nic.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/pci.h>
  14. #include <linux/module.h>
  15. #include <linux/seq_file.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "regs.h"
  21. #include "io.h"
  22. #include "workarounds.h"
  23. /**************************************************************************
  24. *
  25. * Configurable values
  26. *
  27. **************************************************************************
  28. */
  29. /* This is set to 16 for a good reason. In summary, if larger than
  30. * 16, the descriptor cache holds more than a default socket
  31. * buffer's worth of packets (for UDP we can only have at most one
  32. * socket buffer's worth outstanding). This combined with the fact
  33. * that we only get 1 TX event per descriptor cache means the NIC
  34. * goes idle.
  35. */
  36. #define TX_DC_ENTRIES 16
  37. #define TX_DC_ENTRIES_ORDER 1
  38. #define RX_DC_ENTRIES 64
  39. #define RX_DC_ENTRIES_ORDER 3
  40. /* If EFX_MAX_INT_ERRORS internal errors occur within
  41. * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  42. * disable it.
  43. */
  44. #define EFX_INT_ERROR_EXPIRE 3600
  45. #define EFX_MAX_INT_ERRORS 5
  46. /* Depth of RX flush request fifo */
  47. #define EFX_RX_FLUSH_COUNT 4
  48. /* Driver generated events */
  49. #define _EFX_CHANNEL_MAGIC_TEST 0x000101
  50. #define _EFX_CHANNEL_MAGIC_FILL 0x000102
  51. #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
  52. #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
  53. #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
  54. #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
  55. #define EFX_CHANNEL_MAGIC_TEST(_channel) \
  56. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  57. #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
  58. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
  59. efx_rx_queue_index(_rx_queue))
  60. #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
  61. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
  62. efx_rx_queue_index(_rx_queue))
  63. #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
  64. _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
  65. (_tx_queue)->queue)
  66. static void efx_magic_event(struct efx_channel *channel, u32 magic);
  67. /**************************************************************************
  68. *
  69. * Solarstorm hardware access
  70. *
  71. **************************************************************************/
  72. static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  73. unsigned int index)
  74. {
  75. efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  76. value, index);
  77. }
  78. /* Read the current event from the event queue */
  79. static inline efx_qword_t *efx_event(struct efx_channel *channel,
  80. unsigned int index)
  81. {
  82. return ((efx_qword_t *) (channel->eventq.addr)) +
  83. (index & channel->eventq_mask);
  84. }
  85. /* See if an event is present
  86. *
  87. * We check both the high and low dword of the event for all ones. We
  88. * wrote all ones when we cleared the event, and no valid event can
  89. * have all ones in either its high or low dwords. This approach is
  90. * robust against reordering.
  91. *
  92. * Note that using a single 64-bit comparison is incorrect; even
  93. * though the CPU read will be atomic, the DMA write may not be.
  94. */
  95. static inline int efx_event_present(efx_qword_t *event)
  96. {
  97. return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
  98. EFX_DWORD_IS_ALL_ONES(event->dword[1]));
  99. }
  100. static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  101. const efx_oword_t *mask)
  102. {
  103. return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
  104. ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
  105. }
  106. int efx_nic_test_registers(struct efx_nic *efx,
  107. const struct efx_nic_register_test *regs,
  108. size_t n_regs)
  109. {
  110. unsigned address = 0, i, j;
  111. efx_oword_t mask, imask, original, reg, buf;
  112. for (i = 0; i < n_regs; ++i) {
  113. address = regs[i].address;
  114. mask = imask = regs[i].mask;
  115. EFX_INVERT_OWORD(imask);
  116. efx_reado(efx, &original, address);
  117. /* bit sweep on and off */
  118. for (j = 0; j < 128; j++) {
  119. if (!EFX_EXTRACT_OWORD32(mask, j, j))
  120. continue;
  121. /* Test this testable bit can be set in isolation */
  122. EFX_AND_OWORD(reg, original, mask);
  123. EFX_SET_OWORD32(reg, j, j, 1);
  124. efx_writeo(efx, &reg, address);
  125. efx_reado(efx, &buf, address);
  126. if (efx_masked_compare_oword(&reg, &buf, &mask))
  127. goto fail;
  128. /* Test this testable bit can be cleared in isolation */
  129. EFX_OR_OWORD(reg, original, mask);
  130. EFX_SET_OWORD32(reg, j, j, 0);
  131. efx_writeo(efx, &reg, address);
  132. efx_reado(efx, &buf, address);
  133. if (efx_masked_compare_oword(&reg, &buf, &mask))
  134. goto fail;
  135. }
  136. efx_writeo(efx, &original, address);
  137. }
  138. return 0;
  139. fail:
  140. netif_err(efx, hw, efx->net_dev,
  141. "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
  142. " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
  143. EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
  144. return -EIO;
  145. }
  146. /**************************************************************************
  147. *
  148. * Special buffer handling
  149. * Special buffers are used for event queues and the TX and RX
  150. * descriptor rings.
  151. *
  152. *************************************************************************/
  153. /*
  154. * Initialise a special buffer
  155. *
  156. * This will define a buffer (previously allocated via
  157. * efx_alloc_special_buffer()) in the buffer table, allowing
  158. * it to be used for event queues, descriptor rings etc.
  159. */
  160. static void
  161. efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  162. {
  163. efx_qword_t buf_desc;
  164. unsigned int index;
  165. dma_addr_t dma_addr;
  166. int i;
  167. EFX_BUG_ON_PARANOID(!buffer->addr);
  168. /* Write buffer descriptors to NIC */
  169. for (i = 0; i < buffer->entries; i++) {
  170. index = buffer->index + i;
  171. dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
  172. netif_dbg(efx, probe, efx->net_dev,
  173. "mapping special buffer %d at %llx\n",
  174. index, (unsigned long long)dma_addr);
  175. EFX_POPULATE_QWORD_3(buf_desc,
  176. FRF_AZ_BUF_ADR_REGION, 0,
  177. FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
  178. FRF_AZ_BUF_OWNER_ID_FBUF, 0);
  179. efx_write_buf_tbl(efx, &buf_desc, index);
  180. }
  181. }
  182. /* Unmaps a buffer and clears the buffer table entries */
  183. static void
  184. efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  185. {
  186. efx_oword_t buf_tbl_upd;
  187. unsigned int start = buffer->index;
  188. unsigned int end = (buffer->index + buffer->entries - 1);
  189. if (!buffer->entries)
  190. return;
  191. netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
  192. buffer->index, buffer->index + buffer->entries - 1);
  193. EFX_POPULATE_OWORD_4(buf_tbl_upd,
  194. FRF_AZ_BUF_UPD_CMD, 0,
  195. FRF_AZ_BUF_CLR_CMD, 1,
  196. FRF_AZ_BUF_CLR_END_ID, end,
  197. FRF_AZ_BUF_CLR_START_ID, start);
  198. efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
  199. }
  200. /*
  201. * Allocate a new special buffer
  202. *
  203. * This allocates memory for a new buffer, clears it and allocates a
  204. * new buffer ID range. It does not write into the buffer table.
  205. *
  206. * This call will allocate 4KB buffers, since 8KB buffers can't be
  207. * used for event queues and descriptor rings.
  208. */
  209. static int efx_alloc_special_buffer(struct efx_nic *efx,
  210. struct efx_special_buffer *buffer,
  211. unsigned int len)
  212. {
  213. len = ALIGN(len, EFX_BUF_SIZE);
  214. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  215. &buffer->dma_addr, GFP_KERNEL);
  216. if (!buffer->addr)
  217. return -ENOMEM;
  218. buffer->len = len;
  219. buffer->entries = len / EFX_BUF_SIZE;
  220. BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
  221. /* Select new buffer ID */
  222. buffer->index = efx->next_buffer_table;
  223. efx->next_buffer_table += buffer->entries;
  224. #ifdef CONFIG_SFC_SRIOV
  225. BUG_ON(efx_sriov_enabled(efx) &&
  226. efx->vf_buftbl_base < efx->next_buffer_table);
  227. #endif
  228. netif_dbg(efx, probe, efx->net_dev,
  229. "allocating special buffers %d-%d at %llx+%x "
  230. "(virt %p phys %llx)\n", buffer->index,
  231. buffer->index + buffer->entries - 1,
  232. (u64)buffer->dma_addr, len,
  233. buffer->addr, (u64)virt_to_phys(buffer->addr));
  234. return 0;
  235. }
  236. static void
  237. efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
  238. {
  239. if (!buffer->addr)
  240. return;
  241. netif_dbg(efx, hw, efx->net_dev,
  242. "deallocating special buffers %d-%d at %llx+%x "
  243. "(virt %p phys %llx)\n", buffer->index,
  244. buffer->index + buffer->entries - 1,
  245. (u64)buffer->dma_addr, buffer->len,
  246. buffer->addr, (u64)virt_to_phys(buffer->addr));
  247. dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
  248. buffer->dma_addr);
  249. buffer->addr = NULL;
  250. buffer->entries = 0;
  251. }
  252. /**************************************************************************
  253. *
  254. * Generic buffer handling
  255. * These buffers are used for interrupt status, MAC stats, etc.
