rt2800pci.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static bool modparam_nohwcrypt = false;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
  50. {
  51. return modparam_nohwcrypt;
  52. }
  53. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  54. {
  55. unsigned int i;
  56. u32 reg;
  57. /*
  58. * SOC devices don't support MCU requests.
  59. */
  60. if (rt2x00_is_soc(rt2x00dev))
  61. return;
  62. for (i = 0; i < 200; i++) {
  63. rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  64. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  65. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  66. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  67. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  68. break;
  69. udelay(REGISTER_BUSY_DELAY);
  70. }
  71. if (i == 200)
  72. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  73. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  74. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  75. }
  76. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  77. static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  78. {
  79. void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
  80. if (!base_addr)
  81. return -ENOMEM;
  82. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  83. iounmap(base_addr);
  84. return 0;
  85. }
  86. #else
  87. static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  88. {
  89. return -ENOMEM;
  90. }
  91. #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
  92. #ifdef CONFIG_PCI
  93. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  94. {
  95. struct rt2x00_dev *rt2x00dev = eeprom->data;
  96. u32 reg;
  97. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  98. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  99. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  100. eeprom->reg_data_clock =
  101. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  102. eeprom->reg_chip_select =
  103. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  104. }
  105. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  106. {
  107. struct rt2x00_dev *rt2x00dev = eeprom->data;
  108. u32 reg = 0;
  109. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  110. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  111. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  112. !!eeprom->reg_data_clock);
  113. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  114. !!eeprom->reg_chip_select);
  115. rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
  116. }
  117. static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  118. {
  119. struct eeprom_93cx6 eeprom;
  120. u32 reg;
  121. rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
  122. eeprom.data = rt2x00dev;
  123. eeprom.register_read = rt2800pci_eepromregister_read;
  124. eeprom.register_write = rt2800pci_eepromregister_write;
  125. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  126. {
  127. case 0:
  128. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  129. break;
  130. case 1:
  131. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  132. break;
  133. default:
  134. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  135. break;
  136. }
  137. eeprom.reg_data_in = 0;
  138. eeprom.reg_data_out = 0;
  139. eeprom.reg_data_clock = 0;
  140. eeprom.reg_chip_select = 0;
  141. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  142. EEPROM_SIZE / sizeof(u16));
  143. return 0;
  144. }
  145. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  146. {
  147. return rt2800_efuse_detect(rt2x00dev);
  148. }
  149. static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  150. {
  151. return rt2800_read_eeprom_efuse(rt2x00dev);
  152. }
  153. #else
  154. static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  155. {
  156. return -EOPNOTSUPP;
  157. }
  158. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return 0;
  161. }
  162. static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  163. {
  164. return -EOPNOTSUPP;
  165. }
  166. #endif /* CONFIG_PCI */
  167. /*
  168. * Queue handlers.
  169. */
  170. static void rt2800pci_start_queue(struct data_queue *queue)
  171. {
  172. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  173. u32 reg;
  174. switch (queue->qid) {
  175. case QID_RX:
  176. rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  177. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
  178. rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  179. break;
  180. case QID_BEACON:
  181. rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  182. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
  183. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
  184. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
  185. rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  186. rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  187. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
  188. rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
  189. break;
  190. default:
  191. break;
  192. }
  193. }
  194. static void rt2800pci_kick_queue(struct data_queue *queue)
  195. {
  196. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  197. struct queue_entry *entry;
  198. switch (queue->qid) {
  199. case QID_AC_VO:
  200. case QID_AC_VI:
  201. case QID_AC_BE:
  202. case QID_AC_BK:
  203. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  204. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
  205. entry->entry_idx);
  206. break;
  207. case QID_MGMT:
  208. entry = rt2x00queue_get_entry(queue, Q_INDEX);
  209. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
  210. entry->entry_idx);
  211. break;
  212. default:
  213. break;
  214. }
  215. }
  216. static void rt2800pci_stop_queue(struct data_queue *queue)
  217. {
  218. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  219. u32 reg;
  220. switch (queue->qid) {
  221. case QID_RX:
  222. rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  223. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
  224. rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  225. break;
  226. case QID_BEACON:
  227. rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  228. rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
  229. rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
  230. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
  231. rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  232. rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
  233. rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
  234. rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
  235. /*
  236. * Wait for current invocation to finish. The tasklet
  237. * won't be scheduled anymore afterwards since we disabled
  238. * the TBTT and PRE TBTT timer.
