sh_eth.c 61 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2012 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2012 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/module.h>
  24. #include <linux/kernel.h>
  25. #include <linux/spinlock.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/delay.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/mdio-bitbang.h>
  32. #include <linux/netdevice.h>
  33. #include <linux/phy.h>
  34. #include <linux/cache.h>
  35. #include <linux/io.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/slab.h>
  38. #include <linux/ethtool.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/clk.h>
  41. #include <linux/sh_eth.h>
  42. #include "sh_eth.h"
  43. #define SH_ETH_DEF_MSG_ENABLE \
  44. (NETIF_MSG_LINK | \
  45. NETIF_MSG_TIMER | \
  46. NETIF_MSG_RX_ERR| \
  47. NETIF_MSG_TX_ERR)
  48. #if defined(CONFIG_CPU_SUBTYPE_SH7734) || \
  49. defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  50. defined(CONFIG_ARCH_R8A7740)
  51. static void sh_eth_select_mii(struct net_device *ndev)
  52. {
  53. u32 value = 0x0;
  54. struct sh_eth_private *mdp = netdev_priv(ndev);
  55. switch (mdp->phy_interface) {
  56. case PHY_INTERFACE_MODE_GMII:
  57. value = 0x2;
  58. break;
  59. case PHY_INTERFACE_MODE_MII:
  60. value = 0x1;
  61. break;
  62. case PHY_INTERFACE_MODE_RMII:
  63. value = 0x0;
  64. break;
  65. default:
  66. pr_warn("PHY interface mode was not setup. Set to MII.\n");
  67. value = 0x1;
  68. break;
  69. }
  70. sh_eth_write(ndev, value, RMII_MII);
  71. }
  72. #endif
  73. /* There is CPU dependent code */
  74. #if defined(CONFIG_CPU_SUBTYPE_SH7724) || defined(CONFIG_ARCH_R8A7779)
  75. #define SH_ETH_RESET_DEFAULT 1
  76. static void sh_eth_set_duplex(struct net_device *ndev)
  77. {
  78. struct sh_eth_private *mdp = netdev_priv(ndev);
  79. if (mdp->duplex) /* Full */
  80. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  81. else /* Half */
  82. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  83. }
  84. static void sh_eth_set_rate(struct net_device *ndev)
  85. {
  86. struct sh_eth_private *mdp = netdev_priv(ndev);
  87. unsigned int bits = ECMR_RTM;
  88. #if defined(CONFIG_ARCH_R8A7779)
  89. bits |= ECMR_ELB;
  90. #endif
  91. switch (mdp->speed) {
  92. case 10: /* 10BASE */
  93. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~bits, ECMR);
  94. break;
  95. case 100:/* 100BASE */
  96. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | bits, ECMR);
  97. break;
  98. default:
  99. break;
  100. }
  101. }
  102. /* SH7724 */
  103. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  104. .set_duplex = sh_eth_set_duplex,
  105. .set_rate = sh_eth_set_rate,
  106. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  107. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  108. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  109. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  110. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  111. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  112. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  113. .apr = 1,
  114. .mpr = 1,
  115. .tpauser = 1,
  116. .hw_swap = 1,
  117. .rpadir = 1,
  118. .rpadir_value = 0x00020000, /* NET_IP_ALIGN assumed to be 2 */
  119. };
  120. #elif defined(CONFIG_CPU_SUBTYPE_SH7757)
  121. #define SH_ETH_HAS_BOTH_MODULES 1
  122. #define SH_ETH_HAS_TSU 1
  123. static int sh_eth_check_reset(struct net_device *ndev);
  124. static void sh_eth_set_duplex(struct net_device *ndev)
  125. {
  126. struct sh_eth_private *mdp = netdev_priv(ndev);
  127. if (mdp->duplex) /* Full */
  128. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  129. else /* Half */
  130. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  131. }
  132. static void sh_eth_set_rate(struct net_device *ndev)
  133. {
  134. struct sh_eth_private *mdp = netdev_priv(ndev);
  135. switch (mdp->speed) {
  136. case 10: /* 10BASE */
  137. sh_eth_write(ndev, 0, RTRATE);
  138. break;
  139. case 100:/* 100BASE */
  140. sh_eth_write(ndev, 1, RTRATE);
  141. break;
  142. default:
  143. break;
  144. }
  145. }
  146. /* SH7757 */
  147. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  148. .set_duplex = sh_eth_set_duplex,
  149. .set_rate = sh_eth_set_rate,
  150. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  151. .rmcr_value = 0x00000001,
  152. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  153. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  154. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  155. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  156. .apr = 1,
  157. .mpr = 1,
  158. .tpauser = 1,
  159. .hw_swap = 1,
  160. .no_ade = 1,
  161. .rpadir = 1,
  162. .rpadir_value = 2 << 16,
  163. };
  164. #define SH_GIGA_ETH_BASE 0xfee00000
  165. #define GIGA_MALR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c8)
  166. #define GIGA_MAHR(port) (SH_GIGA_ETH_BASE + 0x800 * (port) + 0x05c0)
  167. static void sh_eth_chip_reset_giga(struct net_device *ndev)
  168. {
  169. int i;
  170. unsigned long mahr[2], malr[2];
  171. /* save MAHR and MALR */
  172. for (i = 0; i < 2; i++) {
  173. malr[i] = ioread32((void *)GIGA_MALR(i));
  174. mahr[i] = ioread32((void *)GIGA_MAHR(i));
  175. }
  176. /* reset device */
  177. iowrite32(ARSTR_ARSTR, (void *)(SH_GIGA_ETH_BASE + 0x1800));
  178. mdelay(1);
  179. /* restore MAHR and MALR */
  180. for (i = 0; i < 2; i++) {
  181. iowrite32(malr[i], (void *)GIGA_MALR(i));
  182. iowrite32(mahr[i], (void *)GIGA_MAHR(i));
  183. }
  184. }
  185. static int sh_eth_is_gether(struct sh_eth_private *mdp);
  186. static int sh_eth_reset(struct net_device *ndev)
  187. {
  188. struct sh_eth_private *mdp = netdev_priv(ndev);
  189. int ret = 0;
  190. if (sh_eth_is_gether(mdp)) {
  191. sh_eth_write(ndev, 0x03, EDSR);
  192. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER,
  193. EDMR);
  194. ret = sh_eth_check_reset(ndev);
  195. if (ret)
  196. goto out;
  197. /* Table Init */
  198. sh_eth_write(ndev, 0x0, TDLAR);
  199. sh_eth_write(ndev, 0x0, TDFAR);
  200. sh_eth_write(ndev, 0x0, TDFXR);
  201. sh_eth_write(ndev, 0x0, TDFFR);
  202. sh_eth_write(ndev, 0x0, RDLAR);
  203. sh_eth_write(ndev, 0x0, RDFAR);
  204. sh_eth_write(ndev, 0x0, RDFXR);
  205. sh_eth_write(ndev, 0x0, RDFFR);
  206. } else {
  207. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER,
  208. EDMR);
  209. mdelay(3);
  210. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER,
  211. EDMR);
  212. }
  213. out:
  214. return ret;
  215. }
  216. static void sh_eth_set_duplex_giga(struct net_device *ndev)
  217. {
  218. struct sh_eth_private *mdp = netdev_priv(ndev);
  219. if (mdp->duplex) /* Full */
  220. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  221. else /* Half */
  222. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  223. }
  224. static void sh_eth_set_rate_giga(struct net_device *ndev)
  225. {
  226. struct sh_eth_private *mdp = netdev_priv(ndev);
  227. switch (mdp->speed) {
  228. case 10: /* 10BASE */
  229. sh_eth_write(ndev, 0x00000000, GECMR);
  230. break;
  231. case 100:/* 100BASE */
  232. sh_eth_write(ndev, 0x00000010, GECMR);
  233. break;
  234. case 1000: /* 1000BASE */
  235. sh_eth_write(ndev, 0x00000020, GECMR);
  236. break;
  237. default:
  238. break;
  239. }
  240. }
  241. /* SH7757(GETHERC) */
  242. static struct sh_eth_cpu_data sh_eth_my_cpu_data_giga = {
  243. .chip_reset = sh_eth_chip_reset_giga,
  244. .set_duplex = sh_eth_set_duplex_giga,
  245. .set_rate = sh_eth_set_rate_giga,
  246. .ecsr_value = ECSR_ICD | ECSR_MPD,
  247. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  248. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  249. .tx_check = EESR_TC1 | EESR_FTC,
  250. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  251. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  252. EESR_ECI,
  253. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  254. EESR_TFE,
  255. .fdr_value = 0x0000072f,
  256. .rmcr_value = 0x00000001,
  257. .apr = 1,
  258. .mpr = 1,
  259. .tpauser = 1,
  260. .bculr = 1,
  261. .hw_swap = 1,
  262. .rpadir = 1,
  263. .rpadir_value = 2 << 16,
  264. .no_trimd = 1,
  265. .no_ade = 1,
  266. .tsu = 1,
  267. };
  268. static struct sh_eth_cpu_data *sh_eth_get_cpu_data(struct sh_eth_private *mdp)
  269. {
  270. if (sh_eth_is_gether(mdp))
  271. return &sh_eth_my_cpu_data_giga;
  272. else
  273. return &sh_eth_my_cpu_data;
  274. }
  275. #elif defined(CONFIG_CPU_SUBTYPE_SH7734) || defined(CONFIG_CPU_SUBTYPE_SH7763)
  276. #define SH_ETH_HAS_TSU 1
  277. static int sh_eth_check_reset(struct net_device *ndev);
  278. static void sh_eth_reset_hw_crc(struct net_device *ndev);
  279. static void sh_eth_chip_reset(struct net_device *ndev)
  280. {
  281. struct sh_eth_private *mdp = netdev_priv(ndev);
  282. /* reset device */
  283. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  284. mdelay(1);
  285. }
