bnx2.c 214 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2011 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/stringify.h>
  15. #include <linux/kernel.h>
  16. #include <linux/timer.h>
  17. #include <linux/errno.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/vmalloc.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/pci.h>
  23. #include <linux/init.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/bitops.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <linux/delay.h>
  32. #include <asm/byteorder.h>
  33. #include <asm/page.h>
  34. #include <linux/time.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/mii.h>
  37. #include <linux/if.h>
  38. #include <linux/if_vlan.h>
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/aer.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define DRV_MODULE_VERSION "2.2.3"
  57. #define DRV_MODULE_RELDATE "June 27, 2012"
  58. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  59. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  60. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  61. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  62. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  63. #define RUN_AT(x) (jiffies + (x))
  64. /* Time in jiffies before concluding the transmitter is hung. */
  65. #define TX_TIMEOUT (5*HZ)
  66. static char version[] =
  67. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  68. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  69. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  70. MODULE_LICENSE("GPL");
  71. MODULE_VERSION(DRV_MODULE_VERSION);
  72. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  73. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  74. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  77. static int disable_msi = 0;
  78. module_param(disable_msi, int, 0);
  79. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  80. typedef enum {
  81. BCM5706 = 0,
  82. NC370T,
  83. NC370I,
  84. BCM5706S,
  85. NC370F,
  86. BCM5708,
  87. BCM5708S,
  88. BCM5709,
  89. BCM5709S,
  90. BCM5716,
  91. BCM5716S,
  92. } board_t;
  93. /* indexed by board_t, above */
  94. static struct {
  95. char *name;
  96. } board_info[] = {
  97. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  98. { "HP NC370T Multifunction Gigabit Server Adapter" },
  99. { "HP NC370i Multifunction Gigabit Server Adapter" },
  100. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  101. { "HP NC370F Multifunction Gigabit Server Adapter" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  108. };
  109. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  110. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  111. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  112. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  113. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  114. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  116. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  117. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  118. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  119. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  120. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  121. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  122. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  123. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  124. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  125. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  126. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  127. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  128. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  129. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  130. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  131. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  132. { 0, }
  133. };
  134. static const struct flash_spec flash_table[] =
  135. {
  136. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  137. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  138. /* Slow EEPROM */
  139. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  140. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  141. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  142. "EEPROM - slow"},
  143. /* Expansion entry 0001 */
  144. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  145. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  146. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  147. "Entry 0001"},
  148. /* Saifun SA25F010 (non-buffered flash) */
  149. /* strap, cfg1, & write1 need updates */
  150. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  151. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  152. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  153. "Non-buffered flash (128kB)"},
  154. /* Saifun SA25F020 (non-buffered flash) */
  155. /* strap, cfg1, & write1 need updates */
  156. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  157. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  158. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  159. "Non-buffered flash (256kB)"},
  160. /* Expansion entry 0100 */
  161. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  162. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  163. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  164. "Entry 0100"},
  165. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  166. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  167. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  168. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  169. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  170. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  171. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  172. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  173. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  174. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  175. /* Saifun SA25F005 (non-buffered flash) */
  176. /* strap, cfg1, & write1 need updates */
  177. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  178. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  179. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  180. "Non-buffered flash (64kB)"},
  181. /* Fast EEPROM */
  182. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  183. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  184. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  185. "EEPROM - fast"},
  186. /* Expansion entry 1001 */
  187. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  188. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  189. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  190. "Entry 1001"},
  191. /* Expansion entry 1010 */
  192. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  193. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  194. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  195. "Entry 1010"},
  196. /* ATMEL AT45DB011B (buffered flash) */
  197. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  198. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  199. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  200. "Buffered flash (128kB)"},
  201. /* Expansion entry 1100 */
  202. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  203. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  204. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  205. "Entry 1100"},
  206. /* Expansion entry 1101 */
  207. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  208. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  209. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  210. "Entry 1101"},
  211. /* Ateml Expansion entry 1110 */
  212. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  213. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  214. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  215. "Entry 1110 (Atmel)"},
  216. /* ATMEL AT45DB021B (buffered flash) */
  217. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  218. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  219. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  220. "Buffered flash (256kB)"},
  221. };
  222. static const struct flash_spec flash_5709 = {
  223. .flags = BNX2_NV_BUFFERED,
  224. .page_bits = BCM5709_FLASH_PAGE_BITS,
  225. .page_size = BCM5709_FLASH_PAGE_SIZE,
  226. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  227. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  228. .name = "5709 Buffered flash (256kB)",
  229. };
  230. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  231. static void bnx2_init_napi(struct bnx2 *bp);
  232. static void bnx2_del_napi(struct bnx2 *bp);
  233. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  234. {
  235. u32 diff;
  236. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  237. barrier();
  238. /* The ring uses 256 indices for 255 entries, one of them
  239. * needs to be skipped.
  240. */
  241. diff = txr->tx_prod - txr->tx_cons;
  242. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  243. diff &= 0xffff;
  244. if (diff == BNX2_TX_DESC_CNT)
  245. diff = BNX2_MAX_TX_DESC_CNT;
  246. }
  247. return bp->tx_ring_size - diff;
  248. }
  249. static u32
  250. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  251. {
  252. u32 val;
  253. spin_lock_bh(&bp->indirect_lock);
  254. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  255. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  256. spin_unlock_bh(&bp->indirect_lock);
  257. return val;
  258. }
  259. static void
  260. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  261. {
  262. spin_lock_bh(&bp->indirect_lock);
  263. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  264. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  265. spin_unlock_bh(&bp->indirect_lock);
  266. }
  267. static void
  268. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  269. {
  270. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  271. }
  272. static u32
  273. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  274. {
  275. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  276. }
  277. static void
  278. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  279. {
  280. offset += cid_addr;
  281. spin_lock_bh(&bp->indirect_lock);
  282. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  283. int i;
  284. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  285. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  286. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  287. for (i = 0; i < 5; i++) {
  288. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  289. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  290. break;
  291. udelay(5);
  292. }
  293. } else {
  294. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  295. BNX2_WR(bp, BNX2_CTX_DATA, val);
  296. }
  297. spin_unlock_bh(&bp->indirect_lock);
  298. }
  299. #ifdef BCM_CNIC
  300. static int
  301. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  302. {
  303. struct bnx2 *bp = netdev_priv(dev);
  304. struct drv_ctl_io *io = &info->data.io;
  305. switch (info->cmd) {
  306. case DRV_CTL_IO_WR_CMD:
  307. bnx2_reg_wr_ind(bp, io->offset, io->data);
  308. break;
  309. case DRV_CTL_IO_RD_CMD:
  310. io->data = bnx2_reg_rd_ind(bp, io->offset);
  311. break;
  312. case DRV_CTL_CTX_WR_CMD:
  313. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  314. break;
  315. default:
  316. return -EINVAL;
  317. }
  318. return 0;
  319. }
  320. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  321. {
  322. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  323. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  324. int sb_id;
  325. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  326. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  327. bnapi->cnic_present = 0;
  328. sb_id = bp->irq_nvecs;
  329. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  330. } else {
  331. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  332. bnapi->cnic_tag = bnapi->last_status_idx;
  333. bnapi->cnic_present = 1;
  334. sb_id = 0;
  335. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  336. }
  337. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  338. cp->irq_arr[0].status_blk = (void *)
  339. ((unsigned long) bnapi->status_blk.msi +
  340. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  341. cp->irq_arr[0].status_blk_num = sb_id;
  342. cp->num_irq = 1;
  343. }
  344. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  345. void *data)
  346. {
  347. struct bnx2 *bp = netdev_priv(dev);
  348. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  349. if (ops == NULL)
  350. return -EINVAL;
  351. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  352. return -EBUSY;
  353. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  354. return -ENODEV;
  355. bp->cnic_data = data;
  356. rcu_assign_pointer(bp->cnic_ops, ops);
  357. cp->num_irq = 0;
  358. cp->drv_state = CNIC_DRV_STATE_REGD;
  359. bnx2_setup_cnic_irq_info(bp);
  360. return 0;
  361. }
  362. static int bnx2_unregister_cnic(struct net_device *dev)
  363. {
  364. struct bnx2 *bp = netdev_priv(dev);
  365. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  366. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  367. mutex_lock(&bp->cnic_lock);
  368. cp->drv_state = 0;
  369. bnapi->cnic_present = 0;
  370. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  371. mutex_unlock(&bp->cnic_lock);
  372. synchronize_rcu();
  373. return 0;
  374. }
  375. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  376. {
  377. struct bnx2 *bp = netdev_priv(dev);
  378. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  379. if (!cp->max_iscsi_conn)
  380. return NULL;
  381. cp->drv_owner = THIS_MODULE;
  382. cp->chip_id = bp->chip_id;
  383. cp->pdev = bp->pdev;
  384. cp->io_base = bp->regview;
  385. cp->drv_ctl = bnx2_drv_ctl;
  386. cp->drv_register_cnic = bnx2_register_cnic;
  387. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  388. return cp;
  389. }
  390. static void
  391. bnx2_cnic_stop(struct bnx2 *bp)
  392. {
  393. struct cnic_ops *c_ops;
  394. struct cnic_ctl_info info;
  395. mutex_lock(&bp->cnic_lock);
  396. c_ops = rcu_dereference_protected(bp->cnic_ops,
  397. lockdep_is_held(&bp->cnic_lock));
  398. if (c_ops) {
  399. info.cmd = CNIC_CTL_STOP_CMD;
  400. c_ops->cnic_ctl(bp->cnic_data, &info);
  401. }
  402. mutex_unlock(&bp->cnic_lock);
  403. }
  404. static void
  405. bnx2_cnic_start(struct bnx2 *bp)
  406. {
  407. struct cnic_ops *c_ops;
  408. struct cnic_ctl_info info;
  409. mutex_lock(&bp->cnic_lock);
  410. c_ops = rcu_dereference_protected(bp->cnic_ops,
  411. lockdep_is_held(&bp->cnic_lock));
  412. if (c_ops) {
  413. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  414. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  415. bnapi->cnic_tag = bnapi->last_status_idx;
  416. }
  417. info.cmd = CNIC_CTL_START_CMD;
  418. c_ops->cnic_ctl(bp->cnic_data, &info);
  419. }
  420. mutex_unlock(&bp->cnic_lock);
  421. }
  422. #else
  423. static void
  424. bnx2_cnic_stop(struct bnx2 *bp)
  425. {
  426. }
  427. static void
  428. bnx2_cnic_start(struct bnx2 *bp)
  429. {
  430. }
  431. #endif
  432. static int
  433. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  434. {
  435. u32 val1;
  436. int i, ret;
  437. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  438. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  439. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  440. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  441. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  442. udelay(40);
  443. }
  444. val1 = (bp->phy_addr << 21) | (reg << 16) |
  445. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  446. BNX2_EMAC_MDIO_COMM_START_BUSY;
  447. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  448. for (i = 0; i < 50; i++) {
  449. udelay(10);
  450. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  451. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  452. udelay(5);
  453. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  454. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  455. break;
  456. }
  457. }
  458. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  459. *val = 0x0;
  460. ret = -EBUSY;
  461. }
  462. else {
  463. *val = val1;
  464. ret = 0;
  465. }
  466. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  467. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  468. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  469. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  470. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  471. udelay(40);
  472. }
  473. return ret;
  474. }
  475. static int
  476. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  477. {
  478. u32 val1;
  479. int i, ret;
  480. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  481. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  482. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  483. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  484. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  485. udelay(40);
  486. }
  487. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  488. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  489. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  490. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  491. for (i = 0; i < 50; i++) {
  492. udelay(10);
  493. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  494. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  495. udelay(5);
  496. break;
  497. }
  498. }
  499. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  500. ret = -EBUSY;
  501. else
  502. ret = 0;
  503. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  504. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  505. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  506. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  507. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  508. udelay(40);
