH_A].rftxiq_imbal = ROFDM0_XATxIQIMBALANCE;
  461. rtlphy->phyreg_def[RF90_PATH_B].rftxiq_imbal = ROFDM0_XBTxIQIMBALANCE;
  462. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTxIQIMBALANCE;
  463. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTxIQIMBALANCE;
  464. /* Tx AFE control 2 */
  465. rtlphy->phyreg_def[RF90_PATH_A].rftx_afe = ROFDM0_XATxAFE;
  466. rtlphy->phyreg_def[RF90_PATH_B].rftx_afe = ROFDM0_XBTxAFE;
  467. rtlphy->phyreg_def[RF90_PATH_C].rftx_afe = ROFDM0_XCTxAFE;
  468. rtlphy->phyreg_def[RF90_PATH_D].rftx_afe = ROFDM0_XDTxAFE;
  469. /* Tranceiver LSSI Readback SI mode */
  470. rtlphy->phyreg_def[RF90_PATH_A].rf_rb = RFPGA0_XA_LSSIREADBACK;
  471. rtlphy->phyreg_def[RF90_PATH_B].rf_rb = RFPGA0_XB_LSSIREADBACK;
  472. rtlphy->phyreg_def[RF90_PATH_C].rf_rb = RFPGA0_XC_LSSIREADBACK;
  473. rtlphy->phyreg_def[RF90_PATH_D].rf_rb = RFPGA0_XD_LSSIREADBACK;
  474. /* Tranceiver LSSI Readback PI mode */
  475. rtlphy->phyreg_def[RF90_PATH_A].rf_rbpi = TRANSCEIVERA_HSPI_READBACK;
  476. rtlphy->phyreg_def[RF90_PATH_B].rf_rbpi = TRANSCEIVERB_HSPI_READBACK;
  477. }
  478. static bool _rtl92d_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
  479. u8 configtype)
  480. {
  481. int i;
  482. u32 *phy_regarray_table;
  483. u32 *agctab_array_table = NULL;
  484. u32 *agctab_5garray_table;
  485. u16 phy_reg_arraylen, agctab_arraylen = 0, agctab_5garraylen;
  486. struct rtl_priv *rtlpriv = rtl_priv(hw);
  487. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  488. /* Normal chip,Mac0 use AGC_TAB.txt for 2G and 5G band. */
  489. if (rtlhal->interfaceindex == 0) {
  490. agctab_arraylen = AGCTAB_ARRAYLENGTH;
  491. agctab_array_table = rtl8192de_agctab_array;
  492. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  493. " ===> phy:MAC0, Rtl819XAGCTAB_Array\n");
  494. } else {
  495. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  496. agctab_arraylen = AGCTAB_2G_ARRAYLENGTH;
  497. agctab_array_table = rtl8192de_agctab_2garray;
  498. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  499. " ===> phy:MAC1, Rtl819XAGCTAB_2GArray\n");
  500. } else {
  501. agctab_5garraylen = AGCTAB_5G_ARRAYLENGTH;
  502. agctab_5garray_table = rtl8192de_agctab_5garray;
  503. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  504. " ===> phy:MAC1, Rtl819XAGCTAB_5GArray\n");
  505. }
  506. }
  507. phy_reg_arraylen = PHY_REG_2T_ARRAYLENGTH;
  508. phy_regarray_table = rtl8192de_phy_reg_2tarray;
  509. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  510. " ===> phy:Rtl819XPHY_REG_Array_PG\n");
  511. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  512. for (i = 0; i < phy_reg_arraylen; i = i + 2) {
  513. if (phy_regarray_table[i] == 0xfe)
  514. mdelay(50);
  515. else if (phy_regarray_table[i] == 0xfd)
  516. mdelay(5);
  517. else if (phy_regarray_table[i] == 0xfc)
  518. mdelay(1);
  519. else if (phy_regarray_table[i] == 0xfb)
  520. udelay(50);
  521. else if (phy_regarray_table[i] == 0xfa)
  522. udelay(5);
  523. else if (phy_regarray_table[i] == 0xf9)
  524. udelay(1);
  525. rtl_set_bbreg(hw, phy_regarray_table[i], BMASKDWORD,
  526. phy_regarray_table[i + 1]);
  527. udelay(1);
  528. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  529. "The phy_regarray_table[0] is %x Rtl819XPHY_REGArray[1] is %x\n",
  530. phy_regarray_table[i],
  531. phy_regarray_table[i + 1]);
  532. }
  533. } else if (configtype == BASEBAND_CONFIG_AGC_TAB) {
  534. if (rtlhal->interfaceindex == 0) {
  535. for (i = 0; i < agctab_arraylen; i = i + 2) {
  536. rtl_set_bbreg(hw, agctab_array_table[i],
  537. BMASKDWORD,
  538. agctab_array_table[i + 1]);
  539. /* Add 1us delay between BB/RF register
  540. * setting. */
  541. udelay(1);
  542. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  543. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  544. agctab_array_table[i],
  545. agctab_array_table[i + 1]);
  546. }
  547. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  548. "Normal Chip, MAC0, load Rtl819XAGCTAB_Array\n");
  549. } else {
  550. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  551. for (i = 0; i < agctab_arraylen; i = i + 2) {
  552. rtl_set_bbreg(hw, agctab_array_table[i],
  553. BMASKDWORD,
  554. agctab_array_table[i + 1]);
  555. /* Add 1us delay between BB/RF register
  556. * setting. */
  557. udelay(1);
  558. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  559. "The Rtl819XAGCTAB_Array_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  560. agctab_array_table[i],
  561. agctab_array_table[i + 1]);
  562. }
  563. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  564. "Load Rtl819XAGCTAB_2GArray\n");
  565. } else {
  566. for (i = 0; i < agctab_5garraylen; i = i + 2) {
  567. rtl_set_bbreg(hw,
  568. agctab_5garray_table[i],
  569. BMASKDWORD,
  570. agctab_5garray_table[i + 1]);
  571. /* Add 1us delay between BB/RF registeri
  572. * setting. */
  573. udelay(1);
  574. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  575. "The Rtl819XAGCTAB_5GArray_Table[0] is %ul Rtl819XPHY_REGArray[1] is %ul\n",
  576. agctab_5garray_table[i],
  577. agctab_5garray_table[i + 1]);
  578. }
  579. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  580. "Load Rtl819XAGCTAB_5GArray\n");
  581. }
  582. }
  583. }
  584. return true;
  585. }
  586. static void _rtl92d_store_pwrindex_diffrate_offset(struct ieee80211_hw *hw,
  587. u32 regaddr, u32 bitmask,
  588. u32 data)
  589. {
  590. struct rtl_priv *rtlpriv = rtl_priv(hw);
  591. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  592. int index;
  593. if (regaddr == RTXAGC_A_RATE18_06)
  594. index = 0;
  595. else if (regaddr == RTXAGC_A_RATE54_24)
  596. index = 1;
  597. else if (regaddr == RTXAGC_A_CCK1_MCS32)
  598. index = 6;
  599. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00)
  600. index = 7;
  601. else if (regaddr == RTXAGC_A_MCS03_MCS00)
  602. index = 2;
  603. else if (regaddr == RTXAGC_A_MCS07_MCS04)
  604. index = 3;
  605. else if (regaddr == RTXAGC_A_MCS11_MCS08)
  606. index = 4;
  607. else if (regaddr == RTXAGC_A_MCS15_MCS12)
  608. index = 5;
  609. else if (regaddr == RTXAGC_B_RATE18_06)
  610. index = 8;
  611. else if (regaddr == RTXAGC_B_RATE54_24)
  612. index = 9;
  613. else if (regaddr == RTXAGC_B_CCK1_55_MCS32)
  614. index = 14;
  615. else if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff)
  616. index = 15;
  617. else if (regaddr == RTXAGC_B_MCS03_MCS00)
  618. index = 10;
  619. else if (regaddr == RTXAGC_B_MCS07_MCS04)
  620. index = 11;
  621. else if (regaddr == RTXAGC_B_MCS11_MCS08)
  622. index = 12;
  623. else if (regaddr == RTXAGC_B_MCS15_MCS12)
  624. index = 13;
  625. else
  626. return;
  627. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index] = data;
  628. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  629. "MCSTxPowerLevelOriginalOffset[%d][%d] = 0x%ulx\n",
  630. rtlphy->pwrgroup_cnt, index,
  631. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][index]);
  632. if (index == 13)
  633. rtlphy->pwrgroup_cnt++;
  634. }
  635. static bool _rtl92d_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
  636. u8 configtype)
  637. {
  638. struct rtl_priv *rtlpriv = rtl_priv(hw);
  639. int i;
  640. u32 *phy_regarray_table_pg;
  641. u16 phy_regarray_pg_len;
  642. phy_regarray_pg_len = PHY_REG_ARRAY_PG_LENGTH;
  643. phy_regarray_table_pg = rtl8192de_phy_reg_array_pg;
  644. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  645. for (i = 0; i < phy_regarray_pg_len; i = i + 3) {
  646. if (phy_regarray_table_pg[i] == 0xfe)
  647. mdelay(50);
  648. else if (phy_regarray_table_pg[i] == 0xfd)
  649. mdelay(5);
  650. else if (phy_regarray_table_pg[i] == 0xfc)
  651. mdelay(1);
  652. else if (phy_regarray_table_pg[i] == 0xfb)
  653. udelay(50);
  654. else if (phy_regarray_table_pg[i] == 0xfa)
  655. udelay(5);
  656. else if (phy_regarray_table_pg[i] == 0xf9)
  657. udelay(1);
  658. _rtl92d_store_pwrindex_diffrate_offset(hw,
  659. phy_regarray_table_pg[i],
  660. phy_regarray_table_pg[i + 1],
  661. phy_regarray_table_pg[i + 2]);
  662. }
  663. } else {
  664. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  665. "configtype != BaseBand_Config_PHY_REG\n");
  666. }
  667. return true;
  668. }
  669. static bool _rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  670. {
  671. struct rtl_priv *rtlpriv = rtl_priv(hw);
  672. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  673. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  674. bool rtstatus = true;
  675. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "==>\n");
  676. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  677. BASEBAND_CONFIG_PHY_REG);
  678. if (!rtstatus) {
  679. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!\n");
  680. return false;
  681. }
  682. /* if (rtlphy->rf_type == RF_1T2R) {
  683. * _rtl92c_phy_bb_config_1t(hw);
  684. * RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Config to 1T!!\n");
  685. *} */
  686. if (rtlefuse->autoload_failflag == false) {
  687. rtlphy->pwrgroup_cnt = 0;
  688. rtstatus = _rtl92d_phy_config_bb_with_pgheaderfile(hw,
  689. BASEBAND_CONFIG_PHY_REG);
  690. }
  691. if (!rtstatus) {
  692. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!\n");
  693. return false;
  694. }
  695. rtstatus = _rtl92d_phy_config_bb_with_headerfile(hw,
  696. BASEBAND_CONFIG_AGC_TAB);
  697. if (!rtstatus) {
  698. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  699. return false;
  700. }
  701. rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
  702. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  703. return true;
  704. }
  705. bool rtl92d_phy_bb_config(struct ieee80211_hw *hw)
  706. {
  707. struct rtl_priv *rtlpriv = rtl_priv(hw);
  708. u16 regval;
  709. u32 regvaldw;
  710. u8 value;
  711. _rtl92d_phy_init_bb_rf_register_definition(hw);
  712. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  713. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  714. regval | BIT(13) | BIT(0) | BIT(1));
  715. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x83);
  716. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL + 1, 0xdb);
  717. /* 0x1f bit7 bit6 represent for mac0/mac1 driver ready */
  718. value = rtl_read_byte(rtlpriv, REG_RF_CTRL);
  719. rtl_write_byte(rtlpriv, REG_RF_CTRL, value | RF_EN | RF_RSTB |
  720. RF_SDMRSTB);
  721. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, FEN_PPLL | FEN_PCIEA |
  722. FEN_DIO_PCIE | FEN_BB_GLB_RSTn | FEN_BBRSTB);
  723. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
  724. if (!(IS_92D_SINGLEPHY(rtlpriv->rtlhal.version))) {
  725. regvaldw = rtl_read_dword(rtlpriv, REG_LEDCFG0);
  726. rtl_write_dword(rtlpriv, REG_LEDCFG0, regvaldw | BIT(23));
  727. }
  728. return _rtl92d_phy_bb_config(hw);
  729. }
  730. bool rtl92d_phy_rf_config(struct ieee80211_hw *hw)
  731. {
  732. return rtl92d_phy_rf6052_config(hw);
  733. }
  734. bool rtl92d_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  735. enum rf_content content,
  736. enum radio_path rfpath)
  737. {
  738. int i;
  739. u32 *radioa_array_table;
  740. u32 *radiob_array_table;
  741. u16 radioa_arraylen, radiob_arraylen;
  742. struct rtl_priv *rtlpriv = rtl_priv(hw);
  743. radioa_arraylen = RADIOA_2T_ARRAYLENGTH;
  744. radioa_array_table = rtl8192de_radioa_2tarray;
  745. radiob_arraylen = RADIOB_2T_ARRAYLENGTH;
  746. radiob_array_table = rtl8192de_radiob_2tarray;
  747. if (rtlpriv->efuse.internal_pa_5g[0]) {
  748. radioa_arraylen = RADIOA_2T_INT_PA_ARRAYLENGTH;
  749. radioa_array_table = rtl8192de_radioa_2t_int_paarray;
  750. }
  751. if (rtlpriv->efuse.internal_pa_5g[1]) {
  752. radiob_arraylen = RADIOB_2T_INT_PA_ARRAYLENGTH;
  753. radiob_array_table = rtl8192de_radiob_2t_int_paarray;
  754. }
  755. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  756. "PHY_ConfigRFWithHeaderFile() Radio_A:Rtl819XRadioA_1TArray\n");
  757. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  758. "PHY_ConfigRFWithHeaderFile() Radio_B:Rtl819XRadioB_1TArray\n");
  759. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Radio No %x\n", rfpath);
  760. /* this only happens when DMDP, mac0 start on 2.4G,
  761. * mac1 start on 5G, mac 0 has to set phy0&phy1
  762. * pathA or mac1 has to set phy0&phy1 pathA */
  763. if ((content == radiob_txt) && (rfpath == RF90_PATH_A)) {
  764. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  765. " ===> althougth Path A, we load radiob.txt\n");
  766. radioa_arraylen = radiob_arraylen;
  767. radioa_array_table = radiob_array_table;
  768. }
  769. switch (rfpath) {
  770. case RF90_PATH_A:
  771. for (i = 0; i < radioa_arraylen; i = i + 2) {
  772. if (radioa_array_table[i] == 0xfe) {
  773. mdelay(50);
  774. } else if (radioa_array_table[i] == 0xfd) {
  775. /* delay_ms(5); */
  776. mdelay(5);
  777. } else if (radioa_array_table[i] == 0xfc) {
  778. /* delay_ms(1); */
  779. mdelay(1);
  780. } else if (radioa_array_table[i] == 0xfb) {
  781. udelay(50);
  782. } else if (radioa_array_table[i] == 0xfa) {
  783. udelay(5);
  784. } else if (radioa_array_table[i] == 0xf9) {
  785. udelay(1);
  786. } else {
  787. rtl_set_rfreg(hw, rfpath, radioa_array_table[i],
  788. BRFREGOFFSETMASK,
  789. radioa_array_table[i + 1]);
  790. /* Add 1us delay between BB/RF register set. */
  791. udelay(1);
  792. }
  793. }
  794. break;
  795. case RF90_PATH_B:
  796. for (i = 0; i < radiob_arraylen; i = i + 2) {
  797. if (radiob_array_table[i] == 0xfe) {
  798. /* Delay specific ms. Only RF configuration
  799. * requires delay. */
  800. mdelay(50);
  801. } else if (radiob_array_table[i] == 0xfd) {
  802. /* delay_ms(5); */
  803. mdelay(5);
  804. } else if (radiob_array_table[i] == 0xfc) {
  805. /* delay_ms(1); */
  806. mdelay(1);
  807. } else if (radiob_array_table[i] == 0xfb) {
  808. udelay(50);
  809. } else if (radiob_array_table[i] == 0xfa) {
  810. udelay(5);
  811. } else if (radiob_array_table[i] == 0xf9) {
  812. udelay(1);
  813. } else {
  814. rtl_set_rfreg(hw, rfpath, radiob_array_table[i],
  815. BRFREGOFFSETMASK,
  816. radiob_array_table[i + 1]);
  817. /* Add 1us delay between BB/RF register set. */
  818. udelay(1);
  819. }
  820. }
  821. break;
  822. case RF90_PATH_C:
  823. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  824. "switch case not processed\n");
  825. break;
  826. case RF90_PATH_D:
  827. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  828. "switch case not processed\n");
  829. break;
  830. }
  831. return true;
  832. }
  833. void rtl92d_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  834. {
  835. struct rtl_priv *rtlpriv = rtl_priv(hw);
  836. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  837. rtlphy->default_initialgain[0] =
  838. (u8) rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, BMASKBYTE0);
  839. rtlphy->default_initialgain[1] =
  840. (u8) rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, BMASKBYTE0);
  841. rtlphy->default_initialgain[2] =
  842. (u8) rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, BMASKBYTE0);
  843. rtlphy->default_initialgain[3] =
  844. (u8) rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, BMASKBYTE0);
  845. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  846. "Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
  847. rtlphy->default_initialgain[0],
  848. rtlphy->default_initialgain[1],
  849. rtlphy->default_initialgain[2],
  850. rtlphy->default_initialgain[3]);
  851. rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  852. BMASKBYTE0);
  853. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  854. BMASKDWORD);
  855. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  856. "Default framesync (0x%x) = 0x%x\n",
  857. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  858. }
  859. static void _rtl92d_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  860. u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  861. {
  862. struct rtl_priv *rtlpriv = rtl_priv(hw);
  863. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  864. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  865. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  866. u8 index = (channel - 1);
  867. /* 1. CCK */
  868. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  869. /* RF-A */
  870. cckpowerlevel[RF90_PATH_A] =
  871. rtlefuse->txpwrlevel_cck[RF90_PATH_A][index];
  872. /* RF-B */
  873. cckpowerlevel[RF90_PATH_B] =
  874. rtlefuse->txpwrlevel_cck[RF90_PATH_B][index];
  875. } else {
  876. cckpowerlevel[RF90_PATH_A] = 0;
  877. cckpowerlevel[RF90_PATH_B] = 0;
  878. }
  879. /* 2. OFDM for 1S or 2S */
  880. if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) {
  881. /* Read HT 40 OFDM TX power */
  882. ofdmpowerlevel[RF90_PATH_A] =
  883. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_A][index];
  884. ofdmpowerlevel[RF90_PATH_B] =
  885. rtlefuse->txpwrlevel_ht40_1s[RF90_PATH_B][index];
  886. } else if (rtlphy->rf_type == RF_2T2R) {
  887. /* Read HT 40 OFDM TX power */
  888. ofdmpowerlevel[RF90_PATH_A] =
  889. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_A][index];
  890. ofdmpowerlevel[RF90_PATH_B] =
  891. rtlefuse->txpwrlevel_ht40_2s[RF90_PATH_B][index];
  892. }
  893. }