  256. *
  257. **************************************************************************/
  258. int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
  259. unsigned int len)
  260. {
  261. buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
  262. &buffer->dma_addr, GFP_ATOMIC);
  263. if (!buffer->addr)
  264. return -ENOMEM;
  265. buffer->len = len;
  266. memset(buffer->addr, 0, len);
  267. return 0;
  268. }
  269. void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
  270. {
  271. if (buffer->addr) {
  272. dma_free_coherent(&efx->pci_dev->dev, buffer->len,
  273. buffer->addr, buffer->dma_addr);
  274. buffer->addr = NULL;
  275. }
  276. }
  277. /**************************************************************************
  278. *
  279. * TX path
  280. *
  281. **************************************************************************/
  282. /* Returns a pointer to the specified transmit descriptor in the TX
  283. * descriptor queue belonging to the specified channel.
  284. */
  285. static inline efx_qword_t *
  286. efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
  287. {
  288. return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
  289. }
  290. /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
  291. static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
  292. {
  293. unsigned write_ptr;
  294. efx_dword_t reg;
  295. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  296. EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
  297. efx_writed_page(tx_queue->efx, &reg,
  298. FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
  299. }
  300. /* Write pointer and first descriptor for TX descriptor ring */
  301. static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
  302. const efx_qword_t *txd)
  303. {
  304. unsigned write_ptr;
  305. efx_oword_t reg;
  306. BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
  307. BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
  308. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  309. EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
  310. FRF_AZ_TX_DESC_WPTR, write_ptr);
  311. reg.qword[0] = *txd;
  312. efx_writeo_page(tx_queue->efx, &reg,
  313. FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
  314. }
  315. static inline bool
  316. efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
  317. {
  318. unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
  319. if (empty_read_count == 0)
  320. return false;
  321. tx_queue->empty_read_count = 0;
  322. return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
  323. && tx_queue->write_count - write_count == 1;
  324. }
  325. /* For each entry inserted into the software descriptor ring, create a
  326. * descriptor in the hardware TX descriptor ring (in host memory), and
  327. * write a doorbell.
  328. */
  329. void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
  330. {
  331. struct efx_tx_buffer *buffer;
  332. efx_qword_t *txd;
  333. unsigned write_ptr;
  334. unsigned old_write_count = tx_queue->write_count;
  335. BUG_ON(tx_queue->write_count == tx_queue->insert_count);
  336. do {
  337. write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
  338. buffer = &tx_queue->buffer[write_ptr];
  339. txd = efx_tx_desc(tx_queue, write_ptr);
  340. ++tx_queue->write_count;
  341. /* Create TX descriptor ring entry */
  342. BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
  343. EFX_POPULATE_QWORD_4(*txd,
  344. FSF_AZ_TX_KER_CONT,
  345. buffer->flags & EFX_TX_BUF_CONT,
  346. FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
  347. FSF_AZ_TX_KER_BUF_REGION, 0,
  348. FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
  349. } while (tx_queue->write_count != tx_queue->insert_count);
  350. wmb(); /* Ensure descriptors are written before they are fetched */
  351. if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
  352. txd = efx_tx_desc(tx_queue,
  353. old_write_count & tx_queue->ptr_mask);
  354. efx_push_tx_desc(tx_queue, txd);
  355. ++tx_queue->pushes;
  356. } else {
  357. efx_notify_tx_desc(tx_queue);
  358. }
  359. }
  360. /* Allocate hardware resources for a TX queue */
  361. int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
  362. {
  363. struct efx_nic *efx = tx_queue->efx;
  364. unsigned entries;
  365. entries = tx_queue->ptr_mask + 1;
  366. return efx_alloc_special_buffer(efx, &tx_queue->txd,
  367. entries * sizeof(efx_qword_t));
  368. }
  369. void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
  370. {
  371. struct efx_nic *efx = tx_queue->efx;
  372. efx_oword_t reg;
  373. /* Pin TX descriptor ring */
  374. efx_init_special_buffer(efx, &tx_queue->txd);
  375. /* Push TX descriptor ring to card */
  376. EFX_POPULATE_OWORD_10(reg,
  377. FRF_AZ_TX_DESCQ_EN, 1,
  378. FRF_AZ_TX_ISCSI_DDIG_EN, 0,
  379. FRF_AZ_TX_ISCSI_HDIG_EN, 0,
  380. FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
  381. FRF_AZ_TX_DESCQ_EVQ_ID,
  382. tx_queue->channel->channel,
  383. FRF_AZ_TX_DESCQ_OWNER_ID, 0,
  384. FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
  385. FRF_AZ_TX_DESCQ_SIZE,
  386. __ffs(tx_queue->txd.entries),
  387. FRF_AZ_TX_DESCQ_TYPE, 0,
  388. FRF_BZ_TX_NON_IP_DROP_DIS, 1);
  389. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  390. int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
  391. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
  392. EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
  393. !csum);
  394. }
  395. efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
  396. tx_queue->queue);
  397. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
  398. /* Only 128 bits in this register */
  399. BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
  400. efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
  401. if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
  402. __clear_bit_le(tx_queue->queue, &reg);
  403. else
  404. __set_bit_le(tx_queue->queue, &reg);
  405. efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
  406. }
  407. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  408. EFX_POPULATE_OWORD_1(reg,
  409. FRF_BZ_TX_PACE,
  410. (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
  411. FFE_BZ_TX_PACE_OFF :
  412. FFE_BZ_TX_PACE_RESERVED);
  413. efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
  414. tx_queue->queue);
  415. }
  416. }
  417. static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
  418. {
  419. struct efx_nic *efx = tx_queue->efx;
  420. efx_oword_t tx_flush_descq;
  421. WARN_ON(atomic_read(&tx_queue->flush_outstanding));
  422. atomic_set(&tx_queue->flush_outstanding, 1);
  423. EFX_POPULATE_OWORD_2(tx_flush_descq,
  424. FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
  425. FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
  426. efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
  427. }
  428. void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
  429. {
  430. struct efx_nic *efx = tx_queue->efx;
  431. efx_oword_t tx_desc_ptr;
  432. /* Remove TX descriptor ring from card */
  433. EFX_ZERO_OWORD(tx_desc_ptr);
  434. efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
  435. tx_queue->queue);
  436. /* Unpin TX descriptor ring */
  437. efx_fini_special_buffer(efx, &tx_queue->txd);
  438. }
  439. /* Free buffers backing TX queue */
  440. void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
  441. {
  442. efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
  443. }
  444. /**************************************************************************
  445. *
  446. * RX path
  447. *
  448. **************************************************************************/
  449. /* Returns a pointer to the specified descriptor in the RX descriptor queue */
  450. static inline efx_qword_t *
  451. efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
  452. {
  453. return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
  454. }
  455. /* This creates an entry in the RX descriptor queue */
  456. static inline void
  457. efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
  458. {
  459. struct efx_rx_buffer *rx_buf;
  460. efx_qword_t *rxd;
  461. rxd = efx_rx_desc(rx_queue, index);
  462. rx_buf = efx_rx_buffer(rx_queue, index);
  463. EFX_POPULATE_QWORD_3(*rxd,
  464. FSF_AZ_RX_KER_BUF_SIZE,
  465. rx_buf->len -
  466. rx_queue->efx->type->rx_buffer_padding,
  467. FSF_AZ_RX_KER_BUF_REGION, 0,
  468. FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
  469. }
  470. /* This writes to the RX_DESC_WPTR register for the specified receive
  471. * descriptor ring.
