hw.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <asm/unaligned.h>
  20. #include "hw.h"
  21. #include "hw-ops.h"
  22. #include "rc.h"
  23. #include "ar9003_mac.h"
  24. #include "ar9003_mci.h"
  25. #include "ar9003_phy.h"
  26. #include "debug.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static int __init ath9k_init(void)
  34. {
  35. return 0;
  36. }
  37. module_init(ath9k_init);
  38. static void __exit ath9k_exit(void)
  39. {
  40. return;
  41. }
  42. module_exit(ath9k_exit);
  43. /* Private hardware callbacks */
  44. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  45. {
  46. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  47. }
  48. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  49. struct ath9k_channel *chan)
  50. {
  51. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  52. }
  53. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  54. {
  55. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  56. return;
  57. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  58. }
  59. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  60. {
  61. /* You will not have this callback if using the old ANI */
  62. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  63. return;
  64. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  65. }
  66. /********************/
  67. /* Helper Functions */
  68. /********************/
  69. #ifdef CONFIG_ATH9K_DEBUGFS
  70. void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
  71. {
  72. struct ath_softc *sc = common->priv;
  73. if (sync_cause)
  74. sc->debug.stats.istats.sync_cause_all++;
  75. if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
  76. sc->debug.stats.istats.sync_rtc_irq++;
  77. if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
  78. sc->debug.stats.istats.sync_mac_irq++;
  79. if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
  80. sc->debug.stats.istats.eeprom_illegal_access++;
  81. if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
  82. sc->debug.stats.istats.apb_timeout++;
  83. if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
  84. sc->debug.stats.istats.pci_mode_conflict++;
  85. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
  86. sc->debug.stats.istats.host1_fatal++;
  87. if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
  88. sc->debug.stats.istats.host1_perr++;
  89. if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
  90. sc->debug.stats.istats.trcv_fifo_perr++;
  91. if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
  92. sc->debug.stats.istats.radm_cpl_ep++;
  93. if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
  94. sc->debug.stats.istats.radm_cpl_dllp_abort++;
  95. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
  96. sc->debug.stats.istats.radm_cpl_tlp_abort++;
  97. if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
  98. sc->debug.stats.istats.radm_cpl_ecrc_err++;
  99. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
  100. sc->debug.stats.istats.radm_cpl_timeout++;
  101. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
  102. sc->debug.stats.istats.local_timeout++;
  103. if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
  104. sc->debug.stats.istats.pm_access++;
  105. if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
  106. sc->debug.stats.istats.mac_awake++;
  107. if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
  108. sc->debug.stats.istats.mac_asleep++;
  109. if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
  110. sc->debug.stats.istats.mac_sleep_access++;
  111. }
  112. #endif
  113. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  114. {
  115. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  116. struct ath_common *common = ath9k_hw_common(ah);
  117. unsigned int clockrate;
  118. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  119. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  120. clockrate = 117;
  121. else if (!ah->curchan) /* should really check for CCK instead */
  122. clockrate = ATH9K_CLOCK_RATE_CCK;
  123. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  124. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  125. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  126. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  127. else
  128. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  129. if (conf_is_ht40(conf))
  130. clockrate *= 2;
  131. if (ah->curchan) {
  132. if (IS_CHAN_HALF_RATE(ah->curchan))
  133. clockrate /= 2;
  134. if (IS_CHAN_QUARTER_RATE(ah->curchan))
  135. clockrate /= 4;
  136. }
  137. common->clockrate = clockrate;
  138. }
  139. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  140. {
  141. struct ath_common *common = ath9k_hw_common(ah);
  142. return usecs * common->clockrate;
  143. }
  144. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  145. {
  146. int i;
  147. BUG_ON(timeout < AH_TIME_QUANTUM);
  148. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  149. if ((REG_READ(ah, reg) & mask) == val)
  150. return true;
  151. udelay(AH_TIME_QUANTUM);
  152. }
  153. ath_dbg(ath9k_hw_common(ah), ANY,
  154. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  155. timeout, reg, REG_READ(ah, reg), mask, val);
  156. return false;
  157. }
  158. EXPORT_SYMBOL(ath9k_hw_wait);
  159. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  160. int hw_delay)
  161. {
  162. if (IS_CHAN_B(chan))
  163. hw_delay = (4 * hw_delay) / 22;
  164. else
  165. hw_delay /= 10;
  166. if (IS_CHAN_HALF_RATE(chan))
  167. hw_delay *= 2;
  168. else if (IS_CHAN_QUARTER_RATE(chan))
  169. hw_delay *= 4;
  170. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  171. }
  172. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  173. int column, unsigned int *writecnt)
  174. {
  175. int r;
  176. ENABLE_REGWRITE_BUFFER(ah);
  177. for (r = 0; r < array->ia_rows; r++) {
  178. REG_WRITE(ah, INI_RA(array, r, 0),
  179. INI_RA(array, r, column));
  180. DO_DELAY(*writecnt);
  181. }
  182. REGWRITE_BUFFER_FLUSH(ah);
  183. }
  184. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  185. {
  186. u32 retval;
  187. int i;
  188. for (i = 0, retval = 0; i < n; i++) {
  189. retval = (retval << 1) | (val & 1);
  190. val >>= 1;
  191. }
  192. return retval;
  193. }
  194. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  195. u8 phy, int kbps,
  196. u32 frameLen, u16 rateix,
  197. bool shortPreamble)
  198. {
  199. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  200. if (kbps == 0)
  201. return 0;
  202. switch (phy) {
  203. case WLAN_RC_PHY_CCK:
  204. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  205. if (shortPreamble)
  206. phyTime >>= 1;
  207. numBits = frameLen << 3;
  208. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  209. break;
  210. case WLAN_RC_PHY_OFDM:
  211. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  212. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  213. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  214. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  215. txTime = OFDM_SIFS_TIME_QUARTER
  216. + OFDM_PREAMBLE_TIME_QUARTER
  217. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  218. } else if (ah->curchan &&
  219. IS_CHAN_HALF_RATE(ah->curchan)) {
  220. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  221. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  222. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  223. txTime = OFDM_SIFS_TIME_HALF +
  224. OFDM_PREAMBLE_TIME_HALF
  225. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  226. } else {
  227. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  228. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  229. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  230. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  231. + (numSymbols * OFDM_SYMBOL_TIME);
  232. }
  233. break;
  234. default:
  235. ath_err(ath9k_hw_common(ah),
  236. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  237. txTime = 0;
  238. break;
  239. }
  240. return txTime;
  241. }
  242. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  243. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  244. struct ath9k_channel *chan,
  245. struct chan_centers *centers)
  246. {
  247. int8_t extoff;
  248. if (!IS_CHAN_HT40(chan)) {
  249. centers->ctl_center = centers->ext_center =
  250. centers->synth_center = chan->channel;
  251. return;
  252. }
  253. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  254. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  255. centers->synth_center =
  256. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  257. extoff = 1;
  258. } else {
  259. centers->synth_center =
  260. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  261. extoff = -1;
  262. }
  263. centers->ctl_center =
  264. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  265. /* 25 MHz spacing is supported by hw but not on upper layers */
  266. centers->ext_center =
  267. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  268. }
  269. /******************/
  270. /* Chip Revisions */
  271. /******************/
  272. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  273. {
  274. u32 val;
  275. switch (ah->hw_version.devid) {
  276. case AR5416_AR9100_DEVID:
  277. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  278. break;
  279. case AR9300_DEVID_AR9330:
  280. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  281. if (ah->get_mac_revision) {
  282. ah->hw_version.macRev = ah->get_mac_revision();
  283. } else {
  284. val = REG_READ(ah, AR_SREV);
  285. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  286. }
  287. return;
  288. case AR9300_DEVID_AR9340:
  289. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  290. val = REG_READ(ah, AR_SREV);
  291. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  292. return;
  293. case AR9300_DEVID_QCA955X:
  294. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  295. return;
  296. }
  297. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  298. if (val == 0xFF) {
  299. val = REG_READ(ah, AR_SREV);
  300. ah->hw_version.macVersion =
  301. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  302. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  303. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  304. ah->is_pciexpress = true;
  305. else
  306. ah->is_pciexpress = (val &
  307. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  308. } else {
  309. if (!AR_SREV_9100(ah))
  310. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  311. ah->hw_version.macRev = val & AR_SREV_REVISION;
  312. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  313. ah->is_pciexpress = true;
  314. }
  315. }
  316. /************************************/
  317. /* HW Attach, Detach, Init Routines */
  318. /************************************/
  319. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  320. {
  321. if (!AR_SREV_5416(ah))
  322. return;
  323. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  324. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  325. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  326. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  327. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  328. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  329. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  330. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  331. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  332. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  333. }
  334. /* This should work for all families including legacy */
  335. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  336. {
  337. struct ath_common *common = ath9k_hw_common(ah);
  338. u32 regAddr[2] = { AR_STA_ID0 };
  339. u32 regHold[2];
  340. static const u32 patternData[4] = {
  341. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  342. };
  343. int i, j, loop_max;
  344. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  345. loop_max = 2;
  346. regAddr[1] = AR_PHY_BASE + (8 << 2);
  347. } else
  348. loop_max = 1;
  349. for (i = 0; i < loop_max; i++) {
  350. u32 addr = regAddr[i];
  351. u32 wrData, rdData;
  352. regHold[i] = REG_READ(ah, addr);
  353. for (j = 0; j < 0x100; j++) {
  354. wrData = (j << 16) | j;
  355. REG_WRITE(ah, addr, wrData);
  356. rdData = REG_READ(ah, addr);
  357. if (rdData != wrData) {
  358. ath_err(common,
  359. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  360. addr, wrData, rdData);
  361. return false;
  362. }
  363. }
  364. for (j = 0; j < 4; j++) {
  365. wrData = patternData[j];
  366. REG_WRITE(ah, addr, wrData);
  367. rdData = REG_READ(ah, addr);
  368. if (wrData != rdData) {
  369. ath_err(common,
  370. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  371. addr, wrData, rdData);
  372. return false;
  373. }
  374. }
  375. REG_WRITE(ah, regAddr[i], regHold[i]);
  376. }
  377. udelay(100);
  378. return true;
  379. }
  380. static void ath9k_hw_init_config(struct ath_hw *ah)
  381. {
  382. int i;
  383. ah->config.dma_beacon_response_time = 1;
  384. ah->config.sw_beacon_response_time = 6;
  385. ah->config.additional_swba_backoff = 0;
  386. ah->config.ack_6mb = 0x0;
  387. ah->config.cwm_ignore_extcca = 0;
  388. ah->config.pcie_clock_req = 0;
  389. ah->config.pcie_waen = 0;
  390. ah->config.analog_shiftreg = 1;
  391. ah->config.enable_ani = true;
  392. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  393. ah->config.spurchans[i][0] = AR_NO_SPUR;
  394. ah->config.spurchans[i][1] = AR_NO_SPUR;
  395. }
  396. ah->config.rx_intr_mitigation = true;
  397. ah->config.pcieSerDesWrite = true;
  398. /*
  399. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  400. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  401. * This means we use it for all AR5416 devices, and the few
  402. * minor PCI AR9280 devices out there.