  894. static void _rtl92d_ccxpower_index_check(struct ieee80211_hw *hw,
  895. u8 channel, u8 *cckpowerlevel, u8 *ofdmpowerlevel)
  896. {
  897. struct rtl_priv *rtlpriv = rtl_priv(hw);
  898. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  899. rtlphy->cur_cck_txpwridx = cckpowerlevel[0];
  900. rtlphy->cur_ofdm24g_txpwridx = ofdmpowerlevel[0];
  901. }
  902. static u8 _rtl92c_phy_get_rightchnlplace(u8 chnl)
  903. {
  904. u8 channel_5g[59] = {
  905. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  906. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  907. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  908. 114, 116, 118, 120, 122, 124, 126, 128,
  909. 130, 132, 134, 136, 138, 140, 149, 151,
  910. 153, 155, 157, 159, 161, 163, 165
  911. };
  912. u8 place = chnl;
  913. if (chnl > 14) {
  914. for (place = 14; place < sizeof(channel_5g); place++) {
  915. if (channel_5g[place] == chnl) {
  916. place++;
  917. break;
  918. }
  919. }
  920. }
  921. return place;
  922. }
  923. void rtl92d_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  924. {
  925. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  926. struct rtl_priv *rtlpriv = rtl_priv(hw);
  927. u8 cckpowerlevel[2], ofdmpowerlevel[2];
  928. if (!rtlefuse->txpwr_fromeprom)
  929. return;
  930. channel = _rtl92c_phy_get_rightchnlplace(channel);
  931. _rtl92d_get_txpower_index(hw, channel, &cckpowerlevel[0],
  932. &ofdmpowerlevel[0]);
  933. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  934. _rtl92d_ccxpower_index_check(hw, channel, &cckpowerlevel[0],
  935. &ofdmpowerlevel[0]);
  936. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G)
  937. rtl92d_phy_rf6052_set_cck_txpower(hw, &cckpowerlevel[0]);
  938. rtl92d_phy_rf6052_set_ofdm_txpower(hw, &ofdmpowerlevel[0], channel);
  939. }
  940. void rtl92d_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
  941. {
  942. struct rtl_priv *rtlpriv = rtl_priv(hw);
  943. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  944. enum io_type iotype;
  945. if (!is_hal_stop(rtlhal)) {
  946. switch (operation) {
  947. case SCAN_OPT_BACKUP:
  948. rtlhal->current_bandtypebackup =
  949. rtlhal->current_bandtype;
  950. iotype = IO_CMD_PAUSE_DM_BY_SCAN;
  951. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
  952. (u8 *)&iotype);
  953. break;
  954. case SCAN_OPT_RESTORE:
  955. iotype = IO_CMD_RESUME_DM_BY_SCAN;
  956. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
  957. (u8 *)&iotype);
  958. break;
  959. default:
  960. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  961. "Unknown Scan Backup operation\n");
  962. break;
  963. }
  964. }
  965. }
  966. void rtl92d_phy_set_bw_mode(struct ieee80211_hw *hw,
  967. enum nl80211_channel_type ch_type)
  968. {
  969. struct rtl_priv *rtlpriv = rtl_priv(hw);
  970. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  971. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  972. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  973. unsigned long flag = 0;
  974. u8 reg_prsr_rsc;
  975. u8 reg_bw_opmode;
  976. if (rtlphy->set_bwmode_inprogress)
  977. return;
  978. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  979. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  980. "FALSE driver sleep or unload\n");
  981. return;
  982. }
  983. rtlphy->set_bwmode_inprogress = true;
  984. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "Switch to %s bandwidth\n",
  985. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  986. "20MHz" : "40MHz");
  987. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  988. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  989. switch (rtlphy->current_chan_bw) {
  990. case HT_CHANNEL_WIDTH_20:
  991. reg_bw_opmode |= BW_OPMODE_20MHZ;
  992. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  993. break;
  994. case HT_CHANNEL_WIDTH_20_40:
  995. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  996. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  997. reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
  998. (mac->cur_40_prime_sc << 5);
  999. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  1000. break;
  1001. default:
  1002. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1003. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1004. break;
  1005. }
  1006. switch (rtlphy->current_chan_bw) {
  1007. case HT_CHANNEL_WIDTH_20:
  1008. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  1009. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  1010. /* SET BIT10 BIT11 for receive cck */
  1011. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  1012. BIT(11), 3);
  1013. break;
  1014. case HT_CHANNEL_WIDTH_20_40:
  1015. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  1016. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  1017. /* Set Control channel to upper or lower.
  1018. * These settings are required only for 40MHz */
  1019. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1020. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  1021. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCKSIDEBAND,
  1022. (mac->cur_40_prime_sc >> 1));
  1023. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  1024. }
  1025. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  1026. /* SET BIT10 BIT11 for receive cck */
  1027. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10) |
  1028. BIT(11), 0);
  1029. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  1030. (mac->cur_40_prime_sc ==
  1031. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  1032. break;
  1033. default:
  1034. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1035. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1036. break;
  1037. }
  1038. rtl92d_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  1039. rtlphy->set_bwmode_inprogress = false;
  1040. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  1041. }
  1042. static void _rtl92d_phy_stop_trx_before_changeband(struct ieee80211_hw *hw)
  1043. {
  1044. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0);
  1045. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0);
  1046. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x00);
  1047. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x0);
  1048. }
  1049. static void rtl92d_phy_switch_wirelessband(struct ieee80211_hw *hw, u8 band)
  1050. {
  1051. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1052. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1053. u8 value8;
  1054. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  1055. rtlhal->bandset = band;
  1056. rtlhal->current_bandtype = band;
  1057. if (IS_92D_SINGLEPHY(rtlhal->version))
  1058. rtlhal->bandset = BAND_ON_BOTH;
  1059. /* stop RX/Tx */
  1060. _rtl92d_phy_stop_trx_before_changeband(hw);
  1061. /* reconfig BB/RF according to wireless mode */
  1062. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1063. /* BB & RF Config */
  1064. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>2.4G\n");
  1065. if (rtlhal->interfaceindex == 1)
  1066. _rtl92d_phy_config_bb_with_headerfile(hw,
  1067. BASEBAND_CONFIG_AGC_TAB);
  1068. } else {
  1069. /* 5G band */
  1070. RT_TRACE(rtlpriv, COMP_CMD, DBG_DMESG, "====>5G\n");
  1071. if (rtlhal->interfaceindex == 1)
  1072. _rtl92d_phy_config_bb_with_headerfile(hw,
  1073. BASEBAND_CONFIG_AGC_TAB);
  1074. }
  1075. rtl92d_update_bbrf_configuration(hw);
  1076. if (rtlhal->current_bandtype == BAND_ON_2_4G)
  1077. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  1078. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  1079. /* 20M BW. */
  1080. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1); */
  1081. rtlhal->reloadtxpowerindex = true;
  1082. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  1083. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1084. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1085. 0 ? REG_MAC0 : REG_MAC1));
  1086. value8 |= BIT(1);
  1087. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1088. 0 ? REG_MAC0 : REG_MAC1), value8);
  1089. } else {
  1090. value8 = rtl_read_byte(rtlpriv, (rtlhal->interfaceindex ==
  1091. 0 ? REG_MAC0 : REG_MAC1));
  1092. value8 &= (~BIT(1));
  1093. rtl_write_byte(rtlpriv, (rtlhal->interfaceindex ==
  1094. 0 ? REG_MAC0 : REG_MAC1), value8);
  1095. }
  1096. mdelay(1);
  1097. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==Switch Band OK\n");
  1098. }
  1099. static void _rtl92d_phy_reload_imr_setting(struct ieee80211_hw *hw,
  1100. u8 channel, u8 rfpath)
  1101. {
  1102. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1103. u32 imr_num = MAX_RF_IMR_INDEX;
  1104. u32 rfmask = BRFREGOFFSETMASK;
  1105. u8 group, i;
  1106. unsigned long flag = 0;
  1107. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>path %d\n", rfpath);
  1108. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {
  1109. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1110. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1111. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0xf);
  1112. /* fc area 0xd2c */
  1113. if (channel > 99)
  1114. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1115. BIT(14), 2);
  1116. else
  1117. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(13) |
  1118. BIT(14), 1);
  1119. /* leave 0 for channel1-14. */
  1120. group = channel <= 64 ? 1 : 2;
  1121. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1122. for (i = 0; i < imr_num; i++)
  1123. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1124. rf_reg_for_5g_swchnl_normal[i], rfmask,
  1125. rf_imr_param_normal[0][group][i]);
  1126. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0x00f00000, 0);
  1127. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 1);
  1128. } else {
  1129. /* G band. */
  1130. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1131. "Load RF IMR parameters for G band. IMR already setting %d\n",
  1132. rtlpriv->rtlhal.load_imrandiqk_setting_for2g);
  1133. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1134. if (!rtlpriv->rtlhal.load_imrandiqk_setting_for2g) {
  1135. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  1136. "Load RF IMR parameters for G band. %d\n",
  1137. rfpath);
  1138. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  1139. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(25) | BIT(24), 0);
  1140. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1141. 0x00f00000, 0xf);
  1142. imr_num = MAX_RF_IMR_INDEX_NORMAL;
  1143. for (i = 0; i < imr_num; i++) {
  1144. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  1145. rf_reg_for_5g_swchnl_normal[i],
  1146. BRFREGOFFSETMASK,
  1147. rf_imr_param_normal[0][0][i]);
  1148. }
  1149. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4,
  1150. 0x00f00000, 0);
  1151. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN | BCCKEN, 3);
  1152. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  1153. }
  1154. }
  1155. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1156. }
  1157. static void _rtl92d_phy_enable_rf_env(struct ieee80211_hw *hw,
  1158. u8 rfpath, u32 *pu4_regval)
  1159. {
  1160. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1161. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1162. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1163. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "====>\n");
  1164. /*----Store original RFENV control type----*/
  1165. switch (rfpath) {
  1166. case RF90_PATH_A:
  1167. case RF90_PATH_C:
  1168. *pu4_regval = rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV);
  1169. break;
  1170. case RF90_PATH_B:
  1171. case RF90_PATH_D:
  1172. *pu4_regval =
  1173. rtl_get_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16);
  1174. break;
  1175. }
  1176. /*----Set RF_ENV enable----*/
  1177. rtl_set_bbreg(hw, pphyreg->rfintfe, BRFSI_RFENV << 16, 0x1);
  1178. udelay(1);
  1179. /*----Set RF_ENV output high----*/
  1180. rtl_set_bbreg(hw, pphyreg->rfintfo, BRFSI_RFENV, 0x1);
  1181. udelay(1);
  1182. /* Set bit number of Address and Data for RF register */
  1183. /* Set 1 to 4 bits for 8255 */
  1184. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREADDRESSLENGTH, 0x0);
  1185. udelay(1);
  1186. /*Set 0 to 12 bits for 8255 */
  1187. rtl_set_bbreg(hw, pphyreg->rfhssi_para2, B3WIREDATALENGTH, 0x0);
  1188. udelay(1);
  1189. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<====\n");
  1190. }
  1191. static void _rtl92d_phy_restore_rf_env(struct ieee80211_hw *hw, u8 rfpath,
  1192. u32 *pu4_regval)
  1193. {
  1194. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1195. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1196. struct bb_reg_def *pphyreg = &rtlphy->phyreg_def[rfpath];
  1197. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "=====>\n");
  1198. /*----Restore RFENV control type----*/
  1199. switch (rfpath) {
  1200. case RF90_PATH_A:
  1201. case RF90_PATH_C:
  1202. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV, *pu4_regval);
  1203. break;
  1204. case RF90_PATH_B:
  1205. case RF90_PATH_D:
  1206. rtl_set_bbreg(hw, pphyreg->rfintfs, BRFSI_RFENV << 16,
  1207. *pu4_regval);
  1208. break;
  1209. }
  1210. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "<=====\n");
  1211. }
  1212. static void _rtl92d_phy_switch_rf_setting(struct ieee80211_hw *hw, u8 channel)
  1213. {
  1214. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1215. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1216. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1217. u8 path = rtlhal->current_bandtype ==
  1218. BAND_ON_5G ? RF90_PATH_A : RF90_PATH_B;
  1219. u8 index = 0, i = 0, rfpath = RF90_PATH_A;
  1220. bool need_pwr_down = false, internal_pa = false;
  1221. u32 u4regvalue, mask = 0x1C000, value = 0, u4tmp, u4tmp2;
  1222. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>\n");
  1223. /* config path A for 5G */
  1224. if (rtlhal->current_bandtype == BAND_ON_5G) {
  1225. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>5G\n");
  1226. u4tmp = curveindex_5g[channel - 1];
  1227. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1228. "ver 1 set RF-A, 5G, 0x28 = 0x%x !!\n", u4tmp);
  1229. for (i = 0; i < RF_CHNL_NUM_5G; i++) {
  1230. if (channel == rf_chnl_5g[i] && channel <= 140)
  1231. index = 0;
  1232. }
  1233. for (i = 0; i < RF_CHNL_NUM_5G_40M; i++) {
  1234. if (channel == rf_chnl_5g_40m[i] && channel <= 140)
  1235. index = 1;
  1236. }
  1237. if (channel == 149 || channel == 155 || channel == 161)
  1238. index = 2;
  1239. else if (channel == 151 || channel == 153 || channel == 163
  1240. || channel == 165)
  1241. index = 3;
  1242. else if (channel == 157 || channel == 159)
  1243. index = 4;
  1244. if (rtlhal->macphymode == DUALMAC_DUALPHY
  1245. && rtlhal->interfaceindex == 1) {
  1246. need_pwr_down = rtl92d_phy_enable_anotherphy(hw, false);
  1247. rtlhal->during_mac1init_radioa = true;
  1248. /* asume no this case */
  1249. if (need_pwr_down)
  1250. _rtl92d_phy_enable_rf_env(hw, path,
  1251. &u4regvalue);
  1252. }
  1253. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_5G; i++) {
  1254. if (i == 0 && (rtlhal->macphymode == DUALMAC_DUALPHY)) {
  1255. rtl_set_rfreg(hw, (enum radio_path)path,
  1256. rf_reg_for_c_cut_5g[i],
  1257. BRFREGOFFSETMASK, 0xE439D);
  1258. } else if (rf_reg_for_c_cut_5g[i] == RF_SYN_G4) {
  1259. u4tmp2 = (rf_reg_pram_c_5g[index][i] &
  1260. 0x7FF) | (u4tmp << 11);
  1261. if (channel == 36)
  1262. u4tmp2 &= ~(BIT(7) | BIT(6));
  1263. rtl_set_rfreg(hw, (enum radio_path)path,
  1264. rf_reg_for_c_cut_5g[i],
  1265. BRFREGOFFSETMASK, u4tmp2);
  1266. } else {
  1267. rtl_set_rfreg(hw, (enum radio_path)path,
  1268. rf_reg_for_c_cut_5g[i],
  1269. BRFREGOFFSETMASK,
  1270. rf_reg_pram_c_5g[index][i]);
  1271. }
  1272. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1273. "offset 0x%x value 0x%x path %d index %d readback 0x%x\n",
  1274. rf_reg_for_c_cut_5g[i],
  1275. rf_reg_pram_c_5g[index][i],
  1276. path, index,
  1277. rtl_get_rfreg(hw, (enum radio_path)path,
  1278. rf_reg_for_c_cut_5g[i],
  1279. BRFREGOFFSETMASK));
  1280. }
  1281. if (need_pwr_down)
  1282. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1283. if (rtlhal->during_mac1init_radioa)
  1284. rtl92d_phy_powerdown_anotherphy(hw, false);
  1285. if (channel < 149)
  1286. value = 0x07;
  1287. else if (channel >= 149)
  1288. value = 0x02;
  1289. if (channel >= 36 && channel <= 64)
  1290. index = 0;
  1291. else if (channel >= 100 && channel <= 140)
  1292. index = 1;
  1293. else
  1294. index = 2;
  1295. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  1296. rfpath++) {
  1297. if (rtlhal->macphymode == DUALMAC_DUALPHY &&
  1298. rtlhal->interfaceindex == 1) /* MAC 1 5G */
  1299. internal_pa = rtlpriv->efuse.internal_pa_5g[1];
  1300. else
  1301. internal_pa =
  1302. rtlpriv->efuse.internal_pa_5g[rfpath];
  1303. if (internal_pa) {
  1304. for (i = 0;
  1305. i < RF_REG_NUM_FOR_C_CUT_5G_INTERNALPA;
  1306. i++) {
  1307. rtl_set_rfreg(hw, rfpath,
  1308. rf_for_c_cut_5g_internal_pa[i],
  1309. BRFREGOFFSETMASK,
  1310. rf_pram_c_5g_int_pa[index][i]);
  1311. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD,
  1312. "offset 0x%x value 0x%x path %d index %d\n",
  1313. rf_for_c_cut_5g_internal_pa[i],