  239. */
  240. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  241. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  242. break;
  243. default:
  244. break;
  245. }
  246. }
  247. /*
  248. * Firmware functions
  249. */
  250. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  251. {
  252. /*
  253. * Chip rt3290 use specific 4KB firmware named rt3290.bin.
  254. */
  255. if (rt2x00_rt(rt2x00dev, RT3290))
  256. return FIRMWARE_RT3290;
  257. else
  258. return FIRMWARE_RT2860;
  259. }
  260. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  261. const u8 *data, const size_t len)
  262. {
  263. u32 reg;
  264. /*
  265. * enable Host program ram write selection
  266. */
  267. reg = 0;
  268. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  269. rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  270. /*
  271. * Write firmware to device.
  272. */
  273. rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  274. data, len);
  275. rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  276. rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  277. rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  278. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  279. return 0;
  280. }
  281. /*
  282. * Initialization functions.
  283. */
  284. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  285. {
  286. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  287. u32 word;
  288. if (entry->queue->qid == QID_RX) {
  289. rt2x00_desc_read(entry_priv->desc, 1, &word);
  290. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  291. } else {
  292. rt2x00_desc_read(entry_priv->desc, 1, &word);
  293. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  294. }
  295. }
  296. static void rt2800pci_clear_entry(struct queue_entry *entry)
  297. {
  298. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  299. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  300. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  301. u32 word;
  302. if (entry->queue->qid == QID_RX) {
  303. rt2x00_desc_read(entry_priv->desc, 0, &word);
  304. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  305. rt2x00_desc_write(entry_priv->desc, 0, word);
  306. rt2x00_desc_read(entry_priv->desc, 1, &word);
  307. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  308. rt2x00_desc_write(entry_priv->desc, 1, word);
  309. /*
  310. * Set RX IDX in register to inform hardware that we have
  311. * handled this entry and it is available for reuse again.
  312. */
  313. rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
  314. entry->entry_idx);
  315. } else {
  316. rt2x00_desc_read(entry_priv->desc, 1, &word);
  317. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  318. rt2x00_desc_write(entry_priv->desc, 1, word);
  319. }
  320. }
  321. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  322. {
  323. struct queue_entry_priv_pci *entry_priv;
  324. /*
  325. * Initialize registers.
  326. */
  327. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  328. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  329. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
  330. rt2x00dev->tx[0].limit);
  331. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  332. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  333. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  334. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  335. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
  336. rt2x00dev->tx[1].limit);
  337. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  338. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  339. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  340. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  341. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
  342. rt2x00dev->tx[2].limit);
  343. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  344. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  345. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  346. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  347. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
  348. rt2x00dev->tx[3].limit);
  349. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  350. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  351. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
  352. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
  353. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
  354. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);
  355. rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
  356. rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
  357. rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
  358. rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);
  359. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  360. rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  361. rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
  362. rt2x00dev->rx[0].limit);
  363. rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
  364. rt2x00dev->rx[0].limit - 1);
  365. rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
  366. rt2800_disable_wpdma(rt2x00dev);
  367. rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  368. return 0;
  369. }
  370. /*
  371. * Device state switch handlers.
  372. */
  373. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  374. enum dev_state state)
  375. {
  376. u32 reg;
  377. unsigned long flags;
  378. /*
  379. * When interrupts are being enabled, the interrupt registers
  380. * should clear the register to assure a clean state.
  381. */
  382. if (state == STATE_RADIO_IRQ_ON) {
  383. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  384. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  385. }
  386. spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
  387. reg = 0;
  388. if (state == STATE_RADIO_IRQ_ON) {
  389. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
  390. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
  391. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
  392. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  393. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
  394. }
  395. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  396. spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
  397. if (state == STATE_RADIO_IRQ_OFF) {
  398. /*
  399. * Wait for possibly running tasklets to finish.