  403. *
  404. * Serialization is required because these devices do not handle
  405. * well the case of two concurrent reads/writes due to the latency
  406. * involved. During one read/write another read/write can be issued
  407. * on another CPU while the previous read/write may still be working
  408. * on our hardware, if we hit this case the hardware poops in a loop.
  409. * We prevent this by serializing reads and writes.
  410. *
  411. * This issue is not present on PCI-Express devices or pre-AR5416
  412. * devices (legacy, 802.11abg).
  413. */
  414. if (num_possible_cpus() > 1)
  415. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  416. }
  417. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  418. {
  419. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  420. regulatory->country_code = CTRY_DEFAULT;
  421. regulatory->power_limit = MAX_RATE_POWER;
  422. ah->hw_version.magic = AR5416_MAGIC;
  423. ah->hw_version.subvendorid = 0;
  424. ah->atim_window = 0;
  425. ah->sta_id1_defaults =
  426. AR_STA_ID1_CRPT_MIC_ENABLE |
  427. AR_STA_ID1_MCAST_KSRCH;
  428. if (AR_SREV_9100(ah))
  429. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  430. ah->slottime = ATH9K_SLOT_TIME_9;
  431. ah->globaltxtimeout = (u32) -1;
  432. ah->power_mode = ATH9K_PM_UNDEFINED;
  433. ah->htc_reset_init = true;
  434. }
  435. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  436. {
  437. struct ath_common *common = ath9k_hw_common(ah);
  438. u32 sum;
  439. int i;
  440. u16 eeval;
  441. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  442. sum = 0;
  443. for (i = 0; i < 3; i++) {
  444. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  445. sum += eeval;
  446. common->macaddr[2 * i] = eeval >> 8;
  447. common->macaddr[2 * i + 1] = eeval & 0xff;
  448. }
  449. if (sum == 0 || sum == 0xffff * 3)
  450. return -EADDRNOTAVAIL;
  451. return 0;
  452. }
  453. static int ath9k_hw_post_init(struct ath_hw *ah)
  454. {
  455. struct ath_common *common = ath9k_hw_common(ah);
  456. int ecode;
  457. if (common->bus_ops->ath_bus_type != ATH_USB) {
  458. if (!ath9k_hw_chip_test(ah))
  459. return -ENODEV;
  460. }
  461. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  462. ecode = ar9002_hw_rf_claim(ah);
  463. if (ecode != 0)
  464. return ecode;
  465. }
  466. ecode = ath9k_hw_eeprom_init(ah);
  467. if (ecode != 0)
  468. return ecode;
  469. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  470. ah->eep_ops->get_eeprom_ver(ah),
  471. ah->eep_ops->get_eeprom_rev(ah));
  472. if (ah->config.enable_ani)
  473. ath9k_hw_ani_init(ah);
  474. return 0;
  475. }
  476. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  477. {
  478. if (!AR_SREV_9300_20_OR_LATER(ah))
  479. return ar9002_hw_attach_ops(ah);
  480. ar9003_hw_attach_ops(ah);
  481. return 0;
  482. }
  483. /* Called for all hardware families */
  484. static int __ath9k_hw_init(struct ath_hw *ah)
  485. {
  486. struct ath_common *common = ath9k_hw_common(ah);
  487. int r = 0;
  488. ath9k_hw_read_revisions(ah);
  489. /*
  490. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  491. * We need to do this to avoid RMW of this register. We cannot
  492. * read the reg when chip is asleep.
  493. */
  494. ah->WARegVal = REG_READ(ah, AR_WA);
  495. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  496. AR_WA_ASPM_TIMER_BASED_DISABLE);
  497. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  498. ath_err(common, "Couldn't reset chip\n");
  499. return -EIO;
  500. }
  501. if (AR_SREV_9462(ah))
  502. ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
  503. if (AR_SREV_9565(ah)) {
  504. ah->WARegVal |= AR_WA_BIT22;
  505. REG_WRITE(ah, AR_WA, ah->WARegVal);
  506. }
  507. ath9k_hw_init_defaults(ah);
  508. ath9k_hw_init_config(ah);
  509. r = ath9k_hw_attach_ops(ah);
  510. if (r)
  511. return r;
  512. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  513. ath_err(common, "Couldn't wakeup chip\n");
  514. return -EIO;
  515. }
  516. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  517. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  518. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  519. !ah->is_pciexpress)) {
  520. ah->config.serialize_regmode =
  521. SER_REG_MODE_ON;
  522. } else {
  523. ah->config.serialize_regmode =
  524. SER_REG_MODE_OFF;
  525. }
  526. }
  527. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  528. ah->config.serialize_regmode);
  529. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  530. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  531. else
  532. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  533. switch (ah->hw_version.macVersion) {
  534. case AR_SREV_VERSION_5416_PCI:
  535. case AR_SREV_VERSION_5416_PCIE:
  536. case AR_SREV_VERSION_9160:
  537. case AR_SREV_VERSION_9100:
  538. case AR_SREV_VERSION_9280:
  539. case AR_SREV_VERSION_9285:
  540. case AR_SREV_VERSION_9287:
  541. case AR_SREV_VERSION_9271:
  542. case AR_SREV_VERSION_9300:
  543. case AR_SREV_VERSION_9330:
  544. case AR_SREV_VERSION_9485:
  545. case AR_SREV_VERSION_9340:
  546. case AR_SREV_VERSION_9462:
  547. case AR_SREV_VERSION_9550:
  548. case AR_SREV_VERSION_9565:
  549. break;
  550. default:
  551. ath_err(common,
  552. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  553. ah->hw_version.macVersion, ah->hw_version.macRev);
  554. return -EOPNOTSUPP;
  555. }
  556. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  557. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  558. ah->is_pciexpress = false;
  559. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  560. ath9k_hw_init_cal_settings(ah);
  561. ah->ani_function = ATH9K_ANI_ALL;
  562. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  563. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  564. if (!AR_SREV_9300_20_OR_LATER(ah))
  565. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  566. if (!ah->is_pciexpress)
  567. ath9k_hw_disablepcie(ah);
  568. r = ath9k_hw_post_init(ah);
  569. if (r)
  570. return r;
  571. ath9k_hw_init_mode_gain_regs(ah);
  572. r = ath9k_hw_fill_cap_info(ah);
  573. if (r)
  574. return r;
  575. r = ath9k_hw_init_macaddr(ah);
  576. if (r) {
  577. ath_err(common, "Failed to initialize MAC address\n");
  578. return r;
  579. }
  580. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  581. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  582. else
  583. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  584. if (AR_SREV_9330(ah))
  585. ah->bb_watchdog_timeout_ms = 85;
  586. else
  587. ah->bb_watchdog_timeout_ms = 25;
  588. common->state = ATH_HW_INITIALIZED;
  589. return 0;
  590. }
  591. int ath9k_hw_init(struct ath_hw *ah)
  592. {
  593. int ret;
  594. struct ath_common *common = ath9k_hw_common(ah);
  595. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  596. switch (ah->hw_version.devid) {
  597. case AR5416_DEVID_PCI:
  598. case AR5416_DEVID_PCIE:
  599. case AR5416_AR9100_DEVID:
  600. case AR9160_DEVID_PCI:
  601. case AR9280_DEVID_PCI:
  602. case AR9280_DEVID_PCIE:
  603. case AR9285_DEVID_PCIE:
  604. case AR9287_DEVID_PCI:
  605. case AR9287_DEVID_PCIE:
  606. case AR2427_DEVID_PCIE:
  607. case AR9300_DEVID_PCIE:
  608. case AR9300_DEVID_AR9485_PCIE:
  609. case AR9300_DEVID_AR9330:
  610. case AR9300_DEVID_AR9340:
  611. case AR9300_DEVID_QCA955X:
  612. case AR9300_DEVID_AR9580:
  613. case AR9300_DEVID_AR9462:
  614. case AR9485_DEVID_AR1111:
  615. case AR9300_DEVID_AR9565:
  616. break;
  617. default:
  618. if (common->bus_ops->ath_bus_type == ATH_USB)
  619. break;
  620. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  621. ah->hw_version.devid);
  622. return -EOPNOTSUPP;
  623. }
  624. ret = __ath9k_hw_init(ah);
  625. if (ret) {
  626. ath_err(common,
  627. "Unable to initialize hardware; initialization status: %d\n",
  628. ret);
  629. return ret;
  630. }
  631. return 0;
  632. }
  633. EXPORT_SYMBOL(ath9k_hw_init);
  634. static void ath9k_hw_init_qos(struct ath_hw *ah)
  635. {
  636. ENABLE_REGWRITE_BUFFER(ah);
  637. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  638. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  639. REG_WRITE(ah, AR_QOS_NO_ACK,
  640. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  641. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  642. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  643. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  644. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  645. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  646. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  647. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  648. REGWRITE_BUFFER_FLUSH(ah);
  649. }
  650. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  651. {
  652. struct ath_common *common = ath9k_hw_common(ah);
  653. int i = 0;
  654. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  655. udelay(100);
  656. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  657. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  658. udelay(100);
  659. if (WARN_ON_ONCE(i >= 100)) {
  660. ath_err(common, "PLL4 meaurement not done\n");
  661. break;
  662. }
  663. i++;
  664. }
  665. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  666. }
  667. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  668. static void ath9k_hw_init_pll(struct ath_hw *ah,
  669. struct ath9k_channel *chan)
  670. {
  671. u32 pll;
  672. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  673. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  674. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  675. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  676. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  677. AR_CH0_DPLL2_KD, 0x40);
  678. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  679. AR_CH0_DPLL2_KI, 0x4);
  680. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  681. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  682. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  683. AR_CH0_BB_DPLL1_NINI, 0x58);
  684. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  685. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  686. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  687. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  688. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  689. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  690. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  691. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  692. /* program BB PLL phase_shift to 0x6 */
  693. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  694. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  695. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  696. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  697. udelay(1000);
  698. } else if (AR_SREV_9330(ah)) {
  699. u32 ddr_dpll2, pll_control2, kd;
  700. if (ah->is_clk_25mhz) {
  701. ddr_dpll2 = 0x18e82f01;
  702. pll_control2 = 0xe04a3d;
  703. kd = 0x1d;
  704. } else {
  705. ddr_dpll2 = 0x19e82f01;
  706. pll_control2 = 0x886666;
  707. kd = 0x3d;
  708. }
  709. /* program DDR PLL ki and kd value */
  710. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  711. /* program DDR PLL phase_shift */
  712. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  713. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  714. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  715. udelay(1000);