  509. }
  510. return ret;
  511. }
  512. static void
  513. bnx2_disable_int(struct bnx2 *bp)
  514. {
  515. int i;
  516. struct bnx2_napi *bnapi;
  517. for (i = 0; i < bp->irq_nvecs; i++) {
  518. bnapi = &bp->bnx2_napi[i];
  519. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  520. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  521. }
  522. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  523. }
  524. static void
  525. bnx2_enable_int(struct bnx2 *bp)
  526. {
  527. int i;
  528. struct bnx2_napi *bnapi;
  529. for (i = 0; i < bp->irq_nvecs; i++) {
  530. bnapi = &bp->bnx2_napi[i];
  531. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  532. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  533. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  534. bnapi->last_status_idx);
  535. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  536. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  537. bnapi->last_status_idx);
  538. }
  539. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  540. }
  541. static void
  542. bnx2_disable_int_sync(struct bnx2 *bp)
  543. {
  544. int i;
  545. atomic_inc(&bp->intr_sem);
  546. if (!netif_running(bp->dev))
  547. return;
  548. bnx2_disable_int(bp);
  549. for (i = 0; i < bp->irq_nvecs; i++)
  550. synchronize_irq(bp->irq_tbl[i].vector);
  551. }
  552. static void
  553. bnx2_napi_disable(struct bnx2 *bp)
  554. {
  555. int i;
  556. for (i = 0; i < bp->irq_nvecs; i++)
  557. napi_disable(&bp->bnx2_napi[i].napi);
  558. }
  559. static void
  560. bnx2_napi_enable(struct bnx2 *bp)
  561. {
  562. int i;
  563. for (i = 0; i < bp->irq_nvecs; i++)
  564. napi_enable(&bp->bnx2_napi[i].napi);
  565. }
  566. static void
  567. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  568. {
  569. if (stop_cnic)
  570. bnx2_cnic_stop(bp);
  571. if (netif_running(bp->dev)) {
  572. bnx2_napi_disable(bp);
  573. netif_tx_disable(bp->dev);
  574. }
  575. bnx2_disable_int_sync(bp);
  576. netif_carrier_off(bp->dev); /* prevent tx timeout */
  577. }
  578. static void
  579. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  580. {
  581. if (atomic_dec_and_test(&bp->intr_sem)) {
  582. if (netif_running(bp->dev)) {
  583. netif_tx_wake_all_queues(bp->dev);
  584. spin_lock_bh(&bp->phy_lock);
  585. if (bp->link_up)
  586. netif_carrier_on(bp->dev);
  587. spin_unlock_bh(&bp->phy_lock);
  588. bnx2_napi_enable(bp);
  589. bnx2_enable_int(bp);
  590. if (start_cnic)
  591. bnx2_cnic_start(bp);
  592. }
  593. }
  594. }
  595. static void
  596. bnx2_free_tx_mem(struct bnx2 *bp)
  597. {
  598. int i;
  599. for (i = 0; i < bp->num_tx_rings; i++) {
  600. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  601. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  602. if (txr->tx_desc_ring) {
  603. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  604. txr->tx_desc_ring,
  605. txr->tx_desc_mapping);
  606. txr->tx_desc_ring = NULL;
  607. }
  608. kfree(txr->tx_buf_ring);
  609. txr->tx_buf_ring = NULL;
  610. }
  611. }
  612. static void
  613. bnx2_free_rx_mem(struct bnx2 *bp)
  614. {
  615. int i;
  616. for (i = 0; i < bp->num_rx_rings; i++) {
  617. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  618. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  619. int j;
  620. for (j = 0; j < bp->rx_max_ring; j++) {
  621. if (rxr->rx_desc_ring[j])
  622. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  623. rxr->rx_desc_ring[j],
  624. rxr->rx_desc_mapping[j]);
  625. rxr->rx_desc_ring[j] = NULL;
  626. }
  627. vfree(rxr->rx_buf_ring);
  628. rxr->rx_buf_ring = NULL;
  629. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  630. if (rxr->rx_pg_desc_ring[j])
  631. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  632. rxr->rx_pg_desc_ring[j],
  633. rxr->rx_pg_desc_mapping[j]);
  634. rxr->rx_pg_desc_ring[j] = NULL;
  635. }
  636. vfree(rxr->rx_pg_ring);
  637. rxr->rx_pg_ring = NULL;
  638. }
  639. }
  640. static int
  641. bnx2_alloc_tx_mem(struct bnx2 *bp)
  642. {
  643. int i;
  644. for (i = 0; i < bp->num_tx_rings; i++) {
  645. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  646. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  647. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  648. if (txr->tx_buf_ring == NULL)
  649. return -ENOMEM;
  650. txr->tx_desc_ring =
  651. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  652. &txr->tx_desc_mapping, GFP_KERNEL);
  653. if (txr->tx_desc_ring == NULL)
  654. return -ENOMEM;
  655. }
  656. return 0;
  657. }
  658. static int
  659. bnx2_alloc_rx_mem(struct bnx2 *bp)
  660. {
  661. int i;
  662. for (i = 0; i < bp->num_rx_rings; i++) {
  663. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  664. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  665. int j;
  666. rxr->rx_buf_ring =
  667. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  668. if (rxr->rx_buf_ring == NULL)
  669. return -ENOMEM;
  670. for (j = 0; j < bp->rx_max_ring; j++) {
  671. rxr->rx_desc_ring[j] =
  672. dma_alloc_coherent(&bp->pdev->dev,
  673. RXBD_RING_SIZE,
  674. &rxr->rx_desc_mapping[j],
  675. GFP_KERNEL);
  676. if (rxr->rx_desc_ring[j] == NULL)
  677. return -ENOMEM;
  678. }
  679. if (bp->rx_pg_ring_size) {
  680. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  681. bp->rx_max_pg_ring);
  682. if (rxr->rx_pg_ring == NULL)
  683. return -ENOMEM;
  684. }
  685. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  686. rxr->rx_pg_desc_ring[j] =
  687. dma_alloc_coherent(&bp->pdev->dev,
  688. RXBD_RING_SIZE,
  689. &rxr->rx_pg_desc_mapping[j],
  690. GFP_KERNEL);
  691. if (rxr->rx_pg_desc_ring[j] == NULL)
  692. return -ENOMEM;
  693. }
  694. }
  695. return 0;
  696. }
  697. static void
  698. bnx2_free_mem(struct bnx2 *bp)
  699. {
  700. int i;
  701. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  702. bnx2_free_tx_mem(bp);
  703. bnx2_free_rx_mem(bp);
  704. for (i = 0; i < bp->ctx_pages; i++) {
  705. if (bp->ctx_blk[i]) {
  706. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  707. bp->ctx_blk[i],
  708. bp->ctx_blk_mapping[i]);
  709. bp->ctx_blk[i] = NULL;
  710. }
  711. }
  712. if (bnapi->status_blk.msi) {
  713. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  714. bnapi->status_blk.msi,
  715. bp->status_blk_mapping);
  716. bnapi->status_blk.msi = NULL;
  717. bp->stats_blk = NULL;
  718. }
  719. }
  720. static int
  721. bnx2_alloc_mem(struct bnx2 *bp)
  722. {
  723. int i, status_blk_size, err;
  724. struct bnx2_napi *bnapi;
  725. void *status_blk;
  726. /* Combine status and statistics blocks into one allocation. */
  727. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  728. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  729. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  730. BNX2_SBLK_MSIX_ALIGN_SIZE);
  731. bp->status_stats_size = status_blk_size +
  732. sizeof(struct statistics_block);
  733. status_blk = dma_alloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  734. &bp->status_blk_mapping, GFP_KERNEL);
  735. if (status_blk == NULL)
  736. goto alloc_mem_err;
  737. memset(status_blk, 0, bp->status_stats_size);
  738. bnapi = &bp->bnx2_napi[0];
  739. bnapi->status_blk.msi = status_blk;
  740. bnapi->hw_tx_cons_ptr =
  741. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  742. bnapi->hw_rx_cons_ptr =
  743. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  744. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  745. for (i = 1; i < bp->irq_nvecs; i++) {
  746. struct status_block_msix *sblk;
  747. bnapi = &bp->bnx2_napi[i];
  748. sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  749. bnapi->status_blk.msix = sblk;
  750. bnapi->hw_tx_cons_ptr =
  751. &sblk->status_tx_quick_consumer_index;
  752. bnapi->hw_rx_cons_ptr =
  753. &sblk->status_rx_quick_consumer_index;
  754. bnapi->int_num = i << 24;
  755. }
  756. }
  757. bp->stats_blk = status_blk + status_blk_size;
  758. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  759. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  760. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  761. if (bp->ctx_pages == 0)
  762. bp->ctx_pages = 1;
  763. for (i = 0; i < bp->ctx_pages; i++) {
  764. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  765. BNX2_PAGE_SIZE,
  766. &bp->ctx_blk_mapping[i],
  767. GFP_KERNEL);
  768. if (bp->ctx_blk[i] == NULL)
  769. goto alloc_mem_err;
  770. }
  771. }
  772. err = bnx2_alloc_rx_mem(bp);
  773. if (err)
  774. goto alloc_mem_err;
  775. err = bnx2_alloc_tx_mem(bp);
  776. if (err)
  777. goto alloc_mem_err;
  778. return 0;
  779. alloc_mem_err:
  780. bnx2_free_mem(bp);
  781. return -ENOMEM;
  782. }
  783. static void
  784. bnx2_report_fw_link(struct bnx2 *bp)
  785. {
  786. u32 fw_link_status = 0;
  787. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  788. return;
  789. if (bp->link_up) {
  790. u32 bmsr;
  791. switch (bp->line_speed) {
  792. case SPEED_10:
  793. if (bp->duplex == DUPLEX_HALF)
  794. fw_link_status = BNX2_LINK_STATUS_10HALF;
  795. else
  796. fw_link_status = BNX2_LINK_STATUS_10FULL;
  797. break;
  798. case SPEED_100:
  799. if (bp->duplex == DUPLEX_HALF)
  800. fw_link_status = BNX2_LINK_STATUS_100HALF;
  801. else
  802. fw_link_status = BNX2_LINK_STATUS_100FULL;
  803. break;
  804. case SPEED_1000:
  805. if (bp->duplex == DUPLEX_HALF)
  806. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  807. else
  808. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  809. break;
  810. case SPEED_2500:
  811. if (bp->duplex == DUPLEX_HALF)
  812. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  813. else
  814. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  815. break;
  816. }
  817. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  818. if (bp->autoneg) {
  819. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  820. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  821. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  822. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  823. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  824. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  825. else
  826. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  827. }
  828. }
  829. else
  830. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  831. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  832. }
  833. static char *
  834. bnx2_xceiver_str(struct bnx2 *bp)
  835. {
  836. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  837. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  838. "Copper");
  839. }
  840. static void
  841. bnx2_report_link(struct bnx2 *bp)
  842. {
  843. if (bp->link_up) {
  844. netif_carrier_on(bp->dev);
  845. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  846. bnx2_xceiver_str(bp),
  847. bp->line_speed,
  848. bp->duplex == DUPLEX_FULL ? "full" : "half");
  849. if (bp->flow_ctrl) {
  850. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  851. pr_cont(", receive ");
  852. if (bp->flow_ctrl & FLOW_CTRL_TX)
  853. pr_cont("& transmit ");
  854. }
  855. else {
  856. pr_cont(", transmit ");
  857. }
  858. pr_cont("flow control ON");
  859. }
  860. pr_cont("\n");
  861. } else {
  862. netif_carrier_off(bp->dev);
  863. netdev_err(bp->dev, "NIC %s Link is Down\n",
  864. bnx2_xceiver_str(bp));
  865. }
  866. bnx2_report_fw_link(bp);
  867. }
  868. static void
  869. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  870. {
  871. u32 local_adv, remote_adv;
  872. bp->flow_ctrl = 0;
  873. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  874. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  875. if (bp->duplex == DUPLEX_FULL) {
  876. bp->flow_ctrl = bp->req_flow_ctrl;
  877. }
  878. return;
  879. }
  880. if (bp->duplex != DUPLEX_FULL) {
  881. return;
  882. }
  883. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  884. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  885. u32 val;
  886. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  887. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  888. bp->flow_ctrl |= FLOW_CTRL_TX;
  889. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  890. bp->flow_ctrl |= FLOW_CTRL_RX;
  891. return;
  892. }
  893. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  894. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  895. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  896. u32 new_local_adv = 0;
  897. u32 new_remote_adv = 0;
  898. if (local_adv & ADVERTISE_1000XPAUSE)
  899. new_local_adv |= ADVERTISE_PAUSE_CAP;
  900. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  901. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  902. if (remote_adv & ADVERTISE_1000XPAUSE)
  903. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  904. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  905. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  906. local_adv = new_local_adv;
  907. remote_adv = new_remote_adv;
  908. }
  909. /* See Table 28B-3 of 802.3ab-1999 spec. */
  910. if (local_adv & ADVERTISE_PAUSE_CAP) {
  911. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  912. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  913. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  914. }
  915. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  916. bp->flow_ctrl = FLOW_CTRL_RX;
  917. }
  918. }
  919. else {
  920. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  921. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  922. }
  923. }
  924. }
  925. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  926. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  927. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  928. bp->flow_ctrl = FLOW_CTRL_TX;
  929. }
  930. }
  931. }
  932. static int
  933. bnx2_5709s_linkup(struct bnx2 *bp)
  934. {
  935. u32 val, speed;
  936. bp->link_up = 1;
  937. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  938. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  939. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  940. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  941. bp->line_speed = bp->req_line_speed;
  942. bp->duplex = bp->req_duplex;
  943. return 0;
  944. }
  945. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  946. switch (speed) {
  947. case MII_BNX2_GP_TOP_AN_SPEED_10:
  948. bp->line_speed = SPEED_10;
  949. break;
  950. case MII_BNX2_GP_TOP_AN_SPEED_100:
  951. bp->line_speed = SPEED_100;
  952. break;
  953. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  954. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  955. bp->line_speed = SPEED_1000;
  956. break;
  957. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  958. bp->line_speed = SPEED_2500;
  959. break;
  960. }
  961. if (val & MII_BNX2_GP_TOP_AN_FD)
  962. bp->duplex = DUPLEX_FULL;
  963. else
  964. bp->duplex = DUPLEX_HALF;
  965. return 0;
  966. }
  967. static int
  968. bnx2_5708s_linkup(struct bnx2 *bp)
  969. {
  970. u32 val;
  971. bp->link_up = 1;
  972. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  973. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  974. case BCM5708S_1000X_STAT1_SPEED_10:
  975. bp->line_speed = SPEED_10;
  976. break;
  977. case BCM5708S_1000X_STAT1_SPEED_100:
  978. bp->line_speed = SPEED_100;
  979. break;
  980. case BCM5708S_1000X_STAT1_SPEED_1G:
  981. bp->line_speed = SPEED_1000;
  982. break;
  983. case BCM5708S_1000X_STAT1_SPEED_2G5:
  984. bp->line_speed = SPEED_2500;
  985. break;
  986. }
  987. if (val & BCM5708S_1000X_STAT1_FD)
  988. bp->duplex = DUPLEX_FULL;
  989. else
  990. bp->duplex = DUPLEX_HALF;
  991. return 0;
  992. }
  993. static int
  994. bnx2_5706s_linkup(struct bnx2 *bp)
  995. {
  996. u32 bmcr, local_adv, remote_adv, common;
  997. bp->link_up = 1;
  998. bp->line_speed = SPEED_1000;
  999. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1000. if (bmcr & BMCR_FULLDPLX) {
  1001. bp->duplex = DUPLEX_FULL;
  1002. }
  1003. else {
  1004. bp->duplex = DUPLEX_HALF;
  1005. }
  1006. if (!(bmcr & BMCR_ANENABLE)) {
  1007. return 0;
  1008. }
  1009. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1010. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1011. common = local_adv & remote_adv;
  1012. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1013. if (common & ADVERTISE_1000XFULL) {
  1014. bp->duplex = DUPLEX_FULL;
  1015. }
  1016. else {
  1017. bp->duplex = DUPLEX_HALF;
  1018. }
  1019. }
  1020. return 0;
  1021. }
  1022. static int
  1023. bnx2_copper_linkup(struct bnx2 *bp)
  1024. {
  1025. u32 bmcr;
  1026. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1027. if (bmcr & BMCR_ANENABLE) {
  1028. u32 local_adv, remote_adv, common;
  1029. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1030. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1031. common = local_adv & (remote_adv >> 2);
  1032. if (common & ADVERTISE_1000FULL) {
  1033. bp->line_speed = SPEED_1000;
  1034. bp->duplex = DUPLEX_FULL;
  1035. }
  1036. else if (common & ADVERTISE_1000HALF) {
  1037. bp->line_speed = SPEED_1000;
  1038. bp->duplex = DUPLEX_HALF;
  1039. }
  1040. else {
  1041. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1042. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1043. common = local_adv & remote_adv;
  1044. if (common & ADVERTISE_100FULL) {
  1045. bp->line_speed = SPEED_100;
  1046. bp->duplex = DUPLEX_FULL;
  1047. }
  1048. else if (common & ADVERTISE_100HALF) {
  1049. bp->line_speed = SPEED_100;
  1050. bp->duplex = DUPLEX_HALF;
  1051. }
  1052. else if (common & ADVERTISE_10FULL) {
  1053. bp->line_speed = SPEED_10;
  1054. bp->duplex = DUPLEX_FULL;
  1055. }
  1056. else if (common & ADVERTISE_10HALF) {
  1057. bp->line_speed = SPEED_10;
  1058. bp->duplex = DUPLEX_HALF;
  1059. }
  1060. else {