  286. static void sh_eth_set_duplex(struct net_device *ndev)
  287. {
  288. struct sh_eth_private *mdp = netdev_priv(ndev);
  289. if (mdp->duplex) /* Full */
  290. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  291. else /* Half */
  292. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  293. }
  294. static void sh_eth_set_rate(struct net_device *ndev)
  295. {
  296. struct sh_eth_private *mdp = netdev_priv(ndev);
  297. switch (mdp->speed) {
  298. case 10: /* 10BASE */
  299. sh_eth_write(ndev, GECMR_10, GECMR);
  300. break;
  301. case 100:/* 100BASE */
  302. sh_eth_write(ndev, GECMR_100, GECMR);
  303. break;
  304. case 1000: /* 1000BASE */
  305. sh_eth_write(ndev, GECMR_1000, GECMR);
  306. break;
  307. default:
  308. break;
  309. }
  310. }
  311. /* sh7763 */
  312. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  313. .chip_reset = sh_eth_chip_reset,
  314. .set_duplex = sh_eth_set_duplex,
  315. .set_rate = sh_eth_set_rate,
  316. .ecsr_value = ECSR_ICD | ECSR_MPD,
  317. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  318. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  319. .tx_check = EESR_TC1 | EESR_FTC,
  320. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  321. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  322. EESR_ECI,
  323. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  324. EESR_TFE,
  325. .apr = 1,
  326. .mpr = 1,
  327. .tpauser = 1,
  328. .bculr = 1,
  329. .hw_swap = 1,
  330. .no_trimd = 1,
  331. .no_ade = 1,
  332. .tsu = 1,
  333. #if defined(CONFIG_CPU_SUBTYPE_SH7734)
  334. .hw_crc = 1,
  335. .select_mii = 1,
  336. #endif
  337. };
  338. static int sh_eth_reset(struct net_device *ndev)
  339. {
  340. int ret = 0;
  341. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  342. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  343. ret = sh_eth_check_reset(ndev);
  344. if (ret)
  345. goto out;
  346. /* Table Init */
  347. sh_eth_write(ndev, 0x0, TDLAR);
  348. sh_eth_write(ndev, 0x0, TDFAR);
  349. sh_eth_write(ndev, 0x0, TDFXR);
  350. sh_eth_write(ndev, 0x0, TDFFR);
  351. sh_eth_write(ndev, 0x0, RDLAR);
  352. sh_eth_write(ndev, 0x0, RDFAR);
  353. sh_eth_write(ndev, 0x0, RDFXR);
  354. sh_eth_write(ndev, 0x0, RDFFR);
  355. /* Reset HW CRC register */
  356. sh_eth_reset_hw_crc(ndev);
  357. /* Select MII mode */
  358. if (sh_eth_my_cpu_data.select_mii)
  359. sh_eth_select_mii(ndev);
  360. out:
  361. return ret;
  362. }
  363. static void sh_eth_reset_hw_crc(struct net_device *ndev)
  364. {
  365. if (sh_eth_my_cpu_data.hw_crc)
  366. sh_eth_write(ndev, 0x0, CSMR);
  367. }
  368. #elif defined(CONFIG_ARCH_R8A7740)
  369. #define SH_ETH_HAS_TSU 1
  370. static int sh_eth_check_reset(struct net_device *ndev);
  371. static void sh_eth_chip_reset(struct net_device *ndev)
  372. {
  373. struct sh_eth_private *mdp = netdev_priv(ndev);
  374. /* reset device */
  375. sh_eth_tsu_write(mdp, ARSTR_ARSTR, ARSTR);
  376. mdelay(1);
  377. sh_eth_select_mii(ndev);
  378. }
  379. static int sh_eth_reset(struct net_device *ndev)
  380. {
  381. int ret = 0;
  382. sh_eth_write(ndev, EDSR_ENALL, EDSR);
  383. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_GETHER, EDMR);
  384. ret = sh_eth_check_reset(ndev);
  385. if (ret)
  386. goto out;
  387. /* Table Init */
  388. sh_eth_write(ndev, 0x0, TDLAR);
  389. sh_eth_write(ndev, 0x0, TDFAR);
  390. sh_eth_write(ndev, 0x0, TDFXR);
  391. sh_eth_write(ndev, 0x0, TDFFR);
  392. sh_eth_write(ndev, 0x0, RDLAR);
  393. sh_eth_write(ndev, 0x0, RDFAR);
  394. sh_eth_write(ndev, 0x0, RDFXR);
  395. sh_eth_write(ndev, 0x0, RDFFR);
  396. out:
  397. return ret;
  398. }
  399. static void sh_eth_set_duplex(struct net_device *ndev)
  400. {
  401. struct sh_eth_private *mdp = netdev_priv(ndev);
  402. if (mdp->duplex) /* Full */
  403. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) | ECMR_DM, ECMR);
  404. else /* Half */
  405. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) & ~ECMR_DM, ECMR);
  406. }
  407. static void sh_eth_set_rate(struct net_device *ndev)
  408. {
  409. struct sh_eth_private *mdp = netdev_priv(ndev);
  410. switch (mdp->speed) {
  411. case 10: /* 10BASE */
  412. sh_eth_write(ndev, GECMR_10, GECMR);
  413. break;
  414. case 100:/* 100BASE */
  415. sh_eth_write(ndev, GECMR_100, GECMR);
  416. break;
  417. case 1000: /* 1000BASE */
  418. sh_eth_write(ndev, GECMR_1000, GECMR);
  419. break;
  420. default:
  421. break;
  422. }
  423. }
  424. /* R8A7740 */
  425. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  426. .chip_reset = sh_eth_chip_reset,
  427. .set_duplex = sh_eth_set_duplex,
  428. .set_rate = sh_eth_set_rate,
  429. .ecsr_value = ECSR_ICD | ECSR_MPD,
  430. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  431. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  432. .tx_check = EESR_TC1 | EESR_FTC,
  433. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  434. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  435. EESR_ECI,
  436. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  437. EESR_TFE,
  438. .apr = 1,
  439. .mpr = 1,
  440. .tpauser = 1,
  441. .bculr = 1,
  442. .hw_swap = 1,
  443. .no_trimd = 1,
  444. .no_ade = 1,
  445. .tsu = 1,
  446. .select_mii = 1,
  447. };
  448. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  449. #define SH_ETH_RESET_DEFAULT 1
  450. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  451. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  452. .apr = 1,
  453. .mpr = 1,
  454. .tpauser = 1,
  455. .hw_swap = 1,
  456. };
  457. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  458. #define SH_ETH_RESET_DEFAULT 1
  459. #define SH_ETH_HAS_TSU 1
  460. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  461. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  462. .tsu = 1,
  463. };
  464. #endif
  465. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  466. {
  467. if (!cd->ecsr_value)
  468. cd->ecsr_value = DEFAULT_ECSR_INIT;
  469. if (!cd->ecsipr_value)
  470. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  471. if (!cd->fcftr_value)
  472. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  473. DEFAULT_FIFO_F_D_RFD;
  474. if (!cd->fdr_value)
  475. cd->fdr_value = DEFAULT_FDR_INIT;
  476. if (!cd->rmcr_value)
  477. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  478. if (!cd->tx_check)
  479. cd->tx_check = DEFAULT_TX_CHECK;
  480. if (!cd->eesr_err_check)
  481. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  482. if (!cd->tx_error_check)
  483. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  484. }
  485. #if defined(SH_ETH_RESET_DEFAULT)
  486. /* Chip Reset */
  487. static int sh_eth_reset(struct net_device *ndev)
  488. {
  489. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) | EDMR_SRST_ETHER, EDMR);
  490. mdelay(3);
  491. sh_eth_write(ndev, sh_eth_read(ndev, EDMR) & ~EDMR_SRST_ETHER, EDMR);
  492. return 0;
  493. }
  494. #else
  495. static int sh_eth_check_reset(struct net_device *ndev)
  496. {
  497. int ret = 0;
  498. int cnt = 100;
  499. while (cnt > 0) {
  500. if (!(sh_eth_read(ndev, EDMR) & 0x3))
  501. break;
  502. mdelay(1);
  503. cnt--;
  504. }
  505. if (cnt < 0) {
  506. printk(KERN_ERR "Device reset fail\n");
  507. ret = -ETIMEDOUT;
  508. }
  509. return ret;
  510. }
  511. #endif
  512. #if defined(CONFIG_CPU_SH4) || defined(CONFIG_ARCH_SHMOBILE)
  513. static void sh_eth_set_receive_align(struct sk_buff *skb)
  514. {
  515. int reserve;
  516. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  517. if (reserve)
  518. skb_reserve(skb, reserve);
  519. }
  520. #else
  521. static void sh_eth_set_receive_align(struct sk_buff *skb)
  522. {
  523. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  524. }
  525. #endif
  526. /* CPU <-> EDMAC endian convert */
  527. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  528. {
  529. switch (mdp->edmac_endian) {
  530. case EDMAC_LITTLE_ENDIAN:
  531. return cpu_to_le32(x);
  532. case EDMAC_BIG_ENDIAN:
  533. return cpu_to_be32(x);
  534. }
  535. return x;
  536. }
  537. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  538. {
  539. switch (mdp->edmac_endian) {
  540. case EDMAC_LITTLE_ENDIAN:
  541. return le32_to_cpu(x);
  542. case EDMAC_BIG_ENDIAN:
  543. return be32_to_cpu(x);
  544. }
  545. return x;
  546. }
  547. /*
  548. * Program the hardware MAC address from dev->dev_addr.
  549. */
  550. static void update_mac_address(struct net_device *ndev)
  551. {
  552. sh_eth_write(ndev,
  553. (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  554. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
  555. sh_eth_write(ndev,
  556. (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
  557. }
  558. /*
  559. * Get MAC address from SuperH MAC address register
  560. *
  561. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  562. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  563. * When you want use this device, you must set MAC address in bootloader.