  472. */
  473. void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
  474. {
  475. struct efx_nic *efx = rx_queue->efx;
  476. efx_dword_t reg;
  477. unsigned write_ptr;
  478. while (rx_queue->notified_count != rx_queue->added_count) {
  479. efx_build_rx_desc(
  480. rx_queue,
  481. rx_queue->notified_count & rx_queue->ptr_mask);
  482. ++rx_queue->notified_count;
  483. }
  484. wmb();
  485. write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
  486. EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
  487. efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
  488. efx_rx_queue_index(rx_queue));
  489. }
  490. int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
  491. {
  492. struct efx_nic *efx = rx_queue->efx;
  493. unsigned entries;
  494. entries = rx_queue->ptr_mask + 1;
  495. return efx_alloc_special_buffer(efx, &rx_queue->rxd,
  496. entries * sizeof(efx_qword_t));
  497. }
  498. void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
  499. {
  500. efx_oword_t rx_desc_ptr;
  501. struct efx_nic *efx = rx_queue->efx;
  502. bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
  503. bool iscsi_digest_en = is_b0;
  504. netif_dbg(efx, hw, efx->net_dev,
  505. "RX queue %d ring in special buffers %d-%d\n",
  506. efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
  507. rx_queue->rxd.index + rx_queue->rxd.entries - 1);
  508. /* Pin RX descriptor ring */
  509. efx_init_special_buffer(efx, &rx_queue->rxd);
  510. /* Push RX descriptor ring to card */
  511. EFX_POPULATE_OWORD_10(rx_desc_ptr,
  512. FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
  513. FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
  514. FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
  515. FRF_AZ_RX_DESCQ_EVQ_ID,
  516. efx_rx_queue_channel(rx_queue)->channel,
  517. FRF_AZ_RX_DESCQ_OWNER_ID, 0,
  518. FRF_AZ_RX_DESCQ_LABEL,
  519. efx_rx_queue_index(rx_queue),
  520. FRF_AZ_RX_DESCQ_SIZE,
  521. __ffs(rx_queue->rxd.entries),
  522. FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
  523. /* For >=B0 this is scatter so disable */
  524. FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
  525. FRF_AZ_RX_DESCQ_EN, 1);
  526. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  527. efx_rx_queue_index(rx_queue));
  528. }
  529. static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
  530. {
  531. struct efx_nic *efx = rx_queue->efx;
  532. efx_oword_t rx_flush_descq;
  533. EFX_POPULATE_OWORD_2(rx_flush_descq,
  534. FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
  535. FRF_AZ_RX_FLUSH_DESCQ,
  536. efx_rx_queue_index(rx_queue));
  537. efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
  538. }
  539. void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
  540. {
  541. efx_oword_t rx_desc_ptr;
  542. struct efx_nic *efx = rx_queue->efx;
  543. /* Remove RX descriptor ring from card */
  544. EFX_ZERO_OWORD(rx_desc_ptr);
  545. efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
  546. efx_rx_queue_index(rx_queue));
  547. /* Unpin RX descriptor ring */
  548. efx_fini_special_buffer(efx, &rx_queue->rxd);
  549. }
  550. /* Free buffers backing RX queue */
  551. void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
  552. {
  553. efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
  554. }
  555. /**************************************************************************
  556. *
  557. * Flush handling
  558. *
  559. **************************************************************************/
  560. /* efx_nic_flush_queues() must be woken up when all flushes are completed,
  561. * or more RX flushes can be kicked off.
  562. */
  563. static bool efx_flush_wake(struct efx_nic *efx)
  564. {
  565. /* Ensure that all updates are visible to efx_nic_flush_queues() */
  566. smp_mb();
  567. return (atomic_read(&efx->drain_pending) == 0 ||
  568. (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
  569. && atomic_read(&efx->rxq_flush_pending) > 0));
  570. }
  571. static bool efx_check_tx_flush_complete(struct efx_nic *efx)
  572. {
  573. bool i = true;
  574. efx_oword_t txd_ptr_tbl;
  575. struct efx_channel *channel;
  576. struct efx_tx_queue *tx_queue;
  577. efx_for_each_channel(channel, efx) {
  578. efx_for_each_channel_tx_queue(tx_queue, channel) {
  579. efx_reado_table(efx, &txd_ptr_tbl,
  580. FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
  581. if (EFX_OWORD_FIELD(txd_ptr_tbl,
  582. FRF_AZ_TX_DESCQ_FLUSH) ||
  583. EFX_OWORD_FIELD(txd_ptr_tbl,
  584. FRF_AZ_TX_DESCQ_EN)) {
  585. netif_dbg(efx, hw, efx->net_dev,
  586. "flush did not complete on TXQ %d\n",
  587. tx_queue->queue);
  588. i = false;
  589. } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
  590. 1, 0)) {
  591. /* The flush is complete, but we didn't
  592. * receive a flush completion event
  593. */
  594. netif_dbg(efx, hw, efx->net_dev,
  595. "flush complete on TXQ %d, so drain "
  596. "the queue\n", tx_queue->queue);
  597. /* Don't need to increment drain_pending as it
  598. * has already been incremented for the queues
  599. * which did not drain
  600. */
  601. efx_magic_event(channel,
  602. EFX_CHANNEL_MAGIC_TX_DRAIN(
  603. tx_queue));
  604. }
  605. }
  606. }
  607. return i;
  608. }
  609. /* Flush all the transmit queues, and continue flushing receive queues until
  610. * they're all flushed. Wait for the DRAIN events to be recieved so that there
  611. * are no more RX and TX events left on any channel. */
  612. int efx_nic_flush_queues(struct efx_nic *efx)
  613. {
  614. unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
  615. struct efx_channel *channel;
  616. struct efx_rx_queue *rx_queue;
  617. struct efx_tx_queue *tx_queue;
  618. int rc = 0;
  619. efx->type->prepare_flush(efx);
  620. efx_for_each_channel(channel, efx) {
  621. efx_for_each_channel_tx_queue(tx_queue, channel) {
  622. atomic_inc(&efx->drain_pending);
  623. efx_flush_tx_queue(tx_queue);
  624. }
  625. efx_for_each_channel_rx_queue(rx_queue, channel) {
  626. atomic_inc(&efx->drain_pending);
  627. rx_queue->flush_pending = true;
  628. atomic_inc(&efx->rxq_flush_pending);
  629. }
  630. }
  631. while (timeout && atomic_read(&efx->drain_pending) > 0) {
  632. /* If SRIOV is enabled, then offload receive queue flushing to
  633. * the firmware (though we will still have to poll for
  634. * completion). If that fails, fall back to the old scheme.
  635. */
  636. if (efx_sriov_enabled(efx)) {
  637. rc = efx_mcdi_flush_rxqs(efx);
  638. if (!rc)
  639. goto wait;
  640. }
  641. /* The hardware supports four concurrent rx flushes, each of
  642. * which may need to be retried if there is an outstanding
  643. * descriptor fetch
  644. */
  645. efx_for_each_channel(channel, efx) {
  646. efx_for_each_channel_rx_queue(rx_queue, channel) {
  647. if (atomic_read(&efx->rxq_flush_outstanding) >=
  648. EFX_RX_FLUSH_COUNT)
  649. break;
  650. if (rx_queue->flush_pending) {
  651. rx_queue->flush_pending = false;
  652. atomic_dec(&efx->rxq_flush_pending);
  653. atomic_inc(&efx->rxq_flush_outstanding);
  654. efx_flush_rx_queue(rx_queue);
  655. }
  656. }
  657. }
  658. wait:
  659. timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
  660. timeout);
  661. }
  662. if (atomic_read(&efx->drain_pending) &&
  663. !efx_check_tx_flush_complete(efx)) {
  664. netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
  665. "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
  666. atomic_read(&efx->rxq_flush_outstanding),
  667. atomic_read(&efx->rxq_flush_pending));
  668. rc = -ETIMEDOUT;
  669. atomic_set(&efx->drain_pending, 0);
  670. atomic_set(&efx->rxq_flush_pending, 0);
  671. atomic_set(&efx->rxq_flush_outstanding, 0);
  672. }
  673. efx->type->finish_flush(efx);
  674. return rc;
  675. }
  676. /**************************************************************************
  677. *
  678. * Event queue processing
  679. * Event queues are processed by per-channel tasklets.
  680. *
  681. **************************************************************************/
  682. /* Update a channel's event queue's read pointer (RPTR) register
  683. *
  684. * This writes the EVQ_RPTR_REG register for the specified channel's
  685. * event queue.
  686. */
  687. void efx_nic_eventq_read_ack(struct efx_channel *channel)
  688. {
  689. efx_dword_t reg;
  690. struct efx_nic *efx = channel->efx;
  691. EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
  692. channel->eventq_read_ptr & channel->eventq_mask);
  693. /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
  694. * of 4 bytes, but it is really 16 bytes just like later revisions.
  695. */
  696. efx_writed(efx, &reg,
  697. efx->type->evq_rptr_tbl_base +
  698. FR_BZ_EVQ_RPTR_STEP * channel->channel);
  699. }
  700. /* Use HW to insert a SW defined event */
  701. void efx_generate_event(struct efx_nic *efx, unsigned int evq,
  702. efx_qword_t *event)
  703. {
  704. efx_oword_t drv_ev_reg;
  705. BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
  706. FRF_AZ_DRV_EV_DATA_WIDTH != 64);
  707. drv_ev_reg.u32[0] = event->u32[0];
  708. drv_ev_reg.u32[1] = event->u32[1];
  709. drv_ev_reg.u32[2] = 0;
  710. drv_ev_reg.u32[3] = 0;
  711. EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
  712. efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
  713. }
  714. static void efx_magic_event(struct efx_channel *channel, u32 magic)
  715. {
  716. efx_qword_t event;
  717. EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
  718. FSE_AZ_EV_CODE_DRV_GEN_EV,
  719. FSF_AZ_DRV_GEN_EV_MAGIC, magic);
  720. efx_generate_event(channel->efx, channel->channel, &event);
  721. }
  722. /* Handle a transmit completion event
  723. *
  724. * The NIC batches TX completion events; the message we receive is of
  725. * the form "complete all TX events up to this index".