  716. /* program refdiv, nint, frac to RTC register */
  717. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  718. /* program BB PLL kd and ki value */
  719. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  720. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  721. /* program BB PLL phase_shift */
  722. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  723. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  724. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  725. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  726. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  727. udelay(1000);
  728. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  729. udelay(100);
  730. if (ah->is_clk_25mhz) {
  731. pll2_divint = 0x54;
  732. pll2_divfrac = 0x1eb85;
  733. refdiv = 3;
  734. } else {
  735. if (AR_SREV_9340(ah)) {
  736. pll2_divint = 88;
  737. pll2_divfrac = 0;
  738. refdiv = 5;
  739. } else {
  740. pll2_divint = 0x11;
  741. pll2_divfrac = 0x26666;
  742. refdiv = 1;
  743. }
  744. }
  745. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  746. regval |= (0x1 << 16);
  747. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  748. udelay(100);
  749. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  750. (pll2_divint << 18) | pll2_divfrac);
  751. udelay(100);
  752. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  753. if (AR_SREV_9340(ah))
  754. regval = (regval & 0x80071fff) | (0x1 << 30) |
  755. (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
  756. else
  757. regval = (regval & 0x80071fff) | (0x3 << 30) |
  758. (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
  759. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  760. REG_WRITE(ah, AR_PHY_PLL_MODE,
  761. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  762. udelay(1000);
  763. }
  764. pll = ath9k_hw_compute_pll_control(ah, chan);
  765. if (AR_SREV_9565(ah))
  766. pll |= 0x40000;
  767. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  768. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  769. AR_SREV_9550(ah))
  770. udelay(1000);
  771. /* Switch the core clock for ar9271 to 117Mhz */
  772. if (AR_SREV_9271(ah)) {
  773. udelay(500);
  774. REG_WRITE(ah, 0x50040, 0x304);
  775. }
  776. udelay(RTC_PLL_SETTLE_DELAY);
  777. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  778. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  779. if (ah->is_clk_25mhz) {
  780. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  781. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  782. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  783. } else {
  784. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  785. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  786. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  787. }
  788. udelay(100);
  789. }
  790. }
  791. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  792. enum nl80211_iftype opmode)
  793. {
  794. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  795. u32 imr_reg = AR_IMR_TXERR |
  796. AR_IMR_TXURN |
  797. AR_IMR_RXERR |
  798. AR_IMR_RXORN |
  799. AR_IMR_BCNMISC;
  800. if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
  801. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  802. if (AR_SREV_9300_20_OR_LATER(ah)) {
  803. imr_reg |= AR_IMR_RXOK_HP;
  804. if (ah->config.rx_intr_mitigation)
  805. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  806. else
  807. imr_reg |= AR_IMR_RXOK_LP;
  808. } else {
  809. if (ah->config.rx_intr_mitigation)
  810. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  811. else
  812. imr_reg |= AR_IMR_RXOK;
  813. }
  814. if (ah->config.tx_intr_mitigation)
  815. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  816. else
  817. imr_reg |= AR_IMR_TXOK;
  818. ENABLE_REGWRITE_BUFFER(ah);
  819. REG_WRITE(ah, AR_IMR, imr_reg);
  820. ah->imrs2_reg |= AR_IMR_S2_GTT;
  821. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  822. if (!AR_SREV_9100(ah)) {
  823. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  824. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  825. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  826. }
  827. REGWRITE_BUFFER_FLUSH(ah);
  828. if (AR_SREV_9300_20_OR_LATER(ah)) {
  829. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  830. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  831. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  832. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  833. }
  834. }
  835. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  836. {
  837. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  838. val = min(val, (u32) 0xFFFF);
  839. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  840. }
  841. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  842. {
  843. u32 val = ath9k_hw_mac_to_clks(ah, us);
  844. val = min(val, (u32) 0xFFFF);
  845. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  846. }
  847. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  848. {
  849. u32 val = ath9k_hw_mac_to_clks(ah, us);
  850. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  851. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  852. }
  853. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  854. {
  855. u32 val = ath9k_hw_mac_to_clks(ah, us);
  856. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  857. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  858. }
  859. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  860. {
  861. if (tu > 0xFFFF) {
  862. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  863. tu);
  864. ah->globaltxtimeout = (u32) -1;
  865. return false;
  866. } else {
  867. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  868. ah->globaltxtimeout = tu;
  869. return true;
  870. }
  871. }
  872. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  873. {
  874. struct ath_common *common = ath9k_hw_common(ah);
  875. struct ieee80211_conf *conf = &common->hw->conf;
  876. const struct ath9k_channel *chan = ah->curchan;
  877. int acktimeout, ctstimeout, ack_offset = 0;
  878. int slottime;
  879. int sifstime;
  880. int rx_lat = 0, tx_lat = 0, eifs = 0;
  881. u32 reg;
  882. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  883. ah->misc_mode);
  884. if (!chan)
  885. return;
  886. if (ah->misc_mode != 0)
  887. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  888. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  889. rx_lat = 41;
  890. else
  891. rx_lat = 37;
  892. tx_lat = 54;
  893. if (IS_CHAN_5GHZ(chan))
  894. sifstime = 16;
  895. else
  896. sifstime = 10;
  897. if (IS_CHAN_HALF_RATE(chan)) {
  898. eifs = 175;
  899. rx_lat *= 2;
  900. tx_lat *= 2;
  901. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  902. tx_lat += 11;
  903. sifstime *= 2;
  904. ack_offset = 16;
  905. slottime = 13;
  906. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  907. eifs = 340;
  908. rx_lat = (rx_lat * 4) - 1;
  909. tx_lat *= 4;
  910. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  911. tx_lat += 22;
  912. sifstime *= 4;
  913. ack_offset = 32;
  914. slottime = 21;
  915. } else {
  916. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  917. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  918. reg = AR_USEC_ASYNC_FIFO;
  919. } else {
  920. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  921. common->clockrate;
  922. reg = REG_READ(ah, AR_USEC);
  923. }
  924. rx_lat = MS(reg, AR_USEC_RX_LAT);
  925. tx_lat = MS(reg, AR_USEC_TX_LAT);
  926. slottime = ah->slottime;
  927. }
  928. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  929. acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
  930. ctstimeout = acktimeout;
  931. /*
  932. * Workaround for early ACK timeouts, add an offset to match the
  933. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  934. * This was initially only meant to work around an issue with delayed
  935. * BA frames in some implementations, but it has been found to fix ACK
  936. * timeout issues in other cases as well.
  937. */
  938. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
  939. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  940. acktimeout += 64 - sifstime - ah->slottime;
  941. ctstimeout += 48 - sifstime - ah->slottime;
  942. }
  943. ath9k_hw_set_sifs_time(ah, sifstime);
  944. ath9k_hw_setslottime(ah, slottime);
  945. ath9k_hw_set_ack_timeout(ah, acktimeout);
  946. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  947. if (ah->globaltxtimeout != (u32) -1)
  948. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  949. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  950. REG_RMW(ah, AR_USEC,
  951. (common->clockrate - 1) |
  952. SM(rx_lat, AR_USEC_RX_LAT) |
  953. SM(tx_lat, AR_USEC_TX_LAT),
  954. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  955. }
  956. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  957. void ath9k_hw_deinit(struct ath_hw *ah)
  958. {
  959. struct ath_common *common = ath9k_hw_common(ah);
  960. if (common->state < ATH_HW_INITIALIZED)
  961. return;
  962. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  963. }
  964. EXPORT_SYMBOL(ath9k_hw_deinit);
  965. /*******/
  966. /* INI */
  967. /*******/
  968. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  969. {
  970. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  971. if (IS_CHAN_B(chan))
  972. ctl |= CTL_11B;
  973. else if (IS_CHAN_G(chan))
  974. ctl |= CTL_11G;
  975. else
  976. ctl |= CTL_11A;
  977. return ctl;
  978. }
  979. /****************************************/
  980. /* Reset and Channel Switching Routines */
  981. /****************************************/
  982. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  983. {
  984. struct ath_common *common = ath9k_hw_common(ah);
  985. ENABLE_REGWRITE_BUFFER(ah);
  986. /*
  987. * set AHB_MODE not to do cacheline prefetches
  988. */
  989. if (!AR_SREV_9300_20_OR_LATER(ah))
  990. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  991. /*
  992. * let mac dma reads be in 128 byte chunks
  993. */
  994. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  995. REGWRITE_BUFFER_FLUSH(ah);
  996. /*
  997. * Restore TX Trigger Level to its pre-reset value.
  998. * The initial value depends on whether aggregation is enabled, and is
  999. * adjusted whenever underruns are detected.
  1000. */
  1001. if (!AR_SREV_9300_20_OR_LATER(ah))
  1002. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  1003. ENABLE_REGWRITE_BUFFER(ah);
  1004. /*
  1005. * let mac dma writes be in 128 byte chunks
  1006. */
  1007. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  1008. /*
  1009. * Setup receive FIFO threshold to hold off TX activities
  1010. */
  1011. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1012. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1013. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  1014. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  1015. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  1016. ah->caps.rx_status_len);
  1017. }
  1018. /*
  1019. * reduce the number of usable entries in PCU TXBUF to avoid
  1020. * wrap around issues.
  1021. */
  1022. if (AR_SREV_9285(ah)) {
  1023. /* For AR9285 the number of Fifos are reduced to half.
  1024. * So set the usable tx buf size also to half to
  1025. * avoid data/delimiter underruns
  1026. */
  1027. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1028. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1029. } else if (!AR_SREV_9271(ah)) {
  1030. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1031. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1032. }
  1033. REGWRITE_BUFFER_FLUSH(ah);
  1034. if (AR_SREV_9300_20_OR_LATER(ah))
  1035. ath9k_hw_reset_txstatus_ring(ah);
  1036. }
  1037. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  1038. {
  1039. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  1040. u32 set = AR_STA_ID1_KSRCH_MODE;
  1041. switch (opmode) {
  1042. case NL80211_IFTYPE_ADHOC:
  1043. case NL80211_IFTYPE_MESH_POINT:
  1044. set |= AR_STA_ID1_ADHOC;
  1045. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1046. break;
  1047. case NL80211_IFTYPE_AP:
  1048. set |= AR_STA_ID1_STA_AP;
  1049. /* fall through */
  1050. case NL80211_IFTYPE_STATION:
  1051. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1052. break;
  1053. default:
  1054. if (!ah->is_monitoring)
  1055. set = 0;
  1056. break;
  1057. }
  1058. REG_RMW(ah, AR_STA_ID1, set, mask);
  1059. }
  1060. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1061. u32 *coef_mantissa, u32 *coef_exponent)
  1062. {
  1063. u32 coef_exp, coef_man;
  1064. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1065. if ((coef_scaled >> coef_exp) & 0x1)
  1066. break;
  1067. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1068. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1069. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1070. *coef_exponent = coef_exp - 16;
  1071. }
  1072. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1073. {
  1074. u32 rst_flags;
  1075. u32 tmpReg;
  1076. if (AR_SREV_9100(ah)) {
  1077. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1078. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1079. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1080. }
  1081. ENABLE_REGWRITE_BUFFER(ah);
  1082. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1083. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1084. udelay(10);
  1085. }
  1086. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1087. AR_RTC_FORCE_WAKE_ON_INT);
  1088. if (AR_SREV_9100(ah)) {
  1089. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1090. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1091. } else {
  1092. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1093. if (tmpReg &
  1094. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1095. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1096. u32 val;
  1097. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1098. val = AR_RC_HOSTIF;
  1099. if (!AR_SREV_9300_20_OR_LATER(ah))
  1100. val |= AR_RC_AHB;
  1101. REG_WRITE(ah, AR_RC, val);
  1102. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1103. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1104. rst_flags = AR_RTC_RC_MAC_WARM;
  1105. if (type == ATH9K_RESET_COLD)
  1106. rst_flags |= AR_RTC_RC_MAC_COLD;
  1107. }
  1108. if (AR_SREV_9330(ah)) {
  1109. int npend = 0;
  1110. int i;
  1111. /* AR9330 WAR:
  1112. * call external reset function to reset WMAC if:
  1113. * - doing a cold reset
  1114. * - we have pending frames in the TX queues
  1115. */
  1116. for (i = 0; i < AR_NUM_QCU; i++) {
  1117. npend = ath9k_hw_numtxpending(ah, i);
  1118. if (npend)
  1119. break;
  1120. }
  1121. if (ah->external_reset &&
  1122. (npend || type == ATH9K_RESET_COLD)) {
  1123. int reset_err = 0;
  1124. ath_dbg(ath9k_hw_common(ah), RESET,
  1125. "reset MAC via external reset\n");
  1126. reset_err = ah->external_reset();
  1127. if (reset_err) {
  1128. ath_err(ath9k_hw_common(ah),
  1129. "External reset failed, err=%d\n",
  1130. reset_err);
  1131. return false;
  1132. }
  1133. REG_WRITE(ah, AR_RTC_RESET, 1);
  1134. }
  1135. }
  1136. if (ath9k_hw_mci_is_enabled(ah))
  1137. ar9003_mci_check_gpm_offset(ah);
  1138. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1139. REGWRITE_BUFFER_FLUSH(ah);
  1140. udelay(50);
  1141. REG_WRITE(ah, AR_RTC_RC, 0);
  1142. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1143. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1144. return false;
  1145. }
  1146. if (!AR_SREV_9100(ah))
  1147. REG_WRITE(ah, AR_RC, 0);
  1148. if (AR_SREV_9100(ah))
  1149. udelay(50);
  1150. return true;
  1151. }
  1152. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1153. {
  1154. ENABLE_REGWRITE_BUFFER(ah);
  1155. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1156. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1157. udelay(10);
  1158. }
  1159. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1160. AR_RTC_FORCE_WAKE_ON_INT);
  1161. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1162. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1163. REG_WRITE(ah, AR_RTC_RESET, 0);
  1164. REGWRITE_BUFFER_FLUSH(ah);
  1165. if (!AR_SREV_9300_20_OR_LATER(ah))
  1166. udelay(2);
  1167. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1168. REG_WRITE(ah, AR_RC, 0);
  1169. REG_WRITE(ah, AR_RTC_RESET, 1);
  1170. if (!ath9k_hw_wait(ah,
  1171. AR_RTC_STATUS,
  1172. AR_RTC_STATUS_M,
  1173. AR_RTC_STATUS_ON,
  1174. AH_WAIT_TIMEOUT)) {
  1175. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1176. return false;
  1177. }
  1178. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1179. }
  1180. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1181. {
  1182. bool ret = false;
  1183. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1184. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1185. udelay(10);
  1186. }
  1187. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1188. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1189. if (!ah->reset_power_on)
  1190. type = ATH9K_RESET_POWER_ON;
  1191. switch (type) {
  1192. case ATH9K_RESET_POWER_ON:
  1193. ret = ath9k_hw_set_reset_power_on(ah);
  1194. if (ret)
  1195. ah->reset_power_on = true;
  1196. break;
  1197. case ATH9K_RESET_WARM:
  1198. case ATH9K_RESET_COLD:
  1199. ret = ath9k_hw_set_reset(ah, type);
  1200. break;
  1201. default:
  1202. break;
  1203. }
  1204. return ret;
  1205. }
  1206. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1207. struct ath9k_channel *chan)
  1208. {
  1209. int reset_type = ATH9K_RESET_WARM;
  1210. if (AR_SREV_9280(ah)) {
  1211. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1212. reset_type = ATH9K_RESET_POWER_ON;
  1213. else
  1214. reset_type = ATH9K_RESET_COLD;
  1215. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1216. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1217. reset_type = ATH9K_RESET_COLD;
  1218. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1219. return false;
  1220. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1221. return false;
  1222. ah->chip_fullsleep = false;
  1223. if (AR_SREV_9330(ah))
  1224. ar9003_hw_internal_regulator_apply(ah);
  1225. ath9k_hw_init_pll(ah, chan);
  1226. ath9k_hw_set_rfmode(ah, chan);
  1227. return true;
  1228. }
  1229. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1230. struct ath9k_channel *chan)
  1231. {
  1232. struct ath_common *common = ath9k_hw_common(ah);
  1233. u32 qnum;
  1234. int r;
  1235. bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1236. bool band_switch, mode_diff;
  1237. u8 ini_reloaded;
  1238. band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
  1239. (ah->curchan->channelFlags & (CHANNEL_2GHZ |
  1240. CHANNEL_5GHZ));
  1241. mode_diff = (chan->chanmode != ah->curchan->chanmode);
  1242. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1243. if (ath9k_hw_numtxpending(ah, qnum)) {
  1244. ath_dbg(common, QUEUE,
  1245. "Transmit frames pending on queue %d\n", qnum);
  1246. return false;
  1247. }
  1248. }
  1249. if (!ath9k_hw_rfbus_req(ah)) {
  1250. ath_err(common, "Could not kill baseband RX\n");
  1251. return false;
  1252. }
  1253. if (edma && (band_switch || mode_diff)) {
  1254. ath9k_hw_mark_phy_inactive(ah);
  1255. udelay(5);
  1256. ath9k_hw_init_pll(ah, NULL);
  1257. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1258. ath_err(common, "Failed to do fast channel change\n");
  1259. return false;
  1260. }
  1261. }
  1262. ath9k_hw_set_channel_regs(ah, chan);
  1263. r = ath9k_hw_rf_set_freq(ah, chan);
  1264. if (r) {
  1265. ath_err(common, "Failed to set channel\n");
  1266. return false;
  1267. }
  1268. ath9k_hw_set_clockrate(ah);
  1269. ath9k_hw_apply_txpower(ah, chan, false);
  1270. ath9k_hw_rfbus_done(ah);
  1271. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1272. ath9k_hw_set_delta_slope(ah, chan);
  1273. ath9k_hw_spur_mitigate_freq(ah, chan);
  1274. if (edma && (band_switch || mode_diff)) {
  1275. ah->ah_flags |= AH_FASTCC;
  1276. if (band_switch || ini_reloaded)
  1277. ah->eep_ops->set_board_values(ah, chan);
  1278. ath9k_hw_init_bb(ah, chan);
  1279. if (band_switch || ini_reloaded)
  1280. ath9k_hw_init_cal(ah, chan);
  1281. ah->ah_flags &= ~AH_FASTCC;
  1282. }
  1283. return true;
  1284. }
  1285. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1286. {
  1287. u32 gpio_mask = ah->gpio_mask;
  1288. int i;
  1289. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1290. if (!(gpio_mask & 1))
  1291. continue;
  1292. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1293. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1294. }
  1295. }
  1296. static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
  1297. int *hang_state, int *hang_pos)
  1298. {
  1299. static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
  1300. u32 chain_state, dcs_pos, i;
  1301. for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
  1302. chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
  1303. for (i = 0; i < 3; i++) {
  1304. if (chain_state == dcu_chain_state[i]) {
  1305. *hang_state = chain_state;
  1306. *hang_pos = dcs_pos;
  1307. return true;
  1308. }
  1309. }
  1310. }
  1311. return false;
  1312. }
  1313. #define DCU_COMPLETE_STATE 1
  1314. #define DCU_COMPLETE_STATE_MASK 0x3
  1315. #define NUM_STATUS_READS 50
  1316. static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
  1317. {
  1318. u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
  1319. u32 i, hang_pos, hang_state, num_state = 6;
  1320. comp_state = REG_READ(ah, AR_DMADBG_6);
  1321. if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
  1322. ath_dbg(ath9k_hw_common(ah), RESET,
  1323. "MAC Hang signature not found at DCU complete\n");
  1324. return false;
  1325. }
  1326. chain_state = REG_READ(ah, dcs_reg);
  1327. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1328. goto hang_check_iter;
  1329. dcs_reg = AR_DMADBG_5;
  1330. num_state = 4;
  1331. chain_state = REG_READ(ah, dcs_reg);
  1332. if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
  1333. goto hang_check_iter;
  1334. ath_dbg(ath9k_hw_common(ah), RESET,
  1335. "MAC Hang signature 1 not found\n");
  1336. return false;
  1337. hang_check_iter:
  1338. ath_dbg(ath9k_hw_common(ah), RESET,
  1339. "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
  1340. chain_state, comp_state, hang_state, hang_pos);
  1341. for (i = 0; i < NUM_STATUS_READS; i++) {
  1342. chain_state = REG_READ(ah, dcs_reg);
  1343. chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
  1344. comp_state = REG_READ(ah, AR_DMADBG_6);
  1345. if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
  1346. DCU_COMPLETE_STATE) ||
  1347. (chain_state != hang_state))
  1348. return false;
  1349. }
  1350. ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
  1351. return true;
  1352. }
  1353. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1354. {
  1355. int count = 50;
  1356. u32 reg;
  1357. if (AR_SREV_9300(ah))
  1358. return !ath9k_hw_detect_mac_hang(ah);
  1359. if (AR_SREV_9285_12_OR_LATER(ah))
  1360. return true;
  1361. do {
  1362. reg = REG_READ(ah, AR_OBS_BUS_1);
  1363. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1364. continue;
  1365. switch (reg & 0x7E000B00) {
  1366. case 0x1E000000:
  1367. case 0x52000B00:
  1368. case 0x18000B00:
  1369. continue;
  1370. default:
  1371. return true;
  1372. }
  1373. } while (count-- > 0);
  1374. return false;
  1375. }
  1376. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1377. /*
  1378. * Fast channel change:
  1379. * (Change synthesizer based on channel freq without resetting chip)
  1380. *
  1381. * Don't do FCC when
  1382. * - Flag is not set
  1383. * - Chip is just coming out of full sleep
  1384. * - Channel to be set is same as current channel
  1385. * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
  1386. */
  1387. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1388. {
  1389. struct ath_common *common = ath9k_hw_common(ah);
  1390. int ret;
  1391. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1392. goto fail;
  1393. if (ah->chip_fullsleep)
  1394. goto fail;
  1395. if (!ah->curchan)
  1396. goto fail;
  1397. if (chan->channel == ah->curchan->channel)
  1398. goto fail;
  1399. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1400. (CHANNEL_HALF | CHANNEL_QUARTER))
  1401. goto fail;
  1402. if ((chan->channelFlags & CHANNEL_ALL) !=
  1403. (ah->curchan->channelFlags & CHANNEL_ALL))
  1404. goto fail;
  1405. if (!ath9k_hw_check_alive(ah))
  1406. goto fail;
  1407. /*
  1408. * For AR9462, make sure that calibration data for
  1409. * re-using are present.
  1410. */
  1411. if (AR_SREV_9462(ah) && (ah->caldata &&
  1412. (!ah->caldata->done_txiqcal_once ||
  1413. !ah->caldata->done_txclcal_once ||
  1414. !ah->caldata->rtt_done)))
  1415. goto fail;
  1416. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1417. ah->curchan->channel, chan->channel);
  1418. ret = ath9k_hw_channel_change(ah, chan);
  1419. if (!ret)
  1420. goto fail;
  1421. if (ath9k_hw_mci_is_enabled(ah))
  1422. ar9003_mci_2g5g_switch(ah, false);
  1423. ath9k_hw_loadnf(ah, ah->curchan);
  1424. ath9k_hw_start_nfcal(ah, true);
  1425. if (AR_SREV_9271(ah))
  1426. ar9002_hw_load_ani_reg(ah, chan);
  1427. return 0;
  1428. fail:
  1429. return -EINVAL;
  1430. }
  1431. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1432. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1433. {
  1434. struct ath_common *common = ath9k_hw_common(ah);
  1435. u32 saveLedState;
  1436. u32 saveDefAntenna;
  1437. u32 macStaId1;
  1438. u64 tsf = 0;
  1439. int i, r;
  1440. bool start_mci_reset = false;
  1441. bool save_fullsleep = ah->chip_fullsleep;
  1442. if (ath9k_hw_mci_is_enabled(ah)) {
  1443. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1444. if (start_mci_reset)
  1445. return 0;
  1446. }
  1447. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1448. return -EIO;
  1449. if (ah->curchan && !ah->chip_fullsleep)
  1450. ath9k_hw_getnf(ah, ah->curchan);
  1451. ah->caldata = caldata;
  1452. if (caldata &&
  1453. (chan->channel != caldata->channel ||
  1454. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1455. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1456. /* Operating channel changed, reset channel calibration data */
  1457. memset(caldata, 0, sizeof(*caldata));
  1458. ath9k_init_nfcal_hist_buffer(ah, chan);
  1459. } else if (caldata) {
  1460. caldata->paprd_packet_sent = false;
  1461. }
  1462. ah->noise = ath9k_hw_getchan_noise(ah, chan);
  1463. if (fastcc) {
  1464. r = ath9k_hw_do_fastcc(ah, chan);
  1465. if (!r)
  1466. return r;
  1467. }
  1468. if (ath9k_hw_mci_is_enabled(ah))
  1469. ar9003_mci_stop_bt(ah, save_fullsleep);
  1470. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1471. if (saveDefAntenna == 0)
  1472. saveDefAntenna = 1;
  1473. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1474. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1475. if (AR_SREV_9100(ah) ||
  1476. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1477. tsf = ath9k_hw_gettsf64(ah);
  1478. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1479. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1480. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1481. ath9k_hw_mark_phy_inactive(ah);
  1482. ah->paprd_table_write_done = false;
  1483. /* Only required on the first reset */
  1484. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1485. REG_WRITE(ah,
  1486. AR9271_RESET_POWER_DOWN_CONTROL,
  1487. AR9271_RADIO_RF_RST);
  1488. udelay(50);
  1489. }
  1490. if (!ath9k_hw_chip_reset(ah, chan)) {
  1491. ath_err(common, "Chip reset failed\n");
  1492. return -EINVAL;
  1493. }
  1494. /* Only required on the first reset */
  1495. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1496. ah->htc_reset_init = false;
  1497. REG_WRITE(ah,
  1498. AR9271_RESET_POWER_DOWN_CONTROL,
  1499. AR9271_GATE_MAC_CTL);
  1500. udelay(50);
  1501. }
  1502. /* Restore TSF */
  1503. if (tsf)
  1504. ath9k_hw_settsf64(ah, tsf);
  1505. if (AR_SREV_9280_20_OR_LATER(ah))
  1506. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1507. if (!AR_SREV_9300_20_OR_LATER(ah))
  1508. ar9002_hw_enable_async_fifo(ah);
  1509. r = ath9k_hw_process_ini(ah, chan);
  1510. if (r)
  1511. return r;
  1512. if (ath9k_hw_mci_is_enabled(ah))
  1513. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1514. /*
  1515. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1516. * right after the chip reset. When that happens, write a new
  1517. * value after the initvals have been applied, with an offset
  1518. * based on measured time difference
  1519. */
  1520. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1521. tsf += 1500;
  1522. ath9k_hw_settsf64(ah, tsf);
  1523. }
  1524. /* Setup MFP options for CCMP */
  1525. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1526. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1527. * frames when constructing CCMP AAD. */
  1528. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1529. 0xc7ff);
  1530. ah->sw_mgmt_crypto = false;
  1531. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1532. /* Disable hardware crypto for management frames */
  1533. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1534. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1535. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1536. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1537. ah->sw_mgmt_crypto = true;
  1538. } else
  1539. ah->sw_mgmt_crypto = true;
  1540. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1541. ath9k_hw_set_delta_slope(ah, chan);
  1542. ath9k_hw_spur_mitigate_freq(ah, chan);
  1543. ah->eep_ops->set_board_values(ah, chan);
  1544. ENABLE_REGWRITE_BUFFER(ah);
  1545. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1546. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1547. | macStaId1
  1548. | AR_STA_ID1_RTS_USE_DEF
  1549. | (ah->config.
  1550. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1551. | ah->sta_id1_defaults);
  1552. ath_hw_setbssidmask(common);
  1553. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1554. ath9k_hw_write_associd(ah);
  1555. REG_WRITE(ah, AR_ISR, ~0);
  1556. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1557. REGWRITE_BUFFER_FLUSH(ah);
  1558. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1559. r = ath9k_hw_rf_set_freq(ah, chan);
  1560. if (r)
  1561. return r;
  1562. ath9k_hw_set_clockrate(ah);
  1563. ENABLE_REGWRITE_BUFFER(ah);
  1564. for (i = 0; i < AR_NUM_DCU; i++)
  1565. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1566. REGWRITE_BUFFER_FLUSH(ah);
  1567. ah->intr_txqs = 0;
  1568. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1569. ath9k_hw_resettxqueue(ah, i);
  1570. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1571. ath9k_hw_ani_cache_ini_regs(ah);
  1572. ath9k_hw_init_qos(ah);
  1573. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1574. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1575. ath9k_hw_init_global_settings(ah);
  1576. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1577. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1578. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1579. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1580. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1581. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1582. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1583. }
  1584. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1585. ath9k_hw_set_dma(ah);
  1586. if (!ath9k_hw_mci_is_enabled(ah))
  1587. REG_WRITE(ah, AR_OBS, 8);
  1588. if (ah->config.rx_intr_mitigation) {
  1589. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1590. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1591. }
  1592. if (ah->config.tx_intr_mitigation) {
  1593. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1594. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1595. }
  1596. ath9k_hw_init_bb(ah, chan);
  1597. if (caldata) {
  1598. caldata->done_txiqcal_once = false;
  1599. caldata->done_txclcal_once = false;
  1600. }
  1601. if (!ath9k_hw_init_cal(ah, chan))
  1602. return -EIO;
  1603. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1604. return -EIO;
  1605. ENABLE_REGWRITE_BUFFER(ah);
  1606. ath9k_hw_restore_chainmask(ah);
  1607. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1608. REGWRITE_BUFFER_FLUSH(ah);
  1609. /*
  1610. * For big endian systems turn on swapping for descriptors
  1611. */
  1612. if (AR_SREV_9100(ah)) {
  1613. u32 mask;
  1614. mask = REG_READ(ah, AR_CFG);
  1615. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1616. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1617. mask);
  1618. } else {
  1619. mask =
  1620. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1621. REG_WRITE(ah, AR_CFG, mask);
  1622. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1623. REG_READ(ah, AR_CFG));
  1624. }
  1625. } else {
  1626. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1627. /* Configure AR9271 target WLAN */
  1628. if (AR_SREV_9271(ah))
  1629. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1630. else
  1631. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1632. }
  1633. #ifdef __BIG_ENDIAN
  1634. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1635. AR_SREV_9550(ah))
  1636. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1637. else
  1638. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1639. #endif
  1640. }
  1641. if (ath9k_hw_btcoex_is_enabled(ah))
  1642. ath9k_hw_btcoex_enable(ah);
  1643. if (ath9k_hw_mci_is_enabled(ah))
  1644. ar9003_mci_check_bt(ah);
  1645. ath9k_hw_loadnf(ah, chan);
  1646. ath9k_hw_start_nfcal(ah, true);
  1647. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1648. ar9003_hw_bb_watchdog_config(ah);
  1649. ar9003_hw_disable_phy_restart(ah);
  1650. }
  1651. ath9k_hw_apply_gpio_override(ah);
  1652. if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
  1653. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1654. return 0;
  1655. }
  1656. EXPORT_SYMBOL(ath9k_hw_reset);
  1657. /******************************/
  1658. /* Power Management (Chipset) */
  1659. /******************************/
  1660. /*
  1661. * Notify Power Mgt is disabled in self-generated frames.
  1662. * If requested, force chip to sleep.
  1663. */
  1664. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1665. {
  1666. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1667. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1668. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1669. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1670. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1671. /* xxx Required for WLAN only case ? */
  1672. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1673. udelay(100);
  1674. }
  1675. /*
  1676. * Clear the RTC force wake bit to allow the
  1677. * mac to go to sleep.
  1678. */
  1679. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1680. if (ath9k_hw_mci_is_enabled(ah))
  1681. udelay(100);
  1682. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1683. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1684. /* Shutdown chip. Active low */
  1685. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1686. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1687. udelay(2);
  1688. }
  1689. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1690. if (AR_SREV_9300_20_OR_LATER(ah))
  1691. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1692. }
  1693. /*
  1694. * Notify Power Management is enabled in self-generating
  1695. * frames. If request, set power mode of chip to
  1696. * auto/normal. Duration in units of 128us (1/8 TU).
  1697. */
  1698. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1699. {
  1700. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1701. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1702. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1703. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1704. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1705. AR_RTC_FORCE_WAKE_ON_INT);
  1706. } else {
  1707. /* When chip goes into network sleep, it could be waken
  1708. * up by MCI_INT interrupt caused by BT's HW messages
  1709. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1710. * rate (~100us). This will cause chip to leave and
  1711. * re-enter network sleep mode frequently, which in
  1712. * consequence will have WLAN MCI HW to generate lots of
  1713. * SYS_WAKING and SYS_SLEEPING messages which will make
  1714. * BT CPU to busy to process.
  1715. */
  1716. if (ath9k_hw_mci_is_enabled(ah))
  1717. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1718. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1719. /*
  1720. * Clear the RTC force wake bit to allow the
  1721. * mac to go to sleep.
  1722. */
  1723. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1724. if (ath9k_hw_mci_is_enabled(ah))
  1725. udelay(30);
  1726. }
  1727. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1728. if (AR_SREV_9300_20_OR_LATER(ah))
  1729. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1730. }
  1731. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1732. {
  1733. u32 val;
  1734. int i;
  1735. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1736. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1737. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1738. udelay(10);
  1739. }
  1740. if ((REG_READ(ah, AR_RTC_STATUS) &
  1741. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1742. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1743. return false;
  1744. }
  1745. if (!AR_SREV_9300_20_OR_LATER(ah))
  1746. ath9k_hw_init_pll(ah, NULL);
  1747. }
  1748. if (AR_SREV_9100(ah))
  1749. REG_SET_BIT(ah, AR_RTC_RESET,
  1750. AR_RTC_RESET_EN);
  1751. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1752. AR_RTC_FORCE_WAKE_EN);
  1753. udelay(50);
  1754. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1755. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1756. if (val == AR_RTC_STATUS_ON)
  1757. break;
  1758. udelay(50);
  1759. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1760. AR_RTC_FORCE_WAKE_EN);
  1761. }
  1762. if (i == 0) {
  1763. ath_err(ath9k_hw_common(ah),
  1764. "Failed to wakeup in %uus\n",
  1765. POWER_UP_TIME / 20);
  1766. return false;
  1767. }
  1768. if (ath9k_hw_mci_is_enabled(ah))
  1769. ar9003_mci_set_power_awake(ah);
  1770. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1771. return true;
  1772. }
  1773. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1774. {
  1775. struct ath_common *common = ath9k_hw_common(ah);
  1776. int status = true;
  1777. static const char *modes[] = {
  1778. "AWAKE",
  1779. "FULL-SLEEP",
  1780. "NETWORK SLEEP",
  1781. "UNDEFINED"
  1782. };
  1783. if (ah->power_mode == mode)
  1784. return status;
  1785. ath_dbg(common, RESET, "%s -> %s\n",
  1786. modes[ah->power_mode], modes[mode]);
  1787. switch (mode) {
  1788. case ATH9K_PM_AWAKE:
  1789. status = ath9k_hw_set_power_awake(ah);
  1790. break;
  1791. case ATH9K_PM_FULL_SLEEP:
  1792. if (ath9k_hw_mci_is_enabled(ah))
  1793. ar9003_mci_set_full_sleep(ah);
  1794. ath9k_set_power_sleep(ah);
  1795. ah->chip_fullsleep = true;
  1796. break;
  1797. case ATH9K_PM_NETWORK_SLEEP:
  1798. ath9k_set_power_network_sleep(ah);
  1799. break;
  1800. default:
  1801. ath_err(common, "Unknown power mode %u\n", mode);
  1802. return false;
  1803. }
  1804. ah->power_mode = mode;
  1805. /*
  1806. * XXX: If this warning never comes up after a while then
  1807. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1808. * ath9k_hw_setpower() return type void.
  1809. */
  1810. if (!(ah->ah_flags & AH_UNPLUGGED))
  1811. ATH_DBG_WARN_ON_ONCE(!status);
  1812. return status;
  1813. }
  1814. EXPORT_SYMBOL(ath9k_hw_setpower);
  1815. /*******************/
  1816. /* Beacon Handling */
  1817. /*******************/
  1818. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1819. {
  1820. int flags = 0;
  1821. ENABLE_REGWRITE_BUFFER(ah);
  1822. switch (ah->opmode) {
  1823. case NL80211_IFTYPE_ADHOC:
  1824. case NL80211_IFTYPE_MESH_POINT:
  1825. REG_SET_BIT(ah, AR_TXCFG,
  1826. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1827. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1828. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1829. flags |= AR_NDP_TIMER_EN;
  1830. case NL80211_IFTYPE_AP:
  1831. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1832. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1833. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1834. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1835. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1836. flags |=
  1837. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1838. break;
  1839. default:
  1840. ath_dbg(ath9k_hw_common(ah), BEACON,
  1841. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1842. return;
  1843. break;
  1844. }
  1845. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1846. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1847. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1848. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1849. REGWRITE_BUFFER_FLUSH(ah);
  1850. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1851. }
  1852. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1853. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1854. const struct ath9k_beacon_state *bs)
  1855. {
  1856. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1857. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1858. struct ath_common *common = ath9k_hw_common(ah);
  1859. ENABLE_REGWRITE_BUFFER(ah);
  1860. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1861. REG_WRITE(ah, AR_BEACON_PERIOD,
  1862. TU_TO_USEC(bs->bs_intval));
  1863. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1864. TU_TO_USEC(bs->bs_intval));
  1865. REGWRITE_BUFFER_FLUSH(ah);
  1866. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1867. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1868. beaconintval = bs->bs_intval;
  1869. if (bs->bs_sleepduration > beaconintval)
  1870. beaconintval = bs->bs_sleepduration;
  1871. dtimperiod = bs->bs_dtimperiod;
  1872. if (bs->bs_sleepduration > dtimperiod)
  1873. dtimperiod = bs->bs_sleepduration;
  1874. if (beaconintval == dtimperiod)
  1875. nextTbtt = bs->bs_nextdtim;
  1876. else
  1877. nextTbtt = bs->bs_nexttbtt;
  1878. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1879. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1880. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1881. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1882. ENABLE_REGWRITE_BUFFER(ah);
  1883. REG_WRITE(ah, AR_NEXT_DTIM,
  1884. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1885. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1886. REG_WRITE(ah, AR_SLEEP1,
  1887. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1888. | AR_SLEEP1_ASSUME_DTIM);
  1889. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1890. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1891. else
  1892. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1893. REG_WRITE(ah, AR_SLEEP2,
  1894. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1895. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1896. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1897. REGWRITE_BUFFER_FLUSH(ah);
  1898. REG_SET_BIT(ah, AR_TIMER_MODE,
  1899. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1900. AR_DTIM_TIMER_EN);
  1901. /* TSF Out of Range Threshold */
  1902. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1903. }
  1904. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1905. /*******************/
  1906. /* HW Capabilities */
  1907. /*******************/
  1908. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1909. {
  1910. eeprom_chainmask &= chip_chainmask;
  1911. if (eeprom_chainmask)
  1912. return eeprom_chainmask;
  1913. else
  1914. return chip_chainmask;
  1915. }
  1916. /**
  1917. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1918. * @ah: the atheros hardware data structure
  1919. *
  1920. * We enable DFS support upstream on chipsets which have passed a series
  1921. * of tests. The testing requirements are going to be documented. Desired
  1922. * test requirements are documented at:
  1923. *
  1924. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1925. *
  1926. * Once a new chipset gets properly tested an individual commit can be used
  1927. * to document the testing for DFS for that chipset.
  1928. */
  1929. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1930. {
  1931. switch (ah->hw_version.macVersion) {
  1932. /* AR9580 will likely be our first target to get testing on */
  1933. case AR_SREV_VERSION_9580:
  1934. default:
  1935. return false;
  1936. }
  1937. }
  1938. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1939. {
  1940. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1941. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1942. struct ath_common *common = ath9k_hw_common(ah);
  1943. unsigned int chip_chainmask;
  1944. u16 eeval;
  1945. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1946. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1947. regulatory->current_rd = eeval;
  1948. if (ah->opmode != NL80211_IFTYPE_AP &&
  1949. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1950. if (regulatory->current_rd == 0x64 ||
  1951. regulatory->current_rd == 0x65)
  1952. regulatory->current_rd += 5;
  1953. else if (regulatory->current_rd == 0x41)
  1954. regulatory->current_rd = 0x43;
  1955. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1956. regulatory->current_rd);
  1957. }
  1958. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1959. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1960. ath_err(common,
  1961. "no band has been marked as supported in EEPROM\n");
  1962. return -EINVAL;
  1963. }
  1964. if (eeval & AR5416_OPFLAGS_11A)
  1965. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1966. if (eeval & AR5416_OPFLAGS_11G)
  1967. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1968. if (AR_SREV_9485(ah) ||
  1969. AR_SREV_9285(ah) ||
  1970. AR_SREV_9330(ah) ||
  1971. AR_SREV_9565(ah))
  1972. chip_chainmask = 1;
  1973. else if (AR_SREV_9462(ah))
  1974. chip_chainmask = 3;
  1975. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1976. chip_chainmask = 7;
  1977. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1978. chip_chainmask = 3;
  1979. else
  1980. chip_chainmask = 7;
  1981. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1982. /*
  1983. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1984. * the EEPROM.
  1985. */
  1986. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1987. !(eeval & AR5416_OPFLAGS_11A) &&
  1988. !(AR_SREV_9271(ah)))
  1989. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1990. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1991. else if (AR_SREV_9100(ah))
  1992. pCap->rx_chainmask = 0x7;
  1993. else
  1994. /* Use rx_chainmask from EEPROM. */
  1995. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1996. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1997. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1998. ah->txchainmask = pCap->tx_chainmask;
  1999. ah->rxchainmask = pCap->rx_chainmask;
  2000. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  2001. /* enable key search for every frame in an aggregate */
  2002. if (AR_SREV_9300_20_OR_LATER(ah))
  2003. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  2004. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  2005. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  2006. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2007. else
  2008. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2009. if (AR_SREV_9271(ah))
  2010. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  2011. else if (AR_DEVID_7010(ah))
  2012. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  2013. else if (AR_SREV_9300_20_OR_LATER(ah))
  2014. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  2015. else if (AR_SREV_9287_11_OR_LATER(ah))
  2016. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  2017. else if (AR_SREV_9285_12_OR_LATER(ah))
  2018. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  2019. else if (AR_SREV_9280_20_OR_LATER(ah))
  2020. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2021. else
  2022. pCap->num_gpio_pins = AR_NUM_GPIO;
  2023. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  2024. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2025. else
  2026. pCap->rts_aggr_limit = (8 * 1024);
  2027. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2028. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  2029. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  2030. ah->rfkill_gpio =
  2031. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  2032. ah->rfkill_polarity =
  2033. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  2034. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2035. }
  2036. #endif
  2037. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  2038. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2039. else
  2040. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2041. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  2042. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2043. else
  2044. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2045. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2046. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  2047. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  2048. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  2049. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  2050. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  2051. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  2052. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  2053. pCap->txs_len = sizeof(struct ar9003_txs);
  2054. } else {
  2055. pCap->tx_desc_len = sizeof(struct ath_desc);
  2056. if (AR_SREV_9280_20(ah))
  2057. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  2058. }
  2059. if (AR_SREV_9300_20_OR_LATER(ah))
  2060. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  2061. if (AR_SREV_9300_20_OR_LATER(ah))
  2062. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  2063. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  2064. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  2065. if (AR_SREV_9285(ah))
  2066. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2067. ant_div_ctl1 =
  2068. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2069. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  2070. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2071. }
  2072. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2073. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2074. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2075. }
  2076. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2077. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2078. /*
  2079. * enable the diversity-combining algorithm only when
  2080. * both enable_lna_div and enable_fast_div are set
  2081. * Table for Diversity
  2082. * ant_div_alt_lnaconf bit 0-1
  2083. * ant_div_main_lnaconf bit 2-3
  2084. * ant_div_alt_gaintb bit 4
  2085. * ant_div_main_gaintb bit 5
  2086. * enable_ant_div_lnadiv bit 6
  2087. * enable_ant_fast_div bit 7
  2088. */
  2089. if ((ant_div_ctl1 >> 0x6) == 0x3)
  2090. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2091. }
  2092. if (ath9k_hw_dfs_tested(ah))
  2093. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2094. tx_chainmask = pCap->tx_chainmask;
  2095. rx_chainmask = pCap->rx_chainmask;
  2096. while (tx_chainmask || rx_chainmask) {
  2097. if (tx_chainmask & BIT(0))
  2098. pCap->max_txchains++;
  2099. if (rx_chainmask & BIT(0))
  2100. pCap->max_rxchains++;
  2101. tx_chainmask >>= 1;
  2102. rx_chainmask >>= 1;
  2103. }
  2104. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2105. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2106. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2107. if (AR_SREV_9462_20(ah))
  2108. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2109. }
  2110. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2111. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
  2112. ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
  2113. if (AR_SREV_9280(ah))
  2114. pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
  2115. }
  2116. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2117. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2118. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2119. return 0;
  2120. }
  2121. /****************************/
  2122. /* GPIO / RFKILL / Antennae */
  2123. /****************************/
  2124. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2125. u32 gpio, u32 type)
  2126. {
  2127. int addr;
  2128. u32 gpio_shift, tmp;
  2129. if (gpio > 11)
  2130. addr = AR_GPIO_OUTPUT_MUX3;
  2131. else if (gpio > 5)
  2132. addr = AR_GPIO_OUTPUT_MUX2;
  2133. else
  2134. addr = AR_GPIO_OUTPUT_MUX1;
  2135. gpio_shift = (gpio % 6) * 5;
  2136. if (AR_SREV_9280_20_OR_LATER(ah)
  2137. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2138. REG_RMW(ah, addr, (type << gpio_shift),
  2139. (0x1f << gpio_shift));
  2140. } else {
  2141. tmp = REG_READ(ah, addr);
  2142. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2143. tmp &= ~(0x1f << gpio_shift);
  2144. tmp |= (type << gpio_shift);
  2145. REG_WRITE(ah, addr, tmp);
  2146. }
  2147. }
  2148. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2149. {
  2150. u32 gpio_shift;
  2151. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2152. if (AR_DEVID_7010(ah)) {
  2153. gpio_shift = gpio;
  2154. REG_RMW(ah, AR7010_GPIO_OE,
  2155. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2156. (AR7010_GPIO_OE_MASK << gpio_shift));
  2157. return;
  2158. }
  2159. gpio_shift = gpio << 1;
  2160. REG_RMW(ah,
  2161. AR_GPIO_OE_OUT,
  2162. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2163. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2164. }
  2165. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2166. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2167. {
  2168. #define MS_REG_READ(x, y) \
  2169. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2170. if (gpio >= ah->caps.num_gpio_pins)
  2171. return 0xffffffff;
  2172. if (AR_DEVID_7010(ah)) {
  2173. u32 val;
  2174. val = REG_READ(ah, AR7010_GPIO_IN);
  2175. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2176. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2177. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2178. AR_GPIO_BIT(gpio)) != 0;
  2179. else if (AR_SREV_9271(ah))
  2180. return MS_REG_READ(AR9271, gpio) != 0;
  2181. else if (AR_SREV_9287_11_OR_LATER(ah))
  2182. return MS_REG_READ(AR9287, gpio) != 0;
  2183. else if (AR_SREV_9285_12_OR_LATER(ah))
  2184. return MS_REG_READ(AR9285, gpio) != 0;
  2185. else if (AR_SREV_9280_20_OR_LATER(ah))
  2186. return MS_REG_READ(AR928X, gpio) != 0;
  2187. else
  2188. return MS_REG_READ(AR, gpio) != 0;
  2189. }
  2190. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2191. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2192. u32 ah_signal_type)
  2193. {
  2194. u32 gpio_shift;
  2195. if (AR_DEVID_7010(ah)) {
  2196. gpio_shift = gpio;
  2197. REG_RMW(ah, AR7010_GPIO_OE,
  2198. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2199. (AR7010_GPIO_OE_MASK << gpio_shift));
  2200. return;
  2201. }
  2202. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2203. gpio_shift = 2 * gpio;
  2204. REG_RMW(ah,
  2205. AR_GPIO_OE_OUT,
  2206. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2207. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2208. }
  2209. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2210. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2211. {
  2212. if (AR_DEVID_7010(ah)) {
  2213. val = val ? 0 : 1;
  2214. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2215. AR_GPIO_BIT(gpio));
  2216. return;
  2217. }
  2218. if (AR_SREV_9271(ah))
  2219. val = ~val;
  2220. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2221. AR_GPIO_BIT(gpio));
  2222. }
  2223. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2224. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2225. {
  2226. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2227. }
  2228. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2229. /*********************/
  2230. /* General Operation */
  2231. /*********************/
  2232. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2233. {
  2234. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2235. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2236. if (phybits & AR_PHY_ERR_RADAR)
  2237. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2238. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2239. bits |= ATH9K_RX_FILTER_PHYERR;
  2240. return bits;
  2241. }
  2242. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2243. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2244. {
  2245. u32 phybits;
  2246. ENABLE_REGWRITE_BUFFER(ah);
  2247. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2248. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2249. REG_WRITE(ah, AR_RX_FILTER, bits);
  2250. phybits = 0;
  2251. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2252. phybits |= AR_PHY_ERR_RADAR;
  2253. if (bits & ATH9K_RX_FILTER_PHYERR)
  2254. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2255. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2256. if (phybits)
  2257. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2258. else
  2259. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2260. REGWRITE_BUFFER_FLUSH(ah);
  2261. }
  2262. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2263. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2264. {
  2265. if (ath9k_hw_mci_is_enabled(ah))
  2266. ar9003_mci_bt_gain_ctrl(ah);
  2267. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2268. return false;
  2269. ath9k_hw_init_pll(ah, NULL);
  2270. ah->htc_reset_init = true;
  2271. return true;
  2272. }
  2273. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2274. bool ath9k_hw_disable(struct ath_hw *ah)
  2275. {
  2276. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2277. return false;
  2278. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2279. return false;
  2280. ath9k_hw_init_pll(ah, NULL);
  2281. return true;
  2282. }
  2283. EXPORT_SYMBOL(ath9k_hw_disable);
  2284. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2285. {
  2286. enum eeprom_param gain_param;
  2287. if (IS_CHAN_2GHZ(chan))
  2288. gain_param = EEP_ANTENNA_GAIN_2G;
  2289. else
  2290. gain_param = EEP_ANTENNA_GAIN_5G;
  2291. return ah->eep_ops->get_eeprom(ah, gain_param);
  2292. }
  2293. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2294. bool test)
  2295. {
  2296. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2297. struct ieee80211_channel *channel;
  2298. int chan_pwr, new_pwr, max_gain;
  2299. int ant_gain, ant_reduction = 0;
  2300. if (!chan)
  2301. return;
  2302. channel = chan->chan;
  2303. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2304. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2305. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2306. ant_gain = get_antenna_gain(ah, chan);
  2307. if (ant_gain > max_gain)
  2308. ant_reduction = ant_gain - max_gain;
  2309. ah->eep_ops->set_txpower(ah, chan,
  2310. ath9k_regd_get_ctl(reg, chan),
  2311. ant_reduction, new_pwr, test);
  2312. }
  2313. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2314. {
  2315. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2316. struct ath9k_channel *chan = ah->curchan;
  2317. struct ieee80211_channel *channel = chan->chan;
  2318. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2319. if (test)
  2320. channel->max_power = MAX_RATE_POWER / 2;
  2321. ath9k_hw_apply_txpower(ah, chan, test);
  2322. if (test)
  2323. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2324. }
  2325. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2326. void ath9k_hw_setopmode(struct ath_hw *ah)
  2327. {
  2328. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2329. }
  2330. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2331. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2332. {
  2333. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2334. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2335. }
  2336. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2337. void ath9k_hw_write_associd(struct ath_hw *ah)
  2338. {
  2339. struct ath_common *common = ath9k_hw_common(ah);
  2340. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2341. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2342. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2343. }
  2344. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2345. #define ATH9K_MAX_TSF_READ 10
  2346. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2347. {
  2348. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2349. int i;
  2350. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2351. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2352. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2353. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2354. if (tsf_upper2 == tsf_upper1)
  2355. break;
  2356. tsf_upper1 = tsf_upper2;
  2357. }
  2358. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2359. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2360. }
  2361. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2362. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2363. {
  2364. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2365. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2366. }
  2367. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2368. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2369. {
  2370. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2371. AH_TSF_WRITE_TIMEOUT))
  2372. ath_dbg(ath9k_hw_common(ah), RESET,
  2373. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2374. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2375. }
  2376. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2377. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2378. {
  2379. if (set)
  2380. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2381. else
  2382. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2383. }
  2384. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2385. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  2386. {
  2387. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  2388. u32 macmode;
  2389. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  2390. macmode = AR_2040_JOINED_RX_CLEAR;
  2391. else
  2392. macmode = 0;
  2393. REG_WRITE(ah, AR_2040_MODE, macmode);
  2394. }
  2395. /* HW Generic timers configuration */
  2396. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2397. {
  2398. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2399. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2400. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2401. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2402. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2403. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2404. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2405. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2406. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2407. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2408. AR_NDP2_TIMER_MODE, 0x0002},
  2409. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2410. AR_NDP2_TIMER_MODE, 0x0004},
  2411. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2412. AR_NDP2_TIMER_MODE, 0x0008},
  2413. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2414. AR_NDP2_TIMER_MODE, 0x0010},
  2415. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2416. AR_NDP2_TIMER_MODE, 0x0020},
  2417. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2418. AR_NDP2_TIMER_MODE, 0x0040},
  2419. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2420. AR_NDP2_TIMER_MODE, 0x0080}
  2421. };
  2422. /* HW generic timer primitives */
  2423. /* compute and clear index of rightmost 1 */
  2424. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  2425. {
  2426. u32 b;
  2427. b = *mask;
  2428. b &= (0-b);
  2429. *mask &= ~b;
  2430. b *= debruijn32;
  2431. b >>= 27;
  2432. return timer_table->gen_timer_index[b];
  2433. }
  2434. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2435. {
  2436. return REG_READ(ah, AR_TSF_L32);
  2437. }
  2438. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2439. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2440. void (*trigger)(void *),
  2441. void (*overflow)(void *),
  2442. void *arg,
  2443. u8 timer_index)
  2444. {
  2445. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2446. struct ath_gen_timer *timer;
  2447. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2448. if (timer == NULL)
  2449. return NULL;
  2450. /* allocate a hardware generic timer slot */
  2451. timer_table->timers[timer_index] = timer;
  2452. timer->index = timer_index;
  2453. timer->trigger = trigger;
  2454. timer->overflow = overflow;
  2455. timer->arg = arg;
  2456. return timer;
  2457. }
  2458. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2459. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2460. struct ath_gen_timer *timer,
  2461. u32 trig_timeout,
  2462. u32 timer_period)
  2463. {
  2464. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2465. u32 tsf, timer_next;
  2466. BUG_ON(!timer_period);
  2467. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2468. tsf = ath9k_hw_gettsf32(ah);
  2469. timer_next = tsf + trig_timeout;
  2470. ath_dbg(ath9k_hw_common(ah), HWTIMER,
  2471. "current tsf %x period %x timer_next %x\n",
  2472. tsf, timer_period, timer_next);
  2473. /*
  2474. * Program generic timer registers
  2475. */
  2476. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2477. timer_next);
  2478. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2479. timer_period);
  2480. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2481. gen_tmr_configuration[timer->index].mode_mask);
  2482. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2483. /*
  2484. * Starting from AR9462, each generic timer can select which tsf
  2485. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2486. * 8 - 15 use tsf2.
  2487. */
  2488. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2489. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2490. (1 << timer->index));
  2491. else
  2492. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2493. (1 << timer->index));
  2494. }
  2495. /* Enable both trigger and thresh interrupt masks */
  2496. REG_SET_BIT(ah, AR_IMR_S5,
  2497. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2498. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2499. }
  2500. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2501. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2502. {
  2503. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2504. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2505. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2506. return;
  2507. }
  2508. /* Clear generic timer enable bits. */
  2509. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2510. gen_tmr_configuration[timer->index].mode_mask);
  2511. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2512. /*
  2513. * Need to switch back to TSF if it was using TSF2.
  2514. */
  2515. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2516. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2517. (1 << timer->index));
  2518. }
  2519. }
  2520. /* Disable both trigger and thresh interrupt masks */
  2521. REG_CLR_BIT(ah, AR_IMR_S5,
  2522. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2523. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2524. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2525. }
  2526. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2527. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2528. {
  2529. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2530. /* free the hardware generic timer slot */
  2531. timer_table->timers[timer->index] = NULL;
  2532. kfree(timer);
  2533. }
  2534. EXPORT_SYMBOL(ath_gen_timer_free);
  2535. /*
  2536. * Generic Timer Interrupts handling
  2537. */
  2538. void ath_gen_timer_isr(struct ath_hw *ah)
  2539. {
  2540. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2541. struct ath_gen_timer *timer;
  2542. struct ath_common *common = ath9k_hw_common(ah);
  2543. u32 trigger_mask, thresh_mask, index;
  2544. /* get hardware generic timer interrupt status */
  2545. trigger_mask = ah->intr_gen_timer_trigger;
  2546. thresh_mask = ah->intr_gen_timer_thresh;
  2547. trigger_mask &= timer_table->timer_mask.val;
  2548. thresh_mask &= timer_table->timer_mask.val;
  2549. trigger_mask &= ~thresh_mask;
  2550. while (thresh_mask) {
  2551. index = rightmost_index(timer_table, &thresh_mask);
  2552. timer = timer_table->timers[index];
  2553. BUG_ON(!timer);
  2554. ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
  2555. index);
  2556. timer->overflow(timer->arg);
  2557. }
  2558. while (trigger_mask) {
  2559. index = rightmost_index(timer_table, &trigger_mask);
  2560. timer = timer_table->timers[index];
  2561. BUG_ON(!timer);
  2562. ath_dbg(common, HWTIMER,
  2563. "Gen timer[%d] trigger\n", index);
  2564. timer->trigger(timer->arg);
  2565. }
  2566. }
  2567. EXPORT_SYMBOL(ath_gen_timer_isr);
  2568. /********/
  2569. /* HTC */
  2570. /********/
  2571. static struct {
  2572. u32 version;
  2573. const char * name;
  2574. } ath_mac_bb_names[] = {
  2575. /* Devices with external radios */
  2576. { AR_SREV_VERSION_5416_PCI, "5416" },
  2577. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2578. { AR_SREV_VERSION_9100, "9100" },
  2579. { AR_SREV_VERSION_9160, "9160" },
  2580. /* Single-chip solutions */
  2581. { AR_SREV_VERSION_9280, "9280" },
  2582. { AR_SREV_VERSION_9285, "9285" },
  2583. { AR_SREV_VERSION_9287, "9287" },
  2584. { AR_SREV_VERSION_9271, "9271" },
  2585. { AR_SREV_VERSION_9300, "9300" },
  2586. { AR_SREV_VERSION_9330, "9330" },
  2587. { AR_SREV_VERSION_9340, "9340" },
  2588. { AR_SREV_VERSION_9485, "9485" },
  2589. { AR_SREV_VERSION_9462, "9462" },
  2590. { AR_SREV_VERSION_9550, "9550" },
  2591. { AR_SREV_VERSION_9565, "9565" },
  2592. };
  2593. /* For devices with external radios */
  2594. static struct {
  2595. u16 version;
  2596. const char * name;
  2597. } ath_rf_names[] = {
  2598. { 0, "5133" },
  2599. { AR_RAD5133_SREV_MAJOR, "5133" },
  2600. { AR_RAD5122_SREV_MAJOR, "5122" },
  2601. { AR_RAD2133_SREV_MAJOR, "2133" },
  2602. { AR_RAD2122_SREV_MAJOR, "2122" }
  2603. };
  2604. /*
  2605. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2606. */
  2607. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2608. {
  2609. int i;
  2610. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2611. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2612. return ath_mac_bb_names[i].name;
  2613. }
  2614. }
  2615. return "????";
  2616. }
  2617. /*
  2618. * Return the RF name. "????" is returned if the RF is unknown.
  2619. * Used for devices with external radios.
  2620. */
  2621. static const char *ath9k_hw_rf_name(u16 rf_version)
  2622. {
  2623. int i;
  2624. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2625. if (ath_rf_names[i].version == rf_version) {
  2626. return ath_rf_names[i].name;
  2627. }
  2628. }
  2629. return "????";
  2630. }
  2631. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2632. {
  2633. int used;
  2634. /* chipsets >= AR9280 are single-chip */
  2635. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2636. used = snprintf(hw_name, len,
  2637. "Atheros AR%s Rev:%x",
  2638. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2639. ah->hw_version.macRev);
  2640. }
  2641. else {
  2642. used = snprintf(hw_name, len,
  2643. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2644. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2645. ah->hw_version.macRev,
  2646. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2647. AR_RADIO_SREV_MAJOR)),
  2648. ah->hw_version.phyRev);
  2649. }
  2650. hw_name[used] = '\0';
  2651. }
  2652. EXPORT_SYMBOL(ath9k_hw_name);