  564. *
  565. */
  566. static void read_mac_address(struct net_device *ndev, unsigned char *mac)
  567. {
  568. if (mac[0] || mac[1] || mac[2] || mac[3] || mac[4] || mac[5]) {
  569. memcpy(ndev->dev_addr, mac, 6);
  570. } else {
  571. ndev->dev_addr[0] = (sh_eth_read(ndev, MAHR) >> 24);
  572. ndev->dev_addr[1] = (sh_eth_read(ndev, MAHR) >> 16) & 0xFF;
  573. ndev->dev_addr[2] = (sh_eth_read(ndev, MAHR) >> 8) & 0xFF;
  574. ndev->dev_addr[3] = (sh_eth_read(ndev, MAHR) & 0xFF);
  575. ndev->dev_addr[4] = (sh_eth_read(ndev, MALR) >> 8) & 0xFF;
  576. ndev->dev_addr[5] = (sh_eth_read(ndev, MALR) & 0xFF);
  577. }
  578. }
  579. static int sh_eth_is_gether(struct sh_eth_private *mdp)
  580. {
  581. if (mdp->reg_offset == sh_eth_offset_gigabit)
  582. return 1;
  583. else
  584. return 0;
  585. }
  586. static unsigned long sh_eth_get_edtrr_trns(struct sh_eth_private *mdp)
  587. {
  588. if (sh_eth_is_gether(mdp))
  589. return EDTRR_TRNS_GETHER;
  590. else
  591. return EDTRR_TRNS_ETHER;
  592. }
  593. struct bb_info {
  594. void (*set_gate)(void *addr);
  595. struct mdiobb_ctrl ctrl;
  596. void *addr;
  597. u32 mmd_msk;/* MMD */
  598. u32 mdo_msk;
  599. u32 mdi_msk;
  600. u32 mdc_msk;
  601. };
  602. /* PHY bit set */
  603. static void bb_set(void *addr, u32 msk)
  604. {
  605. iowrite32(ioread32(addr) | msk, addr);
  606. }
  607. /* PHY bit clear */
  608. static void bb_clr(void *addr, u32 msk)
  609. {
  610. iowrite32((ioread32(addr) & ~msk), addr);
  611. }
  612. /* PHY bit read */
  613. static int bb_read(void *addr, u32 msk)
  614. {
  615. return (ioread32(addr) & msk) != 0;
  616. }
  617. /* Data I/O pin control */
  618. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  619. {
  620. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  621. if (bitbang->set_gate)
  622. bitbang->set_gate(bitbang->addr);
  623. if (bit)
  624. bb_set(bitbang->addr, bitbang->mmd_msk);
  625. else
  626. bb_clr(bitbang->addr, bitbang->mmd_msk);
  627. }
  628. /* Set bit data*/
  629. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  630. {
  631. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  632. if (bitbang->set_gate)
  633. bitbang->set_gate(bitbang->addr);
  634. if (bit)
  635. bb_set(bitbang->addr, bitbang->mdo_msk);
  636. else
  637. bb_clr(bitbang->addr, bitbang->mdo_msk);
  638. }
  639. /* Get bit data*/
  640. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  641. {
  642. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  643. if (bitbang->set_gate)
  644. bitbang->set_gate(bitbang->addr);
  645. return bb_read(bitbang->addr, bitbang->mdi_msk);
  646. }
  647. /* MDC pin control */
  648. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  649. {
  650. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  651. if (bitbang->set_gate)
  652. bitbang->set_gate(bitbang->addr);
  653. if (bit)
  654. bb_set(bitbang->addr, bitbang->mdc_msk);
  655. else
  656. bb_clr(bitbang->addr, bitbang->mdc_msk);
  657. }
  658. /* mdio bus control struct */
  659. static struct mdiobb_ops bb_ops = {
  660. .owner = THIS_MODULE,
  661. .set_mdc = sh_mdc_ctrl,
  662. .set_mdio_dir = sh_mmd_ctrl,
  663. .set_mdio_data = sh_set_mdio,
  664. .get_mdio_data = sh_get_mdio,
  665. };
  666. /* free skb and descriptor buffer */
  667. static void sh_eth_ring_free(struct net_device *ndev)
  668. {
  669. struct sh_eth_private *mdp = netdev_priv(ndev);
  670. int i;
  671. /* Free Rx skb ringbuffer */
  672. if (mdp->rx_skbuff) {
  673. for (i = 0; i < mdp->num_rx_ring; i++) {
  674. if (mdp->rx_skbuff[i])
  675. dev_kfree_skb(mdp->rx_skbuff[i]);
  676. }
  677. }
  678. kfree(mdp->rx_skbuff);
  679. mdp->rx_skbuff = NULL;
  680. /* Free Tx skb ringbuffer */
  681. if (mdp->tx_skbuff) {
  682. for (i = 0; i < mdp->num_tx_ring; i++) {
  683. if (mdp->tx_skbuff[i])
  684. dev_kfree_skb(mdp->tx_skbuff[i]);
  685. }
  686. }
  687. kfree(mdp->tx_skbuff);
  688. mdp->tx_skbuff = NULL;
  689. }
  690. /* format skb and descriptor buffer */
  691. static void sh_eth_ring_format(struct net_device *ndev)
  692. {
  693. struct sh_eth_private *mdp = netdev_priv(ndev);
  694. int i;
  695. struct sk_buff *skb;
  696. struct sh_eth_rxdesc *rxdesc = NULL;
  697. struct sh_eth_txdesc *txdesc = NULL;
  698. int rx_ringsize = sizeof(*rxdesc) * mdp->num_rx_ring;
  699. int tx_ringsize = sizeof(*txdesc) * mdp->num_tx_ring;
  700. mdp->cur_rx = mdp->cur_tx = 0;
  701. mdp->dirty_rx = mdp->dirty_tx = 0;
  702. memset(mdp->rx_ring, 0, rx_ringsize);
  703. /* build Rx ring buffer */
  704. for (i = 0; i < mdp->num_rx_ring; i++) {
  705. /* skb */
  706. mdp->rx_skbuff[i] = NULL;
  707. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  708. mdp->rx_skbuff[i] = skb;
  709. if (skb == NULL)
  710. break;
  711. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  712. DMA_FROM_DEVICE);
  713. sh_eth_set_receive_align(skb);
  714. /* RX descriptor */
  715. rxdesc = &mdp->rx_ring[i];
  716. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  717. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  718. /* The size of the buffer is 16 byte boundary. */
  719. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  720. /* Rx descriptor address set */
  721. if (i == 0) {
  722. sh_eth_write(ndev, mdp->rx_desc_dma, RDLAR);
  723. if (sh_eth_is_gether(mdp))
  724. sh_eth_write(ndev, mdp->rx_desc_dma, RDFAR);
  725. }
  726. }
  727. mdp->dirty_rx = (u32) (i - mdp->num_rx_ring);
  728. /* Mark the last entry as wrapping the ring. */
  729. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  730. memset(mdp->tx_ring, 0, tx_ringsize);
  731. /* build Tx ring buffer */
  732. for (i = 0; i < mdp->num_tx_ring; i++) {
  733. mdp->tx_skbuff[i] = NULL;
  734. txdesc = &mdp->tx_ring[i];
  735. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  736. txdesc->buffer_length = 0;
  737. if (i == 0) {
  738. /* Tx descriptor address set */
  739. sh_eth_write(ndev, mdp->tx_desc_dma, TDLAR);
  740. if (sh_eth_is_gether(mdp))
  741. sh_eth_write(ndev, mdp->tx_desc_dma, TDFAR);
  742. }
  743. }
  744. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  745. }
  746. /* Get skb and descriptor buffer */
  747. static int sh_eth_ring_init(struct net_device *ndev)
  748. {
  749. struct sh_eth_private *mdp = netdev_priv(ndev);
  750. int rx_ringsize, tx_ringsize, ret = 0;
  751. /*
  752. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  753. * card needs room to do 8 byte alignment, +2 so we can reserve
  754. * the first 2 bytes, and +16 gets room for the status word from the
  755. * card.
  756. */
  757. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  758. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  759. if (mdp->cd->rpadir)
  760. mdp->rx_buf_sz += NET_IP_ALIGN;
  761. /* Allocate RX and TX skb rings */
  762. mdp->rx_skbuff = kmalloc_array(mdp->num_rx_ring,
  763. sizeof(*mdp->rx_skbuff), GFP_KERNEL);
  764. if (!mdp->rx_skbuff) {
  765. ret = -ENOMEM;
  766. return ret;
  767. }
  768. mdp->tx_skbuff = kmalloc_array(mdp->num_tx_ring,
  769. sizeof(*mdp->tx_skbuff), GFP_KERNEL);
  770. if (!mdp->tx_skbuff) {
  771. ret = -ENOMEM;
  772. goto skb_ring_free;
  773. }
  774. /* Allocate all Rx descriptors. */
  775. rx_ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  776. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  777. GFP_KERNEL);
  778. if (!mdp->rx_ring) {
  779. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  780. rx_ringsize);
  781. ret = -ENOMEM;
  782. goto desc_ring_free;
  783. }
  784. mdp->dirty_rx = 0;
  785. /* Allocate all Tx descriptors. */
  786. tx_ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  787. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  788. GFP_KERNEL);
  789. if (!mdp->tx_ring) {
  790. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  791. tx_ringsize);
  792. ret = -ENOMEM;
  793. goto desc_ring_free;
  794. }
  795. return ret;
  796. desc_ring_free:
  797. /* free DMA buffer */
  798. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  799. skb_ring_free:
  800. /* Free Rx and Tx skb ring buffer */
  801. sh_eth_ring_free(ndev);
  802. mdp->tx_ring = NULL;
  803. mdp->rx_ring = NULL;
  804. return ret;
  805. }
  806. static void sh_eth_free_dma_buffer(struct sh_eth_private *mdp)
  807. {
  808. int ringsize;
  809. if (mdp->rx_ring) {
  810. ringsize = sizeof(struct sh_eth_rxdesc) * mdp->num_rx_ring;
  811. dma_free_coherent(NULL, ringsize, mdp->rx_ring,
  812. mdp->rx_desc_dma);
  813. mdp->rx_ring = NULL;
  814. }
  815. if (mdp->tx_ring) {
  816. ringsize = sizeof(struct sh_eth_txdesc) * mdp->num_tx_ring;
  817. dma_free_coherent(NULL, ringsize, mdp->tx_ring,
  818. mdp->tx_desc_dma);
  819. mdp->tx_ring = NULL;
  820. }
  821. }
  822. static int sh_eth_dev_init(struct net_device *ndev, bool start)
  823. {
  824. int ret = 0;
  825. struct sh_eth_private *mdp = netdev_priv(ndev);
  826. u32 val;
  827. /* Soft Reset */
  828. ret = sh_eth_reset(ndev);
  829. if (ret)
  830. goto out;
  831. /* Descriptor format */
  832. sh_eth_ring_format(ndev);
  833. if (mdp->cd->rpadir)
  834. sh_eth_write(ndev, mdp->cd->rpadir_value, RPADIR);
  835. /* all sh_eth int mask */
  836. sh_eth_write(ndev, 0, EESIPR);
  837. #if defined(__LITTLE_ENDIAN)