  726. */
  727. static int
  728. efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
  729. {
  730. unsigned int tx_ev_desc_ptr;
  731. unsigned int tx_ev_q_label;
  732. struct efx_tx_queue *tx_queue;
  733. struct efx_nic *efx = channel->efx;
  734. int tx_packets = 0;
  735. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  736. return 0;
  737. if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
  738. /* Transmit completion */
  739. tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
  740. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  741. tx_queue = efx_channel_get_tx_queue(
  742. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  743. tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
  744. tx_queue->ptr_mask);
  745. efx_xmit_done(tx_queue, tx_ev_desc_ptr);
  746. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
  747. /* Rewrite the FIFO write pointer */
  748. tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
  749. tx_queue = efx_channel_get_tx_queue(
  750. channel, tx_ev_q_label % EFX_TXQ_TYPES);
  751. netif_tx_lock(efx->net_dev);
  752. efx_notify_tx_desc(tx_queue);
  753. netif_tx_unlock(efx->net_dev);
  754. } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
  755. EFX_WORKAROUND_10727(efx)) {
  756. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  757. } else {
  758. netif_err(efx, tx_err, efx->net_dev,
  759. "channel %d unexpected TX event "
  760. EFX_QWORD_FMT"\n", channel->channel,
  761. EFX_QWORD_VAL(*event));
  762. }
  763. return tx_packets;
  764. }
  765. /* Detect errors included in the rx_evt_pkt_ok bit. */
  766. static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
  767. const efx_qword_t *event)
  768. {
  769. struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
  770. struct efx_nic *efx = rx_queue->efx;
  771. bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
  772. bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
  773. bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
  774. bool rx_ev_other_err, rx_ev_pause_frm;
  775. bool rx_ev_hdr_type, rx_ev_mcast_pkt;
  776. unsigned rx_ev_pkt_type;
  777. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  778. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  779. rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
  780. rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
  781. rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
  782. FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
  783. rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
  784. FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
  785. rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
  786. FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
  787. rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
  788. rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
  789. rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
  790. 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
  791. rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
  792. /* Every error apart from tobe_disc and pause_frm */
  793. rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
  794. rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
  795. rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
  796. /* Count errors that are not in MAC stats. Ignore expected
  797. * checksum errors during self-test. */
  798. if (rx_ev_frm_trunc)
  799. ++channel->n_rx_frm_trunc;
  800. else if (rx_ev_tobe_disc)
  801. ++channel->n_rx_tobe_disc;
  802. else if (!efx->loopback_selftest) {
  803. if (rx_ev_ip_hdr_chksum_err)
  804. ++channel->n_rx_ip_hdr_chksum_err;
  805. else if (rx_ev_tcp_udp_chksum_err)
  806. ++channel->n_rx_tcp_udp_chksum_err;
  807. }
  808. /* TOBE_DISC is expected on unicast mismatches; don't print out an
  809. * error message. FRM_TRUNC indicates RXDP dropped the packet due
  810. * to a FIFO overflow.
  811. */
  812. #ifdef DEBUG
  813. if (rx_ev_other_err && net_ratelimit()) {
  814. netif_dbg(efx, rx_err, efx->net_dev,
  815. " RX queue %d unexpected RX event "
  816. EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
  817. efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
  818. rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
  819. rx_ev_ip_hdr_chksum_err ?
  820. " [IP_HDR_CHKSUM_ERR]" : "",
  821. rx_ev_tcp_udp_chksum_err ?
  822. " [TCP_UDP_CHKSUM_ERR]" : "",
  823. rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
  824. rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
  825. rx_ev_drib_nib ? " [DRIB_NIB]" : "",
  826. rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
  827. rx_ev_pause_frm ? " [PAUSE]" : "");
  828. }
  829. #endif
  830. /* The frame must be discarded if any of these are true. */
  831. return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
  832. rx_ev_tobe_disc | rx_ev_pause_frm) ?
  833. EFX_RX_PKT_DISCARD : 0;
  834. }
  835. /* Handle receive events that are not in-order. */
  836. static void
  837. efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
  838. {
  839. struct efx_nic *efx = rx_queue->efx;
  840. unsigned expected, dropped;
  841. expected = rx_queue->removed_count & rx_queue->ptr_mask;
  842. dropped = (index - expected) & rx_queue->ptr_mask;
  843. netif_info(efx, rx_err, efx->net_dev,
  844. "dropped %d events (index=%d expected=%d)\n",
  845. dropped, index, expected);
  846. efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
  847. RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
  848. }
  849. /* Handle a packet received event
  850. *
  851. * The NIC gives a "discard" flag if it's a unicast packet with the
  852. * wrong destination address
  853. * Also "is multicast" and "matches multicast filter" flags can be used to
  854. * discard non-matching multicast packets.
  855. */
  856. static void
  857. efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
  858. {
  859. unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
  860. unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
  861. unsigned expected_ptr;
  862. bool rx_ev_pkt_ok;
  863. u16 flags;
  864. struct efx_rx_queue *rx_queue;
  865. struct efx_nic *efx = channel->efx;
  866. if (unlikely(ACCESS_ONCE(efx->reset_pending)))
  867. return;
  868. /* Basic packet information */
  869. rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
  870. rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
  871. rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
  872. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
  873. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
  874. WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
  875. channel->channel);
  876. rx_queue = efx_channel_get_rx_queue(channel);
  877. rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
  878. expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
  879. if (unlikely(rx_ev_desc_ptr != expected_ptr))
  880. efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
  881. if (likely(rx_ev_pkt_ok)) {
  882. /* If packet is marked as OK and packet type is TCP/IP or
  883. * UDP/IP, then we can rely on the hardware checksum.
  884. */
  885. flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
  886. rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
  887. EFX_RX_PKT_CSUMMED : 0;
  888. } else {
  889. flags = efx_handle_rx_not_ok(rx_queue, event);
  890. }
  891. /* Detect multicast packets that didn't match the filter */
  892. rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
  893. if (rx_ev_mcast_pkt) {
  894. unsigned int rx_ev_mcast_hash_match =
  895. EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
  896. if (unlikely(!rx_ev_mcast_hash_match)) {
  897. ++channel->n_rx_mcast_mismatch;
  898. flags |= EFX_RX_PKT_DISCARD;
  899. }
  900. }
  901. channel->irq_mod_score += 2;
  902. /* Handle received packet */
  903. efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
  904. }
  905. /* If this flush done event corresponds to a &struct efx_tx_queue, then
  906. * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
  907. * of all transmit completions.
  908. */
  909. static void
  910. efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  911. {
  912. struct efx_tx_queue *tx_queue;
  913. int qid;
  914. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  915. if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
  916. tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
  917. qid % EFX_TXQ_TYPES);
  918. if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
  919. efx_magic_event(tx_queue->channel,
  920. EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
  921. }
  922. }
  923. }
  924. /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
  925. * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
  926. * the RX queue back to the mask of RX queues in need of flushing.
  927. */
  928. static void
  929. efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
  930. {
  931. struct efx_channel *channel;
  932. struct efx_rx_queue *rx_queue;
  933. int qid;
  934. bool failed;
  935. qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
  936. failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
  937. if (qid >= efx->n_channels)
  938. return;
  939. channel = efx_get_channel(efx, qid);
  940. if (!efx_channel_has_rx_queue(channel))
  941. return;
  942. rx_queue = efx_channel_get_rx_queue(channel);
  943. if (failed) {
  944. netif_info(efx, hw, efx->net_dev,
  945. "RXQ %d flush retry\n", qid);
  946. rx_queue->flush_pending = true;
  947. atomic_inc(&efx->rxq_flush_pending);
  948. } else {
  949. efx_magic_event(efx_rx_queue_channel(rx_queue),
  950. EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
  951. }
  952. atomic_dec(&efx->rxq_flush_outstanding);
  953. if (efx_flush_wake(efx))
  954. wake_up(&efx->flush_wq);
  955. }
  956. static void
  957. efx_handle_drain_event(struct efx_channel *channel)
  958. {
  959. struct efx_nic *efx = channel->efx;
  960. WARN_ON(atomic_read(&efx->drain_pending) == 0);
  961. atomic_dec(&efx->drain_pending);
  962. if (efx_flush_wake(efx))
  963. wake_up(&efx->flush_wq);
  964. }
  965. static void
  966. efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
  967. {
  968. struct efx_nic *efx = channel->efx;
  969. struct efx_rx_queue *rx_queue =
  970. efx_channel_has_rx_queue(channel) ?