  1314. rf_pram_c_5g_int_pa[index][i],
  1315. rfpath, index);
  1316. }
  1317. } else {
  1318. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  1319. mask, value);
  1320. }
  1321. }
  1322. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  1323. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "====>2.4G\n");
  1324. u4tmp = curveindex_2g[channel - 1];
  1325. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1326. "ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n", u4tmp);
  1327. if (channel == 1 || channel == 2 || channel == 4 || channel == 9
  1328. || channel == 10 || channel == 11 || channel == 12)
  1329. index = 0;
  1330. else if (channel == 3 || channel == 13 || channel == 14)
  1331. index = 1;
  1332. else if (channel >= 5 && channel <= 8)
  1333. index = 2;
  1334. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  1335. path = RF90_PATH_A;
  1336. if (rtlhal->interfaceindex == 0) {
  1337. need_pwr_down =
  1338. rtl92d_phy_enable_anotherphy(hw, true);
  1339. rtlhal->during_mac0init_radiob = true;
  1340. if (need_pwr_down)
  1341. _rtl92d_phy_enable_rf_env(hw, path,
  1342. &u4regvalue);
  1343. }
  1344. }
  1345. for (i = 0; i < RF_REG_NUM_FOR_C_CUT_2G; i++) {
  1346. if (rf_reg_for_c_cut_2g[i] == RF_SYN_G7)
  1347. rtl_set_rfreg(hw, (enum radio_path)path,
  1348. rf_reg_for_c_cut_2g[i],
  1349. BRFREGOFFSETMASK,
  1350. (rf_reg_param_for_c_cut_2g[index][i] |
  1351. BIT(17)));
  1352. else
  1353. rtl_set_rfreg(hw, (enum radio_path)path,
  1354. rf_reg_for_c_cut_2g[i],
  1355. BRFREGOFFSETMASK,
  1356. rf_reg_param_for_c_cut_2g
  1357. [index][i]);
  1358. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  1359. "offset 0x%x value 0x%x mak 0x%x path %d index %d readback 0x%x\n",
  1360. rf_reg_for_c_cut_2g[i],
  1361. rf_reg_param_for_c_cut_2g[index][i],
  1362. rf_reg_mask_for_c_cut_2g[i], path, index,
  1363. rtl_get_rfreg(hw, (enum radio_path)path,
  1364. rf_reg_for_c_cut_2g[i],
  1365. BRFREGOFFSETMASK));
  1366. }
  1367. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1368. "cosa ver 3 set RF-B, 2G, 0x28 = 0x%x !!\n",
  1369. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1370. rtl_set_rfreg(hw, (enum radio_path)path, RF_SYN_G4,
  1371. BRFREGOFFSETMASK,
  1372. rf_syn_g4_for_c_cut_2g | (u4tmp << 11));
  1373. if (need_pwr_down)
  1374. _rtl92d_phy_restore_rf_env(hw, path, &u4regvalue);
  1375. if (rtlhal->during_mac0init_radiob)
  1376. rtl92d_phy_powerdown_anotherphy(hw, true);
  1377. }
  1378. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  1379. }
  1380. u8 rtl92d_get_rightchnlplace_for_iqk(u8 chnl)
  1381. {
  1382. u8 channel_all[59] = {
  1383. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  1384. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  1385. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  1386. 114, 116, 118, 120, 122, 124, 126, 128, 130,
  1387. 132, 134, 136, 138, 140, 149, 151, 153, 155,
  1388. 157, 159, 161, 163, 165
  1389. };
  1390. u8 place = chnl;
  1391. if (chnl > 14) {
  1392. for (place = 14; place < sizeof(channel_all); place++) {
  1393. if (channel_all[place] == chnl)
  1394. return place - 13;
  1395. }
  1396. }
  1397. return 0;
  1398. }
  1399. #define MAX_TOLERANCE 5
  1400. #define IQK_DELAY_TIME 1 /* ms */
  1401. #define MAX_TOLERANCE_92D 3
  1402. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1403. static u8 _rtl92d_phy_patha_iqk(struct ieee80211_hw *hw, bool configpathb)
  1404. {
  1405. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1406. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1407. u32 regeac, rege94, rege9c, regea4;
  1408. u8 result = 0;
  1409. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1410. /* path-A IQK setting */
  1411. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1412. if (rtlhal->interfaceindex == 0) {
  1413. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c1f);
  1414. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c1f);
  1415. } else {
  1416. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x10008c22);
  1417. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x10008c22);
  1418. }
  1419. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140102);
  1420. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x28160206);
  1421. /* path-B IQK setting */
  1422. if (configpathb) {
  1423. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x10008c22);
  1424. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x10008c22);
  1425. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140102);
  1426. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x28160206);
  1427. }
  1428. /* LO calibration setting */
  1429. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1430. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1431. /* One shot, path A LOK & IQK */
  1432. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1433. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
  1434. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1435. /* delay x ms */
  1436. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1437. "Delay %d ms for One shot, path A LOK & IQK\n",
  1438. IQK_DELAY_TIME);
  1439. mdelay(IQK_DELAY_TIME);
  1440. /* Check failed */
  1441. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1442. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1443. rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
  1444. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1445. rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
  1446. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1447. regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
  1448. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1449. if (!(regeac & BIT(28)) && (((rege94 & 0x03FF0000) >> 16) != 0x142) &&
  1450. (((rege9c & 0x03FF0000) >> 16) != 0x42))
  1451. result |= 0x01;
  1452. else /* if Tx not OK, ignore Rx */
  1453. return result;
  1454. /* if Tx is OK, check whether Rx is OK */
  1455. if (!(regeac & BIT(27)) && (((regea4 & 0x03FF0000) >> 16) != 0x132) &&
  1456. (((regeac & 0x03FF0000) >> 16) != 0x36))
  1457. result |= 0x02;
  1458. else
  1459. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A Rx IQK fail!!\n");
  1460. return result;
  1461. }
  1462. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1463. static u8 _rtl92d_phy_patha_iqk_5g_normal(struct ieee80211_hw *hw,
  1464. bool configpathb)
  1465. {
  1466. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1467. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1468. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1469. u32 regeac, rege94, rege9c, regea4;
  1470. u8 result = 0;
  1471. u8 i;
  1472. u8 retrycount = 2;
  1473. u32 TxOKBit = BIT(28), RxOKBit = BIT(27);
  1474. if (rtlhal->interfaceindex == 1) { /* PHY1 */
  1475. TxOKBit = BIT(31);
  1476. RxOKBit = BIT(30);
  1477. }
  1478. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK!\n");
  1479. /* path-A IQK setting */
  1480. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1481. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
  1482. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
  1483. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82140307);
  1484. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68160960);
  1485. /* path-B IQK setting */
  1486. if (configpathb) {
  1487. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
  1488. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
  1489. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82110000);
  1490. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68110000);
  1491. }
  1492. /* LO calibration setting */
  1493. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1494. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1495. /* path-A PA on */
  1496. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x07000f60);
  1497. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD, 0x66e60e30);
  1498. for (i = 0; i < retrycount; i++) {
  1499. /* One shot, path A LOK & IQK */
  1500. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1501. "One shot, path A LOK & IQK!\n");
  1502. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf9000000);
  1503. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1504. /* delay x ms */
  1505. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1506. "Delay %d ms for One shot, path A LOK & IQK.\n",
  1507. IQK_DELAY_TIME);
  1508. mdelay(IQK_DELAY_TIME * 10);
  1509. /* Check failed */
  1510. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1511. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1512. rege94 = rtl_get_bbreg(hw, 0xe94, BMASKDWORD);
  1513. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe94 = 0x%x\n", rege94);
  1514. rege9c = rtl_get_bbreg(hw, 0xe9c, BMASKDWORD);
  1515. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xe9c = 0x%x\n", rege9c);
  1516. regea4 = rtl_get_bbreg(hw, 0xea4, BMASKDWORD);
  1517. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xea4 = 0x%x\n", regea4);
  1518. if (!(regeac & TxOKBit) &&
  1519. (((rege94 & 0x03FF0000) >> 16) != 0x142)) {
  1520. result |= 0x01;
  1521. } else { /* if Tx not OK, ignore Rx */
  1522. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1523. "Path A Tx IQK fail!!\n");
  1524. continue;
  1525. }
  1526. /* if Tx is OK, check whether Rx is OK */
  1527. if (!(regeac & RxOKBit) &&
  1528. (((regea4 & 0x03FF0000) >> 16) != 0x132)) {
  1529. result |= 0x02;
  1530. break;
  1531. } else {
  1532. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1533. "Path A Rx IQK fail!!\n");
  1534. }
  1535. }
  1536. /* path A PA off */
  1537. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
  1538. rtlphy->iqk_bb_backup[0]);
  1539. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BMASKDWORD,
  1540. rtlphy->iqk_bb_backup[1]);
  1541. return result;
  1542. }
  1543. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1544. static u8 _rtl92d_phy_pathb_iqk(struct ieee80211_hw *hw)
  1545. {
  1546. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1547. u32 regeac, regeb4, regebc, regec4, regecc;
  1548. u8 result = 0;
  1549. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1550. /* One shot, path B LOK & IQK */
  1551. RTPRINT(rtlpriv, FINIT, INIT_IQK, "One shot, path A LOK & IQK!\n");
  1552. rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000002);
  1553. rtl_set_bbreg(hw, 0xe60, BMASKDWORD, 0x00000000);
  1554. /* delay x ms */
  1555. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1556. "Delay %d ms for One shot, path B LOK & IQK\n", IQK_DELAY_TIME);
  1557. mdelay(IQK_DELAY_TIME);
  1558. /* Check failed */
  1559. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1560. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1561. regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
  1562. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1563. regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
  1564. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1565. regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
  1566. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1567. regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
  1568. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1569. if (!(regeac & BIT(31)) && (((regeb4 & 0x03FF0000) >> 16) != 0x142) &&
  1570. (((regebc & 0x03FF0000) >> 16) != 0x42))
  1571. result |= 0x01;
  1572. else
  1573. return result;
  1574. if (!(regeac & BIT(30)) && (((regec4 & 0x03FF0000) >> 16) != 0x132) &&
  1575. (((regecc & 0x03FF0000) >> 16) != 0x36))
  1576. result |= 0x02;
  1577. else
  1578. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B Rx IQK fail!!\n");
  1579. return result;
  1580. }
  1581. /* bit0 = 1 => Tx OK, bit1 = 1 => Rx OK */
  1582. static u8 _rtl92d_phy_pathb_iqk_5g_normal(struct ieee80211_hw *hw)
  1583. {
  1584. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1585. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1586. u32 regeac, regeb4, regebc, regec4, regecc;
  1587. u8 result = 0;
  1588. u8 i;
  1589. u8 retrycount = 2;
  1590. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQK!\n");
  1591. /* path-A IQK setting */
  1592. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A IQK setting!\n");
  1593. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x18008c1f);
  1594. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x18008c1f);
  1595. rtl_set_bbreg(hw, 0xe38, BMASKDWORD, 0x82110000);
  1596. rtl_set_bbreg(hw, 0xe3c, BMASKDWORD, 0x68110000);
  1597. /* path-B IQK setting */
  1598. rtl_set_bbreg(hw, 0xe50, BMASKDWORD, 0x18008c2f);
  1599. rtl_set_bbreg(hw, 0xe54, BMASKDWORD, 0x18008c2f);
  1600. rtl_set_bbreg(hw, 0xe58, BMASKDWORD, 0x82140307);
  1601. rtl_set_bbreg(hw, 0xe5c, BMASKDWORD, 0x68160960);
  1602. /* LO calibration setting */
  1603. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LO calibration setting!\n");
  1604. rtl_set_bbreg(hw, 0xe4c, BMASKDWORD, 0x00462911);
  1605. /* path-B PA on */
  1606. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD, 0x0f600700);
  1607. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD, 0x061f0d30);
  1608. for (i = 0; i < retrycount; i++) {
  1609. /* One shot, path B LOK & IQK */
  1610. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1611. "One shot, path A LOK & IQK!\n");
  1612. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xfa000000);
  1613. rtl_set_bbreg(hw, 0xe48, BMASKDWORD, 0xf8000000);
  1614. /* delay x ms */
  1615. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1616. "Delay %d ms for One shot, path B LOK & IQK.\n", 10);
  1617. mdelay(IQK_DELAY_TIME * 10);
  1618. /* Check failed */
  1619. regeac = rtl_get_bbreg(hw, 0xeac, BMASKDWORD);
  1620. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeac = 0x%x\n", regeac);
  1621. regeb4 = rtl_get_bbreg(hw, 0xeb4, BMASKDWORD);
  1622. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xeb4 = 0x%x\n", regeb4);
  1623. regebc = rtl_get_bbreg(hw, 0xebc, BMASKDWORD);
  1624. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xebc = 0x%x\n", regebc);
  1625. regec4 = rtl_get_bbreg(hw, 0xec4, BMASKDWORD);
  1626. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xec4 = 0x%x\n", regec4);
  1627. regecc = rtl_get_bbreg(hw, 0xecc, BMASKDWORD);
  1628. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xecc = 0x%x\n", regecc);
  1629. if (!(regeac & BIT(31)) &&
  1630. (((regeb4 & 0x03FF0000) >> 16) != 0x142))
  1631. result |= 0x01;
  1632. else
  1633. continue;
  1634. if (!(regeac & BIT(30)) &&
  1635. (((regec4 & 0x03FF0000) >> 16) != 0x132)) {
  1636. result |= 0x02;
  1637. break;
  1638. } else {
  1639. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1640. "Path B Rx IQK fail!!\n");
  1641. }
  1642. }
  1643. /* path B PA off */
  1644. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BMASKDWORD,
  1645. rtlphy->iqk_bb_backup[0]);
  1646. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BMASKDWORD,
  1647. rtlphy->iqk_bb_backup[2]);
  1648. return result;
  1649. }
  1650. static void _rtl92d_phy_save_adda_registers(struct ieee80211_hw *hw,
  1651. u32 *adda_reg, u32 *adda_backup,
  1652. u32 regnum)
  1653. {
  1654. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1655. u32 i;
  1656. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save ADDA parameters.\n");
  1657. for (i = 0; i < regnum; i++)
  1658. adda_backup[i] = rtl_get_bbreg(hw, adda_reg[i], BMASKDWORD);
  1659. }
  1660. static void _rtl92d_phy_save_mac_registers(struct ieee80211_hw *hw,
  1661. u32 *macreg, u32 *macbackup)
  1662. {
  1663. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1664. u32 i;
  1665. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Save MAC parameters.\n");
  1666. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1667. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1668. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1669. }
  1670. static void _rtl92d_phy_reload_adda_registers(struct ieee80211_hw *hw,
  1671. u32 *adda_reg, u32 *adda_backup,
  1672. u32 regnum)
  1673. {
  1674. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1675. u32 i;
  1676. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1677. "Reload ADDA power saving parameters !\n");
  1678. for (i = 0; i < regnum; i++)
  1679. rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, adda_backup[i]);
  1680. }
  1681. static void _rtl92d_phy_reload_mac_registers(struct ieee80211_hw *hw,
  1682. u32 *macreg, u32 *macbackup)
  1683. {
  1684. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1685. u32 i;
  1686. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Reload MAC parameters !\n");
  1687. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1688. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1689. rtl_write_byte(rtlpriv, macreg[i], macbackup[i]);
  1690. }
  1691. static void _rtl92d_phy_path_adda_on(struct ieee80211_hw *hw,
  1692. u32 *adda_reg, bool patha_on, bool is2t)
  1693. {
  1694. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1695. u32 pathon;
  1696. u32 i;
  1697. RTPRINT(rtlpriv, FINIT, INIT_IQK, "ADDA ON.\n");
  1698. pathon = patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1699. if (patha_on)
  1700. pathon = rtlpriv->rtlhal.interfaceindex == 0 ?