  838. if (mdp->cd->hw_swap)
  839. sh_eth_write(ndev, EDMR_EL, EDMR);
  840. else
  841. #endif
  842. sh_eth_write(ndev, 0, EDMR);
  843. /* FIFO size set */
  844. sh_eth_write(ndev, mdp->cd->fdr_value, FDR);
  845. sh_eth_write(ndev, 0, TFTR);
  846. /* Frame recv control */
  847. sh_eth_write(ndev, mdp->cd->rmcr_value, RMCR);
  848. sh_eth_write(ndev, DESC_I_RINT8 | DESC_I_RINT5 | DESC_I_TINT2, TRSCER);
  849. if (mdp->cd->bculr)
  850. sh_eth_write(ndev, 0x800, BCULR); /* Burst sycle set */
  851. sh_eth_write(ndev, mdp->cd->fcftr_value, FCFTR);
  852. if (!mdp->cd->no_trimd)
  853. sh_eth_write(ndev, 0, TRIMD);
  854. /* Recv frame limit set register */
  855. sh_eth_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN,
  856. RFLR);
  857. sh_eth_write(ndev, sh_eth_read(ndev, EESR), EESR);
  858. if (start)
  859. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  860. /* PAUSE Prohibition */
  861. val = (sh_eth_read(ndev, ECMR) & ECMR_DM) |
  862. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  863. sh_eth_write(ndev, val, ECMR);
  864. if (mdp->cd->set_rate)
  865. mdp->cd->set_rate(ndev);
  866. /* E-MAC Status Register clear */
  867. sh_eth_write(ndev, mdp->cd->ecsr_value, ECSR);
  868. /* E-MAC Interrupt Enable register */
  869. if (start)
  870. sh_eth_write(ndev, mdp->cd->ecsipr_value, ECSIPR);
  871. /* Set MAC address */
  872. update_mac_address(ndev);
  873. /* mask reset */
  874. if (mdp->cd->apr)
  875. sh_eth_write(ndev, APR_AP, APR);
  876. if (mdp->cd->mpr)
  877. sh_eth_write(ndev, MPR_MP, MPR);
  878. if (mdp->cd->tpauser)
  879. sh_eth_write(ndev, TPAUSER_UNLIMITED, TPAUSER);
  880. if (start) {
  881. /* Setting the Rx mode will start the Rx process. */
  882. sh_eth_write(ndev, EDRRR_R, EDRRR);
  883. netif_start_queue(ndev);
  884. }
  885. out:
  886. return ret;
  887. }
  888. /* free Tx skb function */
  889. static int sh_eth_txfree(struct net_device *ndev)
  890. {
  891. struct sh_eth_private *mdp = netdev_priv(ndev);
  892. struct sh_eth_txdesc *txdesc;
  893. int freeNum = 0;
  894. int entry = 0;
  895. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  896. entry = mdp->dirty_tx % mdp->num_tx_ring;
  897. txdesc = &mdp->tx_ring[entry];
  898. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  899. break;
  900. /* Free the original skb. */
  901. if (mdp->tx_skbuff[entry]) {
  902. dma_unmap_single(&ndev->dev, txdesc->addr,
  903. txdesc->buffer_length, DMA_TO_DEVICE);
  904. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  905. mdp->tx_skbuff[entry] = NULL;
  906. freeNum++;
  907. }
  908. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  909. if (entry >= mdp->num_tx_ring - 1)
  910. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  911. ndev->stats.tx_packets++;
  912. ndev->stats.tx_bytes += txdesc->buffer_length;
  913. }
  914. return freeNum;
  915. }
  916. /* Packet receive function */
  917. static int sh_eth_rx(struct net_device *ndev, u32 intr_status)
  918. {
  919. struct sh_eth_private *mdp = netdev_priv(ndev);
  920. struct sh_eth_rxdesc *rxdesc;
  921. int entry = mdp->cur_rx % mdp->num_rx_ring;
  922. int boguscnt = (mdp->dirty_rx + mdp->num_rx_ring) - mdp->cur_rx;
  923. struct sk_buff *skb;
  924. u16 pkt_len = 0;
  925. u32 desc_status;
  926. rxdesc = &mdp->rx_ring[entry];
  927. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  928. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  929. pkt_len = rxdesc->frame_length;
  930. #if defined(CONFIG_ARCH_R8A7740)
  931. desc_status >>= 16;
  932. #endif
  933. if (--boguscnt < 0)
  934. break;
  935. if (!(desc_status & RDFEND))
  936. ndev->stats.rx_length_errors++;
  937. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  938. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  939. ndev->stats.rx_errors++;
  940. if (desc_status & RD_RFS1)
  941. ndev->stats.rx_crc_errors++;
  942. if (desc_status & RD_RFS2)
  943. ndev->stats.rx_frame_errors++;
  944. if (desc_status & RD_RFS3)
  945. ndev->stats.rx_length_errors++;
  946. if (desc_status & RD_RFS4)
  947. ndev->stats.rx_length_errors++;
  948. if (desc_status & RD_RFS6)
  949. ndev->stats.rx_missed_errors++;
  950. if (desc_status & RD_RFS10)
  951. ndev->stats.rx_over_errors++;
  952. } else {
  953. if (!mdp->cd->hw_swap)
  954. sh_eth_soft_swap(
  955. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  956. pkt_len + 2);
  957. skb = mdp->rx_skbuff[entry];
  958. mdp->rx_skbuff[entry] = NULL;
  959. if (mdp->cd->rpadir)
  960. skb_reserve(skb, NET_IP_ALIGN);
  961. skb_put(skb, pkt_len);
  962. skb->protocol = eth_type_trans(skb, ndev);
  963. netif_rx(skb);
  964. ndev->stats.rx_packets++;
  965. ndev->stats.rx_bytes += pkt_len;
  966. }
  967. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  968. entry = (++mdp->cur_rx) % mdp->num_rx_ring;
  969. rxdesc = &mdp->rx_ring[entry];
  970. }
  971. /* Refill the Rx ring buffers. */
  972. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  973. entry = mdp->dirty_rx % mdp->num_rx_ring;
  974. rxdesc = &mdp->rx_ring[entry];
  975. /* The size of the buffer is 16 byte boundary. */
  976. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  977. if (mdp->rx_skbuff[entry] == NULL) {
  978. skb = netdev_alloc_skb(ndev, mdp->rx_buf_sz);
  979. mdp->rx_skbuff[entry] = skb;
  980. if (skb == NULL)
  981. break; /* Better luck next round. */
  982. dma_map_single(&ndev->dev, skb->data, mdp->rx_buf_sz,
  983. DMA_FROM_DEVICE);
  984. sh_eth_set_receive_align(skb);
  985. skb_checksum_none_assert(skb);
  986. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  987. }
  988. if (entry >= mdp->num_rx_ring - 1)
  989. rxdesc->status |=
  990. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  991. else
  992. rxdesc->status |=
  993. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  994. }
  995. /* Restart Rx engine if stopped. */
  996. /* If we don't need to check status, don't. -KDU */
  997. if (!(sh_eth_read(ndev, EDRRR) & EDRRR_R)) {
  998. /* fix the values for the next receiving if RDE is set */
  999. if (intr_status & EESR_RDE)
  1000. mdp->cur_rx = mdp->dirty_rx =
  1001. (sh_eth_read(ndev, RDFAR) -
  1002. sh_eth_read(ndev, RDLAR)) >> 4;
  1003. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1004. }
  1005. return 0;
  1006. }
  1007. static void sh_eth_rcv_snd_disable(struct net_device *ndev)
  1008. {
  1009. /* disable tx and rx */
  1010. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) &
  1011. ~(ECMR_RE | ECMR_TE), ECMR);
  1012. }
  1013. static void sh_eth_rcv_snd_enable(struct net_device *ndev)
  1014. {
  1015. /* enable tx and rx */
  1016. sh_eth_write(ndev, sh_eth_read(ndev, ECMR) |
  1017. (ECMR_RE | ECMR_TE), ECMR);
  1018. }
  1019. /* error control function */
  1020. static void sh_eth_error(struct net_device *ndev, int intr_status)
  1021. {
  1022. struct sh_eth_private *mdp = netdev_priv(ndev);
  1023. u32 felic_stat;
  1024. u32 link_stat;
  1025. u32 mask;
  1026. if (intr_status & EESR_ECI) {
  1027. felic_stat = sh_eth_read(ndev, ECSR);
  1028. sh_eth_write(ndev, felic_stat, ECSR); /* clear int */
  1029. if (felic_stat & ECSR_ICD)
  1030. ndev->stats.tx_carrier_errors++;
  1031. if (felic_stat & ECSR_LCHNG) {
  1032. /* Link Changed */
  1033. if (mdp->cd->no_psr || mdp->no_ether_link) {
  1034. if (mdp->link == PHY_DOWN)
  1035. link_stat = 0;
  1036. else
  1037. link_stat = PHY_ST_LINK;
  1038. } else {
  1039. link_stat = (sh_eth_read(ndev, PSR));
  1040. if (mdp->ether_link_active_low)
  1041. link_stat = ~link_stat;
  1042. }
  1043. if (!(link_stat & PHY_ST_LINK))
  1044. sh_eth_rcv_snd_disable(ndev);
  1045. else {
  1046. /* Link Up */
  1047. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) &
  1048. ~DMAC_M_ECI, EESIPR);
  1049. /*clear int */
  1050. sh_eth_write(ndev, sh_eth_read(ndev, ECSR),
  1051. ECSR);
  1052. sh_eth_write(ndev, sh_eth_read(ndev, EESIPR) |
  1053. DMAC_M_ECI, EESIPR);
  1054. /* enable tx and rx */
  1055. sh_eth_rcv_snd_enable(ndev);
  1056. }
  1057. }
  1058. }
  1059. if (intr_status & EESR_TWB) {
  1060. /* Write buck end. unused write back interrupt */
  1061. if (intr_status & EESR_TABT) /* Transmit Abort int */
  1062. ndev->stats.tx_aborted_errors++;
  1063. if (netif_msg_tx_err(mdp))
  1064. dev_err(&ndev->dev, "Transmit Abort\n");
  1065. }
  1066. if (intr_status & EESR_RABT) {
  1067. /* Receive Abort int */
  1068. if (intr_status & EESR_RFRMER) {
  1069. /* Receive Frame Overflow int */
  1070. ndev->stats.rx_frame_errors++;
  1071. if (netif_msg_rx_err(mdp))
  1072. dev_err(&ndev->dev, "Receive Abort\n");
  1073. }
  1074. }
  1075. if (intr_status & EESR_TDE) {
  1076. /* Transmit Descriptor Empty int */
  1077. ndev->stats.tx_fifo_errors++;
  1078. if (netif_msg_tx_err(mdp))
  1079. dev_err(&ndev->dev, "Transmit Descriptor Empty\n");
  1080. }
  1081. if (intr_status & EESR_TFE) {
  1082. /* FIFO under flow */
  1083. ndev->stats.tx_fifo_errors++;
  1084. if (netif_msg_tx_err(mdp))
  1085. dev_err(&ndev->dev, "Transmit FIFO Under flow\n");
  1086. }
  1087. if (intr_status & EESR_RDE) {
  1088. /* Receive Descriptor Empty int */
  1089. ndev->stats.rx_over_errors++;
  1090. if (netif_msg_rx_err(mdp))
  1091. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  1092. }