  1061. bp->line_speed = 0;
  1062. bp->link_up = 0;
  1063. }
  1064. }
  1065. }
  1066. else {
  1067. if (bmcr & BMCR_SPEED100) {
  1068. bp->line_speed = SPEED_100;
  1069. }
  1070. else {
  1071. bp->line_speed = SPEED_10;
  1072. }
  1073. if (bmcr & BMCR_FULLDPLX) {
  1074. bp->duplex = DUPLEX_FULL;
  1075. }
  1076. else {
  1077. bp->duplex = DUPLEX_HALF;
  1078. }
  1079. }
  1080. return 0;
  1081. }
  1082. static void
  1083. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1084. {
  1085. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1086. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1087. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1088. val |= 0x02 << 8;
  1089. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1090. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1091. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1092. }
  1093. static void
  1094. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1095. {
  1096. int i;
  1097. u32 cid;
  1098. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1099. if (i == 1)
  1100. cid = RX_RSS_CID;
  1101. bnx2_init_rx_context(bp, cid);
  1102. }
  1103. }
  1104. static void
  1105. bnx2_set_mac_link(struct bnx2 *bp)
  1106. {
  1107. u32 val;
  1108. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1109. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1110. (bp->duplex == DUPLEX_HALF)) {
  1111. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1112. }
  1113. /* Configure the EMAC mode register. */
  1114. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1115. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1116. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1117. BNX2_EMAC_MODE_25G_MODE);
  1118. if (bp->link_up) {
  1119. switch (bp->line_speed) {
  1120. case SPEED_10:
  1121. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1122. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1123. break;
  1124. }
  1125. /* fall through */
  1126. case SPEED_100:
  1127. val |= BNX2_EMAC_MODE_PORT_MII;
  1128. break;
  1129. case SPEED_2500:
  1130. val |= BNX2_EMAC_MODE_25G_MODE;
  1131. /* fall through */
  1132. case SPEED_1000:
  1133. val |= BNX2_EMAC_MODE_PORT_GMII;
  1134. break;
  1135. }
  1136. }
  1137. else {
  1138. val |= BNX2_EMAC_MODE_PORT_GMII;
  1139. }
  1140. /* Set the MAC to operate in the appropriate duplex mode. */
  1141. if (bp->duplex == DUPLEX_HALF)
  1142. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1143. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1144. /* Enable/disable rx PAUSE. */
  1145. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1146. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1147. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1148. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1149. /* Enable/disable tx PAUSE. */
  1150. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1151. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1152. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1153. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1154. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1155. /* Acknowledge the interrupt. */
  1156. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1157. bnx2_init_all_rx_contexts(bp);
  1158. }
  1159. static void
  1160. bnx2_enable_bmsr1(struct bnx2 *bp)
  1161. {
  1162. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1163. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1164. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1165. MII_BNX2_BLK_ADDR_GP_STATUS);
  1166. }
  1167. static void
  1168. bnx2_disable_bmsr1(struct bnx2 *bp)
  1169. {
  1170. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1171. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1172. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1173. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1174. }
  1175. static int
  1176. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1177. {
  1178. u32 up1;
  1179. int ret = 1;
  1180. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1181. return 0;
  1182. if (bp->autoneg & AUTONEG_SPEED)
  1183. bp->advertising |= ADVERTISED_2500baseX_Full;
  1184. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1185. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1186. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1187. if (!(up1 & BCM5708S_UP1_2G5)) {
  1188. up1 |= BCM5708S_UP1_2G5;
  1189. bnx2_write_phy(bp, bp->mii_up1, up1);
  1190. ret = 0;
  1191. }
  1192. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1193. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1194. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1195. return ret;
  1196. }
  1197. static int
  1198. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1199. {
  1200. u32 up1;
  1201. int ret = 0;
  1202. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1203. return 0;
  1204. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1205. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1206. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1207. if (up1 & BCM5708S_UP1_2G5) {
  1208. up1 &= ~BCM5708S_UP1_2G5;
  1209. bnx2_write_phy(bp, bp->mii_up1, up1);
  1210. ret = 1;
  1211. }
  1212. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1213. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1214. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1215. return ret;
  1216. }
  1217. static void
  1218. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1219. {
  1220. u32 uninitialized_var(bmcr);
  1221. int err;
  1222. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1223. return;
  1224. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1225. u32 val;
  1226. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1227. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1228. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1229. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1230. val |= MII_BNX2_SD_MISC1_FORCE |
  1231. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1232. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1233. }
  1234. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1235. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1236. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1237. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1238. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1239. if (!err)
  1240. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1241. } else {
  1242. return;
  1243. }
  1244. if (err)
  1245. return;
  1246. if (bp->autoneg & AUTONEG_SPEED) {
  1247. bmcr &= ~BMCR_ANENABLE;
  1248. if (bp->req_duplex == DUPLEX_FULL)
  1249. bmcr |= BMCR_FULLDPLX;
  1250. }
  1251. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1252. }
  1253. static void
  1254. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1255. {
  1256. u32 uninitialized_var(bmcr);
  1257. int err;
  1258. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1259. return;
  1260. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1261. u32 val;
  1262. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1263. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1264. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1265. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1266. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1267. }
  1268. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1269. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1270. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1271. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1272. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1273. if (!err)
  1274. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1275. } else {
  1276. return;
  1277. }
  1278. if (err)
  1279. return;
  1280. if (bp->autoneg & AUTONEG_SPEED)
  1281. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1282. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1283. }
  1284. static void
  1285. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1286. {
  1287. u32 val;
  1288. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1289. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1290. if (start)
  1291. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1292. else
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1294. }
  1295. static int
  1296. bnx2_set_link(struct bnx2 *bp)
  1297. {
  1298. u32 bmsr;
  1299. u8 link_up;
  1300. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1301. bp->link_up = 1;
  1302. return 0;
  1303. }
  1304. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1305. return 0;
  1306. link_up = bp->link_up;
  1307. bnx2_enable_bmsr1(bp);
  1308. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1309. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1310. bnx2_disable_bmsr1(bp);
  1311. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1312. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1313. u32 val, an_dbg;
  1314. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1315. bnx2_5706s_force_link_dn(bp, 0);
  1316. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1317. }
  1318. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1319. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1320. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1321. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1322. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1323. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1324. bmsr |= BMSR_LSTATUS;
  1325. else
  1326. bmsr &= ~BMSR_LSTATUS;
  1327. }
  1328. if (bmsr & BMSR_LSTATUS) {
  1329. bp->link_up = 1;
  1330. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1331. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1332. bnx2_5706s_linkup(bp);
  1333. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1334. bnx2_5708s_linkup(bp);
  1335. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1336. bnx2_5709s_linkup(bp);
  1337. }
  1338. else {
  1339. bnx2_copper_linkup(bp);
  1340. }
  1341. bnx2_resolve_flow_ctrl(bp);
  1342. }
  1343. else {
  1344. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1345. (bp->autoneg & AUTONEG_SPEED))
  1346. bnx2_disable_forced_2g5(bp);
  1347. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1348. u32 bmcr;
  1349. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1350. bmcr |= BMCR_ANENABLE;
  1351. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1352. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1353. }
  1354. bp->link_up = 0;
  1355. }
  1356. if (bp->link_up != link_up) {
  1357. bnx2_report_link(bp);
  1358. }
  1359. bnx2_set_mac_link(bp);
  1360. return 0;
  1361. }
  1362. static int
  1363. bnx2_reset_phy(struct bnx2 *bp)
  1364. {
  1365. int i;
  1366. u32 reg;
  1367. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1368. #define PHY_RESET_MAX_WAIT 100
  1369. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1370. udelay(10);
  1371. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1372. if (!(reg & BMCR_RESET)) {
  1373. udelay(20);
  1374. break;
  1375. }
  1376. }
  1377. if (i == PHY_RESET_MAX_WAIT) {
  1378. return -EBUSY;
  1379. }
  1380. return 0;
  1381. }
  1382. static u32
  1383. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1384. {
  1385. u32 adv = 0;
  1386. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1387. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1388. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1389. adv = ADVERTISE_1000XPAUSE;
  1390. }
  1391. else {
  1392. adv = ADVERTISE_PAUSE_CAP;
  1393. }
  1394. }
  1395. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1396. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1397. adv = ADVERTISE_1000XPSE_ASYM;
  1398. }
  1399. else {
  1400. adv = ADVERTISE_PAUSE_ASYM;
  1401. }
  1402. }
  1403. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1404. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1405. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1406. }
  1407. else {
  1408. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1409. }
  1410. }
  1411. return adv;
  1412. }
  1413. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1414. static int
  1415. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1416. __releases(&bp->phy_lock)
  1417. __acquires(&bp->phy_lock)
  1418. {
  1419. u32 speed_arg = 0, pause_adv;
  1420. pause_adv = bnx2_phy_get_pause_adv(bp);
  1421. if (bp->autoneg & AUTONEG_SPEED) {
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1423. if (bp->advertising & ADVERTISED_10baseT_Half)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1425. if (bp->advertising & ADVERTISED_10baseT_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1427. if (bp->advertising & ADVERTISED_100baseT_Half)
  1428. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1429. if (bp->advertising & ADVERTISED_100baseT_Full)
  1430. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1431. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1432. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1433. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1434. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1435. } else {
  1436. if (bp->req_line_speed == SPEED_2500)
  1437. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1438. else if (bp->req_line_speed == SPEED_1000)
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1440. else if (bp->req_line_speed == SPEED_100) {
  1441. if (bp->req_duplex == DUPLEX_FULL)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1443. else
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1445. } else if (bp->req_line_speed == SPEED_10) {
  1446. if (bp->req_duplex == DUPLEX_FULL)
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1448. else
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1450. }
  1451. }
  1452. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1453. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1454. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1455. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1456. if (port == PORT_TP)
  1457. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1458. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1459. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1460. spin_unlock_bh(&bp->phy_lock);
  1461. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1462. spin_lock_bh(&bp->phy_lock);
  1463. return 0;
  1464. }
  1465. static int
  1466. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1467. __releases(&bp->phy_lock)
  1468. __acquires(&bp->phy_lock)
  1469. {
  1470. u32 adv, bmcr;
  1471. u32 new_adv = 0;
  1472. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1473. return bnx2_setup_remote_phy(bp, port);
  1474. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1475. u32 new_bmcr;
  1476. int force_link_down = 0;
  1477. if (bp->req_line_speed == SPEED_2500) {
  1478. if (!bnx2_test_and_enable_2g5(bp))
  1479. force_link_down = 1;
  1480. } else if (bp->req_line_speed == SPEED_1000) {
  1481. if (bnx2_test_and_disable_2g5(bp))
  1482. force_link_down = 1;
  1483. }
  1484. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1485. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1486. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1487. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1488. new_bmcr |= BMCR_SPEED1000;
  1489. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1490. if (bp->req_line_speed == SPEED_2500)
  1491. bnx2_enable_forced_2g5(bp);
  1492. else if (bp->req_line_speed == SPEED_1000) {
  1493. bnx2_disable_forced_2g5(bp);
  1494. new_bmcr &= ~0x2000;
  1495. }
  1496. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1497. if (bp->req_line_speed == SPEED_2500)
  1498. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1499. else
  1500. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1501. }
  1502. if (bp->req_duplex == DUPLEX_FULL) {
  1503. adv |= ADVERTISE_1000XFULL;
  1504. new_bmcr |= BMCR_FULLDPLX;
  1505. }
  1506. else {
  1507. adv |= ADVERTISE_1000XHALF;
  1508. new_bmcr &= ~BMCR_FULLDPLX;
  1509. }
  1510. if ((new_bmcr != bmcr) || (force_link_down)) {
  1511. /* Force a link down visible on the other side */
  1512. if (bp->link_up) {
  1513. bnx2_write_phy(bp, bp->mii_adv, adv &
  1514. ~(ADVERTISE_1000XFULL |
  1515. ADVERTISE_1000XHALF));
  1516. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1517. BMCR_ANRESTART | BMCR_ANENABLE);
  1518. bp->link_up = 0;
  1519. netif_carrier_off(bp->dev);
  1520. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1521. bnx2_report_link(bp);
  1522. }
  1523. bnx2_write_phy(bp, bp->mii_adv, adv);
  1524. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1525. } else {
  1526. bnx2_resolve_flow_ctrl(bp);
  1527. bnx2_set_mac_link(bp);
  1528. }
  1529. return 0;
  1530. }
  1531. bnx2_test_and_enable_2g5(bp);
  1532. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1533. new_adv |= ADVERTISE_1000XFULL;
  1534. new_adv |= bnx2_phy_get_pause_adv(bp);
  1535. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1536. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1537. bp->serdes_an_pending = 0;
  1538. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1539. /* Force a link down visible on the other side */
  1540. if (bp->link_up) {
  1541. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1542. spin_unlock_bh(&bp->phy_lock);
  1543. msleep(20);
  1544. spin_lock_bh(&bp->phy_lock);
  1545. }
  1546. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1547. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1548. BMCR_ANENABLE);
  1549. /* Speed up link-up time when the link partner
  1550. * does not autonegotiate which is very common
  1551. * in blade servers. Some blade servers use
  1552. * IPMI for kerboard input and it's important
  1553. * to minimize link disruptions. Autoneg. involves
  1554. * exchanging base pages plus 3 next pages and
  1555. * normally completes in about 120 msec.