  400. */
  401. tasklet_kill(&rt2x00dev->txstatus_tasklet);
  402. tasklet_kill(&rt2x00dev->rxdone_tasklet);
  403. tasklet_kill(&rt2x00dev->autowake_tasklet);
  404. tasklet_kill(&rt2x00dev->tbtt_tasklet);
  405. tasklet_kill(&rt2x00dev->pretbtt_tasklet);
  406. }
  407. }
  408. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  409. {
  410. u32 reg;
  411. /*
  412. * Reset DMA indexes
  413. */
  414. rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  415. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  416. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  417. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  418. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  419. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  420. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  421. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  422. rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  423. rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  424. rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  425. if (rt2x00_is_pcie(rt2x00dev) &&
  426. (rt2x00_rt(rt2x00dev, RT3572) ||
  427. rt2x00_rt(rt2x00dev, RT5390) ||
  428. rt2x00_rt(rt2x00dev, RT5392))) {
  429. rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
  430. rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
  431. rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
  432. rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
  433. }
  434. rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  435. reg = 0;
  436. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  437. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  438. rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  439. rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  440. return 0;
  441. }
  442. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  443. {
  444. int retval;
  445. /* Wait for DMA, ignore error until we initialize queues. */
  446. rt2800_wait_wpdma_ready(rt2x00dev);
  447. if (unlikely(rt2800pci_init_queues(rt2x00dev)))
  448. return -EIO;
  449. retval = rt2800_enable_radio(rt2x00dev);
  450. if (retval)
  451. return retval;
  452. /* After resume MCU_BOOT_SIGNAL will trash these. */
  453. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  454. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  455. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
  456. rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);
  457. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
  458. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
  459. return retval;
  460. }
  461. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  462. {
  463. if (rt2x00_is_soc(rt2x00dev)) {
  464. rt2800_disable_radio(rt2x00dev);
  465. rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
  466. rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
  467. }
  468. }
  469. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  470. enum dev_state state)
  471. {
  472. if (state == STATE_AWAKE) {
  473. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
  474. 0, 0x02);
  475. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
  476. } else if (state == STATE_SLEEP) {
  477. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
  478. 0xffffffff);
  479. rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
  480. 0xffffffff);
  481. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
  482. 0xff, 0x01);
  483. }
  484. return 0;
  485. }
  486. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  487. enum dev_state state)
  488. {
  489. int retval = 0;
  490. switch (state) {
  491. case STATE_RADIO_ON:
  492. retval = rt2800pci_enable_radio(rt2x00dev);
  493. break;
  494. case STATE_RADIO_OFF:
  495. /*
  496. * After the radio has been disabled, the device should
  497. * be put to sleep for powersaving.
  498. */
  499. rt2800pci_disable_radio(rt2x00dev);
  500. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  501. break;
  502. case STATE_RADIO_IRQ_ON:
  503. case STATE_RADIO_IRQ_OFF:
  504. rt2800pci_toggle_irq(rt2x00dev, state);
  505. break;
  506. case STATE_DEEP_SLEEP:
  507. case STATE_SLEEP:
  508. case STATE_STANDBY:
  509. case STATE_AWAKE:
  510. retval = rt2800pci_set_state(rt2x00dev, state);
  511. break;
  512. default:
  513. retval = -ENOTSUPP;
  514. break;
  515. }
  516. if (unlikely(retval))
  517. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  518. state, retval);
  519. return retval;
  520. }
  521. /*
  522. * TX descriptor initialization
  523. */
  524. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  525. {
  526. return (__le32 *) entry->skb->data;
  527. }
  528. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  529. struct txentry_desc *txdesc)
  530. {
  531. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  532. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  533. __le32 *txd = entry_priv->desc;
  534. u32 word;
  535. /*
  536. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  537. * must contains a TXWI structure + 802.11 header + padding + 802.11
  538. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  539. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  540. * data. It means that LAST_SEC0 is always 0.