  1093. if (intr_status & EESR_RFE) {
  1094. /* Receive FIFO Overflow int */
  1095. ndev->stats.rx_fifo_errors++;
  1096. if (netif_msg_rx_err(mdp))
  1097. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  1098. }
  1099. if (!mdp->cd->no_ade && (intr_status & EESR_ADE)) {
  1100. /* Address Error */
  1101. ndev->stats.tx_fifo_errors++;
  1102. if (netif_msg_tx_err(mdp))
  1103. dev_err(&ndev->dev, "Address Error\n");
  1104. }
  1105. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  1106. if (mdp->cd->no_ade)
  1107. mask &= ~EESR_ADE;
  1108. if (intr_status & mask) {
  1109. /* Tx error */
  1110. u32 edtrr = sh_eth_read(ndev, EDTRR);
  1111. /* dmesg */
  1112. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  1113. intr_status, mdp->cur_tx);
  1114. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  1115. mdp->dirty_tx, (u32) ndev->state, edtrr);
  1116. /* dirty buffer free */
  1117. sh_eth_txfree(ndev);
  1118. /* SH7712 BUG */
  1119. if (edtrr ^ sh_eth_get_edtrr_trns(mdp)) {
  1120. /* tx dma start */
  1121. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1122. }
  1123. /* wakeup */
  1124. netif_wake_queue(ndev);
  1125. }
  1126. }
  1127. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  1128. {
  1129. struct net_device *ndev = netdev;
  1130. struct sh_eth_private *mdp = netdev_priv(ndev);
  1131. struct sh_eth_cpu_data *cd = mdp->cd;
  1132. irqreturn_t ret = IRQ_NONE;
  1133. u32 intr_status = 0;
  1134. spin_lock(&mdp->lock);
  1135. /* Get interrpt stat */
  1136. intr_status = sh_eth_read(ndev, EESR);
  1137. /* Clear interrupt */
  1138. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  1139. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  1140. cd->tx_check | cd->eesr_err_check)) {
  1141. sh_eth_write(ndev, intr_status, EESR);
  1142. ret = IRQ_HANDLED;
  1143. } else
  1144. goto other_irq;
  1145. if (intr_status & (EESR_FRC | /* Frame recv*/
  1146. EESR_RMAF | /* Multi cast address recv*/
  1147. EESR_RRF | /* Bit frame recv */
  1148. EESR_RTLF | /* Long frame recv*/
  1149. EESR_RTSF | /* short frame recv */
  1150. EESR_PRE | /* PHY-LSI recv error */
  1151. EESR_CERF)){ /* recv frame CRC error */
  1152. sh_eth_rx(ndev, intr_status);
  1153. }
  1154. /* Tx Check */
  1155. if (intr_status & cd->tx_check) {
  1156. sh_eth_txfree(ndev);
  1157. netif_wake_queue(ndev);
  1158. }
  1159. if (intr_status & cd->eesr_err_check)
  1160. sh_eth_error(ndev, intr_status);
  1161. other_irq:
  1162. spin_unlock(&mdp->lock);
  1163. return ret;
  1164. }
  1165. /* PHY state control function */
  1166. static void sh_eth_adjust_link(struct net_device *ndev)
  1167. {
  1168. struct sh_eth_private *mdp = netdev_priv(ndev);
  1169. struct phy_device *phydev = mdp->phydev;
  1170. int new_state = 0;
  1171. if (phydev->link != PHY_DOWN) {
  1172. if (phydev->duplex != mdp->duplex) {
  1173. new_state = 1;
  1174. mdp->duplex = phydev->duplex;
  1175. if (mdp->cd->set_duplex)
  1176. mdp->cd->set_duplex(ndev);
  1177. }
  1178. if (phydev->speed != mdp->speed) {
  1179. new_state = 1;
  1180. mdp->speed = phydev->speed;
  1181. if (mdp->cd->set_rate)
  1182. mdp->cd->set_rate(ndev);
  1183. }
  1184. if (mdp->link == PHY_DOWN) {
  1185. sh_eth_write(ndev,
  1186. (sh_eth_read(ndev, ECMR) & ~ECMR_TXF), ECMR);
  1187. new_state = 1;
  1188. mdp->link = phydev->link;
  1189. }
  1190. } else if (mdp->link) {
  1191. new_state = 1;
  1192. mdp->link = PHY_DOWN;
  1193. mdp->speed = 0;
  1194. mdp->duplex = -1;
  1195. }
  1196. if (new_state && netif_msg_link(mdp))
  1197. phy_print_status(phydev);
  1198. }
  1199. /* PHY init function */
  1200. static int sh_eth_phy_init(struct net_device *ndev)
  1201. {
  1202. struct sh_eth_private *mdp = netdev_priv(ndev);
  1203. char phy_id[MII_BUS_ID_SIZE + 3];
  1204. struct phy_device *phydev = NULL;
  1205. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  1206. mdp->mii_bus->id , mdp->phy_id);
  1207. mdp->link = PHY_DOWN;
  1208. mdp->speed = 0;
  1209. mdp->duplex = -1;
  1210. /* Try connect to PHY */
  1211. phydev = phy_connect(ndev, phy_id, sh_eth_adjust_link,
  1212. mdp->phy_interface);
  1213. if (IS_ERR(phydev)) {
  1214. dev_err(&ndev->dev, "phy_connect failed\n");
  1215. return PTR_ERR(phydev);
  1216. }
  1217. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  1218. phydev->addr, phydev->drv->name);
  1219. mdp->phydev = phydev;
  1220. return 0;
  1221. }
  1222. /* PHY control start function */
  1223. static int sh_eth_phy_start(struct net_device *ndev)
  1224. {
  1225. struct sh_eth_private *mdp = netdev_priv(ndev);
  1226. int ret;
  1227. ret = sh_eth_phy_init(ndev);
  1228. if (ret)
  1229. return ret;
  1230. /* reset phy - this also wakes it from PDOWN */
  1231. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  1232. phy_start(mdp->phydev);
  1233. return 0;
  1234. }
  1235. static int sh_eth_get_settings(struct net_device *ndev,
  1236. struct ethtool_cmd *ecmd)
  1237. {
  1238. struct sh_eth_private *mdp = netdev_priv(ndev);
  1239. unsigned long flags;
  1240. int ret;
  1241. spin_lock_irqsave(&mdp->lock, flags);
  1242. ret = phy_ethtool_gset(mdp->phydev, ecmd);
  1243. spin_unlock_irqrestore(&mdp->lock, flags);
  1244. return ret;
  1245. }
  1246. static int sh_eth_set_settings(struct net_device *ndev,
  1247. struct ethtool_cmd *ecmd)
  1248. {
  1249. struct sh_eth_private *mdp = netdev_priv(ndev);
  1250. unsigned long flags;
  1251. int ret;
  1252. spin_lock_irqsave(&mdp->lock, flags);
  1253. /* disable tx and rx */
  1254. sh_eth_rcv_snd_disable(ndev);
  1255. ret = phy_ethtool_sset(mdp->phydev, ecmd);
  1256. if (ret)
  1257. goto error_exit;
  1258. if (ecmd->duplex == DUPLEX_FULL)
  1259. mdp->duplex = 1;
  1260. else
  1261. mdp->duplex = 0;
  1262. if (mdp->cd->set_duplex)
  1263. mdp->cd->set_duplex(ndev);
  1264. error_exit:
  1265. mdelay(1);
  1266. /* enable tx and rx */
  1267. sh_eth_rcv_snd_enable(ndev);
  1268. spin_unlock_irqrestore(&mdp->lock, flags);
  1269. return ret;
  1270. }
  1271. static int sh_eth_nway_reset(struct net_device *ndev)
  1272. {
  1273. struct sh_eth_private *mdp = netdev_priv(ndev);
  1274. unsigned long flags;
  1275. int ret;
  1276. spin_lock_irqsave(&mdp->lock, flags);
  1277. ret = phy_start_aneg(mdp->phydev);
  1278. spin_unlock_irqrestore(&mdp->lock, flags);
  1279. return ret;
  1280. }
  1281. static u32 sh_eth_get_msglevel(struct net_device *ndev)
  1282. {
  1283. struct sh_eth_private *mdp = netdev_priv(ndev);
  1284. return mdp->msg_enable;
  1285. }
  1286. static void sh_eth_set_msglevel(struct net_device *ndev, u32 value)
  1287. {
  1288. struct sh_eth_private *mdp = netdev_priv(ndev);
  1289. mdp->msg_enable = value;
  1290. }
  1291. static const char sh_eth_gstrings_stats[][ETH_GSTRING_LEN] = {
  1292. "rx_current", "tx_current",
  1293. "rx_dirty", "tx_dirty",
  1294. };
  1295. #define SH_ETH_STATS_LEN ARRAY_SIZE(sh_eth_gstrings_stats)
  1296. static int sh_eth_get_sset_count(struct net_device *netdev, int sset)
  1297. {
  1298. switch (sset) {
  1299. case ETH_SS_STATS:
  1300. return SH_ETH_STATS_LEN;
  1301. default:
  1302. return -EOPNOTSUPP;
  1303. }
  1304. }
  1305. static void sh_eth_get_ethtool_stats(struct net_device *ndev,
  1306. struct ethtool_stats *stats, u64 *data)
  1307. {
  1308. struct sh_eth_private *mdp = netdev_priv(ndev);
  1309. int i = 0;
  1310. /* device-specific stats */
  1311. data[i++] = mdp->cur_rx;
  1312. data[i++] = mdp->cur_tx;
  1313. data[i++] = mdp->dirty_rx;
  1314. data[i++] = mdp->dirty_tx;
  1315. }
  1316. static void sh_eth_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
  1317. {
  1318. switch (stringset) {
  1319. case ETH_SS_STATS:
  1320. memcpy(data, *sh_eth_gstrings_stats,
  1321. sizeof(sh_eth_gstrings_stats));
  1322. break;
  1323. }
  1324. }
  1325. static void sh_eth_get_ringparam(struct net_device *ndev,
  1326. struct ethtool_ringparam *ring)
  1327. {
  1328. struct sh_eth_private *mdp = netdev_priv(ndev);
  1329. ring->rx_max_pending = RX_RING_MAX;
  1330. ring->tx_max_pending = TX_RING_MAX;
  1331. ring->rx_pending = mdp->num_rx_ring;
  1332. ring->tx_pending = mdp->num_tx_ring;
  1333. }
  1334. static int sh_eth_set_ringparam(struct net_device *ndev,
  1335. struct ethtool_ringparam *ring)
  1336. {
  1337. struct sh_eth_private *mdp = netdev_priv(ndev);
  1338. int ret;
  1339. if (ring->tx_pending > TX_RING_MAX ||
  1340. ring->rx_pending > RX_RING_MAX ||
  1341. ring->tx_pending < TX_RING_MIN ||
  1342. ring->rx_pending < RX_RING_MIN)
  1343. return -EINVAL;
  1344. if (ring->rx_mini_pending || ring->rx_jumbo_pending)
  1345. return -EINVAL;
  1346. if (netif_running(ndev)) {
  1347. netif_tx_disable(ndev);
  1348. /* Disable interrupts by clearing the interrupt mask. */
  1349. sh_eth_write(ndev, 0x0000, EESIPR);
  1350. /* Stop the chip's Tx and Rx processes. */
  1351. sh_eth_write(ndev, 0, EDTRR);
  1352. sh_eth_write(ndev, 0, EDRRR);
  1353. synchronize_irq(ndev->irq);
  1354. }
  1355. /* Free all the skbuffs in the Rx queue. */
  1356. sh_eth_ring_free(ndev);
  1357. /* Free DMA buffer */
  1358. sh_eth_free_dma_buffer(mdp);
  1359. /* Set new parameters */
  1360. mdp->num_rx_ring = ring->rx_pending;