  1556. */
  1557. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1558. bp->serdes_an_pending = 1;
  1559. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1560. } else {
  1561. bnx2_resolve_flow_ctrl(bp);
  1562. bnx2_set_mac_link(bp);
  1563. }
  1564. return 0;
  1565. }
  1566. #define ETHTOOL_ALL_FIBRE_SPEED \
  1567. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1568. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1569. (ADVERTISED_1000baseT_Full)
  1570. #define ETHTOOL_ALL_COPPER_SPEED \
  1571. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1572. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1573. ADVERTISED_1000baseT_Full)
  1574. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1575. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1576. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1577. static void
  1578. bnx2_set_default_remote_link(struct bnx2 *bp)
  1579. {
  1580. u32 link;
  1581. if (bp->phy_port == PORT_TP)
  1582. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1583. else
  1584. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1585. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1586. bp->req_line_speed = 0;
  1587. bp->autoneg |= AUTONEG_SPEED;
  1588. bp->advertising = ADVERTISED_Autoneg;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1590. bp->advertising |= ADVERTISED_10baseT_Half;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1592. bp->advertising |= ADVERTISED_10baseT_Full;
  1593. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1594. bp->advertising |= ADVERTISED_100baseT_Half;
  1595. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1596. bp->advertising |= ADVERTISED_100baseT_Full;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1598. bp->advertising |= ADVERTISED_1000baseT_Full;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1600. bp->advertising |= ADVERTISED_2500baseX_Full;
  1601. } else {
  1602. bp->autoneg = 0;
  1603. bp->advertising = 0;
  1604. bp->req_duplex = DUPLEX_FULL;
  1605. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1606. bp->req_line_speed = SPEED_10;
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1608. bp->req_duplex = DUPLEX_HALF;
  1609. }
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1611. bp->req_line_speed = SPEED_100;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1613. bp->req_duplex = DUPLEX_HALF;
  1614. }
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1616. bp->req_line_speed = SPEED_1000;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1618. bp->req_line_speed = SPEED_2500;
  1619. }
  1620. }
  1621. static void
  1622. bnx2_set_default_link(struct bnx2 *bp)
  1623. {
  1624. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1625. bnx2_set_default_remote_link(bp);
  1626. return;
  1627. }
  1628. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1629. bp->req_line_speed = 0;
  1630. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1631. u32 reg;
  1632. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1633. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1634. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1635. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1636. bp->autoneg = 0;
  1637. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1638. bp->req_duplex = DUPLEX_FULL;
  1639. }
  1640. } else
  1641. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1642. }
  1643. static void
  1644. bnx2_send_heart_beat(struct bnx2 *bp)
  1645. {
  1646. u32 msg;
  1647. u32 addr;
  1648. spin_lock(&bp->indirect_lock);
  1649. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1650. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1651. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1652. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1653. spin_unlock(&bp->indirect_lock);
  1654. }
  1655. static void
  1656. bnx2_remote_phy_event(struct bnx2 *bp)
  1657. {
  1658. u32 msg;
  1659. u8 link_up = bp->link_up;
  1660. u8 old_port;
  1661. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1662. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1663. bnx2_send_heart_beat(bp);
  1664. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1665. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1666. bp->link_up = 0;
  1667. else {
  1668. u32 speed;
  1669. bp->link_up = 1;
  1670. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1671. bp->duplex = DUPLEX_FULL;
  1672. switch (speed) {
  1673. case BNX2_LINK_STATUS_10HALF:
  1674. bp->duplex = DUPLEX_HALF;
  1675. /* fall through */
  1676. case BNX2_LINK_STATUS_10FULL:
  1677. bp->line_speed = SPEED_10;
  1678. break;
  1679. case BNX2_LINK_STATUS_100HALF:
  1680. bp->duplex = DUPLEX_HALF;
  1681. /* fall through */
  1682. case BNX2_LINK_STATUS_100BASE_T4:
  1683. case BNX2_LINK_STATUS_100FULL:
  1684. bp->line_speed = SPEED_100;
  1685. break;
  1686. case BNX2_LINK_STATUS_1000HALF:
  1687. bp->duplex = DUPLEX_HALF;
  1688. /* fall through */
  1689. case BNX2_LINK_STATUS_1000FULL:
  1690. bp->line_speed = SPEED_1000;
  1691. break;
  1692. case BNX2_LINK_STATUS_2500HALF:
  1693. bp->duplex = DUPLEX_HALF;
  1694. /* fall through */
  1695. case BNX2_LINK_STATUS_2500FULL:
  1696. bp->line_speed = SPEED_2500;
  1697. break;
  1698. default:
  1699. bp->line_speed = 0;
  1700. break;
  1701. }
  1702. bp->flow_ctrl = 0;
  1703. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1704. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1705. if (bp->duplex == DUPLEX_FULL)
  1706. bp->flow_ctrl = bp->req_flow_ctrl;
  1707. } else {
  1708. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1709. bp->flow_ctrl |= FLOW_CTRL_TX;
  1710. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1711. bp->flow_ctrl |= FLOW_CTRL_RX;
  1712. }
  1713. old_port = bp->phy_port;
  1714. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1715. bp->phy_port = PORT_FIBRE;
  1716. else
  1717. bp->phy_port = PORT_TP;
  1718. if (old_port != bp->phy_port)
  1719. bnx2_set_default_link(bp);
  1720. }
  1721. if (bp->link_up != link_up)
  1722. bnx2_report_link(bp);
  1723. bnx2_set_mac_link(bp);
  1724. }
  1725. static int
  1726. bnx2_set_remote_link(struct bnx2 *bp)
  1727. {
  1728. u32 evt_code;
  1729. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1730. switch (evt_code) {
  1731. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1732. bnx2_remote_phy_event(bp);
  1733. break;
  1734. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1735. default:
  1736. bnx2_send_heart_beat(bp);
  1737. break;
  1738. }
  1739. return 0;
  1740. }
  1741. static int
  1742. bnx2_setup_copper_phy(struct bnx2 *bp)
  1743. __releases(&bp->phy_lock)
  1744. __acquires(&bp->phy_lock)
  1745. {
  1746. u32 bmcr;
  1747. u32 new_bmcr;
  1748. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1749. if (bp->autoneg & AUTONEG_SPEED) {
  1750. u32 adv_reg, adv1000_reg;
  1751. u32 new_adv = 0;
  1752. u32 new_adv1000 = 0;
  1753. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1754. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1755. ADVERTISE_PAUSE_ASYM);
  1756. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1757. adv1000_reg &= PHY_ALL_1000_SPEED;
  1758. new_adv = ethtool_adv_to_mii_adv_t(bp->advertising);
  1759. new_adv |= ADVERTISE_CSMA;
  1760. new_adv |= bnx2_phy_get_pause_adv(bp);
  1761. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1762. if ((adv1000_reg != new_adv1000) ||
  1763. (adv_reg != new_adv) ||
  1764. ((bmcr & BMCR_ANENABLE) == 0)) {
  1765. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1766. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1767. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1768. BMCR_ANENABLE);
  1769. }
  1770. else if (bp->link_up) {
  1771. /* Flow ctrl may have changed from auto to forced */
  1772. /* or vice-versa. */
  1773. bnx2_resolve_flow_ctrl(bp);
  1774. bnx2_set_mac_link(bp);
  1775. }
  1776. return 0;
  1777. }
  1778. new_bmcr = 0;
  1779. if (bp->req_line_speed == SPEED_100) {
  1780. new_bmcr |= BMCR_SPEED100;
  1781. }
  1782. if (bp->req_duplex == DUPLEX_FULL) {
  1783. new_bmcr |= BMCR_FULLDPLX;
  1784. }
  1785. if (new_bmcr != bmcr) {
  1786. u32 bmsr;
  1787. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1788. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1789. if (bmsr & BMSR_LSTATUS) {
  1790. /* Force link down */
  1791. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1792. spin_unlock_bh(&bp->phy_lock);
  1793. msleep(50);
  1794. spin_lock_bh(&bp->phy_lock);
  1795. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1796. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1797. }
  1798. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1799. /* Normally, the new speed is setup after the link has
  1800. * gone down and up again. In some cases, link will not go
  1801. * down so we need to set up the new speed here.
