12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103 |
- /****************************************************************************
- * Driver for Solarflare Solarstorm network controllers and boards
- * Copyright 2005-2006 Fen Systems Ltd.
- * Copyright 2005-2010 Solarflare Communications Inc.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 as published
- * by the Free Software Foundation, incorporated herein by reference.
- */
- #include <linux/pci.h>
- #include <linux/tcp.h>
- #include <linux/ip.h>
- #include <linux/in.h>
- #include <linux/ipv6.h>
- #include <linux/slab.h>
- #include <net/ipv6.h>
- #include <linux/if_ether.h>
- #include <linux/highmem.h>
- #include "net_driver.h"
- #include "efx.h"
- #include "nic.h"
- #include "workarounds.h"
- static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
- struct efx_tx_buffer *buffer,
- unsigned int *pkts_compl,
- unsigned int *bytes_compl)
- {
- if (buffer->unmap_len) {
- struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
- dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
- buffer->unmap_len);
- if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
- dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
- DMA_TO_DEVICE);
- else
- dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
- DMA_TO_DEVICE);
- buffer->unmap_len = 0;
- }
- if (buffer->flags & EFX_TX_BUF_SKB) {
- (*pkts_compl)++;
- (*bytes_compl) += buffer->skb->len;
- dev_kfree_skb_any((struct sk_buff *) buffer->skb);
- netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
- "TX queue %d transmission id %x complete\n",
- tx_queue->queue, tx_queue->read_count);
- } else if (buffer->flags & EFX_TX_BUF_HEAP) {
- kfree(buffer->heap_buf);
- }
- buffer->len = 0;
- buffer->flags = 0;
- }
- static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
- struct sk_buff *skb);
- static inline unsigned
- efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
- {
- /* Depending on the NIC revision, we can use descriptor
- * lengths up to 8K or 8K-1. However, since PCI Express
- * devices must split read requests at 4K boundaries, there is
- * little benefit from using descriptors that cross those
- * boundaries and we keep things simple by not doing so.
- */
- unsigned len = (~dma_addr & (EFX_PAGE_SIZE - 1)) + 1;
- /* Work around hardware bug for unaligned buffers. */
- if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf))
- len = min_t(unsigned, len, 512 - (dma_addr & 0xf));
- return len;
- }
- unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
- {
- /* Header and payload descriptor for each output segment, plus
- * one for every input fragment boundary within a segment
- */
- unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
- /* Possibly one more per segment for the alignment workaround */
- if (EFX_WORKAROUND_5391(efx))
- max_descs += EFX_TSO_MAX_SEGS;
- /* Possibly more for PCIe page boundaries within input fragments */
- if (PAGE_SIZE > EFX_PAGE_SIZE)
- max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
- DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
- return max_descs;
- }
- /* Get partner of a TX queue, seen as part of the same net core queue */
- static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
- {
- if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
- return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
- else
- return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
- }
- static void efx_tx_maybe_stop_queue(struct efx_tx_queue *txq1)
- {
- /* We need to consider both queues that the net core sees as one */
- struct efx_tx_queue *txq2 = efx_tx_queue_partner(txq1);
- struct efx_nic *efx = txq1->efx;
- unsigned int fill_level;
- fill_level = max(txq1->insert_count - txq1->old_read_count,
- txq2->insert_count - txq2->old_read_count);
- if (likely(fill_level < efx->txq_stop_thresh))
- return;
- /* We used the stale old_read_count above, which gives us a
- * pessimistic estimate of the fill level (which may even
- * validly be >= efx->txq_entries). Now try again using
- * read_count (more likely to be a cache miss).
- *
- * If we read read_count and then conditionally stop the
- * queue, it is possible for the completion path to race with
- * us and complete all outstanding descriptors in the middle,
- * after which there will be no more completions to wake it.
- * Therefore we stop the queue first, then read read_count
- * (with a memory barrier to ensure the ordering), then
- * restart the queue if the fill level turns out to be low
- * enough.