  1361. mdp->num_tx_ring = ring->tx_pending;
  1362. ret = sh_eth_ring_init(ndev);
  1363. if (ret < 0) {
  1364. dev_err(&ndev->dev, "%s: sh_eth_ring_init failed.\n", __func__);
  1365. return ret;
  1366. }
  1367. ret = sh_eth_dev_init(ndev, false);
  1368. if (ret < 0) {
  1369. dev_err(&ndev->dev, "%s: sh_eth_dev_init failed.\n", __func__);
  1370. return ret;
  1371. }
  1372. if (netif_running(ndev)) {
  1373. sh_eth_write(ndev, mdp->cd->eesipr_value, EESIPR);
  1374. /* Setting the Rx mode will start the Rx process. */
  1375. sh_eth_write(ndev, EDRRR_R, EDRRR);
  1376. netif_wake_queue(ndev);
  1377. }
  1378. return 0;
  1379. }
  1380. static const struct ethtool_ops sh_eth_ethtool_ops = {
  1381. .get_settings = sh_eth_get_settings,
  1382. .set_settings = sh_eth_set_settings,
  1383. .nway_reset = sh_eth_nway_reset,
  1384. .get_msglevel = sh_eth_get_msglevel,
  1385. .set_msglevel = sh_eth_set_msglevel,
  1386. .get_link = ethtool_op_get_link,
  1387. .get_strings = sh_eth_get_strings,
  1388. .get_ethtool_stats = sh_eth_get_ethtool_stats,
  1389. .get_sset_count = sh_eth_get_sset_count,
  1390. .get_ringparam = sh_eth_get_ringparam,
  1391. .set_ringparam = sh_eth_set_ringparam,
  1392. };
  1393. /* network device open function */
  1394. static int sh_eth_open(struct net_device *ndev)
  1395. {
  1396. int ret = 0;
  1397. struct sh_eth_private *mdp = netdev_priv(ndev);
  1398. pm_runtime_get_sync(&mdp->pdev->dev);
  1399. ret = request_irq(ndev->irq, sh_eth_interrupt,
  1400. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || \
  1401. defined(CONFIG_CPU_SUBTYPE_SH7764) || \
  1402. defined(CONFIG_CPU_SUBTYPE_SH7757)
  1403. IRQF_SHARED,
  1404. #else
  1405. 0,
  1406. #endif
  1407. ndev->name, ndev);
  1408. if (ret) {
  1409. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  1410. return ret;
  1411. }
  1412. /* Descriptor set */
  1413. ret = sh_eth_ring_init(ndev);
  1414. if (ret)
  1415. goto out_free_irq;
  1416. /* device init */
  1417. ret = sh_eth_dev_init(ndev, true);
  1418. if (ret)
  1419. goto out_free_irq;
  1420. /* PHY control start*/
  1421. ret = sh_eth_phy_start(ndev);
  1422. if (ret)
  1423. goto out_free_irq;
  1424. return ret;
  1425. out_free_irq:
  1426. free_irq(ndev->irq, ndev);
  1427. pm_runtime_put_sync(&mdp->pdev->dev);
  1428. return ret;
  1429. }
  1430. /* Timeout function */
  1431. static void sh_eth_tx_timeout(struct net_device *ndev)
  1432. {
  1433. struct sh_eth_private *mdp = netdev_priv(ndev);
  1434. struct sh_eth_rxdesc *rxdesc;
  1435. int i;
  1436. netif_stop_queue(ndev);
  1437. if (netif_msg_timer(mdp))
  1438. dev_err(&ndev->dev, "%s: transmit timed out, status %8.8x,"
  1439. " resetting...\n", ndev->name, (int)sh_eth_read(ndev, EESR));
  1440. /* tx_errors count up */
  1441. ndev->stats.tx_errors++;
  1442. /* Free all the skbuffs in the Rx queue. */
  1443. for (i = 0; i < mdp->num_rx_ring; i++) {
  1444. rxdesc = &mdp->rx_ring[i];
  1445. rxdesc->status = 0;
  1446. rxdesc->addr = 0xBADF00D0;
  1447. if (mdp->rx_skbuff[i])
  1448. dev_kfree_skb(mdp->rx_skbuff[i]);
  1449. mdp->rx_skbuff[i] = NULL;
  1450. }
  1451. for (i = 0; i < mdp->num_tx_ring; i++) {
  1452. if (mdp->tx_skbuff[i])
  1453. dev_kfree_skb(mdp->tx_skbuff[i]);
  1454. mdp->tx_skbuff[i] = NULL;
  1455. }
  1456. /* device init */
  1457. sh_eth_dev_init(ndev, true);
  1458. }
  1459. /* Packet transmit function */
  1460. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  1461. {
  1462. struct sh_eth_private *mdp = netdev_priv(ndev);
  1463. struct sh_eth_txdesc *txdesc;
  1464. u32 entry;
  1465. unsigned long flags;
  1466. spin_lock_irqsave(&mdp->lock, flags);
  1467. if ((mdp->cur_tx - mdp->dirty_tx) >= (mdp->num_tx_ring - 4)) {
  1468. if (!sh_eth_txfree(ndev)) {
  1469. if (netif_msg_tx_queued(mdp))
  1470. dev_warn(&ndev->dev, "TxFD exhausted.\n");
  1471. netif_stop_queue(ndev);
  1472. spin_unlock_irqrestore(&mdp->lock, flags);
  1473. return NETDEV_TX_BUSY;
  1474. }
  1475. }
  1476. spin_unlock_irqrestore(&mdp->lock, flags);
  1477. entry = mdp->cur_tx % mdp->num_tx_ring;
  1478. mdp->tx_skbuff[entry] = skb;
  1479. txdesc = &mdp->tx_ring[entry];
  1480. /* soft swap. */
  1481. if (!mdp->cd->hw_swap)
  1482. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  1483. skb->len + 2);
  1484. txdesc->addr = dma_map_single(&ndev->dev, skb->data, skb->len,
  1485. DMA_TO_DEVICE);
  1486. if (skb->len < ETHERSMALL)
  1487. txdesc->buffer_length = ETHERSMALL;
  1488. else
  1489. txdesc->buffer_length = skb->len;
  1490. if (entry >= mdp->num_tx_ring - 1)
  1491. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  1492. else
  1493. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  1494. mdp->cur_tx++;
  1495. if (!(sh_eth_read(ndev, EDTRR) & sh_eth_get_edtrr_trns(mdp)))
  1496. sh_eth_write(ndev, sh_eth_get_edtrr_trns(mdp), EDTRR);
  1497. return NETDEV_TX_OK;
  1498. }
  1499. /* device close function */
  1500. static int sh_eth_close(struct net_device *ndev)
  1501. {
  1502. struct sh_eth_private *mdp = netdev_priv(ndev);
  1503. netif_stop_queue(ndev);
  1504. /* Disable interrupts by clearing the interrupt mask. */
  1505. sh_eth_write(ndev, 0x0000, EESIPR);
  1506. /* Stop the chip's Tx and Rx processes. */
  1507. sh_eth_write(ndev, 0, EDTRR);
  1508. sh_eth_write(ndev, 0, EDRRR);
  1509. /* PHY Disconnect */
  1510. if (mdp->phydev) {
  1511. phy_stop(mdp->phydev);
  1512. phy_disconnect(mdp->phydev);
  1513. }
  1514. free_irq(ndev->irq, ndev);
  1515. /* Free all the skbuffs in the Rx queue. */
  1516. sh_eth_ring_free(ndev);
  1517. /* free DMA buffer */
  1518. sh_eth_free_dma_buffer(mdp);
  1519. pm_runtime_put_sync(&mdp->pdev->dev);
  1520. return 0;
  1521. }
  1522. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1523. {
  1524. struct sh_eth_private *mdp = netdev_priv(ndev);
  1525. pm_runtime_get_sync(&mdp->pdev->dev);
  1526. ndev->stats.tx_dropped += sh_eth_read(ndev, TROCR);
  1527. sh_eth_write(ndev, 0, TROCR); /* (write clear) */
  1528. ndev->stats.collisions += sh_eth_read(ndev, CDCR);
  1529. sh_eth_write(ndev, 0, CDCR); /* (write clear) */
  1530. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, LCCR);
  1531. sh_eth_write(ndev, 0, LCCR); /* (write clear) */
  1532. if (sh_eth_is_gether(mdp)) {
  1533. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CERCR);
  1534. sh_eth_write(ndev, 0, CERCR); /* (write clear) */
  1535. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CEECR);
  1536. sh_eth_write(ndev, 0, CEECR); /* (write clear) */
  1537. } else {
  1538. ndev->stats.tx_carrier_errors += sh_eth_read(ndev, CNDCR);
  1539. sh_eth_write(ndev, 0, CNDCR); /* (write clear) */
  1540. }
  1541. pm_runtime_put_sync(&mdp->pdev->dev);
  1542. return &ndev->stats;
  1543. }
  1544. /* ioctl to device function */
  1545. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1546. int cmd)
  1547. {
  1548. struct sh_eth_private *mdp = netdev_priv(ndev);
  1549. struct phy_device *phydev = mdp->phydev;
  1550. if (!netif_running(ndev))
  1551. return -EINVAL;
  1552. if (!phydev)
  1553. return -ENODEV;
  1554. return phy_mii_ioctl(phydev, rq, cmd);
  1555. }
  1556. #if defined(SH_ETH_HAS_TSU)
  1557. /* For TSU_POSTn. Please refer to the manual about this (strange) bitfields */
  1558. static void *sh_eth_tsu_get_post_reg_offset(struct sh_eth_private *mdp,
  1559. int entry)
  1560. {
  1561. return sh_eth_tsu_get_offset(mdp, TSU_POST1) + (entry / 8 * 4);
  1562. }
  1563. static u32 sh_eth_tsu_get_post_mask(int entry)
  1564. {
  1565. return 0x0f << (28 - ((entry % 8) * 4));
  1566. }
  1567. static u32 sh_eth_tsu_get_post_bit(struct sh_eth_private *mdp, int entry)
  1568. {
  1569. return (0x08 >> (mdp->port << 1)) << (28 - ((entry % 8) * 4));
  1570. }
  1571. static void sh_eth_tsu_enable_cam_entry_post(struct net_device *ndev,
  1572. int entry)
  1573. {
  1574. struct sh_eth_private *mdp = netdev_priv(ndev);
  1575. u32 tmp;
  1576. void *reg_offset;
  1577. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1578. tmp = ioread32(reg_offset);
  1579. iowrite32(tmp | sh_eth_tsu_get_post_bit(mdp, entry), reg_offset);
  1580. }
  1581. static bool sh_eth_tsu_disable_cam_entry_post(struct net_device *ndev,
  1582. int entry)
  1583. {
  1584. struct sh_eth_private *mdp = netdev_priv(ndev);
  1585. u32 post_mask, ref_mask, tmp;
  1586. void *reg_offset;
  1587. reg_offset = sh_eth_tsu_get_post_reg_offset(mdp, entry);
  1588. post_mask = sh_eth_tsu_get_post_mask(entry);
  1589. ref_mask = sh_eth_tsu_get_post_bit(mdp, entry) & ~post_mask;
  1590. tmp = ioread32(reg_offset);
  1591. iowrite32(tmp & ~post_mask, reg_offset);
  1592. /* If other port enables, the function returns "true" */
  1593. return tmp & ref_mask;
  1594. }
  1595. static int sh_eth_tsu_busy(struct net_device *ndev)
  1596. {
  1597. int timeout = SH_ETH_TSU_TIMEOUT_MS * 100;
  1598. struct sh_eth_private *mdp = netdev_priv(ndev);
  1599. while ((sh_eth_tsu_read(mdp, TSU_ADSBSY) & TSU_ADSBSY_0)) {
  1600. udelay(10);
  1601. timeout--;
  1602. if (timeout <= 0) {
  1603. dev_err(&ndev->dev, "%s: timeout\n", __func__);
  1604. return -ETIMEDOUT;
  1605. }
  1606. }
  1607. return 0;
  1608. }
  1609. static int sh_eth_tsu_write_entry(struct net_device *ndev, void *reg,