  1802. */
  1803. if (bmsr & BMSR_LSTATUS) {
  1804. bp->line_speed = bp->req_line_speed;
  1805. bp->duplex = bp->req_duplex;
  1806. bnx2_resolve_flow_ctrl(bp);
  1807. bnx2_set_mac_link(bp);
  1808. }
  1809. } else {
  1810. bnx2_resolve_flow_ctrl(bp);
  1811. bnx2_set_mac_link(bp);
  1812. }
  1813. return 0;
  1814. }
  1815. static int
  1816. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1817. __releases(&bp->phy_lock)
  1818. __acquires(&bp->phy_lock)
  1819. {
  1820. if (bp->loopback == MAC_LOOPBACK)
  1821. return 0;
  1822. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1823. return bnx2_setup_serdes_phy(bp, port);
  1824. }
  1825. else {
  1826. return bnx2_setup_copper_phy(bp);
  1827. }
  1828. }
  1829. static int
  1830. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1831. {
  1832. u32 val;
  1833. bp->mii_bmcr = MII_BMCR + 0x10;
  1834. bp->mii_bmsr = MII_BMSR + 0x10;
  1835. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1836. bp->mii_adv = MII_ADVERTISE + 0x10;
  1837. bp->mii_lpa = MII_LPA + 0x10;
  1838. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1839. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1840. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1841. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1842. if (reset_phy)
  1843. bnx2_reset_phy(bp);
  1844. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1845. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1846. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1847. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1848. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1849. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1850. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1851. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1852. val |= BCM5708S_UP1_2G5;
  1853. else
  1854. val &= ~BCM5708S_UP1_2G5;
  1855. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1857. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1858. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1859. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1861. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1862. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1863. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1864. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1865. return 0;
  1866. }
  1867. static int
  1868. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1869. {
  1870. u32 val;
  1871. if (reset_phy)
  1872. bnx2_reset_phy(bp);
  1873. bp->mii_up1 = BCM5708S_UP1;
  1874. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1875. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1876. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1877. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1878. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1879. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1880. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1881. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1882. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1883. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1884. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1885. val |= BCM5708S_UP1_2G5;
  1886. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1887. }
  1888. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1889. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1890. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1891. /* increase tx signal amplitude */
  1892. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1893. BCM5708S_BLK_ADDR_TX_MISC);
  1894. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1895. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1896. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1897. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1898. }
  1899. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1900. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1901. if (val) {
  1902. u32 is_backplane;
  1903. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1904. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1905. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1906. BCM5708S_BLK_ADDR_TX_MISC);
  1907. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1908. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1909. BCM5708S_BLK_ADDR_DIG);
  1910. }
  1911. }
  1912. return 0;
  1913. }
  1914. static int
  1915. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1916. {
  1917. if (reset_phy)
  1918. bnx2_reset_phy(bp);
  1919. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1920. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1921. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1922. if (bp->dev->mtu > 1500) {
  1923. u32 val;
  1924. /* Set extended packet length bit */
  1925. bnx2_write_phy(bp, 0x18, 0x7);
  1926. bnx2_read_phy(bp, 0x18, &val);
  1927. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1928. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1929. bnx2_read_phy(bp, 0x1c, &val);
  1930. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1931. }
  1932. else {
  1933. u32 val;
  1934. bnx2_write_phy(bp, 0x18, 0x7);
  1935. bnx2_read_phy(bp, 0x18, &val);
  1936. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1937. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1938. bnx2_read_phy(bp, 0x1c, &val);
  1939. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1940. }
  1941. return 0;
  1942. }
  1943. static int
  1944. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1945. {
  1946. u32 val;
  1947. if (reset_phy)
  1948. bnx2_reset_phy(bp);
  1949. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1950. bnx2_write_phy(bp, 0x18, 0x0c00);
  1951. bnx2_write_phy(bp, 0x17, 0x000a);
  1952. bnx2_write_phy(bp, 0x15, 0x310b);
  1953. bnx2_write_phy(bp, 0x17, 0x201f);
  1954. bnx2_write_phy(bp, 0x15, 0x9506);
  1955. bnx2_write_phy(bp, 0x17, 0x401f);
  1956. bnx2_write_phy(bp, 0x15, 0x14e2);
  1957. bnx2_write_phy(bp, 0x18, 0x0400);
  1958. }
  1959. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1960. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1961. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1962. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1963. val &= ~(1 << 8);
  1964. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1965. }
  1966. if (bp->dev->mtu > 1500) {
  1967. /* Set extended packet length bit */
  1968. bnx2_write_phy(bp, 0x18, 0x7);
  1969. bnx2_read_phy(bp, 0x18, &val);
  1970. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1971. bnx2_read_phy(bp, 0x10, &val);
  1972. bnx2_write_phy(bp, 0x10, val | 0x1);
  1973. }
  1974. else {
  1975. bnx2_write_phy(bp, 0x18, 0x7);
  1976. bnx2_read_phy(bp, 0x18, &val);
  1977. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1978. bnx2_read_phy(bp, 0x10, &val);
  1979. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1980. }
  1981. /* ethernet@wirespeed */
  1982. bnx2_write_phy(bp, 0x18, 0x7007);
  1983. bnx2_read_phy(bp, 0x18, &val);
  1984. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1985. return 0;
  1986. }
  1987. static int
  1988. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1989. __releases(&bp->phy_lock)
  1990. __acquires(&bp->phy_lock)
  1991. {
  1992. u32 val;
  1993. int rc = 0;
  1994. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1995. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1996. bp->mii_bmcr = MII_BMCR;
  1997. bp->mii_bmsr = MII_BMSR;
  1998. bp->mii_bmsr1 = MII_BMSR;
  1999. bp->mii_adv = MII_ADVERTISE;
  2000. bp->mii_lpa = MII_LPA;
  2001. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2002. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2003. goto setup_phy;
  2004. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2005. bp->phy_id = val << 16;
  2006. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2007. bp->phy_id |= val & 0xffff;
  2008. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2009. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2010. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2011. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2012. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2013. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2014. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2015. }
  2016. else {
  2017. rc = bnx2_init_copper_phy(bp, reset_phy);
  2018. }
  2019. setup_phy:
  2020. if (!rc)
  2021. rc = bnx2_setup_phy(bp, bp->phy_port);
  2022. return rc;
  2023. }
  2024. static int
  2025. bnx2_set_mac_loopback(struct bnx2 *bp)
  2026. {
  2027. u32 mac_mode;
  2028. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2029. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2030. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2031. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2032. bp->link_up = 1;
  2033. return 0;
  2034. }
  2035. static int bnx2_test_link(struct bnx2 *);
  2036. static int
  2037. bnx2_set_phy_loopback(struct bnx2 *bp)
  2038. {
  2039. u32 mac_mode;
  2040. int rc, i;
  2041. spin_lock_bh(&bp->phy_lock);
  2042. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2043. BMCR_SPEED1000);
  2044. spin_unlock_bh(&bp->phy_lock);
  2045. if (rc)
  2046. return rc;
  2047. for (i = 0; i < 10; i++) {
  2048. if (bnx2_test_link(bp) == 0)
  2049. break;
  2050. msleep(100);
  2051. }
  2052. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2053. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2054. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2055. BNX2_EMAC_MODE_25G_MODE);
  2056. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2057. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2058. bp->link_up = 1;
  2059. return 0;
  2060. }
  2061. static void
  2062. bnx2_dump_mcp_state(struct bnx2 *bp)
  2063. {
  2064. struct net_device *dev = bp->dev;
  2065. u32 mcp_p0, mcp_p1;
  2066. netdev_err(dev, "<--- start MCP states dump --->\n");
  2067. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2068. mcp_p0 = BNX2_MCP_STATE_P0;
  2069. mcp_p1 = BNX2_MCP_STATE_P1;
  2070. } else {
  2071. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2072. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2073. }
  2074. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2075. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2076. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2077. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2078. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2079. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2080. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2081. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2082. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2083. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2084. netdev_err(dev, "DEBUG: shmem states:\n");
  2085. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2086. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2087. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2088. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2089. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2090. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2091. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2092. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2093. pr_cont(" condition[%08x]\n",
  2094. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2095. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2096. DP_SHMEM_LINE(bp, 0x3cc);
  2097. DP_SHMEM_LINE(bp, 0x3dc);
  2098. DP_SHMEM_LINE(bp, 0x3ec);
  2099. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2100. netdev_err(dev, "<--- end MCP states dump --->\n");
  2101. }
  2102. static int
  2103. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2104. {
  2105. int i;
  2106. u32 val;
  2107. bp->fw_wr_seq++;
  2108. msg_data |= bp->fw_wr_seq;
  2109. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2110. if (!ack)
  2111. return 0;
  2112. /* wait for an acknowledgement. */
  2113. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2114. msleep(10);
  2115. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2116. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2117. break;
  2118. }
  2119. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2120. return 0;
  2121. /* If we timed out, inform the firmware that this is the case. */
  2122. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2123. msg_data &= ~BNX2_DRV_MSG_CODE;
  2124. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2125. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2126. if (!silent) {
  2127. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2128. bnx2_dump_mcp_state(bp);
  2129. }
  2130. return -EBUSY;
  2131. }
  2132. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2133. return -EIO;
  2134. return 0;
  2135. }
  2136. static int
  2137. bnx2_init_5709_context(struct bnx2 *bp)
  2138. {
  2139. int i, ret = 0;
  2140. u32 val;
  2141. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2142. val |= (BNX2_PAGE_BITS - 8) << 16;
  2143. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2144. for (i = 0; i < 10; i++) {
  2145. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2146. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2147. break;
  2148. udelay(2);
  2149. }
  2150. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2151. return -EBUSY;
  2152. for (i = 0; i < bp->ctx_pages; i++) {
  2153. int j;
  2154. if (bp->ctx_blk[i])
  2155. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2156. else
  2157. return -ENOMEM;
  2158. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2159. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2160. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2161. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2162. (u64) bp->ctx_blk_mapping[i] >> 32);
  2163. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2164. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2165. for (j = 0; j < 10; j++) {
  2166. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2167. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2168. break;
  2169. udelay(5);
  2170. }
  2171. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2172. ret = -EBUSY;
  2173. break;
  2174. }
  2175. }
  2176. return ret;
  2177. }
  2178. static void
  2179. bnx2_init_context(struct bnx2 *bp)
  2180. {
  2181. u32 vcid;
  2182. vcid = 96;
  2183. while (vcid) {
  2184. u32 vcid_addr, pcid_addr, offset;
  2185. int i;
  2186. vcid--;
  2187. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2188. u32 new_vcid;
  2189. vcid_addr = GET_PCID_ADDR(vcid);
  2190. if (vcid & 0x8) {
  2191. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2192. }
  2193. else {
  2194. new_vcid = vcid;
  2195. }
  2196. pcid_addr = GET_PCID_ADDR(new_vcid);
  2197. }
  2198. else {
  2199. vcid_addr = GET_CID_ADDR(vcid);
  2200. pcid_addr = vcid_addr;
  2201. }
  2202. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2203. vcid_addr += (i << PHY_CTX_SHIFT);
  2204. pcid_addr += (i << PHY_CTX_SHIFT);
  2205. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2206. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2207. /* Zero out the context. */
  2208. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2209. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2210. }
  2211. }
  2212. }
  2213. static int
  2214. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2215. {
  2216. u16 *good_mbuf;
  2217. u32 good_mbuf_cnt;
  2218. u32 val;
  2219. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2220. if (good_mbuf == NULL)
  2221. return -ENOMEM;
  2222. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2223. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2224. good_mbuf_cnt = 0;
  2225. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2226. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2227. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2228. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2229. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2230. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2231. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2232. /* The addresses with Bit 9 set are bad memory blocks. */
  2233. if (!(val & (1 << 9))) {
  2234. good_mbuf[good_mbuf_cnt] = (u16) val;
  2235. good_mbuf_cnt++;
  2236. }
  2237. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2238. }
  2239. /* Free the good ones back to the mbuf pool thus discarding
  2240. * all the bad ones. */
  2241. while (good_mbuf_cnt) {
  2242. good_mbuf_cnt--;
  2243. val = good_mbuf[good_mbuf_cnt];
  2244. val = (val << 9) | val | 1;
  2245. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2246. }
  2247. kfree(good_mbuf);
  2248. return 0;
  2249. }
  2250. static void
  2251. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2252. {
  2253. u32 val;
  2254. val = (mac_addr[0] << 8) | mac_addr[1];
  2255. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2256. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2257. (mac_addr[4] << 8) | mac_addr[5];
  2258. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2259. }
  2260. static inline int
  2261. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2262. {
  2263. dma_addr_t mapping;
  2264. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2265. struct bnx2_rx_bd *rxbd =
  2266. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2267. struct page *page = alloc_page(gfp);
  2268. if (!page)
  2269. return -ENOMEM;
  2270. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2271. PCI_DMA_FROMDEVICE);
  2272. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2273. __free_page(page);
  2274. return -EIO;
  2275. }
  2276. rx_pg->page = page;
  2277. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2278. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2279. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2280. return 0;
  2281. }
  2282. static void
  2283. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2284. {
  2285. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2286. struct page *page = rx_pg->page;
  2287. if (!page)
  2288. return;
  2289. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2290. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2291. __free_page(page);
  2292. rx_pg->page = NULL;
  2293. }
  2294. static inline int
  2295. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2296. {
  2297. u8 *data;
  2298. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2299. dma_addr_t mapping;
  2300. struct bnx2_rx_bd *rxbd =
  2301. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2302. data = kmalloc(bp->rx_buf_size, gfp);
  2303. if (!data)
  2304. return -ENOMEM;
  2305. mapping = dma_map_single(&bp->pdev->dev,
  2306. get_l2_fhdr(data),
  2307. bp->rx_buf_use_size,
  2308. PCI_DMA_FROMDEVICE);
  2309. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2310. kfree(data);
  2311. return -EIO;
  2312. }
  2313. rx_buf->data = data;
  2314. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2315. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2316. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2317. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2318. return 0;
  2319. }
  2320. static int
  2321. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2322. {
  2323. struct status_block *sblk = bnapi->status_blk.msi;
  2324. u32 new_link_state, old_link_state;
  2325. int is_set = 1;
  2326. new_link_state = sblk->status_attn_bits & event;
  2327. old_link_state = sblk->status_attn_bits_ack & event;
  2328. if (new_link_state != old_link_state) {
  2329. if (new_link_state)
  2330. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2331. else
  2332. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2333. } else
  2334. is_set = 0;
  2335. return is_set;
  2336. }
  2337. static void
  2338. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2339. {
  2340. spin_lock(&bp->phy_lock);
  2341. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2342. bnx2_set_link(bp);
  2343. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2344. bnx2_set_remote_link(bp);
  2345. spin_unlock(&bp->phy_lock);
  2346. }
  2347. static inline u16
  2348. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2349. {
  2350. u16 cons;
  2351. /* Tell compiler that status block fields can change. */
  2352. barrier();
  2353. cons = *bnapi->hw_tx_cons_ptr;
  2354. barrier();
  2355. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2356. cons++;
  2357. return cons;
  2358. }
  2359. static int
  2360. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2361. {
  2362. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2363. u16 hw_cons, sw_cons, sw_ring_cons;
  2364. int tx_pkt = 0, index;
  2365. unsigned int tx_bytes = 0;
  2366. struct netdev_queue *txq;
  2367. index = (bnapi - bp->bnx2_napi);
  2368. txq = netdev_get_tx_queue(bp->dev, index);
  2369. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2370. sw_cons = txr->tx_cons;
  2371. while (sw_cons != hw_cons) {
  2372. struct bnx2_sw_tx_bd *tx_buf;
  2373. struct sk_buff *skb;
  2374. int i, last;
  2375. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2376. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2377. skb = tx_buf->skb;
  2378. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2379. prefetch(&skb->end);
  2380. /* partial BD completions possible with TSO packets */
  2381. if (tx_buf->is_gso) {
  2382. u16 last_idx, last_ring_idx;
  2383. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2384. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2385. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2386. last_idx++;
  2387. }
  2388. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2389. break;
  2390. }
  2391. }
  2392. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2393. skb_headlen(skb), PCI_DMA_TODEVICE);
  2394. tx_buf->skb = NULL;
  2395. last = tx_buf->nr_frags;
  2396. for (i = 0; i < last; i++) {
  2397. struct bnx2_sw_tx_bd *tx_buf;
  2398. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2399. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2400. dma_unmap_page(&bp->pdev->dev,
  2401. dma_unmap_addr(tx_buf, mapping),
  2402. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2403. PCI_DMA_TODEVICE);
  2404. }
  2405. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2406. tx_bytes += skb->len;
  2407. dev_kfree_skb(skb);
  2408. tx_pkt++;
  2409. if (tx_pkt == budget)
  2410. break;
  2411. if (hw_cons == sw_cons)
  2412. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2413. }
  2414. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2415. txr->hw_tx_cons = hw_cons;
  2416. txr->tx_cons = sw_cons;
  2417. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2418. * before checking for netif_tx_queue_stopped(). Without the
  2419. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2420. * will miss it and cause the queue to be stopped forever.