  541. */
  542. /*
  543. * Initialize TX descriptor
  544. */
  545. word = 0;
  546. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  547. rt2x00_desc_write(txd, 0, word);
  548. word = 0;
  549. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  550. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  551. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  552. rt2x00_set_field32(&word, TXD_W1_BURST,
  553. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  554. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  555. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  556. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  557. rt2x00_desc_write(txd, 1, word);
  558. word = 0;
  559. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  560. skbdesc->skb_dma + TXWI_DESC_SIZE);
  561. rt2x00_desc_write(txd, 2, word);
  562. word = 0;
  563. rt2x00_set_field32(&word, TXD_W3_WIV,
  564. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  565. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  566. rt2x00_desc_write(txd, 3, word);
  567. /*
  568. * Register descriptor details in skb frame descriptor.
  569. */
  570. skbdesc->desc = txd;
  571. skbdesc->desc_len = TXD_DESC_SIZE;
  572. }
  573. /*
  574. * RX control handlers
  575. */
  576. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  577. struct rxdone_entry_desc *rxdesc)
  578. {
  579. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  580. __le32 *rxd = entry_priv->desc;
  581. u32 word;
  582. rt2x00_desc_read(rxd, 3, &word);
  583. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  584. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  585. /*
  586. * Unfortunately we don't know the cipher type used during
  587. * decryption. This prevents us from correct providing
  588. * correct statistics through debugfs.
  589. */
  590. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  591. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  592. /*
  593. * Hardware has stripped IV/EIV data from 802.11 frame during
  594. * decryption. Unfortunately the descriptor doesn't contain
  595. * any fields with the EIV/IV data either, so they can't
  596. * be restored by rt2x00lib.
  597. */
  598. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  599. /*
  600. * The hardware has already checked the Michael Mic and has
  601. * stripped it from the frame. Signal this to mac80211.
  602. */
  603. rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
  604. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  605. rxdesc->flags |= RX_FLAG_DECRYPTED;
  606. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  607. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  608. }
  609. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  610. rxdesc->dev_flags |= RXDONE_MY_BSS;
  611. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  612. rxdesc->dev_flags |= RXDONE_L2PAD;
  613. /*
  614. * Process the RXWI structure that is at the start of the buffer.
  615. */
  616. rt2800_process_rxwi(entry, rxdesc);
  617. }
  618. /*
  619. * Interrupt functions.
  620. */
  621. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  622. {
  623. struct ieee80211_conf conf = { .flags = 0 };
  624. struct rt2x00lib_conf libconf = { .conf = &conf };
  625. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  626. }
  627. static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  628. {
  629. struct data_queue *queue;
  630. struct queue_entry *entry;
  631. u32 status;
  632. u8 qid;
  633. int max_tx_done = 16;
  634. while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
  635. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
  636. if (unlikely(qid >= QID_RX)) {
  637. /*
  638. * Unknown queue, this shouldn't happen. Just drop
  639. * this tx status.
  640. */
  641. WARNING(rt2x00dev, "Got TX status report with "
  642. "unexpected pid %u, dropping\n", qid);
  643. break;
  644. }
  645. queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
  646. if (unlikely(queue == NULL)) {
  647. /*
  648. * The queue is NULL, this shouldn't happen. Stop
  649. * processing here and drop the tx status
  650. */
  651. WARNING(rt2x00dev, "Got TX status for an unavailable "
  652. "queue %u, dropping\n", qid);
  653. break;
  654. }
  655. if (unlikely(rt2x00queue_empty(queue))) {
  656. /*
  657. * The queue is empty. Stop processing here
  658. * and drop the tx status.
  659. */
  660. WARNING(rt2x00dev, "Got TX status for an empty "
  661. "queue %u, dropping\n", qid);
  662. break;
  663. }
  664. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  665. rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
  666. if (--max_tx_done == 0)
  667. break;
  668. }
  669. return !max_tx_done;
  670. }
  671. static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
  672. struct rt2x00_field32 irq_field)
  673. {
  674. u32 reg;
  675. /*
  676. * Enable a single interrupt. The interrupt mask register
  677. * access needs locking.
  678. */
  679. spin_lock_irq(&rt2x00dev->irqmask_lock);
  680. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  681. rt2x00_set_field32(&reg, irq_field, 1);
  682. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  683. spin_unlock_irq(&rt2x00dev->irqmask_lock);
  684. }
  685. static void rt2800pci_txstatus_tasklet(unsigned long data)
  686. {
  687. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  688. if (rt2800pci_txdone(rt2x00dev))
  689. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  690. /*
  691. * No need to enable the tx status interrupt here as we always
  692. * leave it enabled to minimize the possibility of a tx status
  693. * register overflow. See comment in interrupt handler.