- */
- netif_tx_stop_queue(txq1->core_txq);
- smp_mb();
- txq1->old_read_count = ACCESS_ONCE(txq1->read_count);
- txq2->old_read_count = ACCESS_ONCE(txq2->read_count);
- fill_level = max(txq1->insert_count - txq1->old_read_count,
- txq2->insert_count - txq2->old_read_count);
- EFX_BUG_ON_PARANOID(fill_level >= efx->txq_entries);
- if (likely(fill_level < efx->txq_stop_thresh)) {
- smp_mb();
- if (likely(!efx->loopback_selftest))
- netif_tx_start_queue(txq1->core_txq);
- }
- }
- /*
- * Add a socket buffer to a TX queue
- *
- * This maps all fragments of a socket buffer for DMA and adds them to
- * the TX queue. The queue's insert pointer will be incremented by
- * the number of fragments in the socket buffer.
- *
- * If any DMA mapping fails, any mapped fragments will be unmapped,
- * the queue's insert pointer will be restored to its original value.
- *
- * This function is split out from efx_hard_start_xmit to allow the
- * loopback test to direct packets via specific TX queues.
- *
- * Returns NETDEV_TX_OK.
- * You must hold netif_tx_lock() to call this function.
- */
- netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
- {
- struct efx_nic *efx = tx_queue->efx;
- struct device *dma_dev = &efx->pci_dev->dev;
- struct efx_tx_buffer *buffer;
- skb_frag_t *fragment;
- unsigned int len, unmap_len = 0, insert_ptr;
- dma_addr_t dma_addr, unmap_addr = 0;
- unsigned int dma_len;
- unsigned short dma_flags;
- int i = 0;
- EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
- if (skb_shinfo(skb)->gso_size)
- return efx_enqueue_skb_tso(tx_queue, skb);
- /* Get size of the initial fragment */
- len = skb_headlen(skb);
- /* Pad if necessary */
- if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) {
- EFX_BUG_ON_PARANOID(skb->data_len);
- len = 32 + 1;
- if (skb_pad(skb, len - skb->len))
- return NETDEV_TX_OK;
- }
- /* Map for DMA. Use dma_map_single rather than dma_map_page
- * since this is more efficient on machines with sparse
- * memory.
- */
- dma_flags = EFX_TX_BUF_MAP_SINGLE;
- dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
- /* Process all fragments */
- while (1) {
- if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
- goto dma_err;
- /* Store fields for marking in the per-fragment final
- * descriptor */
- unmap_len = len;
- unmap_addr = dma_addr;
- /* Add to TX queue, splitting across DMA boundaries */
- do {
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
- buffer = &tx_queue->buffer[insert_ptr];
- EFX_BUG_ON_PARANOID(buffer->flags);
- EFX_BUG_ON_PARANOID(buffer->len);
- EFX_BUG_ON_PARANOID(buffer->unmap_len);
- dma_len = efx_max_tx_len(efx, dma_addr);
- if (likely(dma_len >= len))
- dma_len = len;
- /* Fill out per descriptor fields */
- buffer->len = dma_len;
- buffer->dma_addr = dma_addr;
- buffer->flags = EFX_TX_BUF_CONT;
- len -= dma_len;
- dma_addr += dma_len;
- ++tx_queue->insert_count;
- } while (len);
- /* Transfer ownership of the unmapping to the final buffer */
- buffer->flags = EFX_TX_BUF_CONT | dma_flags;
- buffer->unmap_len = unmap_len;
- unmap_len = 0;
- /* Get address and size of next fragment */
- if (i >= skb_shinfo(skb)->nr_frags)
- break;
- fragment = &skb_shinfo(skb)->frags[i];
- len = skb_frag_size(fragment);
- i++;
- /* Map for DMA */
- dma_flags = 0;
- dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
- DMA_TO_DEVICE);
- }
- /* Transfer ownership of the skb to the final buffer */
- buffer->skb = skb;
- buffer->flags = EFX_TX_BUF_SKB | dma_flags;
- netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
- /* Pass off to hardware */
- efx_nic_push_buffers(tx_queue);
- efx_tx_maybe_stop_queue(tx_queue);
- return NETDEV_TX_OK;
- dma_err:
- netif_err(efx, tx_err, efx->net_dev,
- " TX queue %d could not map skb with %d bytes %d "
- "fragments for DMA\n", tx_queue->queue, skb->len,
- skb_shinfo(skb)->nr_frags + 1);
- /* Mark the packet as transmitted, and free the SKB ourselves */
- dev_kfree_skb_any(skb);
- /* Work backwards until we hit the original insert pointer value */
- while (tx_queue->insert_count != tx_queue->write_count) {
- unsigned int pkts_compl = 0, bytes_compl = 0;
- --tx_queue->insert_count;