  2421. */
  2422. smp_mb();
  2423. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2424. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2425. __netif_tx_lock(txq, smp_processor_id());
  2426. if ((netif_tx_queue_stopped(txq)) &&
  2427. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2428. netif_tx_wake_queue(txq);
  2429. __netif_tx_unlock(txq);
  2430. }
  2431. return tx_pkt;
  2432. }
  2433. static void
  2434. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2435. struct sk_buff *skb, int count)
  2436. {
  2437. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2438. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2439. int i;
  2440. u16 hw_prod, prod;
  2441. u16 cons = rxr->rx_pg_cons;
  2442. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2443. /* The caller was unable to allocate a new page to replace the
  2444. * last one in the frags array, so we need to recycle that page
  2445. * and then free the skb.
  2446. */
  2447. if (skb) {
  2448. struct page *page;
  2449. struct skb_shared_info *shinfo;
  2450. shinfo = skb_shinfo(skb);
  2451. shinfo->nr_frags--;
  2452. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2453. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2454. cons_rx_pg->page = page;
  2455. dev_kfree_skb(skb);
  2456. }
  2457. hw_prod = rxr->rx_pg_prod;
  2458. for (i = 0; i < count; i++) {
  2459. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2460. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2461. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2462. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2463. [BNX2_RX_IDX(cons)];
  2464. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2465. [BNX2_RX_IDX(prod)];
  2466. if (prod != cons) {
  2467. prod_rx_pg->page = cons_rx_pg->page;
  2468. cons_rx_pg->page = NULL;
  2469. dma_unmap_addr_set(prod_rx_pg, mapping,
  2470. dma_unmap_addr(cons_rx_pg, mapping));
  2471. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2472. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2473. }
  2474. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2475. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2476. }
  2477. rxr->rx_pg_prod = hw_prod;
  2478. rxr->rx_pg_cons = cons;
  2479. }
  2480. static inline void
  2481. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2482. u8 *data, u16 cons, u16 prod)
  2483. {
  2484. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2485. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2486. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2487. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2488. dma_sync_single_for_device(&bp->pdev->dev,
  2489. dma_unmap_addr(cons_rx_buf, mapping),
  2490. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2491. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2492. prod_rx_buf->data = data;
  2493. if (cons == prod)
  2494. return;
  2495. dma_unmap_addr_set(prod_rx_buf, mapping,
  2496. dma_unmap_addr(cons_rx_buf, mapping));
  2497. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2498. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2499. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2500. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2501. }
  2502. static struct sk_buff *
  2503. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2504. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2505. u32 ring_idx)
  2506. {
  2507. int err;
  2508. u16 prod = ring_idx & 0xffff;
  2509. struct sk_buff *skb;
  2510. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2511. if (unlikely(err)) {
  2512. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2513. error:
  2514. if (hdr_len) {
  2515. unsigned int raw_len = len + 4;
  2516. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2517. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2518. }
  2519. return NULL;
  2520. }
  2521. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2522. PCI_DMA_FROMDEVICE);
  2523. skb = build_skb(data, 0);
  2524. if (!skb) {
  2525. kfree(data);
  2526. goto error;
  2527. }
  2528. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2529. if (hdr_len == 0) {
  2530. skb_put(skb, len);
  2531. return skb;
  2532. } else {
  2533. unsigned int i, frag_len, frag_size, pages;
  2534. struct bnx2_sw_pg *rx_pg;
  2535. u16 pg_cons = rxr->rx_pg_cons;
  2536. u16 pg_prod = rxr->rx_pg_prod;
  2537. frag_size = len + 4 - hdr_len;
  2538. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2539. skb_put(skb, hdr_len);
  2540. for (i = 0; i < pages; i++) {
  2541. dma_addr_t mapping_old;
  2542. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2543. if (unlikely(frag_len <= 4)) {
  2544. unsigned int tail = 4 - frag_len;
  2545. rxr->rx_pg_cons = pg_cons;
  2546. rxr->rx_pg_prod = pg_prod;
  2547. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2548. pages - i);
  2549. skb->len -= tail;
  2550. if (i == 0) {
  2551. skb->tail -= tail;
  2552. } else {
  2553. skb_frag_t *frag =
  2554. &skb_shinfo(skb)->frags[i - 1];
  2555. skb_frag_size_sub(frag, tail);
  2556. skb->data_len -= tail;
  2557. }
  2558. return skb;
  2559. }
  2560. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2561. /* Don't unmap yet. If we're unable to allocate a new
  2562. * page, we need to recycle the page and the DMA addr.
  2563. */
  2564. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2565. if (i == pages - 1)
  2566. frag_len -= 4;
  2567. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2568. rx_pg->page = NULL;
  2569. err = bnx2_alloc_rx_page(bp, rxr,
  2570. BNX2_RX_PG_RING_IDX(pg_prod),
  2571. GFP_ATOMIC);
  2572. if (unlikely(err)) {
  2573. rxr->rx_pg_cons = pg_cons;
  2574. rxr->rx_pg_prod = pg_prod;
  2575. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2576. pages - i);
  2577. return NULL;
  2578. }
  2579. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2580. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2581. frag_size -= frag_len;
  2582. skb->data_len += frag_len;
  2583. skb->truesize += PAGE_SIZE;
  2584. skb->len += frag_len;
  2585. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2586. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2587. }
  2588. rxr->rx_pg_prod = pg_prod;
  2589. rxr->rx_pg_cons = pg_cons;
  2590. }
  2591. return skb;
  2592. }
  2593. static inline u16
  2594. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2595. {
  2596. u16 cons;
  2597. /* Tell compiler that status block fields can change. */
  2598. barrier();
  2599. cons = *bnapi->hw_rx_cons_ptr;
  2600. barrier();
  2601. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2602. cons++;
  2603. return cons;
  2604. }
  2605. static int
  2606. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2607. {
  2608. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2609. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2610. struct l2_fhdr *rx_hdr;
  2611. int rx_pkt = 0, pg_ring_used = 0;
  2612. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2613. sw_cons = rxr->rx_cons;
  2614. sw_prod = rxr->rx_prod;
  2615. /* Memory barrier necessary as speculative reads of the rx
  2616. * buffer can be ahead of the index in the status block
  2617. */
  2618. rmb();
  2619. while (sw_cons != hw_cons) {
  2620. unsigned int len, hdr_len;
  2621. u32 status;
  2622. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2623. struct sk_buff *skb;
  2624. dma_addr_t dma_addr;
  2625. u8 *data;
  2626. u16 next_ring_idx;
  2627. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2628. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2629. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2630. data = rx_buf->data;
  2631. rx_buf->data = NULL;
  2632. rx_hdr = get_l2_fhdr(data);
  2633. prefetch(rx_hdr);
  2634. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2635. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2636. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2637. PCI_DMA_FROMDEVICE);
  2638. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2639. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2640. prefetch(get_l2_fhdr(next_rx_buf->data));
  2641. len = rx_hdr->l2_fhdr_pkt_len;
  2642. status = rx_hdr->l2_fhdr_status;
  2643. hdr_len = 0;
  2644. if (status & L2_FHDR_STATUS_SPLIT) {
  2645. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2646. pg_ring_used = 1;
  2647. } else if (len > bp->rx_jumbo_thresh) {
  2648. hdr_len = bp->rx_jumbo_thresh;
  2649. pg_ring_used = 1;
  2650. }
  2651. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2652. L2_FHDR_ERRORS_PHY_DECODE |
  2653. L2_FHDR_ERRORS_ALIGNMENT |
  2654. L2_FHDR_ERRORS_TOO_SHORT |
  2655. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2656. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2657. sw_ring_prod);
  2658. if (pg_ring_used) {
  2659. int pages;
  2660. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2661. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2662. }
  2663. goto next_rx;
  2664. }
  2665. len -= 4;
  2666. if (len <= bp->rx_copy_thresh) {
  2667. skb = netdev_alloc_skb(bp->dev, len + 6);
  2668. if (skb == NULL) {
  2669. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2670. sw_ring_prod);
  2671. goto next_rx;
  2672. }
  2673. /* aligned copy */
  2674. memcpy(skb->data,
  2675. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2676. len + 6);
  2677. skb_reserve(skb, 6);
  2678. skb_put(skb, len);
  2679. bnx2_reuse_rx_data(bp, rxr, data,
  2680. sw_ring_cons, sw_ring_prod);
  2681. } else {
  2682. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2683. (sw_ring_cons << 16) | sw_ring_prod);
  2684. if (!skb)
  2685. goto next_rx;
  2686. }
  2687. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2688. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2689. __vlan_hwaccel_put_tag(skb, rx_hdr->l2_fhdr_vlan_tag);
  2690. skb->protocol = eth_type_trans(skb, bp->dev);
  2691. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2692. (ntohs(skb->protocol) != 0x8100)) {
  2693. dev_kfree_skb(skb);
  2694. goto next_rx;
  2695. }
  2696. skb_checksum_none_assert(skb);
  2697. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2698. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2699. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2700. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2701. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2702. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2703. }
  2704. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2705. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2706. L2_FHDR_STATUS_USE_RXHASH))
  2707. skb->rxhash = rx_hdr->l2_fhdr_hash;
  2708. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2709. napi_gro_receive(&bnapi->napi, skb);
  2710. rx_pkt++;
  2711. next_rx:
  2712. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2713. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2714. if ((rx_pkt == budget))
  2715. break;
  2716. /* Refresh hw_cons to see if there is new work */
  2717. if (sw_cons == hw_cons) {
  2718. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2719. rmb();
  2720. }
  2721. }
  2722. rxr->rx_cons = sw_cons;
  2723. rxr->rx_prod = sw_prod;
  2724. if (pg_ring_used)
  2725. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2726. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2727. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2728. mmiowb();
  2729. return rx_pkt;
  2730. }
  2731. /* MSI ISR - The only difference between this and the INTx ISR
  2732. * is that the MSI interrupt is always serviced.
  2733. */
  2734. static irqreturn_t
  2735. bnx2_msi(int irq, void *dev_instance)
  2736. {
  2737. struct bnx2_napi *bnapi = dev_instance;
  2738. struct bnx2 *bp = bnapi->bp;
  2739. prefetch(bnapi->status_blk.msi);
  2740. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2741. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2742. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2743. /* Return here if interrupt is disabled. */
  2744. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2745. return IRQ_HANDLED;
  2746. napi_schedule(&bnapi->napi);
  2747. return IRQ_HANDLED;
  2748. }
  2749. static irqreturn_t
  2750. bnx2_msi_1shot(int irq, void *dev_instance)
  2751. {
  2752. struct bnx2_napi *bnapi = dev_instance;
  2753. struct bnx2 *bp = bnapi->bp;
  2754. prefetch(bnapi->status_blk.msi);
  2755. /* Return here if interrupt is disabled. */
  2756. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2757. return IRQ_HANDLED;
  2758. napi_schedule(&bnapi->napi);
  2759. return IRQ_HANDLED;
  2760. }
  2761. static irqreturn_t
  2762. bnx2_interrupt(int irq, void *dev_instance)
  2763. {
  2764. struct bnx2_napi *bnapi = dev_instance;
  2765. struct bnx2 *bp = bnapi->bp;
  2766. struct status_block *sblk = bnapi->status_blk.msi;
  2767. /* When using INTx, it is possible for the interrupt to arrive
  2768. * at the CPU before the status block posted prior to the
  2769. * interrupt. Reading a register will flush the status block.
  2770. * When using MSI, the MSI message will always complete after
  2771. * the status block write.
  2772. */
  2773. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2774. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2775. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2776. return IRQ_NONE;
  2777. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2778. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2779. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2780. /* Read back to deassert IRQ immediately to avoid too many
  2781. * spurious interrupts.
  2782. */
  2783. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2784. /* Return here if interrupt is shared and is disabled. */
  2785. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2786. return IRQ_HANDLED;
  2787. if (napi_schedule_prep(&bnapi->napi)) {
  2788. bnapi->last_status_idx = sblk->status_idx;
  2789. __napi_schedule(&bnapi->napi);
  2790. }
  2791. return IRQ_HANDLED;
  2792. }
  2793. static inline int
  2794. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2795. {
  2796. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2797. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2798. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2799. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2800. return 1;
  2801. return 0;
  2802. }
  2803. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2804. STATUS_ATTN_BITS_TIMER_ABORT)
  2805. static inline int
  2806. bnx2_has_work(struct bnx2_napi *bnapi)
  2807. {
  2808. struct status_block *sblk = bnapi->status_blk.msi;
  2809. if (bnx2_has_fast_work(bnapi))
  2810. return 1;
  2811. #ifdef BCM_CNIC
  2812. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2813. return 1;
  2814. #endif
  2815. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2816. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2817. return 1;
  2818. return 0;
  2819. }
  2820. static void
  2821. bnx2_chk_missed_msi(struct bnx2 *bp)
  2822. {
  2823. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2824. u32 msi_ctrl;
  2825. if (bnx2_has_work(bnapi)) {
  2826. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2827. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2828. return;
  2829. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2830. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2831. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2832. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2833. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2834. }
  2835. }
  2836. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2837. }
  2838. #ifdef BCM_CNIC
  2839. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2840. {
  2841. struct cnic_ops *c_ops;
  2842. if (!bnapi->cnic_present)
  2843. return;
  2844. rcu_read_lock();
  2845. c_ops = rcu_dereference(bp->cnic_ops);
  2846. if (c_ops)
  2847. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2848. bnapi->status_blk.msi);
  2849. rcu_read_unlock();
  2850. }
  2851. #endif
  2852. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2853. {
  2854. struct status_block *sblk = bnapi->status_blk.msi;
  2855. u32 status_attn_bits = sblk->status_attn_bits;
  2856. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2857. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2858. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2859. bnx2_phy_int(bp, bnapi);
  2860. /* This is needed to take care of transient status
  2861. * during link changes.