  1701. 0x04db25a4 : 0x0b1b25a4;
  1702. for (i = 0; i < IQK_ADDA_REG_NUM; i++)
  1703. rtl_set_bbreg(hw, adda_reg[i], BMASKDWORD, pathon);
  1704. }
  1705. static void _rtl92d_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1706. u32 *macreg, u32 *macbackup)
  1707. {
  1708. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1709. u32 i;
  1710. RTPRINT(rtlpriv, FINIT, INIT_IQK, "MAC settings for Calibration.\n");
  1711. rtl_write_byte(rtlpriv, macreg[0], 0x3F);
  1712. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1713. rtl_write_byte(rtlpriv, macreg[i], (u8)(macbackup[i] &
  1714. (~BIT(3))));
  1715. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1716. }
  1717. static void _rtl92d_phy_patha_standby(struct ieee80211_hw *hw)
  1718. {
  1719. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1720. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path-A standby mode!\n");
  1721. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x0);
  1722. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD, 0x00010000);
  1723. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1724. }
  1725. static void _rtl92d_phy_pimode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1726. {
  1727. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1728. u32 mode;
  1729. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1730. "BB Switch to %s mode!\n", pi_mode ? "PI" : "SI");
  1731. mode = pi_mode ? 0x01000100 : 0x01000000;
  1732. rtl_set_bbreg(hw, 0x820, BMASKDWORD, mode);
  1733. rtl_set_bbreg(hw, 0x828, BMASKDWORD, mode);
  1734. }
  1735. static void _rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw, long result[][8],
  1736. u8 t, bool is2t)
  1737. {
  1738. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1739. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1740. u32 i;
  1741. u8 patha_ok, pathb_ok;
  1742. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1743. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1744. 0xe78, 0xe7c, 0xe80, 0xe84,
  1745. 0xe88, 0xe8c, 0xed0, 0xed4,
  1746. 0xed8, 0xedc, 0xee0, 0xeec
  1747. };
  1748. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1749. 0x522, 0x550, 0x551, 0x040
  1750. };
  1751. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1752. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1753. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1754. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1755. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1756. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1757. };
  1758. const u32 retrycount = 2;
  1759. u32 bbvalue;
  1760. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 2.4G :Start!!!\n");
  1761. if (t == 0) {
  1762. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
  1763. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1764. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1765. is2t ? "2T2R" : "1T1R");
  1766. /* Save ADDA parameters, turn Path A ADDA on */
  1767. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1768. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1769. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1770. rtlphy->iqk_mac_backup);
  1771. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1772. rtlphy->iqk_bb_backup, IQK_BB_REG_NUM);
  1773. }
  1774. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1775. if (t == 0)
  1776. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1777. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1778. /* Switch BB to PI mode to do IQ Calibration. */
  1779. if (!rtlphy->rfpi_enable)
  1780. _rtl92d_phy_pimode_switch(hw, true);
  1781. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1782. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
  1783. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
  1784. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22204000);
  1785. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1786. if (is2t) {
  1787. rtl_set_bbreg(hw, RFPGA0_XA_LSSIPARAMETER, BMASKDWORD,
  1788. 0x00010000);
  1789. rtl_set_bbreg(hw, RFPGA0_XB_LSSIPARAMETER, BMASKDWORD,
  1790. 0x00010000);
  1791. }
  1792. /* MAC settings */
  1793. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1794. rtlphy->iqk_mac_backup);
  1795. /* Page B init */
  1796. rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
  1797. if (is2t)
  1798. rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
  1799. /* IQ calibration setting */
  1800. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1801. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1802. rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x01007c00);
  1803. rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
  1804. for (i = 0; i < retrycount; i++) {
  1805. patha_ok = _rtl92d_phy_patha_iqk(hw, is2t);
  1806. if (patha_ok == 0x03) {
  1807. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1808. "Path A IQK Success!!\n");
  1809. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1810. 0x3FF0000) >> 16;
  1811. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1812. 0x3FF0000) >> 16;
  1813. result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
  1814. 0x3FF0000) >> 16;
  1815. result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
  1816. 0x3FF0000) >> 16;
  1817. break;
  1818. } else if (i == (retrycount - 1) && patha_ok == 0x01) {
  1819. /* Tx IQK OK */
  1820. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1821. "Path A IQK Only Tx Success!!\n");
  1822. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1823. 0x3FF0000) >> 16;
  1824. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1825. 0x3FF0000) >> 16;
  1826. }
  1827. }
  1828. if (0x00 == patha_ok)
  1829. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK failed!!\n");
  1830. if (is2t) {
  1831. _rtl92d_phy_patha_standby(hw);
  1832. /* Turn Path B ADDA on */
  1833. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1834. for (i = 0; i < retrycount; i++) {
  1835. pathb_ok = _rtl92d_phy_pathb_iqk(hw);
  1836. if (pathb_ok == 0x03) {
  1837. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1838. "Path B IQK Success!!\n");
  1839. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1840. BMASKDWORD) & 0x3FF0000) >> 16;
  1841. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1842. BMASKDWORD) & 0x3FF0000) >> 16;
  1843. result[t][6] = (rtl_get_bbreg(hw, 0xec4,
  1844. BMASKDWORD) & 0x3FF0000) >> 16;
  1845. result[t][7] = (rtl_get_bbreg(hw, 0xecc,
  1846. BMASKDWORD) & 0x3FF0000) >> 16;
  1847. break;
  1848. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1849. /* Tx IQK OK */
  1850. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1851. "Path B Only Tx IQK Success!!\n");
  1852. result[t][4] = (rtl_get_bbreg(hw, 0xeb4,
  1853. BMASKDWORD) & 0x3FF0000) >> 16;
  1854. result[t][5] = (rtl_get_bbreg(hw, 0xebc,
  1855. BMASKDWORD) & 0x3FF0000) >> 16;
  1856. }
  1857. }
  1858. if (0x00 == pathb_ok)
  1859. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1860. "Path B IQK failed!!\n");
  1861. }
  1862. /* Back to BB mode, load original value */
  1863. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1864. "IQK:Back to BB mode, load original value!\n");
  1865. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
  1866. if (t != 0) {
  1867. /* Switch back BB to SI mode after finish IQ Calibration. */
  1868. if (!rtlphy->rfpi_enable)
  1869. _rtl92d_phy_pimode_switch(hw, false);
  1870. /* Reload ADDA power saving parameters */
  1871. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  1872. rtlphy->adda_backup, IQK_ADDA_REG_NUM);
  1873. /* Reload MAC parameters */
  1874. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  1875. rtlphy->iqk_mac_backup);
  1876. if (is2t)
  1877. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1878. rtlphy->iqk_bb_backup,
  1879. IQK_BB_REG_NUM);
  1880. else
  1881. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  1882. rtlphy->iqk_bb_backup,
  1883. IQK_BB_REG_NUM - 1);
  1884. /* load 0xe30 IQC default value */
  1885. rtl_set_bbreg(hw, 0xe30, BMASKDWORD, 0x01008c00);
  1886. rtl_set_bbreg(hw, 0xe34, BMASKDWORD, 0x01008c00);
  1887. }
  1888. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  1889. }
  1890. static void _rtl92d_phy_iq_calibrate_5g_normal(struct ieee80211_hw *hw,
  1891. long result[][8], u8 t)
  1892. {
  1893. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1894. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1895. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1896. u8 patha_ok, pathb_ok;
  1897. static u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1898. RFPGA0_XCD_SWITCHCONTROL, 0xe6c, 0xe70, 0xe74,
  1899. 0xe78, 0xe7c, 0xe80, 0xe84,
  1900. 0xe88, 0xe8c, 0xed0, 0xed4,
  1901. 0xed8, 0xedc, 0xee0, 0xeec
  1902. };
  1903. static u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1904. 0x522, 0x550, 0x551, 0x040
  1905. };
  1906. static u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1907. RFPGA0_XAB_RFINTERFACESW, RFPGA0_XA_RFINTERFACEOE,
  1908. RFPGA0_XB_RFINTERFACEOE, ROFDM0_TRMUXPAR,
  1909. RFPGA0_XCD_RFINTERFACESW, ROFDM0_TRXPATHENABLE,
  1910. RFPGA0_RFMOD, RFPGA0_ANALOGPARAMETER4,
  1911. ROFDM0_XAAGCCORE1, ROFDM0_XBAGCCORE1
  1912. };
  1913. u32 bbvalue;
  1914. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  1915. /* Note: IQ calibration must be performed after loading
  1916. * PHY_REG.txt , and radio_a, radio_b.txt */
  1917. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK for 5G NORMAL:Start!!!\n");
  1918. mdelay(IQK_DELAY_TIME * 20);
  1919. if (t == 0) {
  1920. bbvalue = rtl_get_bbreg(hw, RFPGA0_RFMOD, BMASKDWORD);
  1921. RTPRINT(rtlpriv, FINIT, INIT_IQK, "==>0x%08x\n", bbvalue);
  1922. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQ Calibration for %s\n",
  1923. is2t ? "2T2R" : "1T1R");
  1924. /* Save ADDA parameters, turn Path A ADDA on */
  1925. _rtl92d_phy_save_adda_registers(hw, adda_reg,
  1926. rtlphy->adda_backup,
  1927. IQK_ADDA_REG_NUM);
  1928. _rtl92d_phy_save_mac_registers(hw, iqk_mac_reg,
  1929. rtlphy->iqk_mac_backup);
  1930. if (is2t)
  1931. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1932. rtlphy->iqk_bb_backup,
  1933. IQK_BB_REG_NUM);
  1934. else
  1935. _rtl92d_phy_save_adda_registers(hw, iqk_bb_reg,
  1936. rtlphy->iqk_bb_backup,
  1937. IQK_BB_REG_NUM - 1);
  1938. }
  1939. _rtl92d_phy_path_adda_on(hw, adda_reg, true, is2t);
  1940. /* MAC settings */
  1941. _rtl92d_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1942. rtlphy->iqk_mac_backup);
  1943. if (t == 0)
  1944. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1945. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1946. /* Switch BB to PI mode to do IQ Calibration. */
  1947. if (!rtlphy->rfpi_enable)
  1948. _rtl92d_phy_pimode_switch(hw, true);
  1949. rtl_set_bbreg(hw, RFPGA0_RFMOD, BIT(24), 0x00);
  1950. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKDWORD, 0x03a05600);
  1951. rtl_set_bbreg(hw, ROFDM0_TRMUXPAR, BMASKDWORD, 0x000800e4);
  1952. rtl_set_bbreg(hw, RFPGA0_XCD_RFINTERFACESW, BMASKDWORD, 0x22208000);
  1953. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xf00000, 0x0f);
  1954. /* Page B init */
  1955. rtl_set_bbreg(hw, 0xb68, BMASKDWORD, 0x0f600000);
  1956. if (is2t)
  1957. rtl_set_bbreg(hw, 0xb6c, BMASKDWORD, 0x0f600000);
  1958. /* IQ calibration setting */
  1959. RTPRINT(rtlpriv, FINIT, INIT_IQK, "IQK setting!\n");
  1960. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0x80800000);
  1961. rtl_set_bbreg(hw, 0xe40, BMASKDWORD, 0x10007c00);
  1962. rtl_set_bbreg(hw, 0xe44, BMASKDWORD, 0x01004800);
  1963. patha_ok = _rtl92d_phy_patha_iqk_5g_normal(hw, is2t);
  1964. if (patha_ok == 0x03) {
  1965. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Success!!\n");
  1966. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1967. 0x3FF0000) >> 16;
  1968. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1969. 0x3FF0000) >> 16;
  1970. result[t][2] = (rtl_get_bbreg(hw, 0xea4, BMASKDWORD) &
  1971. 0x3FF0000) >> 16;
  1972. result[t][3] = (rtl_get_bbreg(hw, 0xeac, BMASKDWORD) &
  1973. 0x3FF0000) >> 16;
  1974. } else if (patha_ok == 0x01) { /* Tx IQK OK */
  1975. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1976. "Path A IQK Only Tx Success!!\n");
  1977. result[t][0] = (rtl_get_bbreg(hw, 0xe94, BMASKDWORD) &
  1978. 0x3FF0000) >> 16;
  1979. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, BMASKDWORD) &
  1980. 0x3FF0000) >> 16;
  1981. } else {
  1982. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path A IQK Fail!!\n");
  1983. }
  1984. if (is2t) {
  1985. /* _rtl92d_phy_patha_standby(hw); */
  1986. /* Turn Path B ADDA on */
  1987. _rtl92d_phy_path_adda_on(hw, adda_reg, false, is2t);
  1988. pathb_ok = _rtl92d_phy_pathb_iqk_5g_normal(hw);
  1989. if (pathb_ok == 0x03) {
  1990. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1991. "Path B IQK Success!!\n");
  1992. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
  1993. 0x3FF0000) >> 16;
  1994. result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
  1995. 0x3FF0000) >> 16;
  1996. result[t][6] = (rtl_get_bbreg(hw, 0xec4, BMASKDWORD) &
  1997. 0x3FF0000) >> 16;
  1998. result[t][7] = (rtl_get_bbreg(hw, 0xecc, BMASKDWORD) &
  1999. 0x3FF0000) >> 16;
  2000. } else if (pathb_ok == 0x01) { /* Tx IQK OK */
  2001. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2002. "Path B Only Tx IQK Success!!\n");
  2003. result[t][4] = (rtl_get_bbreg(hw, 0xeb4, BMASKDWORD) &
  2004. 0x3FF0000) >> 16;
  2005. result[t][5] = (rtl_get_bbreg(hw, 0xebc, BMASKDWORD) &
  2006. 0x3FF0000) >> 16;
  2007. } else {
  2008. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2009. "Path B IQK failed!!\n");
  2010. }
  2011. }
  2012. /* Back to BB mode, load original value */
  2013. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2014. "IQK:Back to BB mode, load original value!\n");
  2015. rtl_set_bbreg(hw, 0xe28, BMASKDWORD, 0);
  2016. if (t != 0) {
  2017. if (is2t)
  2018. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  2019. rtlphy->iqk_bb_backup,
  2020. IQK_BB_REG_NUM);
  2021. else
  2022. _rtl92d_phy_reload_adda_registers(hw, iqk_bb_reg,
  2023. rtlphy->iqk_bb_backup,
  2024. IQK_BB_REG_NUM - 1);
  2025. /* Reload MAC parameters */
  2026. _rtl92d_phy_reload_mac_registers(hw, iqk_mac_reg,
  2027. rtlphy->iqk_mac_backup);
  2028. /* Switch back BB to SI mode after finish IQ Calibration. */
  2029. if (!rtlphy->rfpi_enable)
  2030. _rtl92d_phy_pimode_switch(hw, false);
  2031. /* Reload ADDA power saving parameters */
  2032. _rtl92d_phy_reload_adda_registers(hw, adda_reg,
  2033. rtlphy->adda_backup,
  2034. IQK_ADDA_REG_NUM);
  2035. }
  2036. RTPRINT(rtlpriv, FINIT, INIT_IQK, "<==\n");
  2037. }
  2038. static bool _rtl92d_phy_simularity_compare(struct ieee80211_hw *hw,
  2039. long result[][8], u8 c1, u8 c2)
  2040. {
  2041. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2042. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2043. u32 i, j, diff, sim_bitmap, bound;
  2044. u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
  2045. bool bresult = true;
  2046. bool is2t = IS_92D_SINGLEPHY(rtlhal->version);
  2047. if (is2t)
  2048. bound = 8;
  2049. else
  2050. bound = 4;
  2051. sim_bitmap = 0;
  2052. for (i = 0; i < bound; i++) {
  2053. diff = (result[c1][i] > result[c2][i]) ? (result[c1][i] -
  2054. result[c2][i]) : (result[c2][i] - result[c1][i]);
  2055. if (diff > MAX_TOLERANCE_92D) {
  2056. if ((i == 2 || i == 6) && !sim_bitmap) {
  2057. if (result[c1][i] + result[c1][i + 1] == 0)
  2058. final_candidate[(i / 4)] = c2;
  2059. else if (result[c2][i] + result[c2][i + 1] == 0)
  2060. final_candidate[(i / 4)] = c1;
  2061. else
  2062. sim_bitmap = sim_bitmap | (1 << i);
  2063. } else {
  2064. sim_bitmap = sim_bitmap | (1 << i);
  2065. }
  2066. }
  2067. }
  2068. if (sim_bitmap == 0) {
  2069. for (i = 0; i < (bound / 4); i++) {
  2070. if (final_candidate[i] != 0xFF) {
  2071. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  2072. result[3][j] =
  2073. result[final_candidate[i]][j];
  2074. bresult = false;
  2075. }
  2076. }
  2077. return bresult;
  2078. }
  2079. if (!(sim_bitmap & 0x0F)) { /* path A OK */
  2080. for (i = 0; i < 4; i++)
  2081. result[3][i] = result[c1][i];
  2082. } else if (!(sim_bitmap & 0x03)) { /* path A, Tx OK */
  2083. for (i = 0; i < 2; i++)
  2084. result[3][i] = result[c1][i];
  2085. }
  2086. if (!(sim_bitmap & 0xF0) && is2t) { /* path B OK */
  2087. for (i = 4; i < 8; i++)
  2088. result[3][i] = result[c1][i];
  2089. } else if (!(sim_bitmap & 0x30)) { /* path B, Tx OK */
  2090. for (i = 4; i < 6; i++)
  2091. result[3][i] = result[c1][i];
  2092. }
  2093. return false;
  2094. }
  2095. static void _rtl92d_phy_patha_fill_iqk_matrix(struct ieee80211_hw *hw,
  2096. bool iqk_ok, long result[][8],
  2097. u8 final_candidate, bool txonly)
  2098. {
  2099. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2100. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2101. u32 oldval_0, val_x, tx0_a, reg;
  2102. long val_y, tx0_c;
  2103. bool is2t = IS_92D_SINGLEPHY(rtlhal->version) ||
  2104. rtlhal->macphymode == DUALMAC_DUALPHY;
  2105. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2106. "Path A IQ Calibration %s !\n", iqk_ok ? "Success" : "Failed");
  2107. if (final_candidate == 0xFF) {
  2108. return;
  2109. } else if (iqk_ok) {
  2110. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2111. BMASKDWORD) >> 22) & 0x3FF; /* OFDM0_D */
  2112. val_x = result[final_candidate][0];
  2113. if ((val_x & 0x00000200) != 0)
  2114. val_x = val_x | 0xFFFFFC00;
  2115. tx0_a = (val_x * oldval_0) >> 8;
  2116. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2117. "X = 0x%x, tx0_a = 0x%x, oldval_0 0x%x\n",
  2118. val_x, tx0_a, oldval_0);
  2119. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x3FF, tx0_a);
  2120. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(24),
  2121. ((val_x * oldval_0 >> 7) & 0x1));
  2122. val_y = result[final_candidate][1];
  2123. if ((val_y & 0x00000200) != 0)
  2124. val_y = val_y | 0xFFFFFC00;
  2125. /* path B IQK result + 3 */
  2126. if (rtlhal->interfaceindex == 1 &&
  2127. rtlhal->current_bandtype == BAND_ON_5G)
  2128. val_y += 3;
  2129. tx0_c = (val_y * oldval_0) >> 8;
  2130. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2131. "Y = 0x%lx, tx0_c = 0x%lx\n",
  2132. val_y, tx0_c);
  2133. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000,
  2134. ((tx0_c & 0x3C0) >> 6));
  2135. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, 0x003F0000,
  2136. (tx0_c & 0x3F));
  2137. if (is2t)
  2138. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(26),
  2139. ((val_y * oldval_0 >> 7) & 0x1));
  2140. RTPRINT(rtlpriv, FINIT, INIT_IQK, "0xC80 = 0x%x\n",
  2141. rtl_get_bbreg(hw, ROFDM0_XATxIQIMBALANCE,
  2142. BMASKDWORD));
  2143. if (txonly) {
  2144. RTPRINT(rtlpriv, FINIT, INIT_IQK, "only Tx OK\n");
  2145. return;
  2146. }
  2147. reg = result[final_candidate][2];
  2148. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0x3FF, reg);
  2149. reg = result[final_candidate][3] & 0x3F;
  2150. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, 0xFC00, reg);
  2151. reg = (result[final_candidate][3] >> 6) & 0xF;
  2152. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  2153. }
  2154. }
  2155. static void _rtl92d_phy_pathb_fill_iqk_matrix(struct ieee80211_hw *hw,
  2156. bool iqk_ok, long result[][8], u8 final_candidate, bool txonly)
  2157. {
  2158. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2159. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2160. u32 oldval_1, val_x, tx1_a, reg;
  2161. long val_y, tx1_c;
  2162. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Path B IQ Calibration %s !\n",
  2163. iqk_ok ? "Success" : "Failed");
  2164. if (final_candidate == 0xFF) {
  2165. return;
  2166. } else if (iqk_ok) {
  2167. oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTxIQIMBALANCE,
  2168. BMASKDWORD) >> 22) & 0x3FF;
  2169. val_x = result[final_candidate][4];
  2170. if ((val_x & 0x00000200) != 0)
  2171. val_x = val_x | 0xFFFFFC00;
  2172. tx1_a = (val_x * oldval_1) >> 8;
  2173. RTPRINT(rtlpriv, FINIT, INIT_IQK, "X = 0x%x, tx1_a = 0x%x\n",
  2174. val_x, tx1_a);
  2175. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x3FF, tx1_a);
  2176. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(28),
  2177. ((val_x * oldval_1 >> 7) & 0x1));
  2178. val_y = result[final_candidate][5];
  2179. if ((val_y & 0x00000200) != 0)
  2180. val_y = val_y | 0xFFFFFC00;
  2181. if (rtlhal->current_bandtype == BAND_ON_5G)
  2182. val_y += 3;
  2183. tx1_c = (val_y * oldval_1) >> 8;
  2184. RTPRINT(rtlpriv, FINIT, INIT_IQK, "Y = 0x%lx, tx1_c = 0x%lx\n",
  2185. val_y, tx1_c);
  2186. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000,
  2187. ((tx1_c & 0x3C0) >> 6));
  2188. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, 0x003F0000,
  2189. (tx1_c & 0x3F));
  2190. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30),
  2191. ((val_y * oldval_1 >> 7) & 0x1));
  2192. if (txonly)
  2193. return;
  2194. reg = result[final_candidate][6];
  2195. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
  2196. reg = result[final_candidate][7] & 0x3F;
  2197. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
  2198. reg = (result[final_candidate][7] >> 6) & 0xF;
  2199. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, reg);
  2200. }
  2201. }
  2202. void rtl92d_phy_iq_calibrate(struct ieee80211_hw *hw)
  2203. {
  2204. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2205. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2206. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2207. long result[4][8];
  2208. u8 i, final_candidate, indexforchannel;
  2209. bool patha_ok, pathb_ok;
  2210. long rege94, rege9c, regea4, regeac, regeb4;
  2211. long regebc, regec4, regecc, regtmp = 0;
  2212. bool is12simular, is13simular, is23simular;
  2213. unsigned long flag = 0;
  2214. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2215. "IQK:Start!!!channel %d\n", rtlphy->current_channel);
  2216. for (i = 0; i < 8; i++) {
  2217. result[0][i] = 0;
  2218. result[1][i] = 0;
  2219. result[2][i] = 0;
  2220. result[3][i] = 0;
  2221. }
  2222. final_candidate = 0xff;
  2223. patha_ok = false;
  2224. pathb_ok = false;
  2225. is12simular = false;
  2226. is23simular = false;
  2227. is13simular = false;
  2228. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2229. "IQK !!!currentband %d\n", rtlhal->current_bandtype);
  2230. rtl92d_acquire_cckandrw_pagea_ctl(hw, &flag);
  2231. for (i = 0; i < 3; i++) {
  2232. if (rtlhal->current_bandtype == BAND_ON_5G) {
  2233. _rtl92d_phy_iq_calibrate_5g_normal(hw, result, i);
  2234. } else if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  2235. if (IS_92D_SINGLEPHY(rtlhal->version))
  2236. _rtl92d_phy_iq_calibrate(hw, result, i, true);
  2237. else
  2238. _rtl92d_phy_iq_calibrate(hw, result, i, false);
  2239. }
  2240. if (i == 1) {
  2241. is12simular = _rtl92d_phy_simularity_compare(hw, result,
  2242. 0, 1);
  2243. if (is12simular) {
  2244. final_candidate = 0;
  2245. break;
  2246. }
  2247. }
  2248. if (i == 2) {
  2249. is13simular = _rtl92d_phy_simularity_compare(hw, result,
  2250. 0, 2);
  2251. if (is13simular) {
  2252. final_candidate = 0;
  2253. break;
  2254. }
  2255. is23simular = _rtl92d_phy_simularity_compare(hw, result,
  2256. 1, 2);
  2257. if (is23simular) {
  2258. final_candidate = 1;
  2259. } else {
  2260. for (i = 0; i < 8; i++)
  2261. regtmp += result[3][i];
  2262. if (regtmp != 0)
  2263. final_candidate = 3;
  2264. else
  2265. final_candidate = 0xFF;
  2266. }
  2267. }
  2268. }
  2269. rtl92d_release_cckandrw_pagea_ctl(hw, &flag);
  2270. for (i = 0; i < 4; i++) {
  2271. rege94 = result[i][0];
  2272. rege9c = result[i][1];
  2273. regea4 = result[i][2];
  2274. regeac = result[i][3];
  2275. regeb4 = result[i][4];
  2276. regebc = result[i][5];
  2277. regec4 = result[i][6];
  2278. regecc = result[i][7];
  2279. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2280. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2281. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2282. regecc);
  2283. }
  2284. if (final_candidate != 0xff) {
  2285. rtlphy->reg_e94 = rege94 = result[final_candidate][0];
  2286. rtlphy->reg_e9c = rege9c = result[final_candidate][1];
  2287. regea4 = result[final_candidate][2];
  2288. regeac = result[final_candidate][3];
  2289. rtlphy->reg_eb4 = regeb4 = result[final_candidate][4];
  2290. rtlphy->reg_ebc = regebc = result[final_candidate][5];
  2291. regec4 = result[final_candidate][6];
  2292. regecc = result[final_candidate][7];
  2293. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2294. "IQK: final_candidate is %x\n", final_candidate);
  2295. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2296. "IQK: rege94=%lx rege9c=%lx regea4=%lx regeac=%lx regeb4=%lx regebc=%lx regec4=%lx regecc=%lx\n",
  2297. rege94, rege9c, regea4, regeac, regeb4, regebc, regec4,
  2298. regecc);
  2299. patha_ok = pathb_ok = true;
  2300. } else {
  2301. rtlphy->reg_e94 = rtlphy->reg_eb4 = 0x100; /* X default value */
  2302. rtlphy->reg_e9c = rtlphy->reg_ebc = 0x0; /* Y default value */
  2303. }
  2304. if ((rege94 != 0) /*&&(regea4 != 0) */)
  2305. _rtl92d_phy_patha_fill_iqk_matrix(hw, patha_ok, result,
  2306. final_candidate, (regea4 == 0));
  2307. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2308. if ((regeb4 != 0) /*&&(regec4 != 0) */)
  2309. _rtl92d_phy_pathb_fill_iqk_matrix(hw, pathb_ok, result,
  2310. final_candidate, (regec4 == 0));
  2311. }
  2312. if (final_candidate != 0xFF) {
  2313. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(
  2314. rtlphy->current_channel);
  2315. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  2316. rtlphy->iqk_matrix_regsetting[indexforchannel].
  2317. value[0][i] = result[final_candidate][i];
  2318. rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done =
  2319. true;
  2320. RT_TRACE(rtlpriv, COMP_SCAN | COMP_MLME, DBG_LOUD,
  2321. "IQK OK indexforchannel %d\n", indexforchannel);
  2322. }
  2323. }
  2324. void rtl92d_phy_reload_iqk_setting(struct ieee80211_hw *hw, u8 channel)
  2325. {
  2326. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2327. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2328. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2329. u8 indexforchannel;
  2330. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "channel %d\n", channel);
  2331. /*------Do IQK for normal chip and test chip 5G band------- */
  2332. indexforchannel = rtl92d_get_rightchnlplace_for_iqk(channel);
  2333. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "indexforchannel %d done %d\n",
  2334. indexforchannel,
  2335. rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done);
  2336. if (0 && !rtlphy->iqk_matrix_regsetting[indexforchannel].iqk_done &&
  2337. rtlphy->need_iqk) {
  2338. /* Re Do IQK. */
  2339. RT_TRACE(rtlpriv, COMP_SCAN | COMP_INIT, DBG_LOUD,
  2340. "Do IQK Matrix reg for channel:%d....\n", channel);
  2341. rtl92d_phy_iq_calibrate(hw);
  2342. } else {
  2343. /* Just load the value. */
  2344. /* 2G band just load once. */
  2345. if (((!rtlhal->load_imrandiqk_setting_for2g) &&
  2346. indexforchannel == 0) || indexforchannel > 0) {
  2347. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD,
  2348. "Just Read IQK Matrix reg for channel:%d....\n",
  2349. channel);
  2350. if ((rtlphy->iqk_matrix_regsetting[indexforchannel].
  2351. value[0] != NULL)
  2352. /*&&(regea4 != 0) */)
  2353. _rtl92d_phy_patha_fill_iqk_matrix(hw, true,
  2354. rtlphy->iqk_matrix_regsetting[
  2355. indexforchannel].value, 0,
  2356. (rtlphy->iqk_matrix_regsetting[
  2357. indexforchannel].value[0][2] == 0));
  2358. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2359. if ((rtlphy->iqk_matrix_regsetting[
  2360. indexforchannel].value[0][4] != 0)
  2361. /*&&(regec4 != 0) */)
  2362. _rtl92d_phy_pathb_fill_iqk_matrix(hw,
  2363. true,
  2364. rtlphy->iqk_matrix_regsetting[
  2365. indexforchannel].value, 0,
  2366. (rtlphy->iqk_matrix_regsetting[
  2367. indexforchannel].value[0][6]
  2368. == 0));
  2369. }
  2370. }
  2371. }
  2372. rtlphy->need_iqk = false;
  2373. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2374. }
  2375. static u32 _rtl92d_phy_get_abs(u32 val1, u32 val2)
  2376. {
  2377. u32 ret;
  2378. if (val1 >= val2)
  2379. ret = val1 - val2;
  2380. else
  2381. ret = val2 - val1;
  2382. return ret;
  2383. }
  2384. static bool _rtl92d_is_legal_5g_channel(struct ieee80211_hw *hw, u8 channel)
  2385. {
  2386. int i;
  2387. u8 channel_5g[45] = {
  2388. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58,
  2389. 60, 62, 64, 100, 102, 104, 106, 108, 110, 112,
  2390. 114, 116, 118, 120, 122, 124, 126, 128, 130, 132,
  2391. 134, 136, 138, 140, 149, 151, 153, 155, 157, 159,
  2392. 161, 163, 165
  2393. };
  2394. for (i = 0; i < sizeof(channel_5g); i++)
  2395. if (channel == channel_5g[i])
  2396. return true;
  2397. return false;
  2398. }
  2399. static void _rtl92d_phy_calc_curvindex(struct ieee80211_hw *hw,
  2400. u32 *targetchnl, u32 * curvecount_val,
  2401. bool is5g, u32 *curveindex)
  2402. {
  2403. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2404. u32 smallest_abs_val = 0xffffffff, u4tmp;
  2405. u8 i, j;
  2406. u8 chnl_num = is5g ? TARGET_CHNL_NUM_5G : TARGET_CHNL_NUM_2G;
  2407. for (i = 0; i < chnl_num; i++) {
  2408. if (is5g && !_rtl92d_is_legal_5g_channel(hw, i + 1))
  2409. continue;
  2410. curveindex[i] = 0;
  2411. for (j = 0; j < (CV_CURVE_CNT * 2); j++) {
  2412. u4tmp = _rtl92d_phy_get_abs(targetchnl[i],
  2413. curvecount_val[j]);
  2414. if (u4tmp < smallest_abs_val) {
  2415. curveindex[i] = j;
  2416. smallest_abs_val = u4tmp;
  2417. }
  2418. }
  2419. smallest_abs_val = 0xffffffff;
  2420. RTPRINT(rtlpriv, FINIT, INIT_IQK, "curveindex[%d] = %x\n",
  2421. i, curveindex[i]);
  2422. }
  2423. }
  2424. static void _rtl92d_phy_reload_lck_setting(struct ieee80211_hw *hw,
  2425. u8 channel)
  2426. {
  2427. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2428. u8 erfpath = rtlpriv->rtlhal.current_bandtype ==
  2429. BAND_ON_5G ? RF90_PATH_A :
  2430. IS_92D_SINGLEPHY(rtlpriv->rtlhal.version) ?
  2431. RF90_PATH_B : RF90_PATH_A;
  2432. u32 u4tmp = 0, u4regvalue = 0;
  2433. bool bneed_powerdown_radio = false;
  2434. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "path %d\n", erfpath);
  2435. RTPRINT(rtlpriv, FINIT, INIT_IQK, "band type = %d\n",
  2436. rtlpriv->rtlhal.current_bandtype);
  2437. RTPRINT(rtlpriv, FINIT, INIT_IQK, "channel = %d\n", channel);
  2438. if (rtlpriv->rtlhal.current_bandtype == BAND_ON_5G) {/* Path-A for 5G */
  2439. u4tmp = curveindex_5g[channel-1];
  2440. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2441. "ver 1 set RF-A, 5G, 0x28 = 0x%ulx !!\n", u4tmp);
  2442. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2443. rtlpriv->rtlhal.interfaceindex == 1) {
  2444. bneed_powerdown_radio =
  2445. rtl92d_phy_enable_anotherphy(hw, false);
  2446. rtlpriv->rtlhal.during_mac1init_radioa = true;
  2447. /* asume no this case */
  2448. if (bneed_powerdown_radio)
  2449. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2450. &u4regvalue);
  2451. }
  2452. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2453. if (bneed_powerdown_radio)
  2454. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2455. if (rtlpriv->rtlhal.during_mac1init_radioa)
  2456. rtl92d_phy_powerdown_anotherphy(hw, false);
  2457. } else if (rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G) {
  2458. u4tmp = curveindex_2g[channel-1];
  2459. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2460. "ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n", u4tmp);
  2461. if (rtlpriv->rtlhal.macphymode == DUALMAC_DUALPHY &&
  2462. rtlpriv->rtlhal.interfaceindex == 0) {
  2463. bneed_powerdown_radio =
  2464. rtl92d_phy_enable_anotherphy(hw, true);
  2465. rtlpriv->rtlhal.during_mac0init_radiob = true;
  2466. if (bneed_powerdown_radio)
  2467. _rtl92d_phy_enable_rf_env(hw, erfpath,
  2468. &u4regvalue);
  2469. }
  2470. rtl_set_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800, u4tmp);
  2471. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2472. "ver 3 set RF-B, 2G, 0x28 = 0x%ulx !!\n",
  2473. rtl_get_rfreg(hw, erfpath, RF_SYN_G4, 0x3f800));
  2474. if (bneed_powerdown_radio)
  2475. _rtl92d_phy_restore_rf_env(hw, erfpath, &u4regvalue);
  2476. if (rtlpriv->rtlhal.during_mac0init_radiob)
  2477. rtl92d_phy_powerdown_anotherphy(hw, true);
  2478. }
  2479. RT_TRACE(rtlpriv, COMP_CMD, DBG_LOUD, "<====\n");
  2480. }
  2481. static void _rtl92d_phy_lc_calibrate_sw(struct ieee80211_hw *hw, bool is2t)
  2482. {
  2483. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2484. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2485. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2486. u8 tmpreg, index, rf_mode[2];
  2487. u8 path = is2t ? 2 : 1;
  2488. u8 i;
  2489. u32 u4tmp, offset;
  2490. u32 curvecount_val[CV_CURVE_CNT * 2] = {0};
  2491. u16 timeout = 800, timecount = 0;
  2492. /* Check continuous TX and Packet TX */
  2493. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  2494. /* if Deal with contisuous TX case, disable all continuous TX */
  2495. /* if Deal with Packet TX case, block all queues */
  2496. if ((tmpreg & 0x70) != 0)
  2497. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  2498. else
  2499. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2500. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x0F);
  2501. for (index = 0; index < path; index++) {
  2502. /* 1. Read original RF mode */
  2503. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2504. rf_mode[index] = rtl_read_byte(rtlpriv, offset);
  2505. /* 2. Set RF mode = standby mode */
  2506. rtl_set_rfreg(hw, (enum radio_path)index, RF_AC,
  2507. BRFREGOFFSETMASK, 0x010000);
  2508. if (rtlpci->init_ready) {
  2509. /* switch CV-curve control by LC-calibration */
  2510. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2511. BIT(17), 0x0);
  2512. /* 4. Set LC calibration begin */
  2513. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2514. 0x08000, 0x01);
  2515. }
  2516. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index, RF_SYN_G6,
  2517. BRFREGOFFSETMASK);
  2518. while ((!(u4tmp & BIT(11))) && timecount <= timeout) {
  2519. mdelay(50);
  2520. timecount += 50;
  2521. u4tmp = rtl_get_rfreg(hw, (enum radio_path)index,
  2522. RF_SYN_G6, BRFREGOFFSETMASK);
  2523. }
  2524. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2525. "PHY_LCK finish delay for %d ms=2\n", timecount);
  2526. u4tmp = rtl_get_rfreg(hw, index, RF_SYN_G4, BRFREGOFFSETMASK);
  2527. if (index == 0 && rtlhal->interfaceindex == 0) {
  2528. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2529. "path-A / 5G LCK\n");
  2530. } else {
  2531. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2532. "path-B / 2.4G LCK\n");
  2533. }
  2534. memset(&curvecount_val[0], 0, CV_CURVE_CNT * 2);
  2535. /* Set LC calibration off */
  2536. rtl_set_rfreg(hw, (enum radio_path)index, RF_CHNLBW,
  2537. 0x08000, 0x0);
  2538. RTPRINT(rtlpriv, FINIT, INIT_IQK, "set RF 0x18[15] = 0\n");
  2539. /* save Curve-counting number */
  2540. for (i = 0; i < CV_CURVE_CNT; i++) {
  2541. u32 readval = 0, readval2 = 0;
  2542. rtl_set_rfreg(hw, (enum radio_path)index, 0x3F,
  2543. 0x7f, i);
  2544. rtl_set_rfreg(hw, (enum radio_path)index, 0x4D,
  2545. BRFREGOFFSETMASK, 0x0);
  2546. readval = rtl_get_rfreg(hw, (enum radio_path)index,
  2547. 0x4F, BRFREGOFFSETMASK);
  2548. curvecount_val[2 * i + 1] = (readval & 0xfffe0) >> 5;
  2549. /* reg 0x4f [4:0] */
  2550. /* reg 0x50 [19:10] */
  2551. readval2 = rtl_get_rfreg(hw, (enum radio_path)index,
  2552. 0x50, 0xffc00);
  2553. curvecount_val[2 * i] = (((readval & 0x1F) << 10) |
  2554. readval2);
  2555. }
  2556. if (index == 0 && rtlhal->interfaceindex == 0)
  2557. _rtl92d_phy_calc_curvindex(hw, targetchnl_5g,
  2558. curvecount_val,
  2559. true, curveindex_5g);
  2560. else
  2561. _rtl92d_phy_calc_curvindex(hw, targetchnl_2g,
  2562. curvecount_val,
  2563. false, curveindex_2g);
  2564. /* switch CV-curve control mode */
  2565. rtl_set_rfreg(hw, (enum radio_path)index, RF_SYN_G7,
  2566. BIT(17), 0x1);
  2567. }
  2568. /* Restore original situation */
  2569. for (index = 0; index < path; index++) {
  2570. offset = index == 0 ? ROFDM0_XAAGCCORE1 : ROFDM0_XBAGCCORE1;
  2571. rtl_write_byte(rtlpriv, offset, 0x50);
  2572. rtl_write_byte(rtlpriv, offset, rf_mode[index]);
  2573. }
  2574. if ((tmpreg & 0x70) != 0)
  2575. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  2576. else /*Deal with Packet TX case */
  2577. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2578. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER4, 0xF00000, 0x00);
  2579. _rtl92d_phy_reload_lck_setting(hw, rtlpriv->phy.current_channel);
  2580. }
  2581. static void _rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  2582. {
  2583. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2584. RTPRINT(rtlpriv, FINIT, INIT_IQK, "cosa PHY_LCK ver=2\n");
  2585. _rtl92d_phy_lc_calibrate_sw(hw, is2t);
  2586. }
  2587. void rtl92d_phy_lc_calibrate(struct ieee80211_hw *hw)
  2588. {
  2589. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2590. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2591. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  2592. u32 timeout = 2000, timecount = 0;
  2593. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  2594. udelay(50);
  2595. timecount += 50;
  2596. }
  2597. rtlphy->lck_inprogress = true;
  2598. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  2599. "LCK:Start!!! currentband %x delay %d ms\n",
  2600. rtlhal->current_bandtype, timecount);
  2601. if (IS_92D_SINGLEPHY(rtlhal->version)) {
  2602. _rtl92d_phy_lc_calibrate(hw, true);
  2603. } else {
  2604. /* For 1T1R */
  2605. _rtl92d_phy_lc_calibrate(hw, false);
  2606. }
  2607. rtlphy->lck_inprogress = false;
  2608. RTPRINT(rtlpriv, FINIT, INIT_IQK, "LCK:Finish!!!\n");
  2609. }
  2610. void rtl92d_phy_ap_calibrate(struct ieee80211_hw *hw, char delta)
  2611. {
  2612. return;
  2613. }
  2614. static bool _rtl92d_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  2615. u32 cmdtableidx, u32 cmdtablesz, enum swchnlcmd_id cmdid,
  2616. u32 para1, u32 para2, u32 msdelay)
  2617. {
  2618. struct swchnlcmd *pcmd;
  2619. if (cmdtable == NULL) {
  2620. RT_ASSERT(false, "cmdtable cannot be NULL\n");
  2621. return false;
  2622. }
  2623. if (cmdtableidx >= cmdtablesz)
  2624. return false;
  2625. pcmd = cmdtable + cmdtableidx;
  2626. pcmd->cmdid = cmdid;
  2627. pcmd->para1 = para1;
  2628. pcmd->para2 = para2;
  2629. pcmd->msdelay = msdelay;
  2630. return true;
  2631. }
  2632. void rtl92d_phy_reset_iqk_result(struct ieee80211_hw *hw)
  2633. {
  2634. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2635. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2636. u8 i;
  2637. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  2638. "settings regs %d default regs %d\n",
  2639. (int)(sizeof(rtlphy->iqk_matrix_regsetting) /
  2640. sizeof(struct iqk_matrix_regs)),
  2641. IQK_MATRIX_REG_NUM);
  2642. /* 0xe94, 0xe9c, 0xea4, 0xeac, 0xeb4, 0xebc, 0xec4, 0xecc */
  2643. for (i = 0; i < IQK_MATRIX_SETTINGS_NUM; i++) {
  2644. rtlphy->iqk_matrix_regsetting[i].value[0][0] = 0x100;
  2645. rtlphy->iqk_matrix_regsetting[i].value[0][2] = 0x100;
  2646. rtlphy->iqk_matrix_regsetting[i].value[0][4] = 0x100;
  2647. rtlphy->iqk_matrix_regsetting[i].value[0][6] = 0x100;
  2648. rtlphy->iqk_matrix_regsetting[i].value[0][1] = 0x0;
  2649. rtlphy->iqk_matrix_regsetting[i].value[0][3] = 0x0;
  2650. rtlphy->iqk_matrix_regsetting[i].value[0][5] = 0x0;
  2651. rtlphy->iqk_matrix_regsetting[i].value[0][7] = 0x0;
  2652. rtlphy->iqk_matrix_regsetting[i].iqk_done = false;
  2653. }
  2654. }
  2655. static bool _rtl92d_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
  2656. u8 channel, u8 *stage, u8 *step,
  2657. u32 *delay)
  2658. {
  2659. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2660. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2661. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  2662. u32 precommoncmdcnt;
  2663. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  2664. u32 postcommoncmdcnt;
  2665. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  2666. u32 rfdependcmdcnt;
  2667. struct swchnlcmd *currentcmd = NULL;
  2668. u8 rfpath;
  2669. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  2670. precommoncmdcnt = 0;
  2671. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2672. MAX_PRECMD_CNT,
  2673. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  2674. _rtl92d_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  2675. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  2676. postcommoncmdcnt = 0;
  2677. _rtl92d_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  2678. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  2679. rfdependcmdcnt = 0;
  2680. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2681. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  2682. RF_CHNLBW, channel, 0);
  2683. _rtl92d_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  2684. MAX_RFDEPENDCMD_CNT, CMDID_END,
  2685. 0, 0, 0);
  2686. do {
  2687. switch (*stage) {
  2688. case 0:
  2689. currentcmd = &precommoncmd[*step];
  2690. break;
  2691. case 1:
  2692. currentcmd = &rfdependcmd[*step];
  2693. break;
  2694. case 2:
  2695. currentcmd = &postcommoncmd[*step];
  2696. break;
  2697. }
  2698. if (currentcmd->cmdid == CMDID_END) {
  2699. if ((*stage) == 2) {
  2700. return true;
  2701. } else {
  2702. (*stage)++;
  2703. (*step) = 0;
  2704. continue;
  2705. }
  2706. }
  2707. switch (currentcmd->cmdid) {
  2708. case CMDID_SET_TXPOWEROWER_LEVEL:
  2709. rtl92d_phy_set_txpower_level(hw, channel);
  2710. break;
  2711. case CMDID_WRITEPORT_ULONG:
  2712. rtl_write_dword(rtlpriv, currentcmd->para1,
  2713. currentcmd->para2);
  2714. break;
  2715. case CMDID_WRITEPORT_USHORT:
  2716. rtl_write_word(rtlpriv, currentcmd->para1,
  2717. (u16)currentcmd->para2);
  2718. break;
  2719. case CMDID_WRITEPORT_UCHAR:
  2720. rtl_write_byte(rtlpriv, currentcmd->para1,
  2721. (u8)currentcmd->para2);
  2722. break;
  2723. case CMDID_RF_WRITEREG:
  2724. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  2725. rtlphy->rfreg_chnlval[rfpath] =
  2726. ((rtlphy->rfreg_chnlval[rfpath] &
  2727. 0xffffff00) | currentcmd->para2);
  2728. if (rtlpriv->rtlhal.current_bandtype ==
  2729. BAND_ON_5G) {
  2730. if (currentcmd->para2 > 99)
  2731. rtlphy->rfreg_chnlval[rfpath] =
  2732. rtlphy->rfreg_chnlval
  2733. [rfpath] | (BIT(18));
  2734. else
  2735. rtlphy->rfreg_chnlval[rfpath] =
  2736. rtlphy->rfreg_chnlval
  2737. [rfpath] & (~BIT(18));
  2738. rtlphy->rfreg_chnlval[rfpath] |=
  2739. (BIT(16) | BIT(8));
  2740. } else {
  2741. rtlphy->rfreg_chnlval[rfpath] &=
  2742. ~(BIT(8) | BIT(16) | BIT(18));
  2743. }
  2744. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  2745. currentcmd->para1,
  2746. BRFREGOFFSETMASK,
  2747. rtlphy->rfreg_chnlval[rfpath]);
  2748. _rtl92d_phy_reload_imr_setting(hw, channel,
  2749. rfpath);
  2750. }
  2751. _rtl92d_phy_switch_rf_setting(hw, channel);
  2752. /* do IQK when all parameters are ready */
  2753. rtl92d_phy_reload_iqk_setting(hw, channel);
  2754. break;
  2755. default:
  2756. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2757. "switch case not processed\n");
  2758. break;
  2759. }
  2760. break;
  2761. } while (true);
  2762. (*delay) = currentcmd->msdelay;
  2763. (*step)++;
  2764. return false;
  2765. }
  2766. u8 rtl92d_phy_sw_chnl(struct ieee80211_hw *hw)
  2767. {
  2768. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2769. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2770. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2771. u32 delay;
  2772. u32 timeout = 1000, timecount = 0;
  2773. u8 channel = rtlphy->current_channel;
  2774. u32 ret_value;
  2775. if (rtlphy->sw_chnl_inprogress)
  2776. return 0;
  2777. if (rtlphy->set_bwmode_inprogress)
  2778. return 0;
  2779. if ((is_hal_stop(rtlhal)) || (RT_CANNOT_IO(hw))) {
  2780. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  2781. "sw_chnl_inprogress false driver sleep or unload\n");
  2782. return 0;
  2783. }
  2784. while (rtlphy->lck_inprogress && timecount < timeout) {
  2785. mdelay(50);
  2786. timecount += 50;
  2787. }
  2788. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY &&
  2789. rtlhal->bandset == BAND_ON_BOTH) {
  2790. ret_value = rtl_get_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  2791. BMASKDWORD);
  2792. if (rtlphy->current_channel > 14 && !(ret_value & BIT(0)))
  2793. rtl92d_phy_switch_wirelessband(hw, BAND_ON_5G);
  2794. else if (rtlphy->current_channel <= 14 && (ret_value & BIT(0)))
  2795. rtl92d_phy_switch_wirelessband(hw, BAND_ON_2_4G);
  2796. }
  2797. switch (rtlhal->current_bandtype) {
  2798. case BAND_ON_5G:
  2799. /* Get first channel error when change between
  2800. * 5G and 2.4G band. */
  2801. if (channel <= 14)
  2802. return 0;
  2803. RT_ASSERT((channel > 14), "5G but channel<=14\n");
  2804. break;
  2805. case BAND_ON_2_4G:
  2806. /* Get first channel error when change between
  2807. * 5G and 2.4G band. */
  2808. if (channel > 14)
  2809. return 0;
  2810. RT_ASSERT((channel <= 14), "2G but channel>14\n");
  2811. break;
  2812. default:
  2813. RT_ASSERT(false, "Invalid WirelessMode(%#x)!!\n",
  2814. rtlpriv->mac80211.mode);
  2815. break;
  2816. }
  2817. rtlphy->sw_chnl_inprogress = true;
  2818. if (channel == 0)
  2819. channel = 1;
  2820. rtlphy->sw_chnl_stage = 0;
  2821. rtlphy->sw_chnl_step = 0;
  2822. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  2823. "switch to channel%d\n", rtlphy->current_channel);
  2824. do {
  2825. if (!rtlphy->sw_chnl_inprogress)
  2826. break;
  2827. if (!_rtl92d_phy_sw_chnl_step_by_step(hw,
  2828. rtlphy->current_channel,
  2829. &rtlphy->sw_chnl_stage, &rtlphy->sw_chnl_step, &delay)) {
  2830. if (delay > 0)
  2831. mdelay(delay);
  2832. else
  2833. continue;
  2834. } else {
  2835. rtlphy->sw_chnl_inprogress = false;
  2836. }
  2837. break;
  2838. } while (true);
  2839. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "<==\n");
  2840. rtlphy->sw_chnl_inprogress = false;
  2841. return 1;
  2842. }
  2843. static void rtl92d_phy_set_io(struct ieee80211_hw *hw)
  2844. {
  2845. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2846. struct dig_t *de_digtable = &rtlpriv->dm_digtable;
  2847. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2848. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2849. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  2850. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  2851. switch (rtlphy->current_io_type) {
  2852. case IO_CMD_RESUME_DM_BY_SCAN:
  2853. de_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  2854. rtl92d_dm_write_dig(hw);
  2855. rtl92d_phy_set_txpower_level(hw, rtlphy->current_channel);
  2856. break;
  2857. case IO_CMD_PAUSE_DM_BY_SCAN:
  2858. rtlphy->initgain_backup.xaagccore1 = de_digtable->cur_igvalue;
  2859. de_digtable->cur_igvalue = 0x37;
  2860. rtl92d_dm_write_dig(hw);
  2861. break;
  2862. default:
  2863. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2864. "switch case not processed\n");
  2865. break;
  2866. }
  2867. rtlphy->set_io_inprogress = false;
  2868. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<---(%#x)\n",
  2869. rtlphy->current_io_type);
  2870. }
  2871. bool rtl92d_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  2872. {
  2873. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2874. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2875. bool postprocessing = false;
  2876. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2877. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  2878. iotype, rtlphy->set_io_inprogress);
  2879. do {
  2880. switch (iotype) {
  2881. case IO_CMD_RESUME_DM_BY_SCAN:
  2882. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2883. "[IO CMD] Resume DM after scan\n");
  2884. postprocessing = true;
  2885. break;
  2886. case IO_CMD_PAUSE_DM_BY_SCAN:
  2887. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  2888. "[IO CMD] Pause DM before scan\n");
  2889. postprocessing = true;
  2890. break;
  2891. default:
  2892. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2893. "switch case not processed\n");
  2894. break;
  2895. }
  2896. } while (false);
  2897. if (postprocessing && !rtlphy->set_io_inprogress) {
  2898. rtlphy->set_io_inprogress = true;
  2899. rtlphy->current_io_type = iotype;
  2900. } else {
  2901. return false;
  2902. }
  2903. rtl92d_phy_set_io(hw);
  2904. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "<--IO Type(%#x)\n", iotype);
  2905. return true;
  2906. }
  2907. static void _rtl92d_phy_set_rfon(struct ieee80211_hw *hw)
  2908. {
  2909. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2910. /* a. SYS_CLKR 0x08[11] = 1 restore MAC clock */
  2911. /* b. SPS_CTRL 0x11[7:0] = 0x2b */
  2912. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2913. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  2914. /* c. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function */
  2915. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2916. /* RF_ON_EXCEP(d~g): */
  2917. /* d. APSD_CTRL 0x600[7:0] = 0x00 */
  2918. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2919. /* e. SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function again */
  2920. /* f. SYS_FUNC_EN 0x02[7:0] = 0xE3 enable BB TRX function*/
  2921. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2922. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2923. /* g. txpause 0x522[7:0] = 0x00 enable mac tx queue */
  2924. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2925. }
  2926. static void _rtl92d_phy_set_rfsleep(struct ieee80211_hw *hw)
  2927. {
  2928. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2929. u32 u4btmp;
  2930. u8 delay = 5;
  2931. /* a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue */
  2932. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  2933. /* b. RF path 0 offset 0x00 = 0x00 disable RF */
  2934. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
  2935. /* c. APSD_CTRL 0x600[7:0] = 0x40 */
  2936. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2937. /* d. APSD_CTRL 0x600[7:0] = 0x00
  2938. * APSD_CTRL 0x600[7:0] = 0x00
  2939. * RF path 0 offset 0x00 = 0x00
  2940. * APSD_CTRL 0x600[7:0] = 0x40
  2941. * */
  2942. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
  2943. while (u4btmp != 0 && delay > 0) {
  2944. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x0);
  2945. rtl_set_rfreg(hw, RF90_PATH_A, 0x00, BRFREGOFFSETMASK, 0x00);
  2946. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x40);
  2947. u4btmp = rtl_get_rfreg(hw, RF90_PATH_A, 0, BRFREGOFFSETMASK);
  2948. delay--;
  2949. }
  2950. if (delay == 0) {
  2951. /* Jump out the LPS turn off sequence to RF_ON_EXCEP */
  2952. rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);
  2953. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2954. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  2955. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  2956. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  2957. "Fail !!! Switch RF timeout\n");
  2958. return;
  2959. }
  2960. /* e. For PCIE: SYS_FUNC_EN 0x02[7:0] = 0xE2 reset BB TRX function */
  2961. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  2962. /* f. SPS_CTRL 0x11[7:0] = 0x22 */
  2963. if (rtlpriv->rtlhal.macphymode == SINGLEMAC_SINGLEPHY)
  2964. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  2965. /* g. SYS_CLKR 0x08[11] = 0 gated MAC clock */
  2966. }
  2967. bool rtl92d_phy_set_rf_power_state(struct ieee80211_hw *hw,
  2968. enum rf_pwrstate rfpwr_state)
  2969. {
  2970. bool bresult = true;
  2971. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2972. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  2973. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2974. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2975. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  2976. u8 i, queue_id;
  2977. struct rtl8192_tx_ring *ring = NULL;
  2978. if (rfpwr_state == ppsc->rfpwr_state)
  2979. return false;
  2980. switch (rfpwr_state) {
  2981. case ERFON:
  2982. if ((ppsc->rfpwr_state == ERFOFF) &&
  2983. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  2984. bool rtstatus;
  2985. u32 InitializeCount = 0;
  2986. do {
  2987. InitializeCount++;
  2988. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2989. "IPS Set eRf nic enable\n");
  2990. rtstatus = rtl_ps_enable_nic(hw);
  2991. } while (!rtstatus && (InitializeCount < 10));
  2992. RT_CLEAR_PS_LEVEL(ppsc,
  2993. RT_RF_OFF_LEVL_HALT_NIC);
  2994. } else {
  2995. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2996. "awake, sleeped:%d ms state_inap:%x\n",
  2997. jiffies_to_msecs(jiffies -
  2998. ppsc->last_sleep_jiffies),
  2999. rtlpriv->psc.state_inap);
  3000. ppsc->last_awake_jiffies = jiffies;
  3001. _rtl92d_phy_set_rfon(hw);
  3002. }
  3003. if (mac->link_state == MAC80211_LINKED)
  3004. rtlpriv->cfg->ops->led_control(hw,
  3005. LED_CTL_LINK);
  3006. else
  3007. rtlpriv->cfg->ops->led_control(hw,
  3008. LED_CTL_NO_LINK);
  3009. break;
  3010. case ERFOFF:
  3011. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  3012. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  3013. "IPS Set eRf nic disable\n");
  3014. rtl_ps_disable_nic(hw);
  3015. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  3016. } else {
  3017. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  3018. rtlpriv->cfg->ops->led_control(hw,
  3019. LED_CTL_NO_LINK);
  3020. else
  3021. rtlpriv->cfg->ops->led_control(hw,
  3022. LED_CTL_POWER_OFF);
  3023. }
  3024. break;
  3025. case ERFSLEEP:
  3026. if (ppsc->rfpwr_state == ERFOFF)
  3027. return false;
  3028. for (queue_id = 0, i = 0;
  3029. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  3030. ring = &pcipriv->dev.tx_ring[queue_id];
  3031. if (skb_queue_len(&ring->queue) == 0 ||
  3032. queue_id == BEACON_QUEUE) {
  3033. queue_id++;
  3034. continue;
  3035. } else if (rtlpci->pdev->current_state != PCI_D0) {
  3036. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  3037. "eRf Off/Sleep: %d times TcbBusyQueue[%d] !=0 but lower power state!\n",
  3038. i + 1, queue_id);
  3039. break;
  3040. } else {
  3041. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  3042. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  3043. i + 1, queue_id,
  3044. skb_queue_len(&ring->queue));
  3045. udelay(10);
  3046. i++;
  3047. }
  3048. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  3049. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  3050. "ERFOFF: %d times TcbBusyQueue[%d] = %d !\n",
  3051. MAX_DOZE_WAITING_TIMES_9x, queue_id,
  3052. skb_queue_len(&ring->queue));
  3053. break;
  3054. }
  3055. }
  3056. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  3057. "Set rfsleep awaked:%d ms\n",
  3058. jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
  3059. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  3060. "sleep awaked:%d ms state_inap:%x\n",
  3061. jiffies_to_msecs(jiffies -
  3062. ppsc->last_awake_jiffies),
  3063. rtlpriv->psc.state_inap);
  3064. ppsc->last_sleep_jiffies = jiffies;
  3065. _rtl92d_phy_set_rfsleep(hw);
  3066. break;
  3067. default:
  3068. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  3069. "switch case not processed\n");
  3070. bresult = false;
  3071. break;
  3072. }
  3073. if (bresult)
  3074. ppsc->rfpwr_state = rfpwr_state;
  3075. return bresult;
  3076. }
  3077. void rtl92d_phy_config_macphymode(struct ieee80211_hw *hw)
  3078. {
  3079. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3080. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3081. u8 offset = REG_MAC_PHY_CTRL_NORMAL;
  3082. switch (rtlhal->macphymode) {
  3083. case DUALMAC_DUALPHY:
  3084. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3085. "MacPhyMode: DUALMAC_DUALPHY\n");
  3086. rtl_write_byte(rtlpriv, offset, 0xF3);
  3087. break;
  3088. case SINGLEMAC_SINGLEPHY:
  3089. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3090. "MacPhyMode: SINGLEMAC_SINGLEPHY\n");
  3091. rtl_write_byte(rtlpriv, offset, 0xF4);
  3092. break;
  3093. case DUALMAC_SINGLEPHY:
  3094. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3095. "MacPhyMode: DUALMAC_SINGLEPHY\n");
  3096. rtl_write_byte(rtlpriv, offset, 0xF1);
  3097. break;
  3098. }
  3099. }
  3100. void rtl92d_phy_config_macphymode_info(struct ieee80211_hw *hw)
  3101. {
  3102. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3103. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3104. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3105. switch (rtlhal->macphymode) {
  3106. case DUALMAC_SINGLEPHY:
  3107. rtlphy->rf_type = RF_2T2R;
  3108. rtlhal->version |= RF_TYPE_2T2R;
  3109. rtlhal->bandset = BAND_ON_BOTH;
  3110. rtlhal->current_bandtype = BAND_ON_2_4G;
  3111. break;
  3112. case SINGLEMAC_SINGLEPHY:
  3113. rtlphy->rf_type = RF_2T2R;
  3114. rtlhal->version |= RF_TYPE_2T2R;
  3115. rtlhal->bandset = BAND_ON_BOTH;
  3116. rtlhal->current_bandtype = BAND_ON_2_4G;
  3117. break;
  3118. case DUALMAC_DUALPHY:
  3119. rtlphy->rf_type = RF_1T1R;
  3120. rtlhal->version &= RF_TYPE_1T1R;
  3121. /* Now we let MAC0 run on 5G band. */
  3122. if (rtlhal->interfaceindex == 0) {
  3123. rtlhal->bandset = BAND_ON_5G;
  3124. rtlhal->current_bandtype = BAND_ON_5G;
  3125. } else {
  3126. rtlhal->bandset = BAND_ON_2_4G;
  3127. rtlhal->current_bandtype = BAND_ON_2_4G;
  3128. }
  3129. break;
  3130. default:
  3131. break;
  3132. }
  3133. }
  3134. u8 rtl92d_get_chnlgroup_fromarray(u8 chnl)
  3135. {
  3136. u8 group;
  3137. u8 channel_info[59] = {
  3138. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  3139. 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56,
  3140. 58, 60, 62, 64, 100, 102, 104, 106, 108,
  3141. 110, 112, 114, 116, 118, 120, 122, 124,
  3142. 126, 128, 130, 132, 134, 136, 138, 140,
  3143. 149, 151, 153, 155, 157, 159, 161, 163,
  3144. 165
  3145. };
  3146. if (channel_info[chnl] <= 3)
  3147. group = 0;
  3148. else if (channel_info[chnl] <= 9)
  3149. group = 1;
  3150. else if (channel_info[chnl] <= 14)
  3151. group = 2;
  3152. else if (channel_info[chnl] <= 44)
  3153. group = 3;
  3154. else if (channel_info[chnl] <= 54)
  3155. group = 4;
  3156. else if (channel_info[chnl] <= 64)
  3157. group = 5;
  3158. else if (channel_info[chnl] <= 112)
  3159. group = 6;
  3160. else if (channel_info[chnl] <= 126)
  3161. group = 7;
  3162. else if (channel_info[chnl] <= 140)
  3163. group = 8;
  3164. else if (channel_info[chnl] <= 153)
  3165. group = 9;
  3166. else if (channel_info[chnl] <= 159)
  3167. group = 10;
  3168. else
  3169. group = 11;
  3170. return group;
  3171. }
  3172. void rtl92d_phy_set_poweron(struct ieee80211_hw *hw)
  3173. {
  3174. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3175. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3176. unsigned long flags;
  3177. u8 value8;
  3178. u16 i;
  3179. u32 mac_reg = (rtlhal->interfaceindex == 0 ? REG_MAC0 : REG_MAC1);
  3180. /* notice fw know band status 0x81[1]/0x53[1] = 0: 5G, 1: 2G */
  3181. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3182. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3183. value8 |= BIT(1);
  3184. rtl_write_byte(rtlpriv, mac_reg, value8);
  3185. } else {
  3186. value8 = rtl_read_byte(rtlpriv, mac_reg);
  3187. value8 &= (~BIT(1));
  3188. rtl_write_byte(rtlpriv, mac_reg, value8);
  3189. }
  3190. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3191. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3192. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3193. } else {
  3194. spin_lock_irqsave(&globalmutex_power, flags);
  3195. if (rtlhal->interfaceindex == 0) {
  3196. value8 = rtl_read_byte(rtlpriv, REG_MAC0);
  3197. rtl_write_byte(rtlpriv, REG_MAC0, value8 | MAC0_ON);
  3198. } else {
  3199. value8 = rtl_read_byte(rtlpriv, REG_MAC1);
  3200. rtl_write_byte(rtlpriv, REG_MAC1, value8 | MAC1_ON);
  3201. }
  3202. value8 = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3203. spin_unlock_irqrestore(&globalmutex_power, flags);
  3204. for (i = 0; i < 200; i++) {
  3205. if ((value8 & BIT(7)) == 0) {
  3206. break;
  3207. } else {
  3208. udelay(500);
  3209. spin_lock_irqsave(&globalmutex_power, flags);
  3210. value8 = rtl_read_byte(rtlpriv,
  3211. REG_POWER_OFF_IN_PROCESS);
  3212. spin_unlock_irqrestore(&globalmutex_power,
  3213. flags);
  3214. }
  3215. }
  3216. if (i == 200)
  3217. RT_ASSERT(false, "Another mac power off over time\n");
  3218. }
  3219. }
  3220. void rtl92d_phy_config_maccoexist_rfpage(struct ieee80211_hw *hw)
  3221. {
  3222. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3223. switch (rtlpriv->rtlhal.macphymode) {
  3224. case DUALMAC_DUALPHY:
  3225. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3226. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3227. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3228. break;
  3229. case DUALMAC_SINGLEPHY:
  3230. rtl_write_byte(rtlpriv, REG_DMC, 0xf8);
  3231. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x08);
  3232. rtl_write_word(rtlpriv, REG_TRXFF_BNDY + 2, 0x13ff);
  3233. break;
  3234. case SINGLEMAC_SINGLEPHY:
  3235. rtl_write_byte(rtlpriv, REG_DMC, 0x0);
  3236. rtl_write_byte(rtlpriv, REG_RX_PKT_LIMIT, 0x10);
  3237. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  3238. break;
  3239. default:
  3240. break;
  3241. }
  3242. }
  3243. void rtl92d_update_bbrf_configuration(struct ieee80211_hw *hw)
  3244. {
  3245. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3246. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3247. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  3248. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  3249. u8 rfpath, i;
  3250. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "==>\n");
  3251. /* r_select_5G for path_A/B 0 for 2.4G, 1 for 5G */
  3252. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3253. /* r_select_5G for path_A/B,0x878 */
  3254. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x0);
  3255. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x0);
  3256. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3257. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x0);
  3258. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x0);
  3259. }
  3260. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G,0xc78 */
  3261. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x0);
  3262. /* fc_area 0xd2c */
  3263. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x0);
  3264. /* 5G LAN ON */
  3265. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0xa);
  3266. /* TX BB gain shift*1,Just for testchip,0xc80,0xc88 */
  3267. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3268. 0x40000100);
  3269. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3270. 0x40000100);
  3271. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3272. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3273. BIT(10) | BIT(6) | BIT(5),
  3274. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3275. (rtlefuse->eeprom_c9 & BIT(1)) |
  3276. ((rtlefuse->eeprom_cc & BIT(1)) << 4));
  3277. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3278. BIT(10) | BIT(6) | BIT(5),
  3279. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3280. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3281. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3282. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0);
  3283. } else {
  3284. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3285. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3286. BIT(6) | BIT(5),
  3287. ((rtlefuse->eeprom_c9 & BIT(3)) >> 3) |
  3288. (rtlefuse->eeprom_c9 & BIT(1)) |
  3289. ((rtlefuse->eeprom_cc & BIT(1)) << 4) |
  3290. ((rtlefuse->eeprom_c9 & BIT(7)) << 9) |
  3291. ((rtlefuse->eeprom_c9 & BIT(5)) << 12) |
  3292. ((rtlefuse->eeprom_cc & BIT(3)) << 18));
  3293. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE,
  3294. BIT(10) | BIT(6) | BIT(5),
  3295. ((rtlefuse->eeprom_c9 & BIT(2)) >> 2) |
  3296. ((rtlefuse->eeprom_c9 & BIT(0)) << 1) |
  3297. ((rtlefuse->eeprom_cc & BIT(0)) << 5));
  3298. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  3299. BIT(10) | BIT(6) | BIT(5),
  3300. ((rtlefuse->eeprom_c9 & BIT(6)) >> 6) |
  3301. ((rtlefuse->eeprom_c9 & BIT(4)) >> 3) |
  3302. ((rtlefuse->eeprom_cc & BIT(2)) << 3));
  3303. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3304. BIT(31) | BIT(15), 0);
  3305. }
  3306. /* 1.5V_LDO */
  3307. } else {
  3308. /* r_select_5G for path_A/B */
  3309. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(0), 0x1);
  3310. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15), 0x1);
  3311. if (rtlhal->macphymode != DUALMAC_DUALPHY) {
  3312. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(16), 0x1);
  3313. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(31), 0x1);
  3314. }
  3315. /* rssi_table_select:index 0 for 2.4G.1~3 for 5G */
  3316. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, BIT(6) | BIT(7), 0x1);
  3317. /* fc_area */
  3318. rtl_set_bbreg(hw, ROFDM1_CFOTRACKING, BIT(14) | BIT(13), 0x1);
  3319. /* 5G LAN ON */
  3320. rtl_set_bbreg(hw, 0xB30, 0x00F00000, 0x0);
  3321. /* TX BB gain shift,Just for testchip,0xc80,0xc88 */
  3322. if (rtlefuse->internal_pa_5g[0])
  3323. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3324. 0x2d4000b5);
  3325. else
  3326. rtl_set_bbreg(hw, ROFDM0_XATxIQIMBALANCE, BMASKDWORD,
  3327. 0x20000080);
  3328. if (rtlefuse->internal_pa_5g[1])
  3329. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3330. 0x2d4000b5);
  3331. else
  3332. rtl_set_bbreg(hw, ROFDM0_XBTxIQIMBALANCE, BMASKDWORD,
  3333. 0x20000080);
  3334. if (rtlhal->macphymode == DUALMAC_DUALPHY) {
  3335. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3336. BIT(10) | BIT(6) | BIT(5),
  3337. (rtlefuse->eeprom_cc & BIT(5)));
  3338. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3339. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3340. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER, BIT(15),
  3341. (rtlefuse->eeprom_cc & BIT(4)) >> 4);
  3342. } else {
  3343. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW,
  3344. BIT(26) | BIT(22) | BIT(21) | BIT(10) |
  3345. BIT(6) | BIT(5),
  3346. (rtlefuse->eeprom_cc & BIT(5)) |
  3347. ((rtlefuse->eeprom_cc & BIT(7)) << 14));
  3348. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(10),
  3349. ((rtlefuse->eeprom_cc & BIT(4)) >> 4));
  3350. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(10),
  3351. ((rtlefuse->eeprom_cc & BIT(6)) >> 6));
  3352. rtl_set_bbreg(hw, RFPGA0_XAB_RFPARAMETER,
  3353. BIT(31) | BIT(15),
  3354. ((rtlefuse->eeprom_cc & BIT(4)) >> 4) |
  3355. ((rtlefuse->eeprom_cc & BIT(6)) << 10));
  3356. }
  3357. }
  3358. /* update IQK related settings */
  3359. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBALANCE, BMASKDWORD, 0x40000100);
  3360. rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, BMASKDWORD, 0x40000100);
  3361. rtl_set_bbreg(hw, ROFDM0_XCTxAFE, 0xF0000000, 0x00);
  3362. rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(30) | BIT(28) |
  3363. BIT(26) | BIT(24), 0x00);
  3364. rtl_set_bbreg(hw, ROFDM0_XDTxAFE, 0xF0000000, 0x00);
  3365. rtl_set_bbreg(hw, 0xca0, 0xF0000000, 0x00);
  3366. rtl_set_bbreg(hw, ROFDM0_AGCRSSITABLE, 0x0000F000, 0x00);
  3367. /* Update RF */
  3368. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3369. rfpath++) {
  3370. if (rtlhal->current_bandtype == BAND_ON_2_4G) {
  3371. /* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
  3372. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) | BIT(16) |
  3373. BIT(18), 0);
  3374. /* RF0x0b[16:14] =3b'111 */
  3375. rtl_set_rfreg(hw, (enum radio_path)rfpath, 0x0B,
  3376. 0x1c000, 0x07);
  3377. } else {
  3378. /* MOD_AG for RF paht_A 0x18 BIT8,BIT16 */
  3379. rtl_set_rfreg(hw, rfpath, RF_CHNLBW, BIT(8) |
  3380. BIT(16) | BIT(18),
  3381. (BIT(16) | BIT(8)) >> 8);
  3382. }
  3383. }
  3384. /* Update for all band. */
  3385. /* DMDP */
  3386. if (rtlphy->rf_type == RF_1T1R) {
  3387. /* Use antenna 0,0xc04,0xd04 */
  3388. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x11);
  3389. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x1);
  3390. /* enable ad/da clock1 for dual-phy reg0x888 */
  3391. if (rtlhal->interfaceindex == 0) {
  3392. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) |
  3393. BIT(13), 0x3);
  3394. } else {
  3395. rtl92d_phy_enable_anotherphy(hw, false);
  3396. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  3397. "MAC1 use DBI to update 0x888\n");
  3398. /* 0x888 */
  3399. rtl92de_write_dword_dbi(hw, RFPGA0_ADDALLOCKEN,
  3400. rtl92de_read_dword_dbi(hw,
  3401. RFPGA0_ADDALLOCKEN,
  3402. BIT(3)) | BIT(12) | BIT(13),
  3403. BIT(3));
  3404. rtl92d_phy_powerdown_anotherphy(hw, false);
  3405. }
  3406. } else {
  3407. /* Single PHY */
  3408. /* Use antenna 0 & 1,0xc04,0xd04 */
  3409. rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE, BMASKBYTE0, 0x33);
  3410. rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE, BDWORD, 0x3);
  3411. /* disable ad/da clock1,0x888 */
  3412. rtl_set_bbreg(hw, RFPGA0_ADDALLOCKEN, BIT(12) | BIT(13), 0);
  3413. }
  3414. for (rfpath = RF90_PATH_A; rfpath < rtlphy->num_total_rfpath;
  3415. rfpath++) {
  3416. rtlphy->rfreg_chnlval[rfpath] = rtl_get_rfreg(hw, rfpath,
  3417. RF_CHNLBW, BRFREGOFFSETMASK);
  3418. rtlphy->reg_rf3c[rfpath] = rtl_get_rfreg(hw, rfpath, 0x3C,
  3419. BRFREGOFFSETMASK);
  3420. }
  3421. for (i = 0; i < 2; i++)
  3422. RT_TRACE(rtlpriv, COMP_RF, DBG_LOUD, "RF 0x18 = 0x%x\n",
  3423. rtlphy->rfreg_chnlval[i]);
  3424. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "<==\n");
  3425. }
  3426. bool rtl92d_phy_check_poweroff(struct ieee80211_hw *hw)
  3427. {
  3428. struct rtl_priv *rtlpriv = rtl_priv(hw);
  3429. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  3430. u8 u1btmp;
  3431. unsigned long flags;
  3432. if (rtlhal->macphymode == SINGLEMAC_SINGLEPHY) {
  3433. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3434. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3435. return true;
  3436. }
  3437. spin_lock_irqsave(&globalmutex_power, flags);
  3438. if (rtlhal->interfaceindex == 0) {
  3439. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3440. rtl_write_byte(rtlpriv, REG_MAC0, u1btmp & (~MAC0_ON));
  3441. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3442. u1btmp &= MAC1_ON;
  3443. } else {
  3444. u1btmp = rtl_read_byte(rtlpriv, REG_MAC1);
  3445. rtl_write_byte(rtlpriv, REG_MAC1, u1btmp & (~MAC1_ON));
  3446. u1btmp = rtl_read_byte(rtlpriv, REG_MAC0);
  3447. u1btmp &= MAC0_ON;
  3448. }
  3449. if (u1btmp) {
  3450. spin_unlock_irqrestore(&globalmutex_power, flags);
  3451. return false;
  3452. }
  3453. u1btmp = rtl_read_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS);
  3454. u1btmp |= BIT(7);
  3455. rtl_write_byte(rtlpriv, REG_POWER_OFF_IN_PROCESS, u1btmp);
  3456. spin_unlock_irqrestore(&globalmutex_power, flags);
  3457. return true;
  3458. }