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
- buffer = &tx_queue->buffer[insert_ptr];
- efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
- }
- /* Free the fragment we were mid-way through pushing */
- if (unmap_len) {
- if (dma_flags & EFX_TX_BUF_MAP_SINGLE)
- dma_unmap_single(dma_dev, unmap_addr, unmap_len,
- DMA_TO_DEVICE);
- else
- dma_unmap_page(dma_dev, unmap_addr, unmap_len,
- DMA_TO_DEVICE);
- }
- return NETDEV_TX_OK;
- }
- /* Remove packets from the TX queue
- *
- * This removes packets from the TX queue, up to and including the
- * specified index.
- */
- static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
- unsigned int index,
- unsigned int *pkts_compl,
- unsigned int *bytes_compl)
- {
- struct efx_nic *efx = tx_queue->efx;
- unsigned int stop_index, read_ptr;
- stop_index = (index + 1) & tx_queue->ptr_mask;
- read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
- while (read_ptr != stop_index) {
- struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
- if (unlikely(buffer->len == 0)) {
- netif_err(efx, tx_err, efx->net_dev,
- "TX queue %d spurious TX completion id %x\n",
- tx_queue->queue, read_ptr);
- efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
- return;
- }
- efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
- ++tx_queue->read_count;
- read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
- }
- }
- /* Initiate a packet transmission. We use one channel per CPU
- * (sharing when we have more CPUs than channels). On Falcon, the TX
- * completion events will be directed back to the CPU that transmitted
- * the packet, which should be cache-efficient.
- *
- * Context: non-blocking.
- * Note that returning anything other than NETDEV_TX_OK will cause the
- * OS to free the skb.
- */
- netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb,
- struct net_device *net_dev)
- {
- struct efx_nic *efx = netdev_priv(net_dev);
- struct efx_tx_queue *tx_queue;
- unsigned index, type;
- EFX_WARN_ON_PARANOID(!netif_device_present(net_dev));
- /* PTP "event" packet */
- if (unlikely(efx_xmit_with_hwtstamp(skb)) &&
- unlikely(efx_ptp_is_ptp_tx(efx, skb))) {
- return efx_ptp_tx(efx, skb);
- }
- index = skb_get_queue_mapping(skb);
- type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0;
- if (index >= efx->n_tx_channels) {
- index -= efx->n_tx_channels;
- type |= EFX_TXQ_TYPE_HIGHPRI;
- }
- tx_queue = efx_get_tx_queue(efx, index, type);
- return efx_enqueue_skb(tx_queue, skb);
- }
- void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue)
- {
- struct efx_nic *efx = tx_queue->efx;
- /* Must be inverse of queue lookup in efx_hard_start_xmit() */
- tx_queue->core_txq =
- netdev_get_tx_queue(efx->net_dev,
- tx_queue->queue / EFX_TXQ_TYPES +
- ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
- efx->n_tx_channels : 0));
- }
- int efx_setup_tc(struct net_device *net_dev, u8 num_tc)
- {
- struct efx_nic *efx = netdev_priv(net_dev);
- struct efx_channel *channel;
- struct efx_tx_queue *tx_queue;
- unsigned tc;
- int rc;
- if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC)
- return -EINVAL;
- if (num_tc == net_dev->num_tc)
- return 0;
- for (tc = 0; tc < num_tc; tc++) {
- net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels;
- net_dev->tc_to_txq[tc].count = efx->n_tx_channels;
- }
- if (num_tc > net_dev->num_tc) {
- /* Initialise high-priority queues as necessary */
- efx_for_each_channel(channel, efx) {
- efx_for_each_possible_channel_tx_queue(tx_queue,
- channel) {
- if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI))
- continue;
- if (!tx_queue->buffer) {
- rc = efx_probe_tx_queue(tx_queue);
- if (rc)
- return rc;
- }
- if (!tx_queue->initialised)
- efx_init_tx_queue(tx_queue);
- efx_init_tx_queue_core_txq(tx_queue);
- }
- }
- } else {
- /* Reduce number of classes before number of queues */
- net_dev->num_tc = num_tc;
- }
- rc = netif_set_real_num_tx_queues(net_dev,
- max_t(int, num_tc, 1) *
- efx->n_tx_channels);
- if (rc)
- return rc;
- /* Do not destroy high-priority queues when they become
- * unused. We would have to flush them first, and it is
- * fairly difficult to flush a subset of TX queues. Leave
- * it to efx_fini_channels().