  971. efx_channel_get_rx_queue(channel) : NULL;
  972. unsigned magic, code;
  973. magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
  974. code = _EFX_CHANNEL_MAGIC_CODE(magic);
  975. if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
  976. channel->event_test_cpu = raw_smp_processor_id();
  977. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
  978. /* The queue must be empty, so we won't receive any rx
  979. * events, so efx_process_channel() won't refill the
  980. * queue. Refill it here */
  981. efx_fast_push_rx_descriptors(rx_queue);
  982. } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
  983. rx_queue->enabled = false;
  984. efx_handle_drain_event(channel);
  985. } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
  986. efx_handle_drain_event(channel);
  987. } else {
  988. netif_dbg(efx, hw, efx->net_dev, "channel %d received "
  989. "generated event "EFX_QWORD_FMT"\n",
  990. channel->channel, EFX_QWORD_VAL(*event));
  991. }
  992. }
  993. static void
  994. efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
  995. {
  996. struct efx_nic *efx = channel->efx;
  997. unsigned int ev_sub_code;
  998. unsigned int ev_sub_data;
  999. ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
  1000. ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
  1001. switch (ev_sub_code) {
  1002. case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
  1003. netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
  1004. channel->channel, ev_sub_data);
  1005. efx_handle_tx_flush_done(efx, event);
  1006. efx_sriov_tx_flush_done(efx, event);
  1007. break;
  1008. case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
  1009. netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
  1010. channel->channel, ev_sub_data);
  1011. efx_handle_rx_flush_done(efx, event);
  1012. efx_sriov_rx_flush_done(efx, event);
  1013. break;
  1014. case FSE_AZ_EVQ_INIT_DONE_EV:
  1015. netif_dbg(efx, hw, efx->net_dev,
  1016. "channel %d EVQ %d initialised\n",
  1017. channel->channel, ev_sub_data);
  1018. break;
  1019. case FSE_AZ_SRM_UPD_DONE_EV:
  1020. netif_vdbg(efx, hw, efx->net_dev,
  1021. "channel %d SRAM update done\n", channel->channel);
  1022. break;
  1023. case FSE_AZ_WAKE_UP_EV:
  1024. netif_vdbg(efx, hw, efx->net_dev,
  1025. "channel %d RXQ %d wakeup event\n",
  1026. channel->channel, ev_sub_data);
  1027. break;
  1028. case FSE_AZ_TIMER_EV:
  1029. netif_vdbg(efx, hw, efx->net_dev,
  1030. "channel %d RX queue %d timer expired\n",
  1031. channel->channel, ev_sub_data);
  1032. break;
  1033. case FSE_AA_RX_RECOVER_EV:
  1034. netif_err(efx, rx_err, efx->net_dev,
  1035. "channel %d seen DRIVER RX_RESET event. "
  1036. "Resetting.\n", channel->channel);
  1037. atomic_inc(&efx->rx_reset);
  1038. efx_schedule_reset(efx,
  1039. EFX_WORKAROUND_6555(efx) ?
  1040. RESET_TYPE_RX_RECOVERY :
  1041. RESET_TYPE_DISABLE);
  1042. break;
  1043. case FSE_BZ_RX_DSC_ERROR_EV:
  1044. if (ev_sub_data < EFX_VI_BASE) {
  1045. netif_err(efx, rx_err, efx->net_dev,
  1046. "RX DMA Q %d reports descriptor fetch error."
  1047. " RX Q %d is disabled.\n", ev_sub_data,
  1048. ev_sub_data);
  1049. efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
  1050. } else
  1051. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1052. break;
  1053. case FSE_BZ_TX_DSC_ERROR_EV:
  1054. if (ev_sub_data < EFX_VI_BASE) {
  1055. netif_err(efx, tx_err, efx->net_dev,
  1056. "TX DMA Q %d reports descriptor fetch error."
  1057. " TX Q %d is disabled.\n", ev_sub_data,
  1058. ev_sub_data);
  1059. efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
  1060. } else
  1061. efx_sriov_desc_fetch_err(efx, ev_sub_data);
  1062. break;
  1063. default:
  1064. netif_vdbg(efx, hw, efx->net_dev,
  1065. "channel %d unknown driver event code %d "
  1066. "data %04x\n", channel->channel, ev_sub_code,
  1067. ev_sub_data);
  1068. break;
  1069. }
  1070. }
  1071. int efx_nic_process_eventq(struct efx_channel *channel, int budget)
  1072. {
  1073. struct efx_nic *efx = channel->efx;
  1074. unsigned int read_ptr;
  1075. efx_qword_t event, *p_event;
  1076. int ev_code;
  1077. int tx_packets = 0;
  1078. int spent = 0;
  1079. read_ptr = channel->eventq_read_ptr;
  1080. for (;;) {
  1081. p_event = efx_event(channel, read_ptr);
  1082. event = *p_event;
  1083. if (!efx_event_present(&event))
  1084. /* End of events */
  1085. break;
  1086. netif_vdbg(channel->efx, intr, channel->efx->net_dev,
  1087. "channel %d event is "EFX_QWORD_FMT"\n",
  1088. channel->channel, EFX_QWORD_VAL(event));
  1089. /* Clear this event by marking it all ones */
  1090. EFX_SET_QWORD(*p_event);
  1091. ++read_ptr;
  1092. ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
  1093. switch (ev_code) {
  1094. case FSE_AZ_EV_CODE_RX_EV:
  1095. efx_handle_rx_event(channel, &event);
  1096. if (++spent == budget)
  1097. goto out;
  1098. break;
  1099. case FSE_AZ_EV_CODE_TX_EV:
  1100. tx_packets += efx_handle_tx_event(channel, &event);
  1101. if (tx_packets > efx->txq_entries) {
  1102. spent = budget;
  1103. goto out;
  1104. }
  1105. break;
  1106. case FSE_AZ_EV_CODE_DRV_GEN_EV:
  1107. efx_handle_generated_event(channel, &event);
  1108. break;
  1109. case FSE_AZ_EV_CODE_DRIVER_EV:
  1110. efx_handle_driver_event(channel, &event);
  1111. break;
  1112. case FSE_CZ_EV_CODE_USER_EV:
  1113. efx_sriov_event(channel, &event);
  1114. break;
  1115. case FSE_CZ_EV_CODE_MCDI_EV:
  1116. efx_mcdi_process_event(channel, &event);
  1117. break;
  1118. case FSE_AZ_EV_CODE_GLOBAL_EV:
  1119. if (efx->type->handle_global_event &&
  1120. efx->type->handle_global_event(channel, &event))
  1121. break;
  1122. /* else fall through */
  1123. default:
  1124. netif_err(channel->efx, hw, channel->efx->net_dev,
  1125. "channel %d unknown event type %d (data "
  1126. EFX_QWORD_FMT ")\n", channel->channel,
  1127. ev_code, EFX_QWORD_VAL(event));
  1128. }
  1129. }
  1130. out:
  1131. channel->eventq_read_ptr = read_ptr;
  1132. return spent;
  1133. }
  1134. /* Check whether an event is present in the eventq at the current
  1135. * read pointer. Only useful for self-test.
  1136. */
  1137. bool efx_nic_event_present(struct efx_channel *channel)
  1138. {
  1139. return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
  1140. }
  1141. /* Allocate buffer table entries for event queue */
  1142. int efx_nic_probe_eventq(struct efx_channel *channel)
  1143. {
  1144. struct efx_nic *efx = channel->efx;
  1145. unsigned entries;
  1146. entries = channel->eventq_mask + 1;
  1147. return efx_alloc_special_buffer(efx, &channel->eventq,
  1148. entries * sizeof(efx_qword_t));
  1149. }
  1150. void efx_nic_init_eventq(struct efx_channel *channel)
  1151. {
  1152. efx_oword_t reg;
  1153. struct efx_nic *efx = channel->efx;
  1154. netif_dbg(efx, hw, efx->net_dev,
  1155. "channel %d event queue in special buffers %d-%d\n",
  1156. channel->channel, channel->eventq.index,
  1157. channel->eventq.index + channel->eventq.entries - 1);
  1158. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
  1159. EFX_POPULATE_OWORD_3(reg,
  1160. FRF_CZ_TIMER_Q_EN, 1,
  1161. FRF_CZ_HOST_NOTIFY_MODE, 0,
  1162. FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
  1163. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1164. }
  1165. /* Pin event queue buffer */
  1166. efx_init_special_buffer(efx, &channel->eventq);
  1167. /* Fill event queue with all ones (i.e. empty events) */
  1168. memset(channel->eventq.addr, 0xff, channel->eventq.len);
  1169. /* Push event queue to card */
  1170. EFX_POPULATE_OWORD_3(reg,
  1171. FRF_AZ_EVQ_EN, 1,
  1172. FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
  1173. FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
  1174. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1175. channel->channel);
  1176. efx->type->push_irq_moderation(channel);
  1177. }
  1178. void efx_nic_fini_eventq(struct efx_channel *channel)
  1179. {
  1180. efx_oword_t reg;
  1181. struct efx_nic *efx = channel->efx;
  1182. /* Remove event queue from card */
  1183. EFX_ZERO_OWORD(reg);
  1184. efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
  1185. channel->channel);
  1186. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1187. efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
  1188. /* Unpin event queue */
  1189. efx_fini_special_buffer(efx, &channel->eventq);
  1190. }
  1191. /* Free buffers backing event queue */
  1192. void efx_nic_remove_eventq(struct efx_channel *channel)
  1193. {
  1194. efx_free_special_buffer(channel->efx, &channel->eventq);
  1195. }
  1196. void efx_nic_event_test_start(struct efx_channel *channel)
  1197. {
  1198. channel->event_test_cpu = -1;
  1199. smp_wmb();
  1200. efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
  1201. }
  1202. void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
  1203. {
  1204. efx_magic_event(efx_rx_queue_channel(rx_queue),
  1205. EFX_CHANNEL_MAGIC_FILL(rx_queue));
  1206. }
  1207. /**************************************************************************
  1208. *
  1209. * Hardware interrupts
  1210. * The hardware interrupt handler does very little work; all the event
  1211. * queue processing is carried out by per-channel tasklets.
  1212. *
  1213. **************************************************************************/
  1214. /* Enable/disable/generate interrupts */
  1215. static inline void efx_nic_interrupts(struct efx_nic *efx,
  1216. bool enabled, bool force)
  1217. {
  1218. efx_oword_t int_en_reg_ker;
  1219. EFX_POPULATE_OWORD_3(int_en_reg_ker,
  1220. FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
  1221. FRF_AZ_KER_INT_KER, force,
  1222. FRF_AZ_DRV_INT_EN_KER, enabled);
  1223. efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
  1224. }
  1225. void efx_nic_enable_interrupts(struct efx_nic *efx)
  1226. {
  1227. EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
  1228. wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
  1229. efx_nic_interrupts(efx, true, false);
  1230. }
  1231. void efx_nic_disable_interrupts(struct efx_nic *efx)
  1232. {
  1233. /* Disable interrupts */
  1234. efx_nic_interrupts(efx, false, false);
  1235. }
  1236. /* Generate a test interrupt
  1237. * Interrupt must already have been enabled, otherwise nasty things
  1238. * may happen.
  1239. */
  1240. void efx_nic_irq_test_start(struct efx_nic *efx)
  1241. {
  1242. efx->last_irq_cpu = -1;
  1243. smp_wmb();
  1244. efx_nic_interrupts(efx, true, true);
  1245. }
  1246. /* Process a fatal interrupt
  1247. * Disable bus mastering ASAP and schedule a reset
  1248. */
  1249. irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
  1250. {
  1251. struct falcon_nic_data *nic_data = efx->nic_data;
  1252. efx_oword_t *int_ker = efx->irq_status.addr;
  1253. efx_oword_t fatal_intr;
  1254. int error, mem_perr;
  1255. efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
  1256. error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
  1257. netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
  1258. EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
  1259. EFX_OWORD_VAL(fatal_intr),
  1260. error ? "disabling bus mastering" : "no recognised error");
  1261. /* If this is a memory parity error dump which blocks are offending */
  1262. mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
  1263. EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
  1264. if (mem_perr) {
  1265. efx_oword_t reg;
  1266. efx_reado(efx, &reg, FR_AZ_MEM_STAT);
  1267. netif_err(efx, hw, efx->net_dev,
  1268. "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
  1269. EFX_OWORD_VAL(reg));
  1270. }
  1271. /* Disable both devices */
  1272. pci_clear_master(efx->pci_dev);
  1273. if (efx_nic_is_dual_func(efx))
  1274. pci_clear_master(nic_data->pci_dev2);
  1275. efx_nic_disable_interrupts(efx);
  1276. /* Count errors and reset or disable the NIC accordingly */
  1277. if (efx->int_error_count == 0 ||
  1278. time_after(jiffies, efx->int_error_expire)) {
  1279. efx->int_error_count = 0;
  1280. efx->int_error_expire =
  1281. jiffies + EFX_INT_ERROR_EXPIRE * HZ;
  1282. }
  1283. if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
  1284. netif_err(efx, hw, efx->net_dev,
  1285. "SYSTEM ERROR - reset scheduled\n");
  1286. efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
  1287. } else {
  1288. netif_err(efx, hw, efx->net_dev,
  1289. "SYSTEM ERROR - max number of errors seen."
  1290. "NIC will be disabled\n");
  1291. efx_schedule_reset(efx, RESET_TYPE_DISABLE);
  1292. }
  1293. return IRQ_HANDLED;
  1294. }
  1295. /* Handle a legacy interrupt
  1296. * Acknowledges the interrupt and schedule event queue processing.
  1297. */
  1298. static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
  1299. {
  1300. struct efx_nic *efx = dev_id;
  1301. efx_oword_t *int_ker = efx->irq_status.addr;
  1302. irqreturn_t result = IRQ_NONE;
  1303. struct efx_channel *channel;
  1304. efx_dword_t reg;
  1305. u32 queues;
  1306. int syserr;
  1307. /* Could this be ours? If interrupts are disabled then the
  1308. * channel state may not be valid.
  1309. */
  1310. if (!efx->legacy_irq_enabled)
  1311. return result;
  1312. /* Read the ISR which also ACKs the interrupts */
  1313. efx_readd(efx, &reg, FR_BZ_INT_ISR0);
  1314. queues = EFX_EXTRACT_DWORD(reg, 0, 31);
  1315. /* Handle non-event-queue sources */
  1316. if (queues & (1U << efx->irq_level)) {
  1317. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1318. if (unlikely(syserr))
  1319. return efx_nic_fatal_interrupt(efx);
  1320. efx->last_irq_cpu = raw_smp_processor_id();
  1321. }
  1322. if (queues != 0) {
  1323. if (EFX_WORKAROUND_15783(efx))
  1324. efx->irq_zero_count = 0;
  1325. /* Schedule processing of any interrupting queues */
  1326. efx_for_each_channel(channel, efx) {
  1327. if (queues & 1)
  1328. efx_schedule_channel_irq(channel);
  1329. queues >>= 1;
  1330. }
  1331. result = IRQ_HANDLED;
  1332. } else if (EFX_WORKAROUND_15783(efx)) {
  1333. efx_qword_t *event;
  1334. /* We can't return IRQ_HANDLED more than once on seeing ISR=0
  1335. * because this might be a shared interrupt. */
  1336. if (efx->irq_zero_count++ == 0)
  1337. result = IRQ_HANDLED;
  1338. /* Ensure we schedule or rearm all event queues */
  1339. efx_for_each_channel(channel, efx) {
  1340. event = efx_event(channel, channel->eventq_read_ptr);
  1341. if (efx_event_present(event))
  1342. efx_schedule_channel_irq(channel);
  1343. else
  1344. efx_nic_eventq_read_ack(channel);
  1345. }
  1346. }
  1347. if (result == IRQ_HANDLED)
  1348. netif_vdbg(efx, intr, efx->net_dev,
  1349. "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
  1350. irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
  1351. return result;
  1352. }
  1353. /* Handle an MSI interrupt
  1354. *
  1355. * Handle an MSI hardware interrupt. This routine schedules event
  1356. * queue processing. No interrupt acknowledgement cycle is necessary.
  1357. * Also, we never need to check that the interrupt is for us, since
  1358. * MSI interrupts cannot be shared.
  1359. */
  1360. static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
  1361. {
  1362. struct efx_channel *channel = *(struct efx_channel **)dev_id;
  1363. struct efx_nic *efx = channel->efx;
  1364. efx_oword_t *int_ker = efx->irq_status.addr;
  1365. int syserr;
  1366. netif_vdbg(efx, intr, efx->net_dev,
  1367. "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
  1368. irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
  1369. /* Handle non-event-queue sources */
  1370. if (channel->channel == efx->irq_level) {
  1371. syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
  1372. if (unlikely(syserr))
  1373. return efx_nic_fatal_interrupt(efx);
  1374. efx->last_irq_cpu = raw_smp_processor_id();
  1375. }
  1376. /* Schedule processing of the channel */
  1377. efx_schedule_channel_irq(channel);
  1378. return IRQ_HANDLED;
  1379. }
  1380. /* Setup RSS indirection table.
  1381. * This maps from the hash value of the packet to RXQ
  1382. */
  1383. void efx_nic_push_rx_indir_table(struct efx_nic *efx)
  1384. {
  1385. size_t i = 0;
  1386. efx_dword_t dword;
  1387. if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
  1388. return;
  1389. BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
  1390. FR_BZ_RX_INDIRECTION_TBL_ROWS);
  1391. for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
  1392. EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
  1393. efx->rx_indir_table[i]);
  1394. efx_writed(efx, &dword,
  1395. FR_BZ_RX_INDIRECTION_TBL +
  1396. FR_BZ_RX_INDIRECTION_TBL_STEP * i);
  1397. }
  1398. }
  1399. /* Hook interrupt handler(s)
  1400. * Try MSI and then legacy interrupts.
