mrf24j40.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767
  1. /*
  2. * Driver for Microchip MRF24J40 802.15.4 Wireless-PAN Networking controller
  3. *
  4. * Copyright (C) 2012 Alan Ott <alan@signal11.us>
  5. * Signal 11 Software
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/spi/spi.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/module.h>
  24. #include <net/wpan-phy.h>
  25. #include <net/mac802154.h>
  26. /* MRF24J40 Short Address Registers */
  27. #define REG_RXMCR 0x00 /* Receive MAC control */
  28. #define REG_PANIDL 0x01 /* PAN ID (low) */
  29. #define REG_PANIDH 0x02 /* PAN ID (high) */
  30. #define REG_SADRL 0x03 /* Short address (low) */
  31. #define REG_SADRH 0x04 /* Short address (high) */
  32. #define REG_EADR0 0x05 /* Long address (low) (high is EADR7) */
  33. #define REG_TXMCR 0x11 /* Transmit MAC control */
  34. #define REG_PACON0 0x16 /* Power Amplifier Control */
  35. #define REG_PACON1 0x17 /* Power Amplifier Control */
  36. #define REG_PACON2 0x18 /* Power Amplifier Control */
  37. #define REG_TXNCON 0x1B /* Transmit Normal FIFO Control */
  38. #define REG_TXSTAT 0x24 /* TX MAC Status Register */
  39. #define REG_SOFTRST 0x2A /* Soft Reset */
  40. #define REG_TXSTBL 0x2E /* TX Stabilization */
  41. #define REG_INTSTAT 0x31 /* Interrupt Status */
  42. #define REG_INTCON 0x32 /* Interrupt Control */
  43. #define REG_RFCTL 0x36 /* RF Control Mode Register */
  44. #define REG_BBREG1 0x39 /* Baseband Registers */
  45. #define REG_BBREG2 0x3A /* */
  46. #define REG_BBREG6 0x3E /* */
  47. #define REG_CCAEDTH 0x3F /* Energy Detection Threshold */
  48. /* MRF24J40 Long Address Registers */
  49. #define REG_RFCON0 0x200 /* RF Control Registers */
  50. #define REG_RFCON1 0x201
  51. #define REG_RFCON2 0x202
  52. #define REG_RFCON3 0x203
  53. #define REG_RFCON5 0x205
  54. #define REG_RFCON6 0x206
  55. #define REG_RFCON7 0x207
  56. #define REG_RFCON8 0x208
  57. #define REG_RSSI 0x210
  58. #define REG_SLPCON0 0x211 /* Sleep Clock Control Registers */
  59. #define REG_SLPCON1 0x220
  60. #define REG_WAKETIMEL 0x222 /* Wake-up Time Match Value Low */
  61. #define REG_WAKETIMEH 0x223 /* Wake-up Time Match Value High */
  62. #define REG_RX_FIFO 0x300 /* Receive FIFO */
  63. /* Device configuration: Only channels 11-26 on page 0 are supported. */
  64. #define MRF24J40_CHAN_MIN 11
  65. #define MRF24J40_CHAN_MAX 26
  66. #define CHANNEL_MASK (((u32)1 << (MRF24J40_CHAN_MAX + 1)) \
  67. - ((u32)1 << MRF24J40_CHAN_MIN))
  68. #define TX_FIFO_SIZE 128 /* From datasheet */
  69. #define RX_FIFO_SIZE 144 /* From datasheet */
  70. #define SET_CHANNEL_DELAY_US 192 /* From datasheet */
  71. /* Device Private Data */
  72. struct mrf24j40 {
  73. struct spi_device *spi;
  74. struct ieee802154_dev *dev;
  75. struct mutex buffer_mutex; /* only used to protect buf */
  76. struct completion tx_complete;
  77. struct work_struct irqwork;
  78. u8 *buf; /* 3 bytes. Used for SPI single-register transfers. */
  79. };
  80. /* Read/Write SPI Commands for Short and Long Address registers. */
  81. #define MRF24J40_READSHORT(reg) ((reg) << 1)
  82. #define MRF24J40_WRITESHORT(reg) ((reg) << 1 | 1)
  83. #define MRF24J40_READLONG(reg) (1 << 15 | (reg) << 5)