  694. */
  695. }
  696. static void rt2800pci_pretbtt_tasklet(unsigned long data)
  697. {
  698. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  699. rt2x00lib_pretbtt(rt2x00dev);
  700. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  701. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
  702. }
  703. static void rt2800pci_tbtt_tasklet(unsigned long data)
  704. {
  705. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  706. struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
  707. u32 reg;
  708. rt2x00lib_beacondone(rt2x00dev);
  709. if (rt2x00dev->intf_ap_count) {
  710. /*
  711. * The rt2800pci hardware tbtt timer is off by 1us per tbtt
  712. * causing beacon skew and as a result causing problems with
  713. * some powersaving clients over time. Shorten the beacon
  714. * interval every 64 beacons by 64us to mitigate this effect.
  715. */
  716. if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
  717. rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  718. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  719. (rt2x00dev->beacon_int * 16) - 1);
  720. rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  721. } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
  722. rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
  723. rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
  724. (rt2x00dev->beacon_int * 16));
  725. rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
  726. }
  727. drv_data->tbtt_tick++;
  728. drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
  729. }
  730. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  731. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
  732. }
  733. static void rt2800pci_rxdone_tasklet(unsigned long data)
  734. {
  735. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  736. if (rt2x00pci_rxdone(rt2x00dev))
  737. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  738. else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  739. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
  740. }
  741. static void rt2800pci_autowake_tasklet(unsigned long data)
  742. {
  743. struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
  744. rt2800pci_wakeup(rt2x00dev);
  745. if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  746. rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
  747. }
  748. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  749. {
  750. u32 status;
  751. int i;
  752. /*
  753. * The TX_FIFO_STATUS interrupt needs special care. We should
  754. * read TX_STA_FIFO but we should do it immediately as otherwise
  755. * the register can overflow and we would lose status reports.
  756. *
  757. * Hence, read the TX_STA_FIFO register and copy all tx status
  758. * reports into a kernel FIFO which is handled in the txstatus
  759. * tasklet. We use a tasklet to process the tx status reports
  760. * because we can schedule the tasklet multiple times (when the
  761. * interrupt fires again during tx status processing).
  762. *
  763. * Furthermore we don't disable the TX_FIFO_STATUS
  764. * interrupt here but leave it enabled so that the TX_STA_FIFO
  765. * can also be read while the tx status tasklet gets executed.
  766. *
  767. * Since we have only one producer and one consumer we don't
  768. * need to lock the kfifo.
  769. */
  770. for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
  771. rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
  772. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  773. break;
  774. if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
  775. WARNING(rt2x00dev, "TX status FIFO overrun,"
  776. "drop tx status report.\n");
  777. break;
  778. }
  779. }
  780. /* Schedule the tasklet for processing the tx status. */
  781. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  782. }
  783. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  784. {
  785. struct rt2x00_dev *rt2x00dev = dev_instance;
  786. u32 reg, mask;
  787. /* Read status and ACK all interrupts */
  788. rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  789. rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  790. if (!reg)
  791. return IRQ_NONE;
  792. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  793. return IRQ_HANDLED;
  794. /*
  795. * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
  796. * for interrupts and interrupt masks we can just use the value of
  797. * INT_SOURCE_CSR to create the interrupt mask.
  798. */
  799. mask = ~reg;
  800. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
  801. rt2800pci_txstatus_interrupt(rt2x00dev);
  802. /*
  803. * Never disable the TX_FIFO_STATUS interrupt.
  804. */
  805. rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  806. }
  807. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  808. tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
  809. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  810. tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
  811. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  812. tasklet_schedule(&rt2x00dev->rxdone_tasklet);
  813. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  814. tasklet_schedule(&rt2x00dev->autowake_tasklet);
  815. /*
  816. * Disable all interrupts for which a tasklet was scheduled right now,
  817. * the tasklet will reenable the appropriate interrupts.