  1610. const u8 *addr)
  1611. {
  1612. u32 val;
  1613. val = addr[0] << 24 | addr[1] << 16 | addr[2] << 8 | addr[3];
  1614. iowrite32(val, reg);
  1615. if (sh_eth_tsu_busy(ndev) < 0)
  1616. return -EBUSY;
  1617. val = addr[4] << 8 | addr[5];
  1618. iowrite32(val, reg + 4);
  1619. if (sh_eth_tsu_busy(ndev) < 0)
  1620. return -EBUSY;
  1621. return 0;
  1622. }
  1623. static void sh_eth_tsu_read_entry(void *reg, u8 *addr)
  1624. {
  1625. u32 val;
  1626. val = ioread32(reg);
  1627. addr[0] = (val >> 24) & 0xff;
  1628. addr[1] = (val >> 16) & 0xff;
  1629. addr[2] = (val >> 8) & 0xff;
  1630. addr[3] = val & 0xff;
  1631. val = ioread32(reg + 4);
  1632. addr[4] = (val >> 8) & 0xff;
  1633. addr[5] = val & 0xff;
  1634. }
  1635. static int sh_eth_tsu_find_entry(struct net_device *ndev, const u8 *addr)
  1636. {
  1637. struct sh_eth_private *mdp = netdev_priv(ndev);
  1638. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1639. int i;
  1640. u8 c_addr[ETH_ALEN];
  1641. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1642. sh_eth_tsu_read_entry(reg_offset, c_addr);
  1643. if (memcmp(addr, c_addr, ETH_ALEN) == 0)
  1644. return i;
  1645. }
  1646. return -ENOENT;
  1647. }
  1648. static int sh_eth_tsu_find_empty(struct net_device *ndev)
  1649. {
  1650. u8 blank[ETH_ALEN];
  1651. int entry;
  1652. memset(blank, 0, sizeof(blank));
  1653. entry = sh_eth_tsu_find_entry(ndev, blank);
  1654. return (entry < 0) ? -ENOMEM : entry;
  1655. }
  1656. static int sh_eth_tsu_disable_cam_entry_table(struct net_device *ndev,
  1657. int entry)
  1658. {
  1659. struct sh_eth_private *mdp = netdev_priv(ndev);
  1660. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1661. int ret;
  1662. u8 blank[ETH_ALEN];
  1663. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) &
  1664. ~(1 << (31 - entry)), TSU_TEN);
  1665. memset(blank, 0, sizeof(blank));
  1666. ret = sh_eth_tsu_write_entry(ndev, reg_offset + entry * 8, blank);
  1667. if (ret < 0)
  1668. return ret;
  1669. return 0;
  1670. }
  1671. static int sh_eth_tsu_add_entry(struct net_device *ndev, const u8 *addr)
  1672. {
  1673. struct sh_eth_private *mdp = netdev_priv(ndev);
  1674. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1675. int i, ret;
  1676. if (!mdp->cd->tsu)
  1677. return 0;
  1678. i = sh_eth_tsu_find_entry(ndev, addr);
  1679. if (i < 0) {
  1680. /* No entry found, create one */
  1681. i = sh_eth_tsu_find_empty(ndev);
  1682. if (i < 0)
  1683. return -ENOMEM;
  1684. ret = sh_eth_tsu_write_entry(ndev, reg_offset + i * 8, addr);
  1685. if (ret < 0)
  1686. return ret;
  1687. /* Enable the entry */
  1688. sh_eth_tsu_write(mdp, sh_eth_tsu_read(mdp, TSU_TEN) |
  1689. (1 << (31 - i)), TSU_TEN);
  1690. }
  1691. /* Entry found or created, enable POST */
  1692. sh_eth_tsu_enable_cam_entry_post(ndev, i);
  1693. return 0;
  1694. }
  1695. static int sh_eth_tsu_del_entry(struct net_device *ndev, const u8 *addr)
  1696. {
  1697. struct sh_eth_private *mdp = netdev_priv(ndev);
  1698. int i, ret;
  1699. if (!mdp->cd->tsu)
  1700. return 0;
  1701. i = sh_eth_tsu_find_entry(ndev, addr);
  1702. if (i) {
  1703. /* Entry found */
  1704. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1705. goto done;
  1706. /* Disable the entry if both ports was disabled */
  1707. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1708. if (ret < 0)
  1709. return ret;
  1710. }
  1711. done:
  1712. return 0;
  1713. }
  1714. static int sh_eth_tsu_purge_all(struct net_device *ndev)
  1715. {
  1716. struct sh_eth_private *mdp = netdev_priv(ndev);
  1717. int i, ret;
  1718. if (unlikely(!mdp->cd->tsu))
  1719. return 0;
  1720. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++) {
  1721. if (sh_eth_tsu_disable_cam_entry_post(ndev, i))
  1722. continue;
  1723. /* Disable the entry if both ports was disabled */
  1724. ret = sh_eth_tsu_disable_cam_entry_table(ndev, i);
  1725. if (ret < 0)
  1726. return ret;
  1727. }
  1728. return 0;
  1729. }
  1730. static void sh_eth_tsu_purge_mcast(struct net_device *ndev)
  1731. {
  1732. struct sh_eth_private *mdp = netdev_priv(ndev);
  1733. u8 addr[ETH_ALEN];
  1734. void *reg_offset = sh_eth_tsu_get_offset(mdp, TSU_ADRH0);
  1735. int i;
  1736. if (unlikely(!mdp->cd->tsu))
  1737. return;
  1738. for (i = 0; i < SH_ETH_TSU_CAM_ENTRIES; i++, reg_offset += 8) {
  1739. sh_eth_tsu_read_entry(reg_offset, addr);
  1740. if (is_multicast_ether_addr(addr))
  1741. sh_eth_tsu_del_entry(ndev, addr);
  1742. }
  1743. }
  1744. /* Multicast reception directions set */
  1745. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1746. {
  1747. struct sh_eth_private *mdp = netdev_priv(ndev);
  1748. u32 ecmr_bits;
  1749. int mcast_all = 0;
  1750. unsigned long flags;
  1751. spin_lock_irqsave(&mdp->lock, flags);
  1752. /*
  1753. * Initial condition is MCT = 1, PRM = 0.
  1754. * Depending on ndev->flags, set PRM or clear MCT
  1755. */
  1756. ecmr_bits = (sh_eth_read(ndev, ECMR) & ~ECMR_PRM) | ECMR_MCT;
  1757. if (!(ndev->flags & IFF_MULTICAST)) {
  1758. sh_eth_tsu_purge_mcast(ndev);
  1759. mcast_all = 1;
  1760. }
  1761. if (ndev->flags & IFF_ALLMULTI) {
  1762. sh_eth_tsu_purge_mcast(ndev);
  1763. ecmr_bits &= ~ECMR_MCT;
  1764. mcast_all = 1;
  1765. }
  1766. if (ndev->flags & IFF_PROMISC) {
  1767. sh_eth_tsu_purge_all(ndev);
  1768. ecmr_bits = (ecmr_bits & ~ECMR_MCT) | ECMR_PRM;
  1769. } else if (mdp->cd->tsu) {
  1770. struct netdev_hw_addr *ha;
  1771. netdev_for_each_mc_addr(ha, ndev) {
  1772. if (mcast_all && is_multicast_ether_addr(ha->addr))
  1773. continue;
  1774. if (sh_eth_tsu_add_entry(ndev, ha->addr) < 0) {
  1775. if (!mcast_all) {
  1776. sh_eth_tsu_purge_mcast(ndev);
  1777. ecmr_bits &= ~ECMR_MCT;
  1778. mcast_all = 1;
  1779. }
  1780. }
  1781. }
  1782. } else {
  1783. /* Normal, unicast/broadcast-only mode. */
  1784. ecmr_bits = (ecmr_bits & ~ECMR_PRM) | ECMR_MCT;
  1785. }
  1786. /* update the ethernet mode */
  1787. sh_eth_write(ndev, ecmr_bits, ECMR);
  1788. spin_unlock_irqrestore(&mdp->lock, flags);
  1789. }
  1790. static int sh_eth_get_vtag_index(struct sh_eth_private *mdp)
  1791. {
  1792. if (!mdp->port)
  1793. return TSU_VTAG0;
  1794. else
  1795. return TSU_VTAG1;
  1796. }
  1797. static int sh_eth_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1798. {
  1799. struct sh_eth_private *mdp = netdev_priv(ndev);
  1800. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1801. if (unlikely(!mdp->cd->tsu))
  1802. return -EPERM;
  1803. /* No filtering if vid = 0 */
  1804. if (!vid)
  1805. return 0;
  1806. mdp->vlan_num_ids++;
  1807. /*
  1808. * The controller has one VLAN tag HW filter. So, if the filter is
  1809. * already enabled, the driver disables it and the filte
  1810. */
  1811. if (mdp->vlan_num_ids > 1) {
  1812. /* disable VLAN filter */
  1813. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1814. return 0;
  1815. }
  1816. sh_eth_tsu_write(mdp, TSU_VTAG_ENABLE | (vid & TSU_VTAG_VID_MASK),
  1817. vtag_reg_index);
  1818. return 0;
  1819. }
  1820. static int sh_eth_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1821. {
  1822. struct sh_eth_private *mdp = netdev_priv(ndev);
  1823. int vtag_reg_index = sh_eth_get_vtag_index(mdp);
  1824. if (unlikely(!mdp->cd->tsu))
  1825. return -EPERM;
  1826. /* No filtering if vid = 0 */
  1827. if (!vid)
  1828. return 0;
  1829. mdp->vlan_num_ids--;
  1830. sh_eth_tsu_write(mdp, 0, vtag_reg_index);
  1831. return 0;
  1832. }
  1833. #endif /* SH_ETH_HAS_TSU */
  1834. /* SuperH's TSU register init function */
  1835. static void sh_eth_tsu_init(struct sh_eth_private *mdp)
  1836. {
  1837. sh_eth_tsu_write(mdp, 0, TSU_FWEN0); /* Disable forward(0->1) */
  1838. sh_eth_tsu_write(mdp, 0, TSU_FWEN1); /* Disable forward(1->0) */
  1839. sh_eth_tsu_write(mdp, 0, TSU_FCM); /* forward fifo 3k-3k */
  1840. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL0);
  1841. sh_eth_tsu_write(mdp, 0xc, TSU_BSYSL1);
  1842. sh_eth_tsu_write(mdp, 0, TSU_PRISL0);
  1843. sh_eth_tsu_write(mdp, 0, TSU_PRISL1);
  1844. sh_eth_tsu_write(mdp, 0, TSU_FWSL0);
  1845. sh_eth_tsu_write(mdp, 0, TSU_FWSL1);
  1846. sh_eth_tsu_write(mdp, TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, TSU_FWSLC);
  1847. if (sh_eth_is_gether(mdp)) {
  1848. sh_eth_tsu_write(mdp, 0, TSU_QTAG0); /* Disable QTAG(0->1) */
  1849. sh_eth_tsu_write(mdp, 0, TSU_QTAG1); /* Disable QTAG(1->0) */
  1850. } else {
  1851. sh_eth_tsu_write(mdp, 0, TSU_QTAGM0); /* Disable QTAG(0->1) */
  1852. sh_eth_tsu_write(mdp, 0, TSU_QTAGM1); /* Disable QTAG(1->0) */
  1853. }
  1854. sh_eth_tsu_write(mdp, 0, TSU_FWSR); /* all interrupt status clear */
  1855. sh_eth_tsu_write(mdp, 0, TSU_FWINMK); /* Disable all interrupt */
  1856. sh_eth_tsu_write(mdp, 0, TSU_TEN); /* Disable all CAM entry */
  1857. sh_eth_tsu_write(mdp, 0, TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1858. sh_eth_tsu_write(mdp, 0, TSU_POST2); /* Disable CAM entry [ 8-15] */
  1859. sh_eth_tsu_write(mdp, 0, TSU_POST3); /* Disable CAM entry [16-23] */
  1860. sh_eth_tsu_write(mdp, 0, TSU_POST4); /* Disable CAM entry [24-31] */
  1861. }
  1862. /* MDIO bus release function */
  1863. static int sh_mdio_release(struct net_device *ndev)
  1864. {