  84. #define MRF24J40_WRITELONG(reg) (1 << 15 | (reg) << 5 | 1 << 4)
  85. /* Maximum speed to run the device at. TODO: Get the real max value from
  86. * someone at Microchip since it isn't in the datasheet. */
  87. #define MAX_SPI_SPEED_HZ 1000000
  88. #define printdev(X) (&X->spi->dev)
  89. static int write_short_reg(struct mrf24j40 *devrec, u8 reg, u8 value)
  90. {
  91. int ret;
  92. struct spi_message msg;
  93. struct spi_transfer xfer = {
  94. .len = 2,
  95. .tx_buf = devrec->buf,
  96. .rx_buf = devrec->buf,
  97. };
  98. spi_message_init(&msg);
  99. spi_message_add_tail(&xfer, &msg);
  100. mutex_lock(&devrec->buffer_mutex);
  101. devrec->buf[0] = MRF24J40_WRITESHORT(reg);
  102. devrec->buf[1] = value;
  103. ret = spi_sync(devrec->spi, &msg);
  104. if (ret)
  105. dev_err(printdev(devrec),
  106. "SPI write Failed for short register 0x%hhx\n", reg);
  107. mutex_unlock(&devrec->buffer_mutex);
  108. return ret;
  109. }
  110. static int read_short_reg(struct mrf24j40 *devrec, u8 reg, u8 *val)
  111. {
  112. int ret = -1;
  113. struct spi_message msg;
  114. struct spi_transfer xfer = {
  115. .len = 2,
  116. .tx_buf = devrec->buf,
  117. .rx_buf = devrec->buf,
  118. };
  119. spi_message_init(&msg);
  120. spi_message_add_tail(&xfer, &msg);
  121. mutex_lock(&devrec->buffer_mutex);
  122. devrec->buf[0] = MRF24J40_READSHORT(reg);
  123. devrec->buf[1] = 0;
  124. ret = spi_sync(devrec->spi, &msg);
  125. if (ret)
  126. dev_err(printdev(devrec),
  127. "SPI read Failed for short register 0x%hhx\n", reg);
  128. else
  129. *val = devrec->buf[1];
  130. mutex_unlock(&devrec->buffer_mutex);
  131. return ret;
  132. }
  133. static int read_long_reg(struct mrf24j40 *devrec, u16 reg, u8 *value)
  134. {
  135. int ret;
  136. u16 cmd;
  137. struct spi_message msg;
  138. struct spi_transfer xfer = {
  139. .len = 3,
  140. .tx_buf = devrec->buf,
  141. .rx_buf = devrec->buf,
  142. };
  143. spi_message_init(&msg);
  144. spi_message_add_tail(&xfer, &msg);
  145. cmd = MRF24J40_READLONG(reg);
  146. mutex_lock(&devrec->buffer_mutex);
  147. devrec->buf[0] = cmd >> 8 & 0xff;
  148. devrec->buf[1] = cmd & 0xff;
  149. devrec->buf[2] = 0;
  150. ret = spi_sync(devrec->spi, &msg);
  151. if (ret)
  152. dev_err(printdev(devrec),
  153. "SPI read Failed for long register 0x%hx\n", reg);
  154. else
  155. *value = devrec->buf[2];
  156. mutex_unlock(&devrec->buffer_mutex);
  157. return ret;
  158. }
  159. static int write_long_reg(struct mrf24j40 *devrec, u16 reg, u8 val)
  160. {
  161. int ret;
  162. u16 cmd;
  163. struct spi_message msg;
  164. struct spi_transfer xfer = {
  165. .len = 3,
  166. .tx_buf = devrec->buf,
  167. .rx_buf = devrec->buf,
  168. };
  169. spi_message_init(&msg);
  170. spi_message_add_tail(&xfer, &msg);
  171. cmd = MRF24J40_WRITELONG(reg);
  172. mutex_lock(&devrec->buffer_mutex);
  173. devrec->buf[0] = cmd >> 8 & 0xff;
  174. devrec->buf[1] = cmd & 0xff;
  175. devrec->buf[2] = val;
  176. ret = spi_sync(devrec->spi, &msg);
  177. if (ret)
  178. dev_err(printdev(devrec),
  179. "SPI write Failed for long register 0x%hx\n", reg);
  180. mutex_unlock(&devrec->buffer_mutex);
  181. return ret;
  182. }
  183. /* This function relies on an undocumented write method. Once a write command
  184. and address is set, as many bytes of data as desired can be clocked into
  185. the device. The datasheet only shows setting one byte at a time. */
  186. static int write_tx_buf(struct mrf24j40 *devrec, u16 reg,
  187. const u8 *data, size_t length)
  188. {
  189. int ret;
  190. u16 cmd;
  191. u8 lengths[2];
  192. struct spi_message msg;
  193. struct spi_transfer addr_xfer = {
  194. .len = 2,
  195. .tx_buf = devrec->buf,
  196. };
  197. struct spi_transfer lengths_xfer = {
  198. .len = 2,
  199. .tx_buf = &lengths, /* TODO: Is DMA really required for SPI? */
  200. };
  201. struct spi_transfer data_xfer = {
  202. .len = length,
  203. .tx_buf = data,
  204. };
  205. /* Range check the length. 2 bytes are used for the length fields.*/
  206. if (length > TX_FIFO_SIZE-2) {
  207. dev_err(printdev(devrec), "write_tx_buf() was passed too large a buffer. Performing short write.\n");
  208. length = TX_FIFO_SIZE-2;
  209. }
  210. spi_message_init(&msg);
  211. spi_message_add_tail(&addr_xfer, &msg);
  212. spi_message_add_tail(&lengths_xfer, &msg);
  213. spi_message_add_tail(&data_xfer, &msg);
  214. cmd = MRF24J40_WRITELONG(reg);
  215. mutex_lock(&devrec->buffer_mutex);
  216. devrec->buf[0] = cmd >> 8 & 0xff;
  217. devrec->buf[1] = cmd & 0xff;
  218. lengths[0] = 0x0; /* Header Length. Set to 0 for now. TODO */
  219. lengths[1] = length; /* Total length */
  220. ret = spi_sync(devrec->spi, &msg);
  221. if (ret)
  222. dev_err(printdev(devrec), "SPI write Failed for TX buf\n");
  223. mutex_unlock(&devrec->buffer_mutex);
  224. return ret;
  225. }
  226. static int mrf24j40_read_rx_buf(struct mrf24j40 *devrec,
  227. u8 *data, u8 *len, u8 *lqi)
  228. {
  229. u8 rx_len;
  230. u8 addr[2];
  231. u8 lqi_rssi[2];
  232. u16 cmd;
  233. int ret;
  234. struct spi_message msg;
  235. struct spi_transfer addr_xfer = {
  236. .len = 2,
  237. .tx_buf = &addr,
  238. };
  239. struct spi_transfer data_xfer = {
  240. .len = 0x0, /* set below */
  241. .rx_buf = data,
  242. };
  243. struct spi_transfer status_xfer = {
  244. .len = 2,
  245. .rx_buf = &lqi_rssi,
  246. };
  247. /* Get the length of the data in the RX FIFO. The length in this
  248. * register exclues the 1-byte length field at the beginning. */
  249. ret = read_long_reg(devrec, REG_RX_FIFO, &rx_len);
  250. if (ret)
  251. goto out;
  252. /* Range check the RX FIFO length, accounting for the one-byte
  253. * length field at the begining. */
  254. if (rx_len > RX_FIFO_SIZE-1) {
  255. dev_err(printdev(devrec), "Invalid length read from device. Performing short read.\n");
  256. rx_len = RX_FIFO_SIZE-1;
  257. }
  258. if (rx_len > *len) {
  259. /* Passed in buffer wasn't big enough. Should never happen. */
  260. dev_err(printdev(devrec), "Buffer not big enough. Performing short read\n");
  261. rx_len = *len;
  262. }
  263. /* Set up the commands to read the data. */
  264. cmd = MRF24J40_READLONG(REG_RX_FIFO+1);
  265. addr[0] = cmd >> 8 & 0xff;
  266. addr[1] = cmd & 0xff;
  267. data_xfer.len = rx_len;
  268. spi_message_init(&msg);
  269. spi_message_add_tail(&addr_xfer, &msg);
  270. spi_message_add_tail(&data_xfer, &msg);
  271. spi_message_add_tail(&status_xfer, &msg);
  272. ret = spi_sync(devrec->spi, &msg);
  273. if (ret) {
  274. dev_err(printdev(devrec), "SPI RX Buffer Read Failed.\n");
  275. goto out;
  276. }
  277. *lqi = lqi_rssi[0];
  278. *len = rx_len;
  279. #ifdef DEBUG
  280. print_hex_dump(KERN_DEBUG, "mrf24j40 rx: ",
  281. DUMP_PREFIX_OFFSET, 16, 1, data, *len, 0);
  282. printk(KERN_DEBUG "mrf24j40 rx: lqi: %02hhx rssi: %02hhx\n",
  283. lqi_rssi[0], lqi_rssi[1]);
  284. #endif
  285. out:
  286. return ret;
  287. }
  288. static int mrf24j40_tx(struct ieee802154_dev *dev, struct sk_buff *skb)
  289. {
  290. struct mrf24j40 *devrec = dev->priv;
  291. u8 val;
  292. int ret = 0;
  293. dev_dbg(printdev(devrec), "tx packet of %d bytes\n", skb->len);
  294. ret = write_tx_buf(devrec, 0x000, skb->data, skb->len);
  295. if (ret)
  296. goto err;
  297. /* Set TXNTRIG bit of TXNCON to send packet */
  298. ret = read_short_reg(devrec, REG_TXNCON, &val);
  299. if (ret)
  300. goto err;
  301. val |= 0x1;
  302. val &= ~0x4;
  303. write_short_reg(devrec, REG_TXNCON, val);
  304. INIT_COMPLETION(devrec->tx_complete);
  305. /* Wait for the device to send the TX complete interrupt. */
  306. ret = wait_for_completion_interruptible_timeout(
  307. &devrec->tx_complete,
  308. 5 * HZ);
  309. if (ret == -ERESTARTSYS)
  310. goto err;
  311. if (ret == 0) {
  312. ret = -ETIMEDOUT;
  313. goto err;
  314. }
  315. /* Check for send error from the device. */
  316. ret = read_short_reg(devrec, REG_TXSTAT, &val);
  317. if (ret)
  318. goto err;
  319. if (val & 0x1) {
  320. dev_err(printdev(devrec), "Error Sending. Retry count exceeded\n");
  321. ret = -ECOMM; /* TODO: Better error code ? */
  322. } else
  323. dev_dbg(printdev(devrec), "Packet Sent\n");
  324. err:
  325. return ret;
  326. }
  327. static int mrf24j40_ed(struct ieee802154_dev *dev, u8 *level)
  328. {
  329. /* TODO: */
  330. printk(KERN_WARNING "mrf24j40: ed not implemented\n");
  331. *level = 0;
  332. return 0;
  333. }
  334. static int mrf24j40_start(struct ieee802154_dev *dev)
  335. {
  336. struct mrf24j40 *devrec = dev->priv;
  337. u8 val;
  338. int ret;
  339. dev_dbg(printdev(devrec), "start\n");
  340. ret = read_short_reg(devrec, REG_INTCON, &val);
  341. if (ret)
  342. return ret;
  343. val &= ~(0x1|0x8); /* Clear TXNIE and RXIE. Enable interrupts */
  344. write_short_reg(devrec, REG_INTCON, val);
  345. return 0;
  346. }
  347. static void mrf24j40_stop(struct ieee802154_dev *dev)
  348. {
  349. struct mrf24j40 *devrec = dev->priv;
  350. u8 val;
  351. int ret;
  352. dev_dbg(printdev(devrec), "stop\n");
  353. ret = read_short_reg(devrec, REG_INTCON, &val);
  354. if (ret)
  355. return;
  356. val |= 0x1|0x8; /* Set TXNIE and RXIE. Disable Interrupts */
  357. write_short_reg(devrec, REG_INTCON, val);
  358. return;
  359. }
  360. static int mrf24j40_set_channel(struct ieee802154_dev *dev,
  361. int page, int channel)
  362. {
  363. struct mrf24j40 *devrec = dev->priv;
  364. u8 val;
  365. int ret;
  366. dev_dbg(printdev(devrec), "Set Channel %d\n", channel);
  367. WARN_ON(page != 0);
  368. WARN_ON(channel < MRF24J40_CHAN_MIN);
  369. WARN_ON(channel > MRF24J40_CHAN_MAX);
  370. /* Set Channel TODO */
  371. val = (channel-11) << 4 | 0x03;
  372. write_long_reg(devrec, REG_RFCON0, val);
  373. /* RF Reset */
  374. ret = read_short_reg(devrec, REG_RFCTL, &val);
  375. if (ret)
  376. return ret;
  377. val |= 0x04;
  378. write_short_reg(devrec, REG_RFCTL, val);
  379. val &= ~0x04;
  380. write_short_reg(devrec, REG_RFCTL, val);
  381. udelay(SET_CHANNEL_DELAY_US); /* per datasheet */
  382. return 0;
  383. }
  384. static int mrf24j40_filter(struct ieee802154_dev *dev,
  385. struct ieee802154_hw_addr_filt *filt,
  386. unsigned long changed)
  387. {
  388. struct mrf24j40 *devrec = dev->priv;
  389. dev_dbg(printdev(devrec), "filter\n");
  390. if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
  391. /* Short Addr */
  392. u8 addrh, addrl;
  393. addrh = filt->short_addr >> 8 & 0xff;
  394. addrl = filt->short_addr & 0xff;
  395. write_short_reg(devrec, REG_SADRH, addrh);
  396. write_short_reg(devrec, REG_SADRL, addrl);
  397. dev_dbg(printdev(devrec),
  398. "Set short addr to %04hx\n", filt->short_addr);
  399. }
  400. if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
  401. /* Device Address */
  402. int i;
  403. for (i = 0; i < 8; i++)
  404. write_short_reg(devrec, REG_EADR0+i,
  405. filt->ieee_addr[i]);
  406. #ifdef DEBUG
  407. printk(KERN_DEBUG "Set long addr to: ");
  408. for (i = 0; i < 8; i++)
  409. printk("%02hhx ", filt->ieee_addr[i]);
  410. printk(KERN_DEBUG "\n");
  411. #endif
  412. }
  413. if (changed & IEEE802515_AFILT_PANID_CHANGED) {
  414. /* PAN ID */
  415. u8 panidl, panidh;
  416. panidh = filt->pan_id >> 8 & 0xff;
  417. panidl = filt->pan_id & 0xff;
  418. write_short_reg(devrec, REG_PANIDH, panidh);
  419. write_short_reg(devrec, REG_PANIDL, panidl);
  420. dev_dbg(printdev(devrec), "Set PANID to %04hx\n", filt->pan_id);
  421. }
  422. if (changed & IEEE802515_AFILT_PANC_CHANGED) {
  423. /* Pan Coordinator */
  424. u8 val;
  425. int ret;
  426. ret = read_short_reg(devrec, REG_RXMCR, &val);
  427. if (ret)
  428. return ret;
  429. if (filt->pan_coord)
  430. val |= 0x8;
  431. else
  432. val &= ~0x8;
  433. write_short_reg(devrec, REG_RXMCR, val);
  434. /* REG_SLOTTED is maintained as default (unslotted/CSMA-CA).
  435. * REG_ORDER is maintained as default (no beacon/superframe).
  436. */
  437. dev_dbg(printdev(devrec), "Set Pan Coord to %s\n",
  438. filt->pan_coord ? "on" : "off");
  439. }
  440. return 0;
  441. }
  442. static int mrf24j40_handle_rx(struct mrf24j40 *devrec)
  443. {
  444. u8 len = RX_FIFO_SIZE;
  445. u8 lqi = 0;
  446. u8 val;
  447. int ret = 0;
  448. struct sk_buff *skb;
  449. /* Turn off reception of packets off the air. This prevents the
  450. * device from overwriting the buffer while we're reading it. */
  451. ret = read_short_reg(devrec, REG_BBREG1, &val);
  452. if (ret)
  453. goto out;
  454. val |= 4; /* SET RXDECINV */
  455. write_short_reg(devrec, REG_BBREG1, val);
  456. skb = alloc_skb(len, GFP_KERNEL);
  457. if (!skb) {
  458. ret = -ENOMEM;
  459. goto out;
  460. }
  461. ret = mrf24j40_read_rx_buf(devrec, skb_put(skb, len), &len, &lqi);
  462. if (ret < 0) {
  463. dev_err(printdev(devrec), "Failure reading RX FIFO\n");
  464. kfree_skb(skb);
  465. ret = -EINVAL;
  466. goto out;
  467. }
  468. /* Cut off the checksum */
  469. skb_trim(skb, len-2);
  470. /* TODO: Other drivers call ieee20154_rx_irqsafe() here (eg: cc2040,
  471. * also from a workqueue). I think irqsafe is not necessary here.
  472. * Can someone confirm? */
  473. ieee802154_rx_irqsafe(devrec->dev, skb, lqi);
  474. dev_dbg(printdev(devrec), "RX Handled\n");
  475. out:
  476. /* Turn back on reception of packets off the air. */
  477. ret = read_short_reg(devrec, REG_BBREG1, &val);
  478. if (ret)
  479. return ret;
  480. val &= ~0x4; /* Clear RXDECINV */
  481. write_short_reg(devrec, REG_BBREG1, val);
  482. return ret;
  483. }
  484. static struct ieee802154_ops mrf24j40_ops = {
  485. .owner = THIS_MODULE,
  486. .xmit = mrf24j40_tx,
  487. .ed = mrf24j40_ed,
  488. .start = mrf24j40_start,
  489. .stop = mrf24j40_stop,
  490. .set_channel = mrf24j40_set_channel,
  491. .set_hw_addr_filt = mrf24j40_filter,
  492. };
  493. static irqreturn_t mrf24j40_isr(int irq, void *data)
  494. {
  495. struct mrf24j40 *devrec = data;
  496. disable_irq_nosync(irq);
  497. schedule_work(&devrec->irqwork);
  498. return IRQ_HANDLED;
  499. }
  500. static void mrf24j40_isrwork(struct work_struct *work)
  501. {
  502. struct mrf24j40 *devrec = container_of(work, struct mrf24j40, irqwork);
  503. u8 intstat;
  504. int ret;
  505. /* Read the interrupt status */
  506. ret = read_short_reg(devrec, REG_INTSTAT, &intstat);
  507. if (ret)
  508. goto out;
  509. /* Check for TX complete */
  510. if (intstat & 0x1)
  511. complete(&devrec->tx_complete);
  512. /* Check for Rx */
  513. if (intstat & 0x8)
  514. mrf24j40_handle_rx(devrec);
  515. out:
  516. enable_irq(devrec->spi->irq);
  517. }
  518. static int mrf24j40_probe(struct spi_device *spi)
  519. {
  520. int ret = -ENOMEM;
  521. u8 val;
  522. struct mrf24j40 *devrec;
  523. printk(KERN_INFO "mrf24j40: probe(). IRQ: %d\n", spi->irq);
  524. devrec = kzalloc(sizeof(struct mrf24j40), GFP_KERNEL);
  525. if (!devrec)
  526. goto err_devrec;
  527. devrec->buf = kzalloc(3, GFP_KERNEL);
  528. if (!devrec->buf)
  529. goto err_buf;
  530. spi->mode = SPI_MODE_0; /* TODO: Is this appropriate for right here? */
  531. if (spi->max_speed_hz > MAX_SPI_SPEED_HZ)
  532. spi->max_speed_hz = MAX_SPI_SPEED_HZ;
  533. mutex_init(&devrec->buffer_mutex);
  534. init_completion(&devrec->tx_complete);
  535. INIT_WORK(&devrec->irqwork, mrf24j40_isrwork);
  536. devrec->spi = spi;
  537. dev_set_drvdata(&spi->dev, devrec);
  538. /* Register with the 802154 subsystem */
  539. devrec->dev = ieee802154_alloc_device(0, &mrf24j40_ops);
  540. if (!devrec->dev)
  541. goto err_alloc_dev;
  542. devrec->dev->priv = devrec;
  543. devrec->dev->parent = &devrec->spi->dev;
  544. devrec->dev->phy->channels_supported[0] = CHANNEL_MASK;
  545. devrec->dev->flags = IEEE802154_HW_OMIT_CKSUM|IEEE802154_HW_AACK;
  546. dev_dbg(printdev(devrec), "registered mrf24j40\n");
  547. ret = ieee802154_register_device(devrec->dev);
  548. if (ret)
  549. goto err_register_device;
  550. /* Initialize the device.
  551. From datasheet section 3.2: Initialization. */
  552. write_short_reg(devrec, REG_SOFTRST, 0x07);
  553. write_short_reg(devrec, REG_PACON2, 0x98);
  554. write_short_reg(devrec, REG_TXSTBL, 0x95);
  555. write_long_reg(devrec, REG_RFCON0, 0x03);
  556. write_long_reg(devrec, REG_RFCON1, 0x01);
  557. write_long_reg(devrec, REG_RFCON2, 0x80);
  558. write_long_reg(devrec, REG_RFCON6, 0x90);
  559. write_long_reg(devrec, REG_RFCON7, 0x80);
  560. write_long_reg(devrec, REG_RFCON8, 0x10);
  561. write_long_reg(devrec, REG_SLPCON1, 0x21);
  562. write_short_reg(devrec, REG_BBREG2, 0x80);
  563. write_short_reg(devrec, REG_CCAEDTH, 0x60);
  564. write_short_reg(devrec, REG_BBREG6, 0x40);
  565. write_short_reg(devrec, REG_RFCTL, 0x04);
  566. write_short_reg(devrec, REG_RFCTL, 0x0);
  567. udelay(192);
  568. /* Set RX Mode. RXMCR<1:0>: 0x0 normal, 0x1 promisc, 0x2 error */
  569. ret = read_short_reg(devrec, REG_RXMCR, &val);
  570. if (ret)
  571. goto err_read_reg;
  572. val &= ~0x3; /* Clear RX mode (normal) */
  573. write_short_reg(devrec, REG_RXMCR, val);
  574. ret = request_irq(spi->irq,
  575. mrf24j40_isr,
  576. IRQF_TRIGGER_FALLING,
  577. dev_name(&spi->dev),
  578. devrec);
  579. if (ret) {
  580. dev_err(printdev(devrec), "Unable to get IRQ");
  581. goto err_irq;
  582. }
  583. return 0;
  584. err_irq:
  585. err_read_reg:
  586. ieee802154_unregister_device(devrec->dev);
  587. err_register_device:
  588. ieee802154_free_device(devrec->dev);
  589. err_alloc_dev:
  590. kfree(devrec->buf);
  591. err_buf:
  592. kfree(devrec);
  593. err_devrec:
  594. return ret;
  595. }
  596. static int mrf24j40_remove(struct spi_device *spi)
  597. {
  598. struct mrf24j40 *devrec = dev_get_drvdata(&spi->dev);
  599. dev_dbg(printdev(devrec), "remove\n");
  600. free_irq(spi->irq, devrec);
  601. flush_work(&devrec->irqwork); /* TODO: Is this the right call? */
  602. ieee802154_unregister_device(devrec->dev);
  603. ieee802154_free_device(devrec->dev);
  604. /* TODO: Will ieee802154_free_device() wait until ->xmit() is
  605. * complete? */
  606. /* Clean up the SPI stuff. */
  607. dev_set_drvdata(&spi->dev, NULL);
  608. kfree(devrec->buf);
  609. kfree(devrec);
  610. return 0;
  611. }
  612. static const struct spi_device_id mrf24j40_ids[] = {
  613. { "mrf24j40", 0 },
  614. { "mrf24j40ma", 0 },
  615. { },
  616. };
  617. MODULE_DEVICE_TABLE(spi, mrf24j40_ids);
  618. static struct spi_driver mrf24j40_driver = {
  619. .driver = {
  620. .name = "mrf24j40",
  621. .bus = &spi_bus_type,
  622. .owner = THIS_MODULE,
  623. },
  624. .id_table = mrf24j40_ids,
  625. .probe = mrf24j40_probe,
  626. .remove = mrf24j40_remove,
  627. };
  628. static int __init mrf24j40_init(void)
  629. {
  630. return spi_register_driver(&mrf24j40_driver);
  631. }
  632. static void __exit mrf24j40_exit(void)
  633. {
  634. spi_unregister_driver(&mrf24j40_driver);
  635. }
  636. module_init(mrf24j40_init);
  637. module_exit(mrf24j40_exit);
  638. MODULE_LICENSE("GPL");
  639. MODULE_AUTHOR("Alan Ott");
  640. MODULE_DESCRIPTION("MRF24J40 SPI 802.15.4 Controller Driver");