  818. */
  819. spin_lock(&rt2x00dev->irqmask_lock);
  820. rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  821. reg &= mask;
  822. rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
  823. spin_unlock(&rt2x00dev->irqmask_lock);
  824. return IRQ_HANDLED;
  825. }
  826. /*
  827. * Device probe functions.
  828. */
  829. static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
  830. {
  831. int retval;
  832. if (rt2x00_is_soc(rt2x00dev))
  833. retval = rt2800pci_read_eeprom_soc(rt2x00dev);
  834. else if (rt2800pci_efuse_detect(rt2x00dev))
  835. retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
  836. else
  837. retval = rt2800pci_read_eeprom_pci(rt2x00dev);
  838. return retval;
  839. }
  840. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  841. .tx = rt2x00mac_tx,
  842. .start = rt2x00mac_start,
  843. .stop = rt2x00mac_stop,
  844. .add_interface = rt2x00mac_add_interface,
  845. .remove_interface = rt2x00mac_remove_interface,
  846. .config = rt2x00mac_config,
  847. .configure_filter = rt2x00mac_configure_filter,
  848. .set_key = rt2x00mac_set_key,
  849. .sw_scan_start = rt2x00mac_sw_scan_start,
  850. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  851. .get_stats = rt2x00mac_get_stats,
  852. .get_tkip_seq = rt2800_get_tkip_seq,
  853. .set_rts_threshold = rt2800_set_rts_threshold,
  854. .sta_add = rt2x00mac_sta_add,
  855. .sta_remove = rt2x00mac_sta_remove,
  856. .bss_info_changed = rt2x00mac_bss_info_changed,
  857. .conf_tx = rt2800_conf_tx,
  858. .get_tsf = rt2800_get_tsf,
  859. .rfkill_poll = rt2x00mac_rfkill_poll,
  860. .ampdu_action = rt2800_ampdu_action,
  861. .flush = rt2x00mac_flush,
  862. .get_survey = rt2800_get_survey,
  863. .get_ringparam = rt2x00mac_get_ringparam,
  864. .tx_frames_pending = rt2x00mac_tx_frames_pending,
  865. };
  866. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  867. .register_read = rt2x00pci_register_read,
  868. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  869. .register_write = rt2x00pci_register_write,
  870. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  871. .register_multiread = rt2x00pci_register_multiread,
  872. .register_multiwrite = rt2x00pci_register_multiwrite,
  873. .regbusy_read = rt2x00pci_regbusy_read,
  874. .read_eeprom = rt2800pci_read_eeprom,
  875. .hwcrypt_disabled = rt2800pci_hwcrypt_disabled,
  876. .drv_write_firmware = rt2800pci_write_firmware,
  877. .drv_init_registers = rt2800pci_init_registers,
  878. .drv_get_txwi = rt2800pci_get_txwi,
  879. };
  880. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  881. .irq_handler = rt2800pci_interrupt,
  882. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  883. .pretbtt_tasklet = rt2800pci_pretbtt_tasklet,
  884. .tbtt_tasklet = rt2800pci_tbtt_tasklet,
  885. .rxdone_tasklet = rt2800pci_rxdone_tasklet,
  886. .autowake_tasklet = rt2800pci_autowake_tasklet,
  887. .probe_hw = rt2800_probe_hw,
  888. .get_firmware_name = rt2800pci_get_firmware_name,
  889. .check_firmware = rt2800_check_firmware,
  890. .load_firmware = rt2800_load_firmware,
  891. .initialize = rt2x00pci_initialize,
  892. .uninitialize = rt2x00pci_uninitialize,
  893. .get_entry_state = rt2800pci_get_entry_state,
  894. .clear_entry = rt2800pci_clear_entry,
  895. .set_device_state = rt2800pci_set_device_state,