- */
- net_dev->num_tc = num_tc;
- return 0;
- }
- void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
- {
- unsigned fill_level;
- struct efx_nic *efx = tx_queue->efx;
- struct efx_tx_queue *txq2;
- unsigned int pkts_compl = 0, bytes_compl = 0;
- EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask);
- efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
- netdev_tx_completed_queue(tx_queue->core_txq, pkts_compl, bytes_compl);
- /* See if we need to restart the netif queue. This memory
- * barrier ensures that we write read_count (inside
- * efx_dequeue_buffers()) before reading the queue status.
- */
- smp_mb();
- if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
- likely(efx->port_enabled) &&
- likely(netif_device_present(efx->net_dev))) {
- txq2 = efx_tx_queue_partner(tx_queue);
- fill_level = max(tx_queue->insert_count - tx_queue->read_count,
- txq2->insert_count - txq2->read_count);
- if (fill_level <= efx->txq_wake_thresh)
- netif_tx_wake_queue(tx_queue->core_txq);
- }
- /* Check whether the hardware queue is now empty */
- if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
- tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count);
- if (tx_queue->read_count == tx_queue->old_write_count) {
- smp_mb();
- tx_queue->empty_read_count =
- tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
- }
- }
- }
- /* Size of page-based TSO header buffers. Larger blocks must be
- * allocated from the heap.
- */
- #define TSOH_STD_SIZE 128
- #define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
- /* At most half the descriptors in the queue at any time will refer to
- * a TSO header buffer, since they must always be followed by a
- * payload descriptor referring to an skb.
- */
- static unsigned int efx_tsoh_page_count(struct efx_tx_queue *tx_queue)
- {
- return DIV_ROUND_UP(tx_queue->ptr_mask + 1, 2 * TSOH_PER_PAGE);
- }
- int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
- {
- struct efx_nic *efx = tx_queue->efx;
- unsigned int entries;
- int rc;
- /* Create the smallest power-of-two aligned ring */
- entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
- EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
- tx_queue->ptr_mask = entries - 1;
- netif_dbg(efx, probe, efx->net_dev,
- "creating TX queue %d size %#x mask %#x\n",
- tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
- /* Allocate software ring */
- tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
- GFP_KERNEL);
- if (!tx_queue->buffer)
- return -ENOMEM;
- if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) {
- tx_queue->tsoh_page =
- kcalloc(efx_tsoh_page_count(tx_queue),
- sizeof(tx_queue->tsoh_page[0]), GFP_KERNEL);
- if (!tx_queue->tsoh_page) {
- rc = -ENOMEM;
- goto fail1;
- }
- }
- /* Allocate hardware ring */
- rc = efx_nic_probe_tx(tx_queue);
- if (rc)
- goto fail2;
- return 0;
- fail2:
- kfree(tx_queue->tsoh_page);
- tx_queue->tsoh_page = NULL;
- fail1:
- kfree(tx_queue->buffer);
- tx_queue->buffer = NULL;
- return rc;
- }
- void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
- {
- netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
- "initialising TX queue %d\n", tx_queue->queue);
- tx_queue->insert_count = 0;
- tx_queue->write_count = 0;
- tx_queue->old_write_count = 0;
- tx_queue->read_count = 0;
- tx_queue->old_read_count = 0;
- tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