  1865. struct sh_eth_private *mdp = netdev_priv(ndev);
  1866. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1867. /* unregister mdio bus */
  1868. mdiobus_unregister(bus);
  1869. /* remove mdio bus info from net_device */
  1870. dev_set_drvdata(&ndev->dev, NULL);
  1871. /* free interrupts memory */
  1872. kfree(bus->irq);
  1873. /* free bitbang info */
  1874. free_mdio_bitbang(bus);
  1875. /* free bitbang memory */
  1876. kfree(mdp->bitbang);
  1877. return 0;
  1878. }
  1879. /* MDIO bus init function */
  1880. static int sh_mdio_init(struct net_device *ndev, int id,
  1881. struct sh_eth_plat_data *pd)
  1882. {
  1883. int ret, i;
  1884. struct bb_info *bitbang;
  1885. struct sh_eth_private *mdp = netdev_priv(ndev);
  1886. /* create bit control struct for PHY */
  1887. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1888. if (!bitbang) {
  1889. ret = -ENOMEM;
  1890. goto out;
  1891. }
  1892. /* bitbang init */
  1893. bitbang->addr = mdp->addr + mdp->reg_offset[PIR];
  1894. bitbang->set_gate = pd->set_mdio_gate;
  1895. bitbang->mdi_msk = 0x08;
  1896. bitbang->mdo_msk = 0x04;
  1897. bitbang->mmd_msk = 0x02;/* MMD */
  1898. bitbang->mdc_msk = 0x01;
  1899. bitbang->ctrl.ops = &bb_ops;
  1900. /* MII controller setting */
  1901. mdp->bitbang = bitbang;
  1902. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1903. if (!mdp->mii_bus) {
  1904. ret = -ENOMEM;
  1905. goto out_free_bitbang;
  1906. }
  1907. /* Hook up MII support for ethtool */
  1908. mdp->mii_bus->name = "sh_mii";
  1909. mdp->mii_bus->parent = &ndev->dev;
  1910. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
  1911. mdp->pdev->name, id);
  1912. /* PHY IRQ */
  1913. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1914. if (!mdp->mii_bus->irq) {
  1915. ret = -ENOMEM;
  1916. goto out_free_bus;
  1917. }
  1918. for (i = 0; i < PHY_MAX_ADDR; i++)
  1919. mdp->mii_bus->irq[i] = PHY_POLL;
  1920. /* register mdio bus */
  1921. ret = mdiobus_register(mdp->mii_bus);
  1922. if (ret)
  1923. goto out_free_irq;
  1924. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1925. return 0;
  1926. out_free_irq:
  1927. kfree(mdp->mii_bus->irq);
  1928. out_free_bus:
  1929. free_mdio_bitbang(mdp->mii_bus);
  1930. out_free_bitbang:
  1931. kfree(bitbang);
  1932. out:
  1933. return ret;
  1934. }
  1935. static const u16 *sh_eth_get_register_offset(int register_type)
  1936. {
  1937. const u16 *reg_offset = NULL;
  1938. switch (register_type) {
  1939. case SH_ETH_REG_GIGABIT:
  1940. reg_offset = sh_eth_offset_gigabit;
  1941. break;
  1942. case SH_ETH_REG_FAST_SH4:
  1943. reg_offset = sh_eth_offset_fast_sh4;
  1944. break;
  1945. case SH_ETH_REG_FAST_SH3_SH2:
  1946. reg_offset = sh_eth_offset_fast_sh3_sh2;
  1947. break;
  1948. default:
  1949. printk(KERN_ERR "Unknown register type (%d)\n", register_type);
  1950. break;
  1951. }
  1952. return reg_offset;
  1953. }
  1954. static const struct net_device_ops sh_eth_netdev_ops = {
  1955. .ndo_open = sh_eth_open,
  1956. .ndo_stop = sh_eth_close,
  1957. .ndo_start_xmit = sh_eth_start_xmit,
  1958. .ndo_get_stats = sh_eth_get_stats,
  1959. #if defined(SH_ETH_HAS_TSU)
  1960. .ndo_set_rx_mode = sh_eth_set_multicast_list,
  1961. .ndo_vlan_rx_add_vid = sh_eth_vlan_rx_add_vid,
  1962. .ndo_vlan_rx_kill_vid = sh_eth_vlan_rx_kill_vid,
  1963. #endif
  1964. .ndo_tx_timeout = sh_eth_tx_timeout,
  1965. .ndo_do_ioctl = sh_eth_do_ioctl,
  1966. .ndo_validate_addr = eth_validate_addr,
  1967. .ndo_set_mac_address = eth_mac_addr,
  1968. .ndo_change_mtu = eth_change_mtu,
  1969. };
  1970. static int sh_eth_drv_probe(struct platform_device *pdev)
  1971. {
  1972. int ret, devno = 0;
  1973. struct resource *res;
  1974. struct net_device *ndev = NULL;
  1975. struct sh_eth_private *mdp = NULL;
  1976. struct sh_eth_plat_data *pd;
  1977. /* get base addr */
  1978. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1979. if (unlikely(res == NULL)) {
  1980. dev_err(&pdev->dev, "invalid resource\n");
  1981. ret = -EINVAL;
  1982. goto out;
  1983. }
  1984. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1985. if (!ndev) {
  1986. ret = -ENOMEM;
  1987. goto out;
  1988. }
  1989. /* The sh Ether-specific entries in the device structure. */
  1990. ndev->base_addr = res->start;
  1991. devno = pdev->id;
  1992. if (devno < 0)
  1993. devno = 0;
  1994. ndev->dma = -1;
  1995. ret = platform_get_irq(pdev, 0);
  1996. if (ret < 0) {
  1997. ret = -ENODEV;
  1998. goto out_release;
  1999. }
  2000. ndev->irq = ret;
  2001. SET_NETDEV_DEV(ndev, &pdev->dev);
  2002. /* Fill in the fields of the device structure with ethernet values. */
  2003. ether_setup(ndev);
  2004. mdp = netdev_priv(ndev);
  2005. mdp->num_tx_ring = TX_RING_SIZE;
  2006. mdp->num_rx_ring = RX_RING_SIZE;
  2007. mdp->addr = ioremap(res->start, resource_size(res));
  2008. if (mdp->addr == NULL) {
  2009. ret = -ENOMEM;
  2010. dev_err(&pdev->dev, "ioremap failed.\n");
  2011. goto out_release;
  2012. }
  2013. spin_lock_init(&mdp->lock);
  2014. mdp->pdev = pdev;
  2015. pm_runtime_enable(&pdev->dev);
  2016. pm_runtime_resume(&pdev->dev);
  2017. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  2018. /* get PHY ID */
  2019. mdp->phy_id = pd->phy;
  2020. mdp->phy_interface = pd->phy_interface;
  2021. /* EDMAC endian */
  2022. mdp->edmac_endian = pd->edmac_endian;
  2023. mdp->no_ether_link = pd->no_ether_link;
  2024. mdp->ether_link_active_low = pd->ether_link_active_low;
  2025. mdp->reg_offset = sh_eth_get_register_offset(pd->register_type);
  2026. /* set cpu data */
  2027. #if defined(SH_ETH_HAS_BOTH_MODULES)
  2028. mdp->cd = sh_eth_get_cpu_data(mdp);
  2029. #else
  2030. mdp->cd = &sh_eth_my_cpu_data;
  2031. #endif
  2032. sh_eth_set_default_cpu_data(mdp->cd);
  2033. /* set function */
  2034. ndev->netdev_ops = &sh_eth_netdev_ops;
  2035. SET_ETHTOOL_OPS(ndev, &sh_eth_ethtool_ops);
  2036. ndev->watchdog_timeo = TX_TIMEOUT;
  2037. /* debug message level */
  2038. mdp->msg_enable = SH_ETH_DEF_MSG_ENABLE;
  2039. /* read and set MAC address */
  2040. read_mac_address(ndev, pd->mac_addr);
  2041. /* ioremap the TSU registers */
  2042. if (mdp->cd->tsu) {
  2043. struct resource *rtsu;
  2044. rtsu = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  2045. if (!rtsu) {
  2046. dev_err(&pdev->dev, "Not found TSU resource\n");
  2047. ret = -ENODEV;
  2048. goto out_release;
  2049. }
  2050. mdp->tsu_addr = ioremap(rtsu->start,
  2051. resource_size(rtsu));
  2052. if (mdp->tsu_addr == NULL) {
  2053. ret = -ENOMEM;
  2054. dev_err(&pdev->dev, "TSU ioremap failed.\n");
  2055. goto out_release;
  2056. }
  2057. mdp->port = devno % 2;
  2058. ndev->features = NETIF_F_HW_VLAN_FILTER;
  2059. }
  2060. /* initialize first or needed device */
  2061. if (!devno || pd->needs_init) {
  2062. if (mdp->cd->chip_reset)
  2063. mdp->cd->chip_reset(ndev);
  2064. if (mdp->cd->tsu) {
  2065. /* TSU init (Init only)*/
  2066. sh_eth_tsu_init(mdp);
  2067. }
  2068. }
  2069. /* network device register */
  2070. ret = register_netdev(ndev);
  2071. if (ret)
  2072. goto out_release;
  2073. /* mdio bus init */
  2074. ret = sh_mdio_init(ndev, pdev->id, pd);
  2075. if (ret)
  2076. goto out_unregister;
  2077. /* print device information */
  2078. pr_info("Base address at 0x%x, %pM, IRQ %d.\n",
  2079. (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
  2080. platform_set_drvdata(pdev, ndev);
  2081. return ret;
  2082. out_unregister:
  2083. unregister_netdev(ndev);
  2084. out_release:
  2085. /* net_dev free */
  2086. if (mdp && mdp->addr)
  2087. iounmap(mdp->addr);
  2088. if (mdp && mdp->tsu_addr)
  2089. iounmap(mdp->tsu_addr);
  2090. if (ndev)
  2091. free_netdev(ndev);
  2092. out:
  2093. return ret;
  2094. }
  2095. static int sh_eth_drv_remove(struct platform_device *pdev)
  2096. {
  2097. struct net_device *ndev = platform_get_drvdata(pdev);
  2098. struct sh_eth_private *mdp = netdev_priv(ndev);
  2099. if (mdp->cd->tsu)
  2100. iounmap(mdp->tsu_addr);
  2101. sh_mdio_release(ndev);
  2102. unregister_netdev(ndev);
  2103. pm_runtime_disable(&pdev->dev);
  2104. iounmap(mdp->addr);
  2105. free_netdev(ndev);
  2106. platform_set_drvdata(pdev, NULL);
  2107. return 0;
  2108. }
  2109. static int sh_eth_runtime_nop(struct device *dev)
  2110. {
  2111. /*
  2112. * Runtime PM callback shared between ->runtime_suspend()
  2113. * and ->runtime_resume(). Simply returns success.
  2114. *
  2115. * This driver re-initializes all registers after
  2116. * pm_runtime_get_sync() anyway so there is no need
  2117. * to save and restore registers here.
  2118. */
  2119. return 0;
  2120. }
  2121. static struct dev_pm_ops sh_eth_dev_pm_ops = {
  2122. .runtime_suspend = sh_eth_runtime_nop,
  2123. .runtime_resume = sh_eth_runtime_nop,
  2124. };
  2125. static struct platform_driver sh_eth_driver = {
  2126. .probe = sh_eth_drv_probe,
  2127. .remove = sh_eth_drv_remove,
  2128. .driver = {
  2129. .name = CARDNAME,
  2130. .pm = &sh_eth_dev_pm_ops,
  2131. },
  2132. };
  2133. module_platform_driver(sh_eth_driver);
  2134. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  2135. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  2136. MODULE_LICENSE("GPL v2");