  896. .rfkill_poll = rt2800_rfkill_poll,
  897. .link_stats = rt2800_link_stats,
  898. .reset_tuner = rt2800_reset_tuner,
  899. .link_tuner = rt2800_link_tuner,
  900. .gain_calibration = rt2800_gain_calibration,
  901. .vco_calibration = rt2800_vco_calibration,
  902. .start_queue = rt2800pci_start_queue,
  903. .kick_queue = rt2800pci_kick_queue,
  904. .stop_queue = rt2800pci_stop_queue,
  905. .flush_queue = rt2x00pci_flush_queue,
  906. .write_tx_desc = rt2800pci_write_tx_desc,
  907. .write_tx_data = rt2800_write_tx_data,
  908. .write_beacon = rt2800_write_beacon,
  909. .clear_beacon = rt2800_clear_beacon,
  910. .fill_rxdone = rt2800pci_fill_rxdone,
  911. .config_shared_key = rt2800_config_shared_key,
  912. .config_pairwise_key = rt2800_config_pairwise_key,
  913. .config_filter = rt2800_config_filter,
  914. .config_intf = rt2800_config_intf,
  915. .config_erp = rt2800_config_erp,
  916. .config_ant = rt2800_config_ant,
  917. .config = rt2800_config,
  918. .sta_add = rt2800_sta_add,
  919. .sta_remove = rt2800_sta_remove,
  920. };
  921. static const struct data_queue_desc rt2800pci_queue_rx = {
  922. .entry_num = 128,
  923. .data_size = AGGREGATION_SIZE,
  924. .desc_size = RXD_DESC_SIZE,
  925. .priv_size = sizeof(struct queue_entry_priv_pci),
  926. };
  927. static const struct data_queue_desc rt2800pci_queue_tx = {
  928. .entry_num = 64,
  929. .data_size = AGGREGATION_SIZE,
  930. .desc_size = TXD_DESC_SIZE,
  931. .priv_size = sizeof(struct queue_entry_priv_pci),
  932. };
  933. static const struct data_queue_desc rt2800pci_queue_bcn = {
  934. .entry_num = 8,
  935. .data_size = 0, /* No DMA required for beacons */
  936. .desc_size = TXWI_DESC_SIZE,
  937. .priv_size = sizeof(struct queue_entry_priv_pci),
  938. };
  939. static const struct rt2x00_ops rt2800pci_ops = {
  940. .name = KBUILD_MODNAME,
  941. .drv_data_size = sizeof(struct rt2800_drv_data),
  942. .max_ap_intf = 8,
  943. .eeprom_size = EEPROM_SIZE,
  944. .rf_size = RF_SIZE,
  945. .tx_queues = NUM_TX_QUEUES,
  946. .extra_tx_headroom = TXWI_DESC_SIZE,
  947. .rx = &rt2800pci_queue_rx,
  948. .tx = &rt2800pci_queue_tx,
  949. .bcn = &rt2800pci_queue_bcn,
  950. .lib = &rt2800pci_rt2x00_ops,
  951. .drv = &rt2800pci_rt2800_ops,
  952. .hw = &rt2800pci_mac80211_ops,
  953. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  954. .debugfs = &rt2800_rt2x00debug,
  955. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  956. };
  957. /*
  958. * RT2800pci module information.
  959. */
  960. #ifdef CONFIG_PCI
  961. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  962. { PCI_DEVICE(0x1814, 0x0601) },
  963. { PCI_DEVICE(0x1814, 0x0681) },
  964. { PCI_DEVICE(0x1814, 0x0701) },
  965. { PCI_DEVICE(0x1814, 0x0781) },
  966. { PCI_DEVICE(0x1814, 0x3090) },
  967. { PCI_DEVICE(0x1814, 0x3091) },
  968. { PCI_DEVICE(0x1814, 0x3092) },
  969. { PCI_DEVICE(0x1432, 0x7708) },
  970. { PCI_DEVICE(0x1432, 0x7727) },
  971. { PCI_DEVICE(0x1432, 0x7728) },
  972. { PCI_DEVICE(0x1432, 0x7738) },
  973. { PCI_DEVICE(0x1432, 0x7748) },
  974. { PCI_DEVICE(0x1432, 0x7758) },
  975. { PCI_DEVICE(0x1432, 0x7768) },
  976. { PCI_DEVICE(0x1462, 0x891a) },
  977. { PCI_DEVICE(0x1a3b, 0x1059) },
  978. #ifdef CONFIG_RT2800PCI_RT3290
  979. { PCI_DEVICE(0x1814, 0x3290) },
  980. #endif
  981. #ifdef CONFIG_RT2800PCI_RT33XX
  982. { PCI_DEVICE(0x1814, 0x3390) },
  983. #endif
  984. #ifdef CONFIG_RT2800PCI_RT35XX
  985. { PCI_DEVICE(0x1432, 0x7711) },
  986. { PCI_DEVICE(0x1432, 0x7722) },
  987. { PCI_DEVICE(0x1814, 0x3060) },
  988. { PCI_DEVICE(0x1814, 0x3062) },
  989. { PCI_DEVICE(0x1814, 0x3562) },
  990. { PCI_DEVICE(0x1814, 0x3592) },
  991. { PCI_DEVICE(0x1814, 0x3593) },
  992. { PCI_DEVICE(0x1814, 0x359f) },
  993. #endif
  994. #ifdef CONFIG_RT2800PCI_RT53XX
  995. { PCI_DEVICE(0x1814, 0x5360) },
  996. { PCI_DEVICE(0x1814, 0x5362) },
  997. { PCI_DEVICE(0x1814, 0x5390) },
  998. { PCI_DEVICE(0x1814, 0x5392) },
  999. { PCI_DEVICE(0x1814, 0x539a) },
  1000. { PCI_DEVICE(0x1814, 0x539b) },
  1001. { PCI_DEVICE(0x1814, 0x539f) },
  1002. #endif
  1003. { 0, }
  1004. };
  1005. #endif /* CONFIG_PCI */
  1006. MODULE_AUTHOR(DRV_PROJECT);
  1007. MODULE_VERSION(DRV_VERSION);
  1008. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  1009. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  1010. #ifdef CONFIG_PCI
  1011. MODULE_FIRMWARE(FIRMWARE_RT2860);
  1012. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  1013. #endif /* CONFIG_PCI */
  1014. MODULE_LICENSE("GPL");
  1015. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1016. static int rt2800soc_probe(struct platform_device *pdev)
  1017. {
  1018. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  1019. }
  1020. static struct platform_driver rt2800soc_driver = {
  1021. .driver = {
  1022. .name = "rt2800_wmac",
  1023. .owner = THIS_MODULE,
  1024. .mod_name = KBUILD_MODNAME,
  1025. },
  1026. .probe = rt2800soc_probe,
  1027. .remove = rt2x00soc_remove,
  1028. .suspend = rt2x00soc_suspend,
  1029. .resume = rt2x00soc_resume,
  1030. };
  1031. #endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
  1032. #ifdef CONFIG_PCI
  1033. static int rt2800pci_probe(struct pci_dev *pci_dev,
  1034. const struct pci_device_id *id)
  1035. {
  1036. return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
  1037. }
  1038. static struct pci_driver rt2800pci_driver = {
  1039. .name = KBUILD_MODNAME,
  1040. .id_table = rt2800pci_device_table,
  1041. .probe = rt2800pci_probe,
  1042. .remove = rt2x00pci_remove,
  1043. .suspend = rt2x00pci_suspend,
  1044. .resume = rt2x00pci_resume,
  1045. };
  1046. #endif /* CONFIG_PCI */
  1047. static int __init rt2800pci_init(void)
  1048. {
  1049. int ret = 0;
  1050. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1051. ret = platform_driver_register(&rt2800soc_driver);
  1052. if (ret)
  1053. return ret;
  1054. #endif
  1055. #ifdef CONFIG_PCI
  1056. ret = pci_register_driver(&rt2800pci_driver);
  1057. if (ret) {
  1058. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1059. platform_driver_unregister(&rt2800soc_driver);
  1060. #endif
  1061. return ret;
  1062. }
  1063. #endif
  1064. return ret;
  1065. }
  1066. static void __exit rt2800pci_exit(void)
  1067. {
  1068. #ifdef CONFIG_PCI
  1069. pci_unregister_driver(&rt2800pci_driver);
  1070. #endif
  1071. #if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
  1072. platform_driver_unregister(&rt2800soc_driver);
  1073. #endif
  1074. }
  1075. module_init(rt2800pci_init);
  1076. module_exit(rt2800pci_exit);