- /* Set up TX descriptor ring */
- efx_nic_init_tx(tx_queue);
- tx_queue->initialised = true;
- }
- void efx_release_tx_buffers(struct efx_tx_queue *tx_queue)
- {
- struct efx_tx_buffer *buffer;
- if (!tx_queue->buffer)
- return;
- /* Free any buffers left in the ring */
- while (tx_queue->read_count != tx_queue->write_count) {
- unsigned int pkts_compl = 0, bytes_compl = 0;
- buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
- efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
- ++tx_queue->read_count;
- }
- netdev_tx_reset_queue(tx_queue->core_txq);
- }
- void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
- {
- if (!tx_queue->initialised)
- return;
- netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
- "shutting down TX queue %d\n", tx_queue->queue);
- tx_queue->initialised = false;
- /* Flush TX queue, remove descriptor ring */
- efx_nic_fini_tx(tx_queue);
- efx_release_tx_buffers(tx_queue);
- }
- void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
- {
- int i;
- if (!tx_queue->buffer)
- return;
- netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
- "destroying TX queue %d\n", tx_queue->queue);
- efx_nic_remove_tx(tx_queue);
- if (tx_queue->tsoh_page) {
- for (i = 0; i < efx_tsoh_page_count(tx_queue); i++)
- efx_nic_free_buffer(tx_queue->efx,
- &tx_queue->tsoh_page[i]);
- kfree(tx_queue->tsoh_page);
- tx_queue->tsoh_page = NULL;
- }
- kfree(tx_queue->buffer);
- tx_queue->buffer = NULL;
- }
- /* Efx TCP segmentation acceleration.
- *
- * Why? Because by doing it here in the driver we can go significantly
- * faster than the GSO.
- *
- * Requires TX checksum offload support.
- */
- /* Number of bytes inserted at the start of a TSO header buffer,
- * similar to NET_IP_ALIGN.
- */
- #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
- #define TSOH_OFFSET 0
- #else
- #define TSOH_OFFSET NET_IP_ALIGN
- #endif
- #define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2))
- /**
- * struct tso_state - TSO state for an SKB
- * @out_len: Remaining length in current segment
- * @seqnum: Current sequence number
- * @ipv4_id: Current IPv4 ID, host endian
- * @packet_space: Remaining space in current packet
- * @dma_addr: DMA address of current position
- * @in_len: Remaining length in current SKB fragment
- * @unmap_len: Length of SKB fragment
- * @unmap_addr: DMA address of SKB fragment
- * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
- * @protocol: Network protocol (after any VLAN header)
- * @ip_off: Offset of IP header
- * @tcp_off: Offset of TCP header
- * @header_len: Number of bytes of header
- * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
- *
- * The state used during segmentation. It is put into this data structure
- * just to make it easy to pass into inline functions.
- */
- struct tso_state {
- /* Output position */
- unsigned out_len;
- unsigned seqnum;
- unsigned ipv4_id;
- unsigned packet_space;
- /* Input position */
- dma_addr_t dma_addr;
- unsigned in_len;
- unsigned unmap_len;
- dma_addr_t unmap_addr;
- unsigned short dma_flags;
- __be16 protocol;
- unsigned int ip_off;
- unsigned int tcp_off;
- unsigned header_len;
- unsigned int ip_base_len;
- };
- /*
- * Verify that our various assumptions about sk_buffs and the conditions
- * under which TSO will be attempted hold true. Return the protocol number.
- */
- static __be16 efx_tso_check_protocol(struct sk_buff *skb)
- {
- __be16 protocol = skb->protocol;
- EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
- protocol);
- if (protocol == htons(ETH_P_8021Q)) {
- struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
- protocol = veh->h_vlan_encapsulated_proto;
- }
- if (protocol == htons(ETH_P_IP)) {
- EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
- } else {
- EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
- EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
- }
- EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
- + (tcp_hdr(skb)->doff << 2u)) >
- skb_headlen(skb));
- return protocol;
- }
- static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
- struct efx_tx_buffer *buffer, unsigned int len)
- {
- u8 *result;
- EFX_BUG_ON_PARANOID(buffer->len);
- EFX_BUG_ON_PARANOID(buffer->flags);
- EFX_BUG_ON_PARANOID(buffer->unmap_len);
- if (likely(len <= TSOH_STD_SIZE - TSOH_OFFSET)) {
- unsigned index =
- (tx_queue->insert_count & tx_queue->ptr_mask) / 2;
- struct efx_buffer *page_buf =
- &tx_queue->tsoh_page[index / TSOH_PER_PAGE];
- unsigned offset =
- TSOH_STD_SIZE * (index % TSOH_PER_PAGE) + TSOH_OFFSET;
- if (unlikely(!page_buf->addr) &&
- efx_nic_alloc_buffer(tx_queue->efx, page_buf, PAGE_SIZE))
- return NULL;
- result = (u8 *)page_buf->addr + offset;
- buffer->dma_addr = page_buf->dma_addr + offset;
- buffer->flags = EFX_TX_BUF_CONT;
- } else {
- tx_queue->tso_long_headers++;
- buffer->heap_buf = kmalloc(TSOH_OFFSET + len, GFP_ATOMIC);
- if (unlikely(!buffer->heap_buf))
- return NULL;
- result = (u8 *)buffer->heap_buf + TSOH_OFFSET;
- buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
- }
- buffer->len = len;
- return result;
- }
- /**
- * efx_tx_queue_insert - push descriptors onto the TX queue
- * @tx_queue: Efx TX queue
- * @dma_addr: DMA address of fragment
- * @len: Length of fragment
- * @final_buffer: The final buffer inserted into the queue
- *
- * Push descriptors onto the TX queue.
- */
- static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
- dma_addr_t dma_addr, unsigned len,
- struct efx_tx_buffer **final_buffer)
- {
- struct efx_tx_buffer *buffer;
- struct efx_nic *efx = tx_queue->efx;
- unsigned dma_len, insert_ptr;
- EFX_BUG_ON_PARANOID(len <= 0);
- while (1) {
- insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask;
- buffer = &tx_queue->buffer[insert_ptr];
- ++tx_queue->insert_count;
- EFX_BUG_ON_PARANOID(tx_queue->insert_count -
- tx_queue->read_count >=
- efx->txq_entries);
- EFX_BUG_ON_PARANOID(buffer->len);
- EFX_BUG_ON_PARANOID(buffer->unmap_len);
- EFX_BUG_ON_PARANOID(buffer->flags);
- buffer->dma_addr = dma_addr;
- dma_len = efx_max_tx_len(efx, dma_addr);
- /* If there is enough space to send then do so */
- if (dma_len >= len)
- break;
- buffer->len = dma_len;
- buffer->flags = EFX_TX_BUF_CONT;
- dma_addr += dma_len;
- len -= dma_len;
- }
- EFX_BUG_ON_PARANOID(!len);
- buffer->len = len;
- *final_buffer = buffer;
- }
- /*
- * Put a TSO header into the TX queue.
- *
- * This is special-cased because we know that it is small enough to fit in
- * a single fragment, and we know it doesn't cross a page boundary. It
- * also allows us to not worry about end-of-packet etc.
- */
- static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
- struct efx_tx_buffer *buffer, u8 *header)
- {
- if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
- buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
- header, buffer->len,
- DMA_TO_DEVICE);
- if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
- buffer->dma_addr))) {
- kfree(buffer->heap_buf);
- buffer->len = 0;
- buffer->flags = 0;
- return -ENOMEM;
- }
- buffer->unmap_len = buffer->len;
- buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
- }
- ++tx_queue->insert_count;
- return 0;
- }
- /* Remove buffers put into a tx_queue. None of the buffers must have
- * an skb attached.
- */
- static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
- {
- struct efx_tx_buffer *buffer;
- /* Work backwards until we hit the original insert pointer value */
- while (tx_queue->insert_count != tx_queue->write_count) {
- --tx_queue->insert_count;
- buffer = &tx_queue->buffer[tx_queue->insert_count &
- tx_queue->ptr_mask];
- efx_dequeue_buffer(tx_queue, buffer, NULL, NULL);
- }
- }
- /* Parse the SKB header and initialise state. */
- static void tso_start(struct tso_state *st, const struct sk_buff *skb)
- {
- st->ip_off = skb_network_header(skb) - skb->data;
- st->tcp_off = skb_transport_header(skb) - skb->data;
- st->header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
- if (st->protocol == htons(ETH_P_IP)) {
- st->ip_base_len = st->header_len - st->ip_off;
- st->ipv4_id = ntohs(ip_hdr(skb)->id);
- } else {
- st->ip_base_len = st->header_len - st->tcp_off;
- st->ipv4_id = 0;
- }
- st->seqnum = ntohl(tcp_hdr(skb)->seq);
- EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
- EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
- EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);
- st->out_len = skb->len - st->header_len;
- st->unmap_len = 0;
- st->dma_flags = 0;
- }
- static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
- skb_frag_t *frag)
- {
- st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
- skb_frag_size(frag), DMA_TO_DEVICE);
- if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
- st->dma_flags = 0;
- st->unmap_len = skb_frag_size(frag);
- st->in_len = skb_frag_size(frag);
- st->dma_addr = st->unmap_addr;
- return 0;
- }
- return -ENOMEM;
- }
- static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
- const struct sk_buff *skb)
- {
- int hl = st->header_len;
- int len = skb_headlen(skb) - hl;
- st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
- len, DMA_TO_DEVICE);
- if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
- st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
- st->unmap_len = len;
- st->in_len = len;
- st->dma_addr = st->unmap_addr;
- return 0;
- }
- return -ENOMEM;
- }
- /**
- * tso_fill_packet_with_fragment - form descriptors for the current fragment
- * @tx_queue: Efx TX queue
- * @skb: Socket buffer
- * @st: TSO state
- *
- * Form descriptors for the current fragment, until we reach the end
- * of fragment or end-of-packet.
- */
- static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
- const struct sk_buff *skb,
- struct tso_state *st)
- {
- struct efx_tx_buffer *buffer;
- int n;
- if (st->in_len == 0)
- return;
- if (st->packet_space == 0)
- return;
- EFX_BUG_ON_PARANOID(st->in_len <= 0);
- EFX_BUG_ON_PARANOID(st->packet_space <= 0);
- n = min(st->in_len, st->packet_space);
- st->packet_space -= n;
- st->out_len -= n;
- st->in_len -= n;
- efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);
- if (st->out_len == 0) {
- /* Transfer ownership of the skb */
- buffer->skb = skb;
- buffer->flags = EFX_TX_BUF_SKB;
- } else if (st->packet_space != 0) {
- buffer->flags = EFX_TX_BUF_CONT;
- }
- if (st->in_len == 0) {
- /* Transfer ownership of the DMA mapping */
- buffer->unmap_len = st->unmap_len;
- buffer->flags |= st->dma_flags;
- st->unmap_len = 0;
- }
- st->dma_addr += n;
- }
- /**
- * tso_start_new_packet - generate a new header and prepare for the new packet
- * @tx_queue: Efx TX queue
- * @skb: Socket buffer
- * @st: TSO state
- *
- * Generate a new header and prepare for the new packet. Return 0 on
- * success, or -%ENOMEM if failed to alloc header.
- */
- static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
- const struct sk_buff *skb,
- struct tso_state *st)
- {
- struct efx_tx_buffer *buffer =
- &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
- struct tcphdr *tsoh_th;
- unsigned ip_length;
- u8 *header;
- int rc;
- /* Allocate and insert a DMA-mapped header buffer. */
- header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
- if (!header)
- return -ENOMEM;
- tsoh_th = (struct tcphdr *)(header + st->tcp_off);
- /* Copy and update the headers. */
- memcpy(header, skb->data, st->header_len);
- tsoh_th->seq = htonl(st->seqnum);
- st->seqnum += skb_shinfo(skb)->gso_size;
- if (st->out_len > skb_shinfo(skb)->gso_size) {
- /* This packet will not finish the TSO burst. */
- st->packet_space = skb_shinfo(skb)->gso_size;
- tsoh_th->fin = 0;
- tsoh_th->psh = 0;
- } else {
- /* This packet will be the last in the TSO burst. */
- st->packet_space = st->out_len;
- tsoh_th->fin = tcp_hdr(skb)->fin;
- tsoh_th->psh = tcp_hdr(skb)->psh;
- }
- ip_length = st->ip_base_len + st->packet_space;
- if (st->protocol == htons(ETH_P_IP)) {
- struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
- tsoh_iph->tot_len = htons(ip_length);
- /* Linux leaves suitable gaps in the IP ID space for us to fill. */
- tsoh_iph->id = htons(st->ipv4_id);
- st->ipv4_id++;
- } else {
- struct ipv6hdr *tsoh_iph =
- (struct ipv6hdr *)(header + st->ip_off);
- tsoh_iph->payload_len = htons(ip_length);
- }
- rc = efx_tso_put_header(tx_queue, buffer, header);
- if (unlikely(rc))
- return rc;
- ++tx_queue->tso_packets;
- return 0;
- }
- /**
- * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
- * @tx_queue: Efx TX queue
- * @skb: Socket buffer
- *
- * Context: You must hold netif_tx_lock() to call this function.
- *
- * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
- * @skb was not enqueued. In all cases @skb is consumed. Return
- * %NETDEV_TX_OK.
- */
- static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
- struct sk_buff *skb)
- {
- struct efx_nic *efx = tx_queue->efx;
- int frag_i, rc;
- struct tso_state state;
- /* Find the packet protocol and sanity-check it */
- state.protocol = efx_tso_check_protocol(skb);
- EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);
- tso_start(&state, skb);
- /* Assume that skb header area contains exactly the headers, and
- * all payload is in the frag list.
- */
- if (skb_headlen(skb) == state.header_len) {
- /* Grab the first payload fragment. */
- EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
- frag_i = 0;
- rc = tso_get_fragment(&state, efx,
- skb_shinfo(skb)->frags + frag_i);
- if (rc)
- goto mem_err;
- } else {
- rc = tso_get_head_fragment(&state, efx, skb);
- if (rc)
- goto mem_err;
- frag_i = -1;
- }
- if (tso_start_new_packet(tx_queue, skb, &state) < 0)
- goto mem_err;
- while (1) {
- tso_fill_packet_with_fragment(tx_queue, skb, &state);
- /* Move onto the next fragment? */
- if (state.in_len == 0) {
- if (++frag_i >= skb_shinfo(skb)->nr_frags)
- /* End of payload reached. */
- break;
- rc = tso_get_fragment(&state, efx,
- skb_shinfo(skb)->frags + frag_i);
- if (rc)
- goto mem_err;
- }
- /* Start at new packet? */
- if (state.packet_space == 0 &&
- tso_start_new_packet(tx_queue, skb, &state) < 0)
- goto mem_err;
- }
- netdev_tx_sent_queue(tx_queue->core_txq, skb->len);
- /* Pass off to hardware */
- efx_nic_push_buffers(tx_queue);
- efx_tx_maybe_stop_queue(tx_queue);
- tx_queue->tso_bursts++;
- return NETDEV_TX_OK;
- mem_err:
- netif_err(efx, tx_err, efx->net_dev,
- "Out of memory for TSO headers, or DMA mapping error\n");
- dev_kfree_skb_any(skb);
- /* Free the DMA mapping we were in the process of writing out */
- if (state.unmap_len) {
- if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
- dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
- state.unmap_len, DMA_TO_DEVICE);
- else
- dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
- state.unmap_len, DMA_TO_DEVICE);
- }
- efx_enqueue_unwind(tx_queue);
- return NETDEV_TX_OK;
- }
|