  2862. */
  2863. BNX2_WR(bp, BNX2_HC_COMMAND,
  2864. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2865. BNX2_RD(bp, BNX2_HC_COMMAND);
  2866. }
  2867. }
  2868. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2869. int work_done, int budget)
  2870. {
  2871. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2872. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2873. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2874. bnx2_tx_int(bp, bnapi, 0);
  2875. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2876. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2877. return work_done;
  2878. }
  2879. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2880. {
  2881. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2882. struct bnx2 *bp = bnapi->bp;
  2883. int work_done = 0;
  2884. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2885. while (1) {
  2886. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2887. if (unlikely(work_done >= budget))
  2888. break;
  2889. bnapi->last_status_idx = sblk->status_idx;
  2890. /* status idx must be read before checking for more work. */
  2891. rmb();
  2892. if (likely(!bnx2_has_fast_work(bnapi))) {
  2893. napi_complete(napi);
  2894. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2895. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2896. bnapi->last_status_idx);
  2897. break;
  2898. }
  2899. }
  2900. return work_done;
  2901. }
  2902. static int bnx2_poll(struct napi_struct *napi, int budget)
  2903. {
  2904. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2905. struct bnx2 *bp = bnapi->bp;
  2906. int work_done = 0;
  2907. struct status_block *sblk = bnapi->status_blk.msi;
  2908. while (1) {
  2909. bnx2_poll_link(bp, bnapi);
  2910. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2911. #ifdef BCM_CNIC
  2912. bnx2_poll_cnic(bp, bnapi);
  2913. #endif
  2914. /* bnapi->last_status_idx is used below to tell the hw how
  2915. * much work has been processed, so we must read it before
  2916. * checking for more work.
  2917. */
  2918. bnapi->last_status_idx = sblk->status_idx;
  2919. if (unlikely(work_done >= budget))
  2920. break;
  2921. rmb();
  2922. if (likely(!bnx2_has_work(bnapi))) {
  2923. napi_complete(napi);
  2924. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2925. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2926. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2927. bnapi->last_status_idx);
  2928. break;
  2929. }
  2930. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2931. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2932. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2933. bnapi->last_status_idx);
  2934. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2935. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2936. bnapi->last_status_idx);
  2937. break;
  2938. }
  2939. }
  2940. return work_done;
  2941. }
  2942. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2943. * from set_multicast.
  2944. */
  2945. static void
  2946. bnx2_set_rx_mode(struct net_device *dev)
  2947. {
  2948. struct bnx2 *bp = netdev_priv(dev);
  2949. u32 rx_mode, sort_mode;
  2950. struct netdev_hw_addr *ha;
  2951. int i;
  2952. if (!netif_running(dev))
  2953. return;
  2954. spin_lock_bh(&bp->phy_lock);
  2955. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2956. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2957. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2958. if (!(dev->features & NETIF_F_HW_VLAN_RX) &&
  2959. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2960. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2961. if (dev->flags & IFF_PROMISC) {
  2962. /* Promiscuous mode. */
  2963. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2964. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2965. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2966. }
  2967. else if (dev->flags & IFF_ALLMULTI) {
  2968. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2969. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2970. 0xffffffff);
  2971. }
  2972. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2973. }
  2974. else {
  2975. /* Accept one or more multicast(s). */
  2976. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2977. u32 regidx;
  2978. u32 bit;
  2979. u32 crc;
  2980. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2981. netdev_for_each_mc_addr(ha, dev) {
  2982. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2983. bit = crc & 0xff;
  2984. regidx = (bit & 0xe0) >> 5;
  2985. bit &= 0x1f;
  2986. mc_filter[regidx] |= (1 << bit);
  2987. }
  2988. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2989. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2990. mc_filter[i]);
  2991. }
  2992. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2993. }
  2994. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  2995. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2996. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2997. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2998. } else if (!(dev->flags & IFF_PROMISC)) {
  2999. /* Add all entries into to the match filter list */
  3000. i = 0;
  3001. netdev_for_each_uc_addr(ha, dev) {
  3002. bnx2_set_mac_addr(bp, ha->addr,
  3003. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3004. sort_mode |= (1 <<
  3005. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3006. i++;
  3007. }
  3008. }
  3009. if (rx_mode != bp->rx_mode) {
  3010. bp->rx_mode = rx_mode;
  3011. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3012. }
  3013. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3014. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3015. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3016. spin_unlock_bh(&bp->phy_lock);
  3017. }
  3018. static int
  3019. check_fw_section(const struct firmware *fw,
  3020. const struct bnx2_fw_file_section *section,
  3021. u32 alignment, bool non_empty)
  3022. {
  3023. u32 offset = be32_to_cpu(section->offset);
  3024. u32 len = be32_to_cpu(section->len);
  3025. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3026. return -EINVAL;
  3027. if ((non_empty && len == 0) || len > fw->size - offset ||
  3028. len & (alignment - 1))
  3029. return -EINVAL;
  3030. return 0;
  3031. }
  3032. static int
  3033. check_mips_fw_entry(const struct firmware *fw,
  3034. const struct bnx2_mips_fw_file_entry *entry)
  3035. {
  3036. if (check_fw_section(fw, &entry->text, 4, true) ||
  3037. check_fw_section(fw, &entry->data, 4, false) ||
  3038. check_fw_section(fw, &entry->rodata, 4, false))
  3039. return -EINVAL;
  3040. return 0;
  3041. }
  3042. static void bnx2_release_firmware(struct bnx2 *bp)
  3043. {
  3044. if (bp->rv2p_firmware) {
  3045. release_firmware(bp->mips_firmware);
  3046. release_firmware(bp->rv2p_firmware);
  3047. bp->rv2p_firmware = NULL;
  3048. }
  3049. }
  3050. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3051. {
  3052. const char *mips_fw_file, *rv2p_fw_file;
  3053. const struct bnx2_mips_fw_file *mips_fw;
  3054. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3055. int rc;
  3056. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3057. mips_fw_file = FW_MIPS_FILE_09;
  3058. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3059. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3060. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3061. else
  3062. rv2p_fw_file = FW_RV2P_FILE_09;
  3063. } else {
  3064. mips_fw_file = FW_MIPS_FILE_06;
  3065. rv2p_fw_file = FW_RV2P_FILE_06;
  3066. }
  3067. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3068. if (rc) {
  3069. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3070. goto out;
  3071. }
  3072. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3073. if (rc) {
  3074. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3075. goto err_release_mips_firmware;
  3076. }
  3077. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3078. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3079. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3080. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3081. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3082. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3083. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3084. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3085. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3086. rc = -EINVAL;
  3087. goto err_release_firmware;
  3088. }
  3089. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3090. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3091. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3092. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3093. rc = -EINVAL;
  3094. goto err_release_firmware;
  3095. }
  3096. out:
  3097. return rc;
  3098. err_release_firmware:
  3099. release_firmware(bp->rv2p_firmware);
  3100. bp->rv2p_firmware = NULL;
  3101. err_release_mips_firmware:
  3102. release_firmware(bp->mips_firmware);
  3103. goto out;
  3104. }
  3105. static int bnx2_request_firmware(struct bnx2 *bp)
  3106. {
  3107. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3108. }
  3109. static u32
  3110. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3111. {
  3112. switch (idx) {
  3113. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3114. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3115. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3116. break;
  3117. }
  3118. return rv2p_code;
  3119. }
  3120. static int
  3121. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3122. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3123. {
  3124. u32 rv2p_code_len, file_offset;
  3125. __be32 *rv2p_code;
  3126. int i;
  3127. u32 val, cmd, addr;
  3128. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3129. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3130. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3131. if (rv2p_proc == RV2P_PROC1) {
  3132. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3133. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3134. } else {
  3135. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3136. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3137. }
  3138. for (i = 0; i < rv2p_code_len; i += 8) {
  3139. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3140. rv2p_code++;
  3141. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3142. rv2p_code++;
  3143. val = (i / 8) | cmd;
  3144. BNX2_WR(bp, addr, val);
  3145. }
  3146. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3147. for (i = 0; i < 8; i++) {
  3148. u32 loc, code;
  3149. loc = be32_to_cpu(fw_entry->fixup[i]);
  3150. if (loc && ((loc * 4) < rv2p_code_len)) {
  3151. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3152. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3153. code = be32_to_cpu(*(rv2p_code + loc));
  3154. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3155. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3156. val = (loc / 2) | cmd;
  3157. BNX2_WR(bp, addr, val);
  3158. }
  3159. }
  3160. /* Reset the processor, un-stall is done later. */
  3161. if (rv2p_proc == RV2P_PROC1) {
  3162. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3163. }
  3164. else {
  3165. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3166. }
  3167. return 0;
  3168. }
  3169. static int
  3170. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3171. const struct bnx2_mips_fw_file_entry *fw_entry)
  3172. {
  3173. u32 addr, len, file_offset;
  3174. __be32 *data;
  3175. u32 offset;
  3176. u32 val;
  3177. /* Halt the CPU. */
  3178. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3179. val |= cpu_reg->mode_value_halt;
  3180. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3181. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3182. /* Load the Text area. */
  3183. addr = be32_to_cpu(fw_entry->text.addr);
  3184. len = be32_to_cpu(fw_entry->text.len);
  3185. file_offset = be32_to_cpu(fw_entry->text.offset);
  3186. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3187. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3188. if (len) {
  3189. int j;
  3190. for (j = 0; j < (len / 4); j++, offset += 4)
  3191. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3192. }
  3193. /* Load the Data area. */
  3194. addr = be32_to_cpu(fw_entry->data.addr);
  3195. len = be32_to_cpu(fw_entry->data.len);
  3196. file_offset = be32_to_cpu(fw_entry->data.offset);
  3197. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3198. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3199. if (len) {
  3200. int j;
  3201. for (j = 0; j < (len / 4); j++, offset += 4)
  3202. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3203. }
  3204. /* Load the Read-Only area. */
  3205. addr = be32_to_cpu(fw_entry->rodata.addr);
  3206. len = be32_to_cpu(fw_entry->rodata.len);
  3207. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3208. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3209. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3210. if (len) {
  3211. int j;
  3212. for (j = 0; j < (len / 4); j++, offset += 4)
  3213. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3214. }
  3215. /* Clear the pre-fetch instruction. */
  3216. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3217. val = be32_to_cpu(fw_entry->start_addr);
  3218. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3219. /* Start the CPU. */
  3220. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3221. val &= ~cpu_reg->mode_value_halt;
  3222. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3223. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3224. return 0;
  3225. }
  3226. static int
  3227. bnx2_init_cpus(struct bnx2 *bp)
  3228. {
  3229. const struct bnx2_mips_fw_file *mips_fw =
  3230. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3231. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3232. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3233. int rc;
  3234. /* Initialize the RV2P processor. */
  3235. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3236. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3237. /* Initialize the RX Processor. */
  3238. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3239. if (rc)
  3240. goto init_cpu_err;
  3241. /* Initialize the TX Processor. */
  3242. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3243. if (rc)
  3244. goto init_cpu_err;
  3245. /* Initialize the TX Patch-up Processor. */
  3246. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3247. if (rc)
  3248. goto init_cpu_err;
  3249. /* Initialize the Completion Processor. */
  3250. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3251. if (rc)
  3252. goto init_cpu_err;
  3253. /* Initialize the Command Processor. */
  3254. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3255. init_cpu_err:
  3256. return rc;
  3257. }
  3258. static int
  3259. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3260. {
  3261. u16 pmcsr;
  3262. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3263. switch (state) {
  3264. case PCI_D0: {
  3265. u32 val;
  3266. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3267. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3268. PCI_PM_CTRL_PME_STATUS);
  3269. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3270. /* delay required during transition out of D3hot */
  3271. msleep(20);
  3272. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3273. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3274. val &= ~BNX2_EMAC_MODE_MPKT;
  3275. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3276. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3277. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3278. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3279. break;
  3280. }
  3281. case PCI_D3hot: {
  3282. int i;
  3283. u32 val, wol_msg;
  3284. if (bp->wol) {
  3285. u32 advertising;
  3286. u8 autoneg;
  3287. autoneg = bp->autoneg;
  3288. advertising = bp->advertising;
  3289. if (bp->phy_port == PORT_TP) {
  3290. bp->autoneg = AUTONEG_SPEED;
  3291. bp->advertising = ADVERTISED_10baseT_Half |
  3292. ADVERTISED_10baseT_Full |
  3293. ADVERTISED_100baseT_Half |
  3294. ADVERTISED_100baseT_Full |
  3295. ADVERTISED_Autoneg;
  3296. }
  3297. spin_lock_bh(&bp->phy_lock);
  3298. bnx2_setup_phy(bp, bp->phy_port);
  3299. spin_unlock_bh(&bp->phy_lock);
  3300. bp->autoneg = autoneg;
  3301. bp->advertising = advertising;
  3302. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3303. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3304. /* Enable port mode. */
  3305. val &= ~BNX2_EMAC_MODE_PORT;
  3306. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3307. BNX2_EMAC_MODE_ACPI_RCVD |
  3308. BNX2_EMAC_MODE_MPKT;
  3309. if (bp->phy_port == PORT_TP)
  3310. val |= BNX2_EMAC_MODE_PORT_MII;
  3311. else {
  3312. val |= BNX2_EMAC_MODE_PORT_GMII;
  3313. if (bp->line_speed == SPEED_2500)
  3314. val |= BNX2_EMAC_MODE_25G_MODE;
  3315. }
  3316. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3317. /* receive all multicast */
  3318. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3319. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3320. 0xffffffff);
  3321. }
  3322. BNX2_WR(bp, BNX2_EMAC_RX_MODE,
  3323. BNX2_EMAC_RX_MODE_SORT_MODE);
  3324. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3325. BNX2_RPM_SORT_USER0_MC_EN;
  3326. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3327. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3328. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val |
  3329. BNX2_RPM_SORT_USER0_ENA);
  3330. /* Need to enable EMAC and RPM for WOL. */
  3331. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3332. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3333. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3334. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3335. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3336. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3337. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3338. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3339. }
  3340. else {
  3341. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3342. }
  3343. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3344. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3345. 1, 0);
  3346. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3347. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3348. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3349. if (bp->wol)
  3350. pmcsr |= 3;
  3351. }
  3352. else {
  3353. pmcsr |= 3;
  3354. }
  3355. if (bp->wol) {
  3356. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3357. }
  3358. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3359. pmcsr);
  3360. /* No more memory access after this point until
  3361. * device is brought back to D0.
  3362. */
  3363. udelay(50);
  3364. break;
  3365. }
  3366. default:
  3367. return -EINVAL;
  3368. }
  3369. return 0;
  3370. }
  3371. static int
  3372. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3373. {
  3374. u32 val;
  3375. int j;
  3376. /* Request access to the flash interface. */
  3377. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3378. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3379. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3380. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3381. break;
  3382. udelay(5);
  3383. }
  3384. if (j >= NVRAM_TIMEOUT_COUNT)
  3385. return -EBUSY;
  3386. return 0;
  3387. }
  3388. static int
  3389. bnx2_release_nvram_lock(struct bnx2 *bp)
  3390. {
  3391. int j;
  3392. u32 val;
  3393. /* Relinquish nvram interface. */
  3394. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3395. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3396. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3397. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3398. break;
  3399. udelay(5);
  3400. }
  3401. if (j >= NVRAM_TIMEOUT_COUNT)
  3402. return -EBUSY;
  3403. return 0;
  3404. }
  3405. static int
  3406. bnx2_enable_nvram_write(struct bnx2 *bp)
  3407. {
  3408. u32 val;
  3409. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3410. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3411. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3412. int j;
  3413. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3414. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3415. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3416. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3417. udelay(5);
  3418. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3419. if (val & BNX2_NVM_COMMAND_DONE)
  3420. break;
  3421. }
  3422. if (j >= NVRAM_TIMEOUT_COUNT)
  3423. return -EBUSY;
  3424. }
  3425. return 0;
  3426. }
  3427. static void
  3428. bnx2_disable_nvram_write(struct bnx2 *bp)
  3429. {
  3430. u32 val;
  3431. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3432. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3433. }
  3434. static void
  3435. bnx2_enable_nvram_access(struct bnx2 *bp)
  3436. {
  3437. u32 val;
  3438. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3439. /* Enable both bits, even on read. */
  3440. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3441. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3442. }
  3443. static void
  3444. bnx2_disable_nvram_access(struct bnx2 *bp)
  3445. {
  3446. u32 val;
  3447. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3448. /* Disable both bits, even after read. */
  3449. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3450. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3451. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3452. }
  3453. static int
  3454. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3455. {
  3456. u32 cmd;
  3457. int j;
  3458. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3459. /* Buffered flash, no erase needed */
  3460. return 0;
  3461. /* Build an erase command */
  3462. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3463. BNX2_NVM_COMMAND_DOIT;
  3464. /* Need to clear DONE bit separately. */
  3465. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3466. /* Address of the NVRAM to read from. */
  3467. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3468. /* Issue an erase command. */
  3469. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3470. /* Wait for completion. */
  3471. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3472. u32 val;
  3473. udelay(5);
  3474. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3475. if (val & BNX2_NVM_COMMAND_DONE)
  3476. break;
  3477. }
  3478. if (j >= NVRAM_TIMEOUT_COUNT)
  3479. return -EBUSY;
  3480. return 0;
  3481. }
  3482. static int
  3483. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3484. {
  3485. u32 cmd;
  3486. int j;
  3487. /* Build the command word. */
  3488. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3489. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3490. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3491. offset = ((offset / bp->flash_info->page_size) <<
  3492. bp->flash_info->page_bits) +
  3493. (offset % bp->flash_info->page_size);
  3494. }
  3495. /* Need to clear DONE bit separately. */
  3496. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3497. /* Address of the NVRAM to read from. */
  3498. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3499. /* Issue a read command. */
  3500. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3501. /* Wait for completion. */
  3502. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3503. u32 val;
  3504. udelay(5);
  3505. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3506. if (val & BNX2_NVM_COMMAND_DONE) {
  3507. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3508. memcpy(ret_val, &v, 4);
  3509. break;
  3510. }
  3511. }
  3512. if (j >= NVRAM_TIMEOUT_COUNT)
  3513. return -EBUSY;
  3514. return 0;
  3515. }
  3516. static int
  3517. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3518. {
  3519. u32 cmd;
  3520. __be32 val32;
  3521. int j;
  3522. /* Build the command word. */
  3523. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3524. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3525. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3526. offset = ((offset / bp->flash_info->page_size) <<
  3527. bp->flash_info->page_bits) +
  3528. (offset % bp->flash_info->page_size);
  3529. }
  3530. /* Need to clear DONE bit separately. */
  3531. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3532. memcpy(&val32, val, 4);
  3533. /* Write the data. */
  3534. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3535. /* Address of the NVRAM to write to. */
  3536. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3537. /* Issue the write command. */
  3538. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3539. /* Wait for completion. */
  3540. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3541. udelay(5);
  3542. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3543. break;
  3544. }
  3545. if (j >= NVRAM_TIMEOUT_COUNT)
  3546. return -EBUSY;
  3547. return 0;
  3548. }
  3549. static int
  3550. bnx2_init_nvram(struct bnx2 *bp)
  3551. {
  3552. u32 val;
  3553. int j, entry_count, rc = 0;
  3554. const struct flash_spec *flash;
  3555. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3556. bp->flash_info = &flash_5709;
  3557. goto get_flash_size;
  3558. }
  3559. /* Determine the selected interface. */
  3560. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3561. entry_count = ARRAY_SIZE(flash_table);
  3562. if (val & 0x40000000) {
  3563. /* Flash interface has been reconfigured */
  3564. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3565. j++, flash++) {
  3566. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3567. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3568. bp->flash_info = flash;
  3569. break;
  3570. }
  3571. }
  3572. }
  3573. else {
  3574. u32 mask;
  3575. /* Not yet been reconfigured */
  3576. if (val & (1 << 23))
  3577. mask = FLASH_BACKUP_STRAP_MASK;
  3578. else
  3579. mask = FLASH_STRAP_MASK;
  3580. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3581. j++, flash++) {
  3582. if ((val & mask) == (flash->strapping & mask)) {
  3583. bp->flash_info = flash;
  3584. /* Request access to the flash interface. */
  3585. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3586. return rc;
  3587. /* Enable access to flash interface */
  3588. bnx2_enable_nvram_access(bp);
  3589. /* Reconfigure the flash interface */
  3590. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3591. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3592. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3593. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3594. /* Disable access to flash interface */
  3595. bnx2_disable_nvram_access(bp);
  3596. bnx2_release_nvram_lock(bp);
  3597. break;
  3598. }
  3599. }
  3600. } /* if (val & 0x40000000) */
  3601. if (j == entry_count) {
  3602. bp->flash_info = NULL;
  3603. pr_alert("Unknown flash/EEPROM type\n");
  3604. return -ENODEV;
  3605. }
  3606. get_flash_size:
  3607. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3608. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3609. if (val)
  3610. bp->flash_size = val;
  3611. else
  3612. bp->flash_size = bp->flash_info->total_size;
  3613. return rc;
  3614. }
  3615. static int
  3616. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3617. int buf_size)
  3618. {
  3619. int rc = 0;
  3620. u32 cmd_flags, offset32, len32, extra;
  3621. if (buf_size == 0)
  3622. return 0;
  3623. /* Request access to the flash interface. */
  3624. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3625. return rc;
  3626. /* Enable access to flash interface */
  3627. bnx2_enable_nvram_access(bp);
  3628. len32 = buf_size;
  3629. offset32 = offset;
  3630. extra = 0;
  3631. cmd_flags = 0;
  3632. if (offset32 & 3) {
  3633. u8 buf[4];
  3634. u32 pre_len;
  3635. offset32 &= ~3;
  3636. pre_len = 4 - (offset & 3);
  3637. if (pre_len >= len32) {
  3638. pre_len = len32;
  3639. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3640. BNX2_NVM_COMMAND_LAST;
  3641. }
  3642. else {
  3643. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3644. }
  3645. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3646. if (rc)
  3647. return rc;
  3648. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3649. offset32 += 4;
  3650. ret_buf += pre_len;
  3651. len32 -= pre_len;
  3652. }
  3653. if (len32 & 3) {
  3654. extra = 4 - (len32 & 3);
  3655. len32 = (len32 + 4) & ~3;
  3656. }
  3657. if (len32 == 4) {
  3658. u8 buf[4];
  3659. if (cmd_flags)
  3660. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3661. else
  3662. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3663. BNX2_NVM_COMMAND_LAST;
  3664. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3665. memcpy(ret_buf, buf, 4 - extra);
  3666. }
  3667. else if (len32 > 0) {
  3668. u8 buf[4];
  3669. /* Read the first word. */
  3670. if (cmd_flags)
  3671. cmd_flags = 0;
  3672. else
  3673. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3674. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3675. /* Advance to the next dword. */
  3676. offset32 += 4;
  3677. ret_buf += 4;
  3678. len32 -= 4;
  3679. while (len32 > 4 && rc == 0) {
  3680. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3681. /* Advance to the next dword. */
  3682. offset32 += 4;
  3683. ret_buf += 4;
  3684. len32 -= 4;
  3685. }
  3686. if (rc)
  3687. return rc;
  3688. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3689. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3690. memcpy(ret_buf, buf, 4 - extra);
  3691. }
  3692. /* Disable access to flash interface */
  3693. bnx2_disable_nvram_access(bp);
  3694. bnx2_release_nvram_lock(bp);
  3695. return rc;
  3696. }
  3697. static int
  3698. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3699. int buf_size)
  3700. {
  3701. u32 written, offset32, len32;
  3702. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3703. int rc = 0;
  3704. int align_start, align_end;
  3705. buf = data_buf;
  3706. offset32 = offset;
  3707. len32 = buf_size;
  3708. align_start = align_end = 0;
  3709. if ((align_start = (offset32 & 3))) {
  3710. offset32 &= ~3;
  3711. len32 += align_start;
  3712. if (len32 < 4)
  3713. len32 = 4;
  3714. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3715. return rc;
  3716. }
  3717. if (len32 & 3) {
  3718. align_end = 4 - (len32 & 3);
  3719. len32 += align_end;
  3720. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3721. return rc;
  3722. }
  3723. if (align_start || align_end) {
  3724. align_buf = kmalloc(len32, GFP_KERNEL);
  3725. if (align_buf == NULL)
  3726. return -ENOMEM;
  3727. if (align_start) {
  3728. memcpy(align_buf, start, 4);
  3729. }
  3730. if (align_end) {
  3731. memcpy(align_buf + len32 - 4, end, 4);
  3732. }
  3733. memcpy(align_buf + align_start, data_buf, buf_size);
  3734. buf = align_buf;
  3735. }
  3736. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3737. flash_buffer = kmalloc(264, GFP_KERNEL);
  3738. if (flash_buffer == NULL) {
  3739. rc = -ENOMEM;
  3740. goto nvram_write_end;
  3741. }
  3742. }
  3743. written = 0;
  3744. while ((written < len32) && (rc == 0)) {
  3745. u32 page_start, page_end, data_start, data_end;
  3746. u32 addr, cmd_flags;
  3747. int i;
  3748. /* Find the page_start addr */
  3749. page_start = offset32 + written;
  3750. page_start -= (page_start % bp->flash_info->page_size);
  3751. /* Find the page_end addr */
  3752. page_end = page_start + bp->flash_info->page_size;
  3753. /* Find the data_start addr */
  3754. data_start = (written == 0) ? offset32 : page_start;
  3755. /* Find the data_end addr */
  3756. data_end = (page_end > offset32 + len32) ?
  3757. (offset32 + len32) : page_end;
  3758. /* Request access to the flash interface. */
  3759. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3760. goto nvram_write_end;
  3761. /* Enable access to flash interface */
  3762. bnx2_enable_nvram_access(bp);
  3763. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3764. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3765. int j;
  3766. /* Read the whole page into the buffer
  3767. * (non-buffer flash only) */
  3768. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3769. if (j == (bp->flash_info->page_size - 4)) {
  3770. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3771. }
  3772. rc = bnx2_nvram_read_dword(bp,
  3773. page_start + j,
  3774. &flash_buffer[j],
  3775. cmd_flags);
  3776. if (rc)
  3777. goto nvram_write_end;
  3778. cmd_flags = 0;
  3779. }
  3780. }
  3781. /* Enable writes to flash interface (unlock write-protect) */
  3782. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3783. goto nvram_write_end;
  3784. /* Loop to write back the buffer data from page_start to
  3785. * data_start */
  3786. i = 0;
  3787. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3788. /* Erase the page */
  3789. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3790. goto nvram_write_end;
  3791. /* Re-enable the write again for the actual write */
  3792. bnx2_enable_nvram_write(bