ar9003_paprd.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. * Copyright (c) 2010-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/export.h>
  17. #include "hw.h"
  18. #include "ar9003_phy.h"
  19. void ar9003_paprd_enable(struct ath_hw *ah, bool val)
  20. {
  21. struct ath9k_channel *chan = ah->curchan;
  22. struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
  23. /*
  24. * 3 bits for modalHeader5G.papdRateMaskHt20
  25. * is used for sub-band disabling of PAPRD.
  26. * 5G band is divided into 3 sub-bands -- upper,
  27. * middle, lower.
  28. * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
  29. * -- disable PAPRD for upper band 5GHz
  30. * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
  31. * -- disable PAPRD for middle band 5GHz
  32. * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
  33. * -- disable PAPRD for lower band 5GHz
  34. */
  35. if (IS_CHAN_5GHZ(chan)) {
  36. if (chan->channel >= UPPER_5G_SUB_BAND_START) {
  37. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  38. & BIT(30))
  39. val = false;
  40. } else if (chan->channel >= MID_5G_SUB_BAND_START) {
  41. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  42. & BIT(29))
  43. val = false;
  44. } else {
  45. if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
  46. & BIT(28))
  47. val = false;
  48. }
  49. }
  50. if (val) {
  51. ah->paprd_table_write_done = true;
  52. ath9k_hw_apply_txpower(ah, chan, false);
  53. }
  54. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
  55. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  56. if (ah->caps.tx_chainmask & BIT(1))
  57. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
  58. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  59. if (ah->caps.tx_chainmask & BIT(2))
  60. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
  61. AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
  62. }
  63. EXPORT_SYMBOL(ar9003_paprd_enable);
  64. static int ar9003_get_training_power_2g(struct ath_hw *ah)
  65. {
  66. struct ath9k_channel *chan = ah->curchan;
  67. unsigned int power, scale, delta;
  68. scale = ar9003_get_paprd_scale_factor(ah, chan);
  69. if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  70. AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  71. power = ah->paprd_target_power + 2;
  72. } else if (AR_SREV_9485(ah)) {
  73. power = 25;
  74. } else {
  75. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
  76. AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
  77. delta = abs((int) ah->paprd_target_power - (int) power);
  78. if (delta > scale)
  79. return -1;
  80. if (delta < 4)
  81. power -= 4 - delta;
  82. }
  83. return power;
  84. }
  85. static int ar9003_get_training_power_5g(struct ath_hw *ah)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. struct ath9k_channel *chan = ah->curchan;
  89. unsigned int power, scale, delta;
  90. scale = ar9003_get_paprd_scale_factor(ah, chan);
  91. if (IS_CHAN_HT40(chan))
  92. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
  93. AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
  94. else
  95. power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
  96. AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
  97. power += scale;
  98. delta = abs((int) ah->paprd_target_power - (int) power);
  99. if (delta > scale)
  100. return -1;
  101. switch (get_streams(ah->txchainmask)) {
  102. case 1:
  103. delta = 6;
  104. break;
  105. case 2:
  106. delta = 4;
  107. break;
  108. case 3:
  109. delta = 2;
  110. break;
  111. default:
  112. delta = 0;
  113. ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
  114. ah->txchainmask);
  115. }
  116. power += delta;
  117. return power;
  118. }
  119. static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
  120. {
  121. struct ath_common *common = ath9k_hw_common(ah);
  122. static const u32 ctrl0[3] = {
  123. AR_PHY_PAPRD_CTRL0_B0,
  124. AR_PHY_PAPRD_CTRL0_B1,
  125. AR_PHY_PAPRD_CTRL0_B2
  126. };
  127. static const u32 ctrl1[3] = {
  128. AR_PHY_PAPRD_CTRL1_B0,
  129. AR_PHY_PAPRD_CTRL1_B1,
  130. AR_PHY_PAPRD_CTRL1_B2
  131. };
  132. int training_power;
  133. int i, val;
  134. u32 am2pm_mask = ah->paprd_ratemask;
  135. if (IS_CHAN_2GHZ(ah->curchan))
  136. training_power = ar9003_get_training_power_2g(ah);
  137. else
  138. training_power = ar9003_get_training_power_5g(ah);
  139. ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
  140. training_power, ah->paprd_target_power);
  141. if (training_power < 0) {
  142. ath_dbg(common, CALIBRATE,
  143. "PAPRD target power delta out of range\n");
  144. return -ERANGE;
  145. }
  146. ah->paprd_training_power = training_power;
  147. if (AR_SREV_9330(ah))
  148. am2pm_mask = 0;
  149. REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
  150. ah->paprd_ratemask);
  151. REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
  152. am2pm_mask);
  153. REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
  154. ah->paprd_ratemask_ht40);
  155. ath_dbg(common, CALIBRATE, "PAPRD HT20 mask: 0x%x, HT40 mask: 0x%x\n",
  156. ah->paprd_ratemask, ah->paprd_ratemask_ht40);
  157. for (i = 0; i < ah->caps.max_txchains; i++) {
  158. REG_RMW_FIELD(ah, ctrl0[i],
  159. AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
  160. REG_RMW_FIELD(ah, ctrl1[i],
  161. AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
  162. REG_RMW_FIELD(ah, ctrl1[i],
  163. AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
  164. REG_RMW_FIELD(ah, ctrl1[i],
  165. AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
  166. REG_RMW_FIELD(ah, ctrl1[i],
  167. AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
  168. REG_RMW_FIELD(ah, ctrl1[i],
  169. AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
  170. REG_RMW_FIELD(ah, ctrl1[i],
  171. AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
  172. REG_RMW_FIELD(ah, ctrl0[i],
  173. AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
  174. }
  175. ar9003_paprd_enable(ah, false);
  176. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  177. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
  178. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  179. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
  180. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  181. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
  182. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  183. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
  184. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  185. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
  186. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  187. AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
  188. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
  189. AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
  190. if (AR_SREV_9485(ah)) {
  191. val = 148;
  192. } else {
  193. if (IS_CHAN_2GHZ(ah->curchan)) {
  194. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  195. val = 145;
  196. else
  197. val = 147;
  198. } else {
  199. val = 137;
  200. }
  201. }
  202. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
  203. AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
  204. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  205. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
  206. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  207. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
  208. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  209. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
  210. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  211. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
  212. if (AR_SREV_9485(ah) ||
  213. AR_SREV_9462(ah) ||
  214. AR_SREV_9565(ah) ||
  215. AR_SREV_9550(ah) ||
  216. AR_SREV_9330(ah) ||
  217. AR_SREV_9340(ah))
  218. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  219. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -3);
  220. else
  221. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  222. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP, -6);
  223. val = -10;
  224. if (IS_CHAN_2GHZ(ah->curchan) && !AR_SREV_9462(ah) && !AR_SREV_9565(ah))
  225. val = -15;
  226. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  227. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
  228. val);
  229. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  230. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
  231. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  232. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
  233. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  234. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
  235. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
  236. AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
  237. 100);
  238. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
  239. AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
  240. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
  241. AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
  242. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
  243. AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
  244. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
  245. AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
  246. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
  247. AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
  248. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
  249. AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
  250. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
  251. AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
  252. REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
  253. AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
  254. return 0;
  255. }
  256. static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
  257. {
  258. u32 *entry = ah->paprd_gain_table_entries;
  259. u8 *index = ah->paprd_gain_table_index;
  260. u32 reg = AR_PHY_TXGAIN_TABLE;
  261. int i;
  262. for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
  263. entry[i] = REG_READ(ah, reg);
  264. index[i] = (entry[i] >> 24) & 0xff;
  265. reg += 4;
  266. }
  267. }
  268. static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
  269. int target_power)
  270. {
  271. int olpc_gain_delta = 0, cl_gain_mod;
  272. int alpha_therm, alpha_volt;
  273. int therm_cal_value, volt_cal_value;
  274. int therm_value, volt_value;
  275. int thermal_gain_corr, voltage_gain_corr;
  276. int desired_scale, desired_gain = 0;
  277. u32 reg_olpc = 0, reg_cl_gain = 0;
  278. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  279. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  280. desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
  281. AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
  282. alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
  283. AR_PHY_TPC_19_ALPHA_THERM);
  284. alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
  285. AR_PHY_TPC_19_ALPHA_VOLT);
  286. therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
  287. AR_PHY_TPC_18_THERM_CAL_VALUE);
  288. volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
  289. AR_PHY_TPC_18_VOLT_CAL_VALUE);
  290. therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
  291. AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
  292. volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
  293. AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
  294. switch (chain) {
  295. case 0:
  296. reg_olpc = AR_PHY_TPC_11_B0;
  297. reg_cl_gain = AR_PHY_CL_TAB_0;
  298. break;
  299. case 1:
  300. reg_olpc = AR_PHY_TPC_11_B1;
  301. reg_cl_gain = AR_PHY_CL_TAB_1;
  302. break;
  303. case 2:
  304. reg_olpc = AR_PHY_TPC_11_B2;
  305. reg_cl_gain = AR_PHY_CL_TAB_2;
  306. break;
  307. default:
  308. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  309. "Invalid chainmask: %d\n", chain);
  310. break;
  311. }
  312. olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
  313. AR_PHY_TPC_11_OLPC_GAIN_DELTA);
  314. cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
  315. AR_PHY_CL_TAB_CL_GAIN_MOD);
  316. if (olpc_gain_delta >= 128)
  317. olpc_gain_delta = olpc_gain_delta - 256;
  318. thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
  319. (256 / 2)) / 256;
  320. voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
  321. (128 / 2)) / 128;
  322. desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
  323. voltage_gain_corr + desired_scale + cl_gain_mod;
  324. return desired_gain;
  325. }
  326. static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
  327. {
  328. int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
  329. int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
  330. u32 *gain_table_entries = ah->paprd_gain_table_entries;
  331. selected_gain_entry = gain_table_entries[gain_index];
  332. txbb1dbgain = selected_gain_entry & 0x7;
  333. txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
  334. txmxrgain = (selected_gain_entry >> 5) & 0xf;
  335. padrvgnA = (selected_gain_entry >> 9) & 0xf;
  336. padrvgnB = (selected_gain_entry >> 13) & 0xf;
  337. padrvgnC = (selected_gain_entry >> 17) & 0xf;
  338. padrvgnD = (selected_gain_entry >> 21) & 0x3;
  339. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  340. AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
  341. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  342. AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
  343. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  344. AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
  345. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  346. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
  347. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  348. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
  349. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  350. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
  351. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  352. AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
  353. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  354. AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
  355. REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
  356. AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
  357. REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
  358. REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
  359. }
  360. static inline int find_expn(int num)
  361. {
  362. return fls(num) - 1;
  363. }
  364. static inline int find_proper_scale(int expn, int N)
  365. {
  366. return (expn > N) ? expn - 10 : 0;
  367. }
  368. #define NUM_BIN 23
  369. static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
  370. {
  371. unsigned int thresh_accum_cnt;
  372. int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
  373. int PA_in[NUM_BIN + 1];
  374. int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
  375. unsigned int B1_abs_max, B2_abs_max;
  376. int max_index, scale_factor;
  377. int y_est[NUM_BIN + 1];
  378. int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
  379. unsigned int x_tilde_abs;
  380. int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
  381. int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
  382. int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
  383. int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
  384. int y5, y3, tmp;
  385. int theta_low_bin = 0;
  386. int i;
  387. /* disregard any bin that contains <= 16 samples */
  388. thresh_accum_cnt = 16;
  389. scale_factor = 5;
  390. max_index = 0;
  391. memset(theta, 0, sizeof(theta));
  392. memset(x_est, 0, sizeof(x_est));
  393. memset(Y, 0, sizeof(Y));
  394. memset(y_est, 0, sizeof(y_est));
  395. memset(x_tilde, 0, sizeof(x_tilde));
  396. for (i = 0; i < NUM_BIN; i++) {
  397. s32 accum_cnt, accum_tx, accum_rx, accum_ang;
  398. /* number of samples */
  399. accum_cnt = data_L[i] & 0xffff;
  400. if (accum_cnt <= thresh_accum_cnt)
  401. continue;
  402. /* sum(tx amplitude) */
  403. accum_tx = ((data_L[i] >> 16) & 0xffff) |
  404. ((data_U[i] & 0x7ff) << 16);
  405. /* sum(rx amplitude distance to lower bin edge) */
  406. accum_rx = ((data_U[i] >> 11) & 0x1f) |
  407. ((data_L[i + 23] & 0xffff) << 5);
  408. /* sum(angles) */
  409. accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
  410. ((data_U[i + 23] & 0x7ff) << 16);
  411. accum_tx <<= scale_factor;
  412. accum_rx <<= scale_factor;
  413. x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
  414. scale_factor;
  415. Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
  416. scale_factor) +
  417. (1 << scale_factor) * max_index + 16;
  418. if (accum_ang >= (1 << 26))
  419. accum_ang -= 1 << 27;
  420. theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
  421. accum_cnt;
  422. max_index++;
  423. }
  424. /*
  425. * Find average theta of first 5 bin and all of those to same value.
  426. * Curve is linear at that range.
  427. */
  428. for (i = 1; i < 6; i++)
  429. theta_low_bin += theta[i];
  430. theta_low_bin = theta_low_bin / 5;
  431. for (i = 1; i < 6; i++)
  432. theta[i] = theta_low_bin;
  433. /* Set values at origin */
  434. theta[0] = theta_low_bin;
  435. for (i = 0; i <= max_index; i++)
  436. theta[i] -= theta_low_bin;
  437. x_est[0] = 0;
  438. Y[0] = 0;
  439. scale_factor = 8;
  440. /* low signal gain */
  441. if (x_est[6] == x_est[3])
  442. return false;
  443. G_fxp =
  444. (((Y[6] - Y[3]) * 1 << scale_factor) +
  445. (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
  446. /* prevent division by zero */
  447. if (G_fxp == 0)
  448. return false;
  449. Y_intercept =
  450. (G_fxp * (x_est[0] - x_est[3]) +
  451. (1 << scale_factor)) / (1 << scale_factor) + Y[3];
  452. for (i = 0; i <= max_index; i++)
  453. y_est[i] = Y[i] - Y_intercept;
  454. for (i = 0; i <= 3; i++) {
  455. y_est[i] = i * 32;
  456. x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
  457. }
  458. if (y_est[max_index] == 0)
  459. return false;
  460. x_est_fxp1_nonlin =
  461. x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
  462. G_fxp) / G_fxp;
  463. order_x_by_y =
  464. (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
  465. if (order_x_by_y == 0)
  466. M = 10;
  467. else if (order_x_by_y == 1)
  468. M = 9;
  469. else
  470. M = 8;
  471. I = (max_index > 15) ? 7 : max_index >> 1;
  472. L = max_index - I;
  473. scale_factor = 8;
  474. sum_y_sqr = 0;
  475. sum_y_quad = 0;
  476. x_tilde_abs = 0;
  477. for (i = 0; i <= L; i++) {
  478. unsigned int y_sqr;
  479. unsigned int y_quad;
  480. unsigned int tmp_abs;
  481. /* prevent division by zero */
  482. if (y_est[i + I] == 0)
  483. return false;
  484. x_est_fxp1_nonlin =
  485. x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
  486. G_fxp) / G_fxp;
  487. x_tilde[i] =
  488. (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
  489. I];
  490. x_tilde[i] =
  491. (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
  492. x_tilde[i] =
  493. (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
  494. y_sqr =
  495. (y_est[i + I] * y_est[i + I] +
  496. (scale_factor * scale_factor)) / (scale_factor *
  497. scale_factor);
  498. tmp_abs = abs(x_tilde[i]);
  499. if (tmp_abs > x_tilde_abs)
  500. x_tilde_abs = tmp_abs;
  501. y_quad = y_sqr * y_sqr;
  502. sum_y_sqr = sum_y_sqr + y_sqr;
  503. sum_y_quad = sum_y_quad + y_quad;
  504. B1_tmp[i] = y_sqr * (L + 1);
  505. B2_tmp[i] = y_sqr;
  506. }
  507. B1_abs_max = 0;
  508. B2_abs_max = 0;
  509. for (i = 0; i <= L; i++) {
  510. int abs_val;
  511. B1_tmp[i] -= sum_y_sqr;
  512. B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
  513. abs_val = abs(B1_tmp[i]);
  514. if (abs_val > B1_abs_max)
  515. B1_abs_max = abs_val;
  516. abs_val = abs(B2_tmp[i]);
  517. if (abs_val > B2_abs_max)
  518. B2_abs_max = abs_val;
  519. }
  520. Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
  521. Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
  522. Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
  523. beta_raw = 0;
  524. alpha_raw = 0;
  525. for (i = 0; i <= L; i++) {
  526. x_tilde[i] = x_tilde[i] / (1 << Q_x);
  527. B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
  528. B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
  529. beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
  530. alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
  531. }
  532. scale_B =
  533. ((sum_y_quad / scale_factor) * (L + 1) -
  534. (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
  535. Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
  536. scale_B = scale_B / (1 << Q_scale_B);
  537. if (scale_B == 0)
  538. return false;
  539. Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
  540. Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
  541. beta_raw = beta_raw / (1 << Q_beta);
  542. alpha_raw = alpha_raw / (1 << Q_alpha);
  543. alpha = (alpha_raw << 10) / scale_B;
  544. beta = (beta_raw << 10) / scale_B;
  545. order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
  546. order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
  547. order1_5x = order_1 / 5;
  548. order2_3x = order_2 / 3;
  549. order1_5x_rem = order_1 - 5 * order1_5x;
  550. order2_3x_rem = order_2 - 3 * order2_3x;
  551. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  552. tmp = i * 32;
  553. y5 = ((beta * tmp) >> 6) >> order1_5x;
  554. y5 = (y5 * tmp) >> order1_5x;
  555. y5 = (y5 * tmp) >> order1_5x;
  556. y5 = (y5 * tmp) >> order1_5x;
  557. y5 = (y5 * tmp) >> order1_5x;
  558. y5 = y5 >> order1_5x_rem;
  559. y3 = (alpha * tmp) >> order2_3x;
  560. y3 = (y3 * tmp) >> order2_3x;
  561. y3 = (y3 * tmp) >> order2_3x;
  562. y3 = y3 >> order2_3x_rem;
  563. PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
  564. if (i >= 2) {
  565. tmp = PA_in[i] - PA_in[i - 1];
  566. if (tmp < 0)
  567. PA_in[i] =
  568. PA_in[i - 1] + (PA_in[i - 1] -
  569. PA_in[i - 2]);
  570. }
  571. PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
  572. }
  573. beta_raw = 0;
  574. alpha_raw = 0;
  575. for (i = 0; i <= L; i++) {
  576. int theta_tilde =
  577. ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
  578. theta_tilde =
  579. ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
  580. theta_tilde =
  581. ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
  582. beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
  583. alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
  584. }
  585. Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
  586. Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
  587. beta_raw = beta_raw / (1 << Q_beta);
  588. alpha_raw = alpha_raw / (1 << Q_alpha);
  589. alpha = (alpha_raw << 10) / scale_B;
  590. beta = (beta_raw << 10) / scale_B;
  591. order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
  592. order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
  593. order1_5x = order_1 / 5;
  594. order2_3x = order_2 / 3;
  595. order1_5x_rem = order_1 - 5 * order1_5x;
  596. order2_3x_rem = order_2 - 3 * order2_3x;
  597. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  598. int PA_angle;
  599. /* pa_table[4] is calculated from PA_angle for i=5 */
  600. if (i == 4)
  601. continue;
  602. tmp = i * 32;
  603. if (beta > 0)
  604. y5 = (((beta * tmp - 64) >> 6) -
  605. (1 << order1_5x)) / (1 << order1_5x);
  606. else
  607. y5 = ((((beta * tmp - 64) >> 6) +
  608. (1 << order1_5x)) / (1 << order1_5x));
  609. y5 = (y5 * tmp) / (1 << order1_5x);
  610. y5 = (y5 * tmp) / (1 << order1_5x);
  611. y5 = (y5 * tmp) / (1 << order1_5x);
  612. y5 = (y5 * tmp) / (1 << order1_5x);
  613. y5 = y5 / (1 << order1_5x_rem);
  614. if (beta > 0)
  615. y3 = (alpha * tmp -
  616. (1 << order2_3x)) / (1 << order2_3x);
  617. else
  618. y3 = (alpha * tmp +
  619. (1 << order2_3x)) / (1 << order2_3x);
  620. y3 = (y3 * tmp) / (1 << order2_3x);
  621. y3 = (y3 * tmp) / (1 << order2_3x);
  622. y3 = y3 / (1 << order2_3x_rem);
  623. if (i < 4) {
  624. PA_angle = 0;
  625. } else {
  626. PA_angle = y5 + y3;
  627. if (PA_angle < -150)
  628. PA_angle = -150;
  629. else if (PA_angle > 150)
  630. PA_angle = 150;
  631. }
  632. pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
  633. if (i == 5) {
  634. PA_angle = (PA_angle + 2) >> 1;
  635. pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
  636. (PA_angle & 0x7ff);
  637. }
  638. }
  639. *gain = G_fxp;
  640. return true;
  641. }
  642. void ar9003_paprd_populate_single_table(struct ath_hw *ah,
  643. struct ath9k_hw_cal_data *caldata,
  644. int chain)
  645. {
  646. u32 *paprd_table_val = caldata->pa_table[chain];
  647. u32 small_signal_gain = caldata->small_signal_gain[chain];
  648. u32 training_power = ah->paprd_training_power;
  649. u32 reg = 0;
  650. int i;
  651. if (chain == 0)
  652. reg = AR_PHY_PAPRD_MEM_TAB_B0;
  653. else if (chain == 1)
  654. reg = AR_PHY_PAPRD_MEM_TAB_B1;
  655. else if (chain == 2)
  656. reg = AR_PHY_PAPRD_MEM_TAB_B2;
  657. for (i = 0; i < PAPRD_TABLE_SZ; i++) {
  658. REG_WRITE(ah, reg, paprd_table_val[i]);
  659. reg = reg + 4;
  660. }
  661. if (chain == 0)
  662. reg = AR_PHY_PA_GAIN123_B0;
  663. else if (chain == 1)
  664. reg = AR_PHY_PA_GAIN123_B1;
  665. else
  666. reg = AR_PHY_PA_GAIN123_B2;
  667. REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
  668. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
  669. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  670. training_power);
  671. if (ah->caps.tx_chainmask & BIT(1))
  672. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
  673. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  674. training_power);
  675. if (ah->caps.tx_chainmask & BIT(2))
  676. /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
  677. REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
  678. AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
  679. training_power);
  680. }
  681. EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
  682. void ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
  683. {
  684. unsigned int i, desired_gain, gain_index;
  685. unsigned int train_power = ah->paprd_training_power;
  686. desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
  687. gain_index = 0;
  688. for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
  689. if (ah->paprd_gain_table_index[i] >= desired_gain)
  690. break;
  691. gain_index++;
  692. }
  693. ar9003_tx_force_gain(ah, gain_index);
  694. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  695. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  696. }
  697. EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
  698. static bool ar9003_paprd_retrain_pa_in(struct ath_hw *ah,
  699. struct ath9k_hw_cal_data *caldata,
  700. int chain)
  701. {
  702. u32 *pa_in = caldata->pa_table[chain];
  703. int capdiv_offset, quick_drop_offset;
  704. int capdiv2g, quick_drop;
  705. int count = 0;
  706. int i;
  707. if (!AR_SREV_9485(ah) && !AR_SREV_9330(ah))
  708. return false;
  709. capdiv2g = REG_READ_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
  710. AR_PHY_65NM_CH0_TXRF3_CAPDIV2G);
  711. quick_drop = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  712. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP);
  713. if (quick_drop)
  714. quick_drop -= 0x40;
  715. for (i = 0; i < NUM_BIN + 1; i++) {
  716. if (pa_in[i] == 1400)
  717. count++;
  718. }
  719. if (AR_SREV_9485(ah)) {
  720. if (pa_in[23] < 800) {
  721. capdiv_offset = (int)((1000 - pa_in[23] + 75) / 150);
  722. capdiv2g += capdiv_offset;
  723. if (capdiv2g > 7) {
  724. capdiv2g = 7;
  725. if (pa_in[23] < 600) {
  726. quick_drop++;
  727. if (quick_drop > 0)
  728. quick_drop = 0;
  729. }
  730. }
  731. } else if (pa_in[23] == 1400) {
  732. quick_drop_offset = min_t(int, count / 3, 2);
  733. quick_drop += quick_drop_offset;
  734. capdiv2g += quick_drop_offset / 2;
  735. if (capdiv2g > 7)
  736. capdiv2g = 7;
  737. if (quick_drop > 0) {
  738. quick_drop = 0;
  739. capdiv2g -= quick_drop_offset;
  740. if (capdiv2g < 0)
  741. capdiv2g = 0;
  742. }
  743. } else {
  744. return false;
  745. }
  746. } else if (AR_SREV_9330(ah)) {
  747. if (pa_in[23] < 1000) {
  748. capdiv_offset = (1000 - pa_in[23]) / 100;
  749. capdiv2g += capdiv_offset;
  750. if (capdiv_offset > 3) {
  751. capdiv_offset = 1;
  752. quick_drop--;
  753. }
  754. capdiv2g += capdiv_offset;
  755. if (capdiv2g > 6)
  756. capdiv2g = 6;
  757. if (quick_drop < -4)
  758. quick_drop = -4;
  759. } else if (pa_in[23] == 1400) {
  760. if (count > 3) {
  761. quick_drop++;
  762. capdiv2g -= count / 4;
  763. if (quick_drop > -2)
  764. quick_drop = -2;
  765. } else {
  766. capdiv2g--;
  767. }
  768. if (capdiv2g < 0)
  769. capdiv2g = 0;
  770. } else {
  771. return false;
  772. }
  773. }
  774. REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
  775. AR_PHY_65NM_CH0_TXRF3_CAPDIV2G, capdiv2g);
  776. REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
  777. AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
  778. quick_drop);
  779. return true;
  780. }
  781. int ar9003_paprd_create_curve(struct ath_hw *ah,
  782. struct ath9k_hw_cal_data *caldata, int chain)
  783. {
  784. u16 *small_signal_gain = &caldata->small_signal_gain[chain];
  785. u32 *pa_table = caldata->pa_table[chain];
  786. u32 *data_L, *data_U;
  787. int i, status = 0;
  788. u32 *buf;
  789. u32 reg;
  790. memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
  791. buf = kmalloc(2 * 48 * sizeof(u32), GFP_KERNEL);
  792. if (!buf)
  793. return -ENOMEM;
  794. data_L = &buf[0];
  795. data_U = &buf[48];
  796. REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
  797. AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
  798. reg = AR_PHY_CHAN_INFO_TAB_0;
  799. for (i = 0; i < 48; i++)
  800. data_L[i] = REG_READ(ah, reg + (i << 2));
  801. REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
  802. AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
  803. for (i = 0; i < 48; i++)
  804. data_U[i] = REG_READ(ah, reg + (i << 2));
  805. if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
  806. status = -2;
  807. if (ar9003_paprd_retrain_pa_in(ah, caldata, chain))
  808. status = -EINPROGRESS;
  809. REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  810. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  811. kfree(buf);
  812. return status;
  813. }
  814. EXPORT_SYMBOL(ar9003_paprd_create_curve);
  815. int ar9003_paprd_init_table(struct ath_hw *ah)
  816. {
  817. int ret;
  818. ret = ar9003_paprd_setup_single_table(ah);
  819. if (ret < 0)
  820. return ret;
  821. ar9003_paprd_get_gain_table(ah);
  822. return 0;
  823. }
  824. EXPORT_SYMBOL(ar9003_paprd_init_table);
  825. bool ar9003_paprd_is_done(struct ath_hw *ah)
  826. {
  827. int paprd_done, agc2_pwr;
  828. paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  829. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
  830. if (AR_SREV_9485(ah))
  831. goto exit;
  832. if (paprd_done == 0x1) {
  833. agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
  834. AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
  835. ath_dbg(ath9k_hw_common(ah), CALIBRATE,
  836. "AGC2_PWR = 0x%x training done = 0x%x\n",
  837. agc2_pwr, paprd_done);
  838. /*
  839. * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
  840. * when the training is completely done, otherwise retraining is
  841. * done to make sure the value is in ideal range
  842. */
  843. if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
  844. paprd_done = 0;
  845. }
  846. exit:
  847. return !!paprd_done;
  848. }
  849. EXPORT_SYMBOL(ar9003_paprd_is_done);
  850. bool ar9003_is_paprd_enabled(struct ath_hw *ah)
  851. {
  852. if ((ah->caps.hw_caps & ATH9K_HW_CAP_PAPRD) && ah->config.enable_paprd)
  853. return true;
  854. return false;
  855. }
  856. EXPORT_SYMBOL(ar9003_is_paprd_enabled);