  1401. */
  1402. int efx_nic_init_interrupt(struct efx_nic *efx)
  1403. {
  1404. struct efx_channel *channel;
  1405. int rc;
  1406. if (!EFX_INT_MODE_USE_MSI(efx)) {
  1407. irq_handler_t handler;
  1408. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1409. handler = efx_legacy_interrupt;
  1410. else
  1411. handler = falcon_legacy_interrupt_a1;
  1412. rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
  1413. efx->name, efx);
  1414. if (rc) {
  1415. netif_err(efx, drv, efx->net_dev,
  1416. "failed to hook legacy IRQ %d\n",
  1417. efx->pci_dev->irq);
  1418. goto fail1;
  1419. }
  1420. return 0;
  1421. }
  1422. /* Hook MSI or MSI-X interrupt */
  1423. efx_for_each_channel(channel, efx) {
  1424. rc = request_irq(channel->irq, efx_msi_interrupt,
  1425. IRQF_PROBE_SHARED, /* Not shared */
  1426. efx->channel_name[channel->channel],
  1427. &efx->channel[channel->channel]);
  1428. if (rc) {
  1429. netif_err(efx, drv, efx->net_dev,
  1430. "failed to hook IRQ %d\n", channel->irq);
  1431. goto fail2;
  1432. }
  1433. }
  1434. return 0;
  1435. fail2:
  1436. efx_for_each_channel(channel, efx)
  1437. free_irq(channel->irq, &efx->channel[channel->channel]);
  1438. fail1:
  1439. return rc;
  1440. }
  1441. void efx_nic_fini_interrupt(struct efx_nic *efx)
  1442. {
  1443. struct efx_channel *channel;
  1444. efx_oword_t reg;
  1445. /* Disable MSI/MSI-X interrupts */
  1446. efx_for_each_channel(channel, efx) {
  1447. if (channel->irq)
  1448. free_irq(channel->irq, &efx->channel[channel->channel]);
  1449. }
  1450. /* ACK legacy interrupt */
  1451. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1452. efx_reado(efx, &reg, FR_BZ_INT_ISR0);
  1453. else
  1454. falcon_irq_ack_a1(efx);
  1455. /* Disable legacy interrupt */
  1456. if (efx->legacy_irq)
  1457. free_irq(efx->legacy_irq, efx);
  1458. }
  1459. /* Looks at available SRAM resources and works out how many queues we
  1460. * can support, and where things like descriptor caches should live.
  1461. *
  1462. * SRAM is split up as follows:
  1463. * 0 buftbl entries for channels
  1464. * efx->vf_buftbl_base buftbl entries for SR-IOV
  1465. * efx->rx_dc_base RX descriptor caches
  1466. * efx->tx_dc_base TX descriptor caches
  1467. */
  1468. void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
  1469. {
  1470. unsigned vi_count, buftbl_min;
  1471. /* Account for the buffer table entries backing the datapath channels
  1472. * and the descriptor caches for those channels.
  1473. */
  1474. buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
  1475. efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
  1476. efx->n_channels * EFX_MAX_EVQ_SIZE)
  1477. * sizeof(efx_qword_t) / EFX_BUF_SIZE);
  1478. vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
  1479. #ifdef CONFIG_SFC_SRIOV
  1480. if (efx_sriov_wanted(efx)) {
  1481. unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
  1482. efx->vf_buftbl_base = buftbl_min;
  1483. vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
  1484. vi_count = max(vi_count, EFX_VI_BASE);
  1485. buftbl_free = (sram_lim_qw - buftbl_min -
  1486. vi_count * vi_dc_entries);
  1487. entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
  1488. efx_vf_size(efx));
  1489. vf_limit = min(buftbl_free / entries_per_vf,
  1490. (1024U - EFX_VI_BASE) >> efx->vi_scale);
  1491. if (efx->vf_count > vf_limit) {
  1492. netif_err(efx, probe, efx->net_dev,
  1493. "Reducing VF count from from %d to %d\n",
  1494. efx->vf_count, vf_limit);
  1495. efx->vf_count = vf_limit;
  1496. }
  1497. vi_count += efx->vf_count * efx_vf_size(efx);
  1498. }
  1499. #endif
  1500. efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
  1501. efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
  1502. }
  1503. u32 efx_nic_fpga_ver(struct efx_nic *efx)
  1504. {
  1505. efx_oword_t altera_build;
  1506. efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
  1507. return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
  1508. }
  1509. void efx_nic_init_common(struct efx_nic *efx)
  1510. {
  1511. efx_oword_t temp;
  1512. /* Set positions of descriptor caches in SRAM. */
  1513. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
  1514. efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
  1515. EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
  1516. efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
  1517. /* Set TX descriptor cache size. */
  1518. BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
  1519. EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
  1520. efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
  1521. /* Set RX descriptor cache size. Set low watermark to size-8, as
  1522. * this allows most efficient prefetching.
  1523. */
  1524. BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
  1525. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
  1526. efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
  1527. EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
  1528. efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
  1529. /* Program INT_KER address */
  1530. EFX_POPULATE_OWORD_2(temp,
  1531. FRF_AZ_NORM_INT_VEC_DIS_KER,
  1532. EFX_INT_MODE_USE_MSI(efx),
  1533. FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
  1534. efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
  1535. if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
  1536. /* Use an interrupt level unused by event queues */
  1537. efx->irq_level = 0x1f;
  1538. else
  1539. /* Use a valid MSI-X vector */
  1540. efx->irq_level = 0;
  1541. /* Enable all the genuinely fatal interrupts. (They are still
  1542. * masked by the overall interrupt mask, controlled by
  1543. * falcon_interrupts()).
  1544. *
  1545. * Note: All other fatal interrupts are enabled
  1546. */
  1547. EFX_POPULATE_OWORD_3(temp,
  1548. FRF_AZ_ILL_ADR_INT_KER_EN, 1,
  1549. FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
  1550. FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
  1551. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
  1552. EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
  1553. EFX_INVERT_OWORD(temp);
  1554. efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
  1555. efx_nic_push_rx_indir_table(efx);
  1556. /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
  1557. * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
  1558. */
  1559. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  1560. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
  1561. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
  1562. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
  1563. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
  1564. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
  1565. /* Enable SW_EV to inherit in char driver - assume harmless here */
  1566. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
  1567. /* Prefetch threshold 2 => fetch when descriptor cache half empty */
  1568. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
  1569. /* Disable hardware watchdog which can misfire */
  1570. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
  1571. /* Squash TX of packets of 16 bytes or less */
  1572. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
  1573. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  1574. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  1575. if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
  1576. EFX_POPULATE_OWORD_4(temp,
  1577. /* Default values */
  1578. FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
  1579. FRF_BZ_TX_PACE_SB_AF, 0xb,
  1580. FRF_BZ_TX_PACE_FB_BASE, 0,
  1581. /* Allow large pace values in the
  1582. * fast bin. */
  1583. FRF_BZ_TX_PACE_BIN_TH,
  1584. FFE_BZ_TX_PACE_RESERVED);
  1585. efx_writeo(efx, &temp, FR_BZ_TX_PACE);
  1586. }
  1587. }
  1588. /* Register dump */
  1589. #define REGISTER_REVISION_A 1
  1590. #define REGISTER_REVISION_B 2
  1591. #define REGISTER_REVISION_C 3
  1592. #define REGISTER_REVISION_Z 3 /* latest revision */
  1593. struct efx_nic_reg {
  1594. u32 offset:24;
  1595. u32 min_revision:2, max_revision:2;
  1596. };
  1597. #define REGISTER(name, min_rev, max_rev) { \
  1598. FR_ ## min_rev ## max_rev ## _ ## name, \
  1599. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
  1600. }
  1601. #define REGISTER_AA(name) REGISTER(name, A, A)
  1602. #define REGISTER_AB(name) REGISTER(name, A, B)
  1603. #define REGISTER_AZ(name) REGISTER(name, A, Z)
  1604. #define REGISTER_BB(name) REGISTER(name, B, B)
  1605. #define REGISTER_BZ(name) REGISTER(name, B, Z)
  1606. #define REGISTER_CZ(name) REGISTER(name, C, Z)
  1607. static const struct efx_nic_reg efx_nic_regs[] = {
  1608. REGISTER_AZ(ADR_REGION),
  1609. REGISTER_AZ(INT_EN_KER),
  1610. REGISTER_BZ(INT_EN_CHAR),
  1611. REGISTER_AZ(INT_ADR_KER),
  1612. REGISTER_BZ(INT_ADR_CHAR),
  1613. /* INT_ACK_KER is WO */
  1614. /* INT_ISR0 is RC */
  1615. REGISTER_AZ(HW_INIT),
  1616. REGISTER_CZ(USR_EV_CFG),
  1617. REGISTER_AB(EE_SPI_HCMD),
  1618. REGISTER_AB(EE_SPI_HADR),
  1619. REGISTER_AB(EE_SPI_HDATA),
  1620. REGISTER_AB(EE_BASE_PAGE),
  1621. REGISTER_AB(EE_VPD_CFG0),
  1622. /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
  1623. /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
  1624. /* PCIE_CORE_INDIRECT is indirect */
  1625. REGISTER_AB(NIC_STAT),
  1626. REGISTER_AB(GPIO_CTL),
  1627. REGISTER_AB(GLB_CTL),
  1628. /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
  1629. REGISTER_BZ(DP_CTRL),
  1630. REGISTER_AZ(MEM_STAT),
  1631. REGISTER_AZ(CS_DEBUG),
  1632. REGISTER_AZ(ALTERA_BUILD),
  1633. REGISTER_AZ(CSR_SPARE),
  1634. REGISTER_AB(PCIE_SD_CTL0123),
  1635. REGISTER_AB(PCIE_SD_CTL45),
  1636. REGISTER_AB(PCIE_PCS_CTL_STAT),
  1637. /* DEBUG_DATA_OUT is not used */
  1638. /* DRV_EV is WO */
  1639. REGISTER_AZ(EVQ_CTL),
  1640. REGISTER_AZ(EVQ_CNT1),
  1641. REGISTER_AZ(EVQ_CNT2),
  1642. REGISTER_AZ(BUF_TBL_CFG),
  1643. REGISTER_AZ(SRM_RX_DC_CFG),
  1644. REGISTER_AZ(SRM_TX_DC_CFG),
  1645. REGISTER_AZ(SRM_CFG),
  1646. /* BUF_TBL_UPD is WO */
  1647. REGISTER_AZ(SRM_UPD_EVQ),
  1648. REGISTER_AZ(SRAM_PARITY),
  1649. REGISTER_AZ(RX_CFG),
  1650. REGISTER_BZ(RX_FILTER_CTL),
  1651. /* RX_FLUSH_DESCQ is WO */
  1652. REGISTER_AZ(RX_DC_CFG),
  1653. REGISTER_AZ(RX_DC_PF_WM),
  1654. REGISTER_BZ(RX_RSS_TKEY),
  1655. /* RX_NODESC_DROP is RC */
  1656. REGISTER_AA(RX_SELF_RST),
  1657. /* RX_DEBUG, RX_PUSH_DROP are not used */
  1658. REGISTER_CZ(RX_RSS_IPV6_REG1),
  1659. REGISTER_CZ(RX_RSS_IPV6_REG2),
  1660. REGISTER_CZ(RX_RSS_IPV6_REG3),
  1661. /* TX_FLUSH_DESCQ is WO */
  1662. REGISTER_AZ(TX_DC_CFG),
  1663. REGISTER_AA(TX_CHKSM_CFG),
  1664. REGISTER_AZ(TX_CFG),
  1665. /* TX_PUSH_DROP is not used */
  1666. REGISTER_AZ(TX_RESERVED),
  1667. REGISTER_BZ(TX_PACE),
  1668. /* TX_PACE_DROP_QID is RC */
  1669. REGISTER_BB(TX_VLAN),
  1670. REGISTER_BZ(TX_IPFIL_PORTEN),
  1671. REGISTER_AB(MD_TXD),
  1672. REGISTER_AB(MD_RXD),
  1673. REGISTER_AB(MD_CS),
  1674. REGISTER_AB(MD_PHY_ADR),
  1675. REGISTER_AB(MD_ID),
  1676. /* MD_STAT is RC */
  1677. REGISTER_AB(MAC_STAT_DMA),
  1678. REGISTER_AB(MAC_CTRL),
  1679. REGISTER_BB(GEN_MODE),
  1680. REGISTER_AB(MAC_MC_HASH_REG0),
  1681. REGISTER_AB(MAC_MC_HASH_REG1),
  1682. REGISTER_AB(GM_CFG1),
  1683. REGISTER_AB(GM_CFG2),
  1684. /* GM_IPG and GM_HD are not used */
  1685. REGISTER_AB(GM_MAX_FLEN),
  1686. /* GM_TEST is not used */
  1687. REGISTER_AB(GM_ADR1),
  1688. REGISTER_AB(GM_ADR2),
  1689. REGISTER_AB(GMF_CFG0),
  1690. REGISTER_AB(GMF_CFG1),
  1691. REGISTER_AB(GMF_CFG2),
  1692. REGISTER_AB(GMF_CFG3),
  1693. REGISTER_AB(GMF_CFG4),
  1694. REGISTER_AB(GMF_CFG5),
  1695. REGISTER_BB(TX_SRC_MAC_CTL),
  1696. REGISTER_AB(XM_ADR_LO),
  1697. REGISTER_AB(XM_ADR_HI),
  1698. REGISTER_AB(XM_GLB_CFG),
  1699. REGISTER_AB(XM_TX_CFG),
  1700. REGISTER_AB(XM_RX_CFG),
  1701. REGISTER_AB(XM_MGT_INT_MASK),
  1702. REGISTER_AB(XM_FC),
  1703. REGISTER_AB(XM_PAUSE_TIME),
  1704. REGISTER_AB(XM_TX_PARAM),
  1705. REGISTER_AB(XM_RX_PARAM),
  1706. /* XM_MGT_INT_MSK (note no 'A') is RC */
  1707. REGISTER_AB(XX_PWR_RST),
  1708. REGISTER_AB(XX_SD_CTL),
  1709. REGISTER_AB(XX_TXDRV_CTL),
  1710. /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
  1711. /* XX_CORE_STAT is partly RC */
  1712. };
  1713. struct efx_nic_reg_table {
  1714. u32 offset:24;
  1715. u32 min_revision:2, max_revision:2;
  1716. u32 step:6, rows:21;
  1717. };
  1718. #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
  1719. offset, \
  1720. REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
  1721. step, rows \
  1722. }
  1723. #define REGISTER_TABLE(name, min_rev, max_rev) \
  1724. REGISTER_TABLE_DIMENSIONS( \
  1725. name, FR_ ## min_rev ## max_rev ## _ ## name, \
  1726. min_rev, max_rev, \
  1727. FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
  1728. FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
  1729. #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
  1730. #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
  1731. #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
  1732. #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
  1733. #define REGISTER_TABLE_BB_CZ(name) \
  1734. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
  1735. FR_BZ_ ## name ## _STEP, \
  1736. FR_BB_ ## name ## _ROWS), \
  1737. REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
  1738. FR_BZ_ ## name ## _STEP, \
  1739. FR_CZ_ ## name ## _ROWS)
  1740. #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
  1741. static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
  1742. /* DRIVER is not used */
  1743. /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
  1744. REGISTER_TABLE_BB(TX_IPFIL_TBL),
  1745. REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
  1746. REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
  1747. REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
  1748. REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
  1749. REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
  1750. REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
  1751. REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
  1752. /* We can't reasonably read all of the buffer table (up to 8MB!).
  1753. * However this driver will only use a few entries. Reading
  1754. * 1K entries allows for some expansion of queue count and
  1755. * size before we need to change the version. */
  1756. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
  1757. A, A, 8, 1024),
  1758. REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
  1759. B, Z, 8, 1024),
  1760. REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
  1761. REGISTER_TABLE_BB_CZ(TIMER_TBL),
  1762. REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
  1763. REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
  1764. /* TX_FILTER_TBL0 is huge and not used by this driver */
  1765. REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
  1766. REGISTER_TABLE_CZ(MC_TREG_SMEM),
  1767. /* MSIX_PBA_TABLE is not mapped */
  1768. /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
  1769. REGISTER_TABLE_BZ(RX_FILTER_TBL0),
  1770. };
  1771. size_t efx_nic_get_regs_len(struct efx_nic *efx)
  1772. {
  1773. const struct efx_nic_reg *reg;
  1774. const struct efx_nic_reg_table *table;
  1775. size_t len = 0;
  1776. for (reg = efx_nic_regs;
  1777. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1778. reg++)
  1779. if (efx->type->revision >= reg->min_revision &&
  1780. efx->type->revision <= reg->max_revision)
  1781. len += sizeof(efx_oword_t);
  1782. for (table = efx_nic_reg_tables;
  1783. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1784. table++)
  1785. if (efx->type->revision >= table->min_revision &&
  1786. efx->type->revision <= table->max_revision)
  1787. len += table->rows * min_t(size_t, table->step, 16);
  1788. return len;
  1789. }
  1790. void efx_nic_get_regs(struct efx_nic *efx, void *buf)
  1791. {
  1792. const struct efx_nic_reg *reg;
  1793. const struct efx_nic_reg_table *table;
  1794. for (reg = efx_nic_regs;
  1795. reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
  1796. reg++) {
  1797. if (efx->type->revision >= reg->min_revision &&
  1798. efx->type->revision <= reg->max_revision) {
  1799. efx_reado(efx, (efx_oword_t *)buf, reg->offset);
  1800. buf += sizeof(efx_oword_t);
  1801. }
  1802. }
  1803. for (table = efx_nic_reg_tables;
  1804. table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
  1805. table++) {
  1806. size_t size, i;
  1807. if (!(efx->type->revision >= table->min_revision &&
  1808. efx->type->revision <= table->max_revision))
  1809. continue;
  1810. size = min_t(size_t, table->step, 16);
  1811. for (i = 0; i < table->rows; i++) {
  1812. switch (table->step) {
  1813. case 4: /* 32-bit SRAM */
  1814. efx_readd(efx, buf, table->offset + 4 * i);
  1815. break;
  1816. case 8: /* 64-bit SRAM */
  1817. efx_sram_readq(efx,
  1818. efx->membase + table->offset,
  1819. buf, i);
  1820. break;
  1821. case 16: /* 128-bit-readable register */
  1822. efx_reado_table(efx, buf, table->offset, i);
  1823. break;
  1824. case 32: /* 128-bit register, interleaved */
  1825. efx_reado_table(efx, buf, table->offset, 2 * i);
  1826. break;
  1827. default:
  1828. WARN_ON(1);
  1829. return;
  1830. }
  1831. buf += size;
  1832. }
  1833. }
  1834. }