rt2x00queue.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355
  1. /*
  2. Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
  3. Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  4. Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
  5. <http://rt2x00.serialmonkey.com>
  6. This program is free software; you can redistribute it and/or modify
  7. it under the terms of the GNU General Public License as published by
  8. the Free Software Foundation; either version 2 of the License, or
  9. (at your option) any later version.
  10. This program is distributed in the hope that it will be useful,
  11. but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. GNU General Public License for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with this program; if not, write to the
  16. Free Software Foundation, Inc.,
  17. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. /*
  20. Module: rt2x00lib
  21. Abstract: rt2x00 queue specific routines.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/dma-mapping.h>
  27. #include "rt2x00.h"
  28. #include "rt2x00lib.h"
  29. struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
  30. {
  31. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  32. struct sk_buff *skb;
  33. struct skb_frame_desc *skbdesc;
  34. unsigned int frame_size;
  35. unsigned int head_size = 0;
  36. unsigned int tail_size = 0;
  37. /*
  38. * The frame size includes descriptor size, because the
  39. * hardware directly receive the frame into the skbuffer.
  40. */
  41. frame_size = entry->queue->data_size + entry->queue->desc_size;
  42. /*
  43. * The payload should be aligned to a 4-byte boundary,
  44. * this means we need at least 3 bytes for moving the frame
  45. * into the correct offset.
  46. */
  47. head_size = 4;
  48. /*
  49. * For IV/EIV/ICV assembly we must make sure there is
  50. * at least 8 bytes bytes available in headroom for IV/EIV
  51. * and 8 bytes for ICV data as tailroon.
  52. */
  53. if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) {
  54. head_size += 8;
  55. tail_size += 8;
  56. }
  57. /*
  58. * Allocate skbuffer.
  59. */
  60. skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
  61. if (!skb)
  62. return NULL;
  63. /*
  64. * Make sure we not have a frame with the requested bytes
  65. * available in the head and tail.
  66. */
  67. skb_reserve(skb, head_size);
  68. skb_put(skb, frame_size);
  69. /*
  70. * Populate skbdesc.
  71. */
  72. skbdesc = get_skb_frame_desc(skb);
  73. memset(skbdesc, 0, sizeof(*skbdesc));
  74. skbdesc->entry = entry;
  75. if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
  76. dma_addr_t skb_dma;
  77. skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
  78. DMA_FROM_DEVICE);
  79. if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
  80. dev_kfree_skb_any(skb);
  81. return NULL;
  82. }
  83. skbdesc->skb_dma = skb_dma;
  84. skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
  85. }
  86. return skb;
  87. }
  88. int rt2x00queue_map_txskb(struct queue_entry *entry)
  89. {
  90. struct device *dev = entry->queue->rt2x00dev->dev;
  91. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  92. skbdesc->skb_dma =
  93. dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
  94. if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
  95. return -ENOMEM;
  96. skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
  97. return 0;
  98. }
  99. EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
  100. void rt2x00queue_unmap_skb(struct queue_entry *entry)
  101. {
  102. struct device *dev = entry->queue->rt2x00dev->dev;
  103. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  104. if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
  105. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  106. DMA_FROM_DEVICE);
  107. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
  108. } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
  109. dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
  110. DMA_TO_DEVICE);
  111. skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
  112. }
  113. }
  114. EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
  115. void rt2x00queue_free_skb(struct queue_entry *entry)
  116. {
  117. if (!entry->skb)
  118. return;
  119. rt2x00queue_unmap_skb(entry);
  120. dev_kfree_skb_any(entry->skb);
  121. entry->skb = NULL;
  122. }
  123. void rt2x00queue_align_frame(struct sk_buff *skb)
  124. {
  125. unsigned int frame_length = skb->len;
  126. unsigned int align = ALIGN_SIZE(skb, 0);
  127. if (!align)
  128. return;
  129. skb_push(skb, align);
  130. memmove(skb->data, skb->data + align, frame_length);
  131. skb_trim(skb, frame_length);
  132. }
  133. void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length)
  134. {
  135. unsigned int payload_length = skb->len - header_length;
  136. unsigned int header_align = ALIGN_SIZE(skb, 0);
  137. unsigned int payload_align = ALIGN_SIZE(skb, header_length);
  138. unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0;
  139. /*
  140. * Adjust the header alignment if the payload needs to be moved more
  141. * than the header.
  142. */
  143. if (payload_align > header_align)
  144. header_align += 4;
  145. /* There is nothing to do if no alignment is needed */
  146. if (!header_align)
  147. return;
  148. /* Reserve the amount of space needed in front of the frame */
  149. skb_push(skb, header_align);
  150. /*
  151. * Move the header.
  152. */
  153. memmove(skb->data, skb->data + header_align, header_length);
  154. /* Move the payload, if present and if required */
  155. if (payload_length && payload_align)
  156. memmove(skb->data + header_length + l2pad,
  157. skb->data + header_length + l2pad + payload_align,
  158. payload_length);
  159. /* Trim the skb to the correct size */
  160. skb_trim(skb, header_length + l2pad + payload_length);
  161. }
  162. void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length)
  163. {
  164. /*
  165. * L2 padding is only present if the skb contains more than just the
  166. * IEEE 802.11 header.
  167. */
  168. unsigned int l2pad = (skb->len > header_length) ?
  169. L2PAD_SIZE(header_length) : 0;
  170. if (!l2pad)
  171. return;
  172. memmove(skb->data + l2pad, skb->data, header_length);
  173. skb_pull(skb, l2pad);
  174. }
  175. static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
  176. struct sk_buff *skb,
  177. struct txentry_desc *txdesc)
  178. {
  179. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  180. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  181. struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
  182. u16 seqno;
  183. if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
  184. return;
  185. __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  186. if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
  187. /*
  188. * rt2800 has a H/W (or F/W) bug, device incorrectly increase
  189. * seqno on retransmited data (non-QOS) frames. To workaround
  190. * the problem let's generate seqno in software if QOS is
  191. * disabled.
  192. */
  193. if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
  194. __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
  195. else
  196. /* H/W will generate sequence number */
  197. return;
  198. }
  199. /*
  200. * The hardware is not able to insert a sequence number. Assign a
  201. * software generated one here.
  202. *
  203. * This is wrong because beacons are not getting sequence
  204. * numbers assigned properly.
  205. *
  206. * A secondary problem exists for drivers that cannot toggle
  207. * sequence counting per-frame, since those will override the
  208. * sequence counter given by mac80211.
  209. */
  210. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  211. seqno = atomic_add_return(0x10, &intf->seqno);
  212. else
  213. seqno = atomic_read(&intf->seqno);
  214. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  215. hdr->seq_ctrl |= cpu_to_le16(seqno);
  216. }
  217. static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
  218. struct sk_buff *skb,
  219. struct txentry_desc *txdesc,
  220. const struct rt2x00_rate *hwrate)
  221. {
  222. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  223. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  224. unsigned int data_length;
  225. unsigned int duration;
  226. unsigned int residual;
  227. /*
  228. * Determine with what IFS priority this frame should be send.
  229. * Set ifs to IFS_SIFS when the this is not the first fragment,
  230. * or this fragment came after RTS/CTS.
  231. */
  232. if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
  233. txdesc->u.plcp.ifs = IFS_BACKOFF;
  234. else
  235. txdesc->u.plcp.ifs = IFS_SIFS;
  236. /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
  237. data_length = skb->len + 4;
  238. data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
  239. /*
  240. * PLCP setup
  241. * Length calculation depends on OFDM/CCK rate.
  242. */
  243. txdesc->u.plcp.signal = hwrate->plcp;
  244. txdesc->u.plcp.service = 0x04;
  245. if (hwrate->flags & DEV_RATE_OFDM) {
  246. txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
  247. txdesc->u.plcp.length_low = data_length & 0x3f;
  248. } else {
  249. /*
  250. * Convert length to microseconds.
  251. */
  252. residual = GET_DURATION_RES(data_length, hwrate->bitrate);
  253. duration = GET_DURATION(data_length, hwrate->bitrate);
  254. if (residual != 0) {
  255. duration++;
  256. /*
  257. * Check if we need to set the Length Extension
  258. */
  259. if (hwrate->bitrate == 110 && residual <= 30)
  260. txdesc->u.plcp.service |= 0x80;
  261. }
  262. txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
  263. txdesc->u.plcp.length_low = duration & 0xff;
  264. /*
  265. * When preamble is enabled we should set the
  266. * preamble bit for the signal.
  267. */
  268. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  269. txdesc->u.plcp.signal |= 0x08;
  270. }
  271. }
  272. static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
  273. struct sk_buff *skb,
  274. struct txentry_desc *txdesc,
  275. struct ieee80211_sta *sta,
  276. const struct rt2x00_rate *hwrate)
  277. {
  278. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  279. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  280. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  281. struct rt2x00_sta *sta_priv = NULL;
  282. if (sta) {
  283. txdesc->u.ht.mpdu_density =
  284. sta->ht_cap.ampdu_density;
  285. sta_priv = sta_to_rt2x00_sta(sta);
  286. txdesc->u.ht.wcid = sta_priv->wcid;
  287. }
  288. /*
  289. * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
  290. * mcs rate to be used
  291. */
  292. if (txrate->flags & IEEE80211_TX_RC_MCS) {
  293. txdesc->u.ht.mcs = txrate->idx;
  294. /*
  295. * MIMO PS should be set to 1 for STA's using dynamic SM PS
  296. * when using more then one tx stream (>MCS7).
  297. */
  298. if (sta && txdesc->u.ht.mcs > 7 &&
  299. sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
  300. __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
  301. } else {
  302. txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
  303. if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  304. txdesc->u.ht.mcs |= 0x08;
  305. }
  306. if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
  307. if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
  308. txdesc->u.ht.txop = TXOP_SIFS;
  309. else
  310. txdesc->u.ht.txop = TXOP_BACKOFF;
  311. /* Left zero on all other settings. */
  312. return;
  313. }
  314. txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
  315. /*
  316. * Only one STBC stream is supported for now.
  317. */
  318. if (tx_info->flags & IEEE80211_TX_CTL_STBC)
  319. txdesc->u.ht.stbc = 1;
  320. /*
  321. * This frame is eligible for an AMPDU, however, don't aggregate
  322. * frames that are intended to probe a specific tx rate.
  323. */
  324. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
  325. !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  326. __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
  327. /*
  328. * Set 40Mhz mode if necessary (for legacy rates this will
  329. * duplicate the frame to both channels).
  330. */
  331. if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
  332. txrate->flags & IEEE80211_TX_RC_DUP_DATA)
  333. __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
  334. if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
  335. __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
  336. /*
  337. * Determine IFS values
  338. * - Use TXOP_BACKOFF for management frames except beacons
  339. * - Use TXOP_SIFS for fragment bursts
  340. * - Use TXOP_HTTXOP for everything else
  341. *
  342. * Note: rt2800 devices won't use CTS protection (if used)
  343. * for frames not transmitted with TXOP_HTTXOP
  344. */
  345. if (ieee80211_is_mgmt(hdr->frame_control) &&
  346. !ieee80211_is_beacon(hdr->frame_control))
  347. txdesc->u.ht.txop = TXOP_BACKOFF;
  348. else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
  349. txdesc->u.ht.txop = TXOP_SIFS;
  350. else
  351. txdesc->u.ht.txop = TXOP_HTTXOP;
  352. }
  353. static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
  354. struct sk_buff *skb,
  355. struct txentry_desc *txdesc,
  356. struct ieee80211_sta *sta)
  357. {
  358. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  359. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  360. struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
  361. struct ieee80211_rate *rate;
  362. const struct rt2x00_rate *hwrate = NULL;
  363. memset(txdesc, 0, sizeof(*txdesc));
  364. /*
  365. * Header and frame information.
  366. */
  367. txdesc->length = skb->len;
  368. txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
  369. /*
  370. * Check whether this frame is to be acked.
  371. */
  372. if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
  373. __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
  374. /*
  375. * Check if this is a RTS/CTS frame
  376. */
  377. if (ieee80211_is_rts(hdr->frame_control) ||
  378. ieee80211_is_cts(hdr->frame_control)) {
  379. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  380. if (ieee80211_is_rts(hdr->frame_control))
  381. __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
  382. else
  383. __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
  384. if (tx_info->control.rts_cts_rate_idx >= 0)
  385. rate =
  386. ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
  387. }
  388. /*
  389. * Determine retry information.
  390. */
  391. txdesc->retry_limit = tx_info->control.rates[0].count - 1;
  392. if (txdesc->retry_limit >= rt2x00dev->long_retry)
  393. __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
  394. /*
  395. * Check if more fragments are pending
  396. */
  397. if (ieee80211_has_morefrags(hdr->frame_control)) {
  398. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  399. __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
  400. }
  401. /*
  402. * Check if more frames (!= fragments) are pending
  403. */
  404. if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
  405. __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
  406. /*
  407. * Beacons and probe responses require the tsf timestamp
  408. * to be inserted into the frame.
  409. */
  410. if (ieee80211_is_beacon(hdr->frame_control) ||
  411. ieee80211_is_probe_resp(hdr->frame_control))
  412. __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
  413. if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
  414. !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
  415. __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
  416. /*
  417. * Determine rate modulation.
  418. */
  419. if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
  420. txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
  421. else if (txrate->flags & IEEE80211_TX_RC_MCS)
  422. txdesc->rate_mode = RATE_MODE_HT_MIX;
  423. else {
  424. rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
  425. hwrate = rt2x00_get_rate(rate->hw_value);
  426. if (hwrate->flags & DEV_RATE_OFDM)
  427. txdesc->rate_mode = RATE_MODE_OFDM;
  428. else
  429. txdesc->rate_mode = RATE_MODE_CCK;
  430. }
  431. /*
  432. * Apply TX descriptor handling by components
  433. */
  434. rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
  435. rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
  436. if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
  437. rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
  438. sta, hwrate);
  439. else
  440. rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
  441. hwrate);
  442. }
  443. static int rt2x00queue_write_tx_data(struct queue_entry *entry,
  444. struct txentry_desc *txdesc)
  445. {
  446. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  447. /*
  448. * This should not happen, we already checked the entry
  449. * was ours. When the hardware disagrees there has been
  450. * a queue corruption!
  451. */
  452. if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
  453. rt2x00dev->ops->lib->get_entry_state(entry))) {
  454. ERROR(rt2x00dev,
  455. "Corrupt queue %d, accessing entry which is not ours.\n"
  456. "Please file bug report to %s.\n",
  457. entry->queue->qid, DRV_PROJECT);
  458. return -EINVAL;
  459. }
  460. /*
  461. * Add the requested extra tx headroom in front of the skb.
  462. */
  463. skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom);
  464. memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom);
  465. /*
  466. * Call the driver's write_tx_data function, if it exists.
  467. */
  468. if (rt2x00dev->ops->lib->write_tx_data)
  469. rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
  470. /*
  471. * Map the skb to DMA.
  472. */
  473. if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags) &&
  474. rt2x00queue_map_txskb(entry))
  475. return -ENOMEM;
  476. return 0;
  477. }
  478. static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
  479. struct txentry_desc *txdesc)
  480. {
  481. struct data_queue *queue = entry->queue;
  482. queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
  483. /*
  484. * All processing on the frame has been completed, this means
  485. * it is now ready to be dumped to userspace through debugfs.
  486. */
  487. rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
  488. }
  489. static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
  490. struct txentry_desc *txdesc)
  491. {
  492. /*
  493. * Check if we need to kick the queue, there are however a few rules
  494. * 1) Don't kick unless this is the last in frame in a burst.
  495. * When the burst flag is set, this frame is always followed
  496. * by another frame which in some way are related to eachother.
  497. * This is true for fragments, RTS or CTS-to-self frames.
  498. * 2) Rule 1 can be broken when the available entries
  499. * in the queue are less then a certain threshold.
  500. */
  501. if (rt2x00queue_threshold(queue) ||
  502. !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
  503. queue->rt2x00dev->ops->lib->kick_queue(queue);
  504. }
  505. static void rt2x00queue_bar_check(struct queue_entry *entry)
  506. {
  507. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  508. struct ieee80211_bar *bar = (void *) (entry->skb->data +
  509. rt2x00dev->ops->extra_tx_headroom);
  510. struct rt2x00_bar_list_entry *bar_entry;
  511. if (likely(!ieee80211_is_back_req(bar->frame_control)))
  512. return;
  513. bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
  514. /*
  515. * If the alloc fails we still send the BAR out but just don't track
  516. * it in our bar list. And as a result we will report it to mac80211
  517. * back as failed.
  518. */
  519. if (!bar_entry)
  520. return;
  521. bar_entry->entry = entry;
  522. bar_entry->block_acked = 0;
  523. /*
  524. * Copy the relevant parts of the 802.11 BAR into out check list
  525. * such that we can use RCU for less-overhead in the RX path since
  526. * sending BARs and processing the according BlockAck should be
  527. * the exception.
  528. */
  529. memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
  530. memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
  531. bar_entry->control = bar->control;
  532. bar_entry->start_seq_num = bar->start_seq_num;
  533. /*
  534. * Insert BAR into our BAR check list.
  535. */
  536. spin_lock_bh(&rt2x00dev->bar_list_lock);
  537. list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
  538. spin_unlock_bh(&rt2x00dev->bar_list_lock);
  539. }
  540. int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
  541. bool local)
  542. {
  543. struct ieee80211_tx_info *tx_info;
  544. struct queue_entry *entry;
  545. struct txentry_desc txdesc;
  546. struct skb_frame_desc *skbdesc;
  547. u8 rate_idx, rate_flags;
  548. int ret = 0;
  549. /*
  550. * Copy all TX descriptor information into txdesc,
  551. * after that we are free to use the skb->cb array
  552. * for our information.
  553. */
  554. rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, NULL);
  555. /*
  556. * All information is retrieved from the skb->cb array,
  557. * now we should claim ownership of the driver part of that
  558. * array, preserving the bitrate index and flags.
  559. */
  560. tx_info = IEEE80211_SKB_CB(skb);
  561. rate_idx = tx_info->control.rates[0].idx;
  562. rate_flags = tx_info->control.rates[0].flags;
  563. skbdesc = get_skb_frame_desc(skb);
  564. memset(skbdesc, 0, sizeof(*skbdesc));
  565. skbdesc->tx_rate_idx = rate_idx;
  566. skbdesc->tx_rate_flags = rate_flags;
  567. if (local)
  568. skbdesc->flags |= SKBDESC_NOT_MAC80211;
  569. /*
  570. * When hardware encryption is supported, and this frame
  571. * is to be encrypted, we should strip the IV/EIV data from
  572. * the frame so we can provide it to the driver separately.
  573. */
  574. if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
  575. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
  576. if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
  577. rt2x00crypto_tx_copy_iv(skb, &txdesc);
  578. else
  579. rt2x00crypto_tx_remove_iv(skb, &txdesc);
  580. }
  581. /*
  582. * When DMA allocation is required we should guarantee to the
  583. * driver that the DMA is aligned to a 4-byte boundary.
  584. * However some drivers require L2 padding to pad the payload
  585. * rather then the header. This could be a requirement for
  586. * PCI and USB devices, while header alignment only is valid
  587. * for PCI devices.
  588. */
  589. if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
  590. rt2x00queue_insert_l2pad(skb, txdesc.header_length);
  591. else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
  592. rt2x00queue_align_frame(skb);
  593. /*
  594. * That function must be called with bh disabled.
  595. */
  596. spin_lock(&queue->tx_lock);
  597. if (unlikely(rt2x00queue_full(queue))) {
  598. ERROR(queue->rt2x00dev,
  599. "Dropping frame due to full tx queue %d.\n", queue->qid);
  600. ret = -ENOBUFS;
  601. goto out;
  602. }
  603. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  604. if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
  605. &entry->flags))) {
  606. ERROR(queue->rt2x00dev,
  607. "Arrived at non-free entry in the non-full queue %d.\n"
  608. "Please file bug report to %s.\n",
  609. queue->qid, DRV_PROJECT);
  610. ret = -EINVAL;
  611. goto out;
  612. }
  613. skbdesc->entry = entry;
  614. entry->skb = skb;
  615. /*
  616. * It could be possible that the queue was corrupted and this
  617. * call failed. Since we always return NETDEV_TX_OK to mac80211,
  618. * this frame will simply be dropped.
  619. */
  620. if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
  621. clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
  622. entry->skb = NULL;
  623. ret = -EIO;
  624. goto out;
  625. }
  626. /*
  627. * Put BlockAckReqs into our check list for driver BA processing.
  628. */
  629. rt2x00queue_bar_check(entry);
  630. set_bit(ENTRY_DATA_PENDING, &entry->flags);
  631. rt2x00queue_index_inc(entry, Q_INDEX);
  632. rt2x00queue_write_tx_descriptor(entry, &txdesc);
  633. rt2x00queue_kick_tx_queue(queue, &txdesc);
  634. out:
  635. spin_unlock(&queue->tx_lock);
  636. return ret;
  637. }
  638. int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
  639. struct ieee80211_vif *vif)
  640. {
  641. struct rt2x00_intf *intf = vif_to_intf(vif);
  642. if (unlikely(!intf->beacon))
  643. return -ENOBUFS;
  644. mutex_lock(&intf->beacon_skb_mutex);
  645. /*
  646. * Clean up the beacon skb.
  647. */
  648. rt2x00queue_free_skb(intf->beacon);
  649. /*
  650. * Clear beacon (single bssid devices don't need to clear the beacon
  651. * since the beacon queue will get stopped anyway).
  652. */
  653. if (rt2x00dev->ops->lib->clear_beacon)
  654. rt2x00dev->ops->lib->clear_beacon(intf->beacon);
  655. mutex_unlock(&intf->beacon_skb_mutex);
  656. return 0;
  657. }
  658. int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev,
  659. struct ieee80211_vif *vif)
  660. {
  661. struct rt2x00_intf *intf = vif_to_intf(vif);
  662. struct skb_frame_desc *skbdesc;
  663. struct txentry_desc txdesc;
  664. if (unlikely(!intf->beacon))
  665. return -ENOBUFS;
  666. /*
  667. * Clean up the beacon skb.
  668. */
  669. rt2x00queue_free_skb(intf->beacon);
  670. intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
  671. if (!intf->beacon->skb)
  672. return -ENOMEM;
  673. /*
  674. * Copy all TX descriptor information into txdesc,
  675. * after that we are free to use the skb->cb array
  676. * for our information.
  677. */
  678. rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
  679. /*
  680. * Fill in skb descriptor
  681. */
  682. skbdesc = get_skb_frame_desc(intf->beacon->skb);
  683. memset(skbdesc, 0, sizeof(*skbdesc));
  684. skbdesc->entry = intf->beacon;
  685. /*
  686. * Send beacon to hardware.
  687. */
  688. rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
  689. return 0;
  690. }
  691. int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
  692. struct ieee80211_vif *vif)
  693. {
  694. struct rt2x00_intf *intf = vif_to_intf(vif);
  695. int ret;
  696. mutex_lock(&intf->beacon_skb_mutex);
  697. ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif);
  698. mutex_unlock(&intf->beacon_skb_mutex);
  699. return ret;
  700. }
  701. bool rt2x00queue_for_each_entry(struct data_queue *queue,
  702. enum queue_index start,
  703. enum queue_index end,
  704. bool (*fn)(struct queue_entry *entry))
  705. {
  706. unsigned long irqflags;
  707. unsigned int index_start;
  708. unsigned int index_end;
  709. unsigned int i;
  710. if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
  711. ERROR(queue->rt2x00dev,
  712. "Entry requested from invalid index range (%d - %d)\n",
  713. start, end);
  714. return true;
  715. }
  716. /*
  717. * Only protect the range we are going to loop over,
  718. * if during our loop a extra entry is set to pending
  719. * it should not be kicked during this run, since it
  720. * is part of another TX operation.
  721. */
  722. spin_lock_irqsave(&queue->index_lock, irqflags);
  723. index_start = queue->index[start];
  724. index_end = queue->index[end];
  725. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  726. /*
  727. * Start from the TX done pointer, this guarantees that we will
  728. * send out all frames in the correct order.
  729. */
  730. if (index_start < index_end) {
  731. for (i = index_start; i < index_end; i++) {
  732. if (fn(&queue->entries[i]))
  733. return true;
  734. }
  735. } else {
  736. for (i = index_start; i < queue->limit; i++) {
  737. if (fn(&queue->entries[i]))
  738. return true;
  739. }
  740. for (i = 0; i < index_end; i++) {
  741. if (fn(&queue->entries[i]))
  742. return true;
  743. }
  744. }
  745. return false;
  746. }
  747. EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
  748. struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
  749. enum queue_index index)
  750. {
  751. struct queue_entry *entry;
  752. unsigned long irqflags;
  753. if (unlikely(index >= Q_INDEX_MAX)) {
  754. ERROR(queue->rt2x00dev,
  755. "Entry requested from invalid index type (%d)\n", index);
  756. return NULL;
  757. }
  758. spin_lock_irqsave(&queue->index_lock, irqflags);
  759. entry = &queue->entries[queue->index[index]];
  760. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  761. return entry;
  762. }
  763. EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
  764. void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
  765. {
  766. struct data_queue *queue = entry->queue;
  767. unsigned long irqflags;
  768. if (unlikely(index >= Q_INDEX_MAX)) {
  769. ERROR(queue->rt2x00dev,
  770. "Index change on invalid index type (%d)\n", index);
  771. return;
  772. }
  773. spin_lock_irqsave(&queue->index_lock, irqflags);
  774. queue->index[index]++;
  775. if (queue->index[index] >= queue->limit)
  776. queue->index[index] = 0;
  777. entry->last_action = jiffies;
  778. if (index == Q_INDEX) {
  779. queue->length++;
  780. } else if (index == Q_INDEX_DONE) {
  781. queue->length--;
  782. queue->count++;
  783. }
  784. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  785. }
  786. void rt2x00queue_pause_queue(struct data_queue *queue)
  787. {
  788. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  789. !test_bit(QUEUE_STARTED, &queue->flags) ||
  790. test_and_set_bit(QUEUE_PAUSED, &queue->flags))
  791. return;
  792. switch (queue->qid) {
  793. case QID_AC_VO:
  794. case QID_AC_VI:
  795. case QID_AC_BE:
  796. case QID_AC_BK:
  797. /*
  798. * For TX queues, we have to disable the queue
  799. * inside mac80211.
  800. */
  801. ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
  802. break;
  803. default:
  804. break;
  805. }
  806. }
  807. EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
  808. void rt2x00queue_unpause_queue(struct data_queue *queue)
  809. {
  810. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  811. !test_bit(QUEUE_STARTED, &queue->flags) ||
  812. !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
  813. return;
  814. switch (queue->qid) {
  815. case QID_AC_VO:
  816. case QID_AC_VI:
  817. case QID_AC_BE:
  818. case QID_AC_BK:
  819. /*
  820. * For TX queues, we have to enable the queue
  821. * inside mac80211.
  822. */
  823. ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
  824. break;
  825. case QID_RX:
  826. /*
  827. * For RX we need to kick the queue now in order to
  828. * receive frames.
  829. */
  830. queue->rt2x00dev->ops->lib->kick_queue(queue);
  831. default:
  832. break;
  833. }
  834. }
  835. EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
  836. void rt2x00queue_start_queue(struct data_queue *queue)
  837. {
  838. mutex_lock(&queue->status_lock);
  839. if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
  840. test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
  841. mutex_unlock(&queue->status_lock);
  842. return;
  843. }
  844. set_bit(QUEUE_PAUSED, &queue->flags);
  845. queue->rt2x00dev->ops->lib->start_queue(queue);
  846. rt2x00queue_unpause_queue(queue);
  847. mutex_unlock(&queue->status_lock);
  848. }
  849. EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
  850. void rt2x00queue_stop_queue(struct data_queue *queue)
  851. {
  852. mutex_lock(&queue->status_lock);
  853. if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
  854. mutex_unlock(&queue->status_lock);
  855. return;
  856. }
  857. rt2x00queue_pause_queue(queue);
  858. queue->rt2x00dev->ops->lib->stop_queue(queue);
  859. mutex_unlock(&queue->status_lock);
  860. }
  861. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
  862. void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
  863. {
  864. bool started;
  865. bool tx_queue =
  866. (queue->qid == QID_AC_VO) ||
  867. (queue->qid == QID_AC_VI) ||
  868. (queue->qid == QID_AC_BE) ||
  869. (queue->qid == QID_AC_BK);
  870. mutex_lock(&queue->status_lock);
  871. /*
  872. * If the queue has been started, we must stop it temporarily
  873. * to prevent any new frames to be queued on the device. If
  874. * we are not dropping the pending frames, the queue must
  875. * only be stopped in the software and not the hardware,
  876. * otherwise the queue will never become empty on its own.
  877. */
  878. started = test_bit(QUEUE_STARTED, &queue->flags);
  879. if (started) {
  880. /*
  881. * Pause the queue
  882. */
  883. rt2x00queue_pause_queue(queue);
  884. /*
  885. * If we are not supposed to drop any pending
  886. * frames, this means we must force a start (=kick)
  887. * to the queue to make sure the hardware will
  888. * start transmitting.
  889. */
  890. if (!drop && tx_queue)
  891. queue->rt2x00dev->ops->lib->kick_queue(queue);
  892. }
  893. /*
  894. * Check if driver supports flushing, if that is the case we can
  895. * defer the flushing to the driver. Otherwise we must use the
  896. * alternative which just waits for the queue to become empty.
  897. */
  898. if (likely(queue->rt2x00dev->ops->lib->flush_queue))
  899. queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
  900. /*
  901. * The queue flush has failed...
  902. */
  903. if (unlikely(!rt2x00queue_empty(queue)))
  904. WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid);
  905. /*
  906. * Restore the queue to the previous status
  907. */
  908. if (started)
  909. rt2x00queue_unpause_queue(queue);
  910. mutex_unlock(&queue->status_lock);
  911. }
  912. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
  913. void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
  914. {
  915. struct data_queue *queue;
  916. /*
  917. * rt2x00queue_start_queue will call ieee80211_wake_queue
  918. * for each queue after is has been properly initialized.
  919. */
  920. tx_queue_for_each(rt2x00dev, queue)
  921. rt2x00queue_start_queue(queue);
  922. rt2x00queue_start_queue(rt2x00dev->rx);
  923. }
  924. EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
  925. void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
  926. {
  927. struct data_queue *queue;
  928. /*
  929. * rt2x00queue_stop_queue will call ieee80211_stop_queue
  930. * as well, but we are completely shutting doing everything
  931. * now, so it is much safer to stop all TX queues at once,
  932. * and use rt2x00queue_stop_queue for cleaning up.
  933. */
  934. ieee80211_stop_queues(rt2x00dev->hw);
  935. tx_queue_for_each(rt2x00dev, queue)
  936. rt2x00queue_stop_queue(queue);
  937. rt2x00queue_stop_queue(rt2x00dev->rx);
  938. }
  939. EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
  940. void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
  941. {
  942. struct data_queue *queue;
  943. tx_queue_for_each(rt2x00dev, queue)
  944. rt2x00queue_flush_queue(queue, drop);
  945. rt2x00queue_flush_queue(rt2x00dev->rx, drop);
  946. }
  947. EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
  948. static void rt2x00queue_reset(struct data_queue *queue)
  949. {
  950. unsigned long irqflags;
  951. unsigned int i;
  952. spin_lock_irqsave(&queue->index_lock, irqflags);
  953. queue->count = 0;
  954. queue->length = 0;
  955. for (i = 0; i < Q_INDEX_MAX; i++)
  956. queue->index[i] = 0;
  957. spin_unlock_irqrestore(&queue->index_lock, irqflags);
  958. }
  959. void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
  960. {
  961. struct data_queue *queue;
  962. unsigned int i;
  963. queue_for_each(rt2x00dev, queue) {
  964. rt2x00queue_reset(queue);
  965. for (i = 0; i < queue->limit; i++)
  966. rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
  967. }
  968. }
  969. static int rt2x00queue_alloc_entries(struct data_queue *queue,
  970. const struct data_queue_desc *qdesc)
  971. {
  972. struct queue_entry *entries;
  973. unsigned int entry_size;
  974. unsigned int i;
  975. rt2x00queue_reset(queue);
  976. queue->limit = qdesc->entry_num;
  977. queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
  978. queue->data_size = qdesc->data_size;
  979. queue->desc_size = qdesc->desc_size;
  980. /*
  981. * Allocate all queue entries.
  982. */
  983. entry_size = sizeof(*entries) + qdesc->priv_size;
  984. entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
  985. if (!entries)
  986. return -ENOMEM;
  987. #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
  988. (((char *)(__base)) + ((__limit) * (__esize)) + \
  989. ((__index) * (__psize)))
  990. for (i = 0; i < queue->limit; i++) {
  991. entries[i].flags = 0;
  992. entries[i].queue = queue;
  993. entries[i].skb = NULL;
  994. entries[i].entry_idx = i;
  995. entries[i].priv_data =
  996. QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
  997. sizeof(*entries), qdesc->priv_size);
  998. }
  999. #undef QUEUE_ENTRY_PRIV_OFFSET
  1000. queue->entries = entries;
  1001. return 0;
  1002. }
  1003. static void rt2x00queue_free_skbs(struct data_queue *queue)
  1004. {
  1005. unsigned int i;
  1006. if (!queue->entries)
  1007. return;
  1008. for (i = 0; i < queue->limit; i++) {
  1009. rt2x00queue_free_skb(&queue->entries[i]);
  1010. }
  1011. }
  1012. static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
  1013. {
  1014. unsigned int i;
  1015. struct sk_buff *skb;
  1016. for (i = 0; i < queue->limit; i++) {
  1017. skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
  1018. if (!skb)
  1019. return -ENOMEM;
  1020. queue->entries[i].skb = skb;
  1021. }
  1022. return 0;
  1023. }
  1024. int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
  1025. {
  1026. struct data_queue *queue;
  1027. int status;
  1028. status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
  1029. if (status)
  1030. goto exit;
  1031. tx_queue_for_each(rt2x00dev, queue) {
  1032. status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
  1033. if (status)
  1034. goto exit;
  1035. }
  1036. status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
  1037. if (status)
  1038. goto exit;
  1039. if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
  1040. status = rt2x00queue_alloc_entries(rt2x00dev->atim,
  1041. rt2x00dev->ops->atim);
  1042. if (status)
  1043. goto exit;
  1044. }
  1045. status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
  1046. if (status)
  1047. goto exit;
  1048. return 0;
  1049. exit:
  1050. ERROR(rt2x00dev, "Queue entries allocation failed.\n");
  1051. rt2x00queue_uninitialize(rt2x00dev);
  1052. return status;
  1053. }
  1054. void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
  1055. {
  1056. struct data_queue *queue;
  1057. rt2x00queue_free_skbs(rt2x00dev->rx);
  1058. queue_for_each(rt2x00dev, queue) {
  1059. kfree(queue->entries);
  1060. queue->entries = NULL;
  1061. }
  1062. }
  1063. static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
  1064. struct data_queue *queue, enum data_queue_qid qid)
  1065. {
  1066. mutex_init(&queue->status_lock);
  1067. spin_lock_init(&queue->tx_lock);
  1068. spin_lock_init(&queue->index_lock);
  1069. queue->rt2x00dev = rt2x00dev;
  1070. queue->qid = qid;
  1071. queue->txop = 0;
  1072. queue->aifs = 2;
  1073. queue->cw_min = 5;
  1074. queue->cw_max = 10;
  1075. }
  1076. int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
  1077. {
  1078. struct data_queue *queue;
  1079. enum data_queue_qid qid;
  1080. unsigned int req_atim =
  1081. !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
  1082. /*
  1083. * We need the following queues:
  1084. * RX: 1
  1085. * TX: ops->tx_queues
  1086. * Beacon: 1
  1087. * Atim: 1 (if required)
  1088. */
  1089. rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
  1090. queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
  1091. if (!queue) {
  1092. ERROR(rt2x00dev, "Queue allocation failed.\n");
  1093. return -ENOMEM;
  1094. }
  1095. /*
  1096. * Initialize pointers
  1097. */
  1098. rt2x00dev->rx = queue;
  1099. rt2x00dev->tx = &queue[1];
  1100. rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
  1101. rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
  1102. /*
  1103. * Initialize queue parameters.
  1104. * RX: qid = QID_RX
  1105. * TX: qid = QID_AC_VO + index
  1106. * TX: cw_min: 2^5 = 32.
  1107. * TX: cw_max: 2^10 = 1024.
  1108. * BCN: qid = QID_BEACON
  1109. * ATIM: qid = QID_ATIM
  1110. */
  1111. rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
  1112. qid = QID_AC_VO;
  1113. tx_queue_for_each(rt2x00dev, queue)
  1114. rt2x00queue_init(rt2x00dev, queue, qid++);
  1115. rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
  1116. if (req_atim)
  1117. rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
  1118. return 0;
  1119. }
  1120. void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
  1121. {
  1122. kfree(rt2x00dev->rx);
  1123. rt2x00dev->rx = NULL;
  1124. rt2x00dev->tx = NULL;
  1125. rt2x00dev->bcn = NULL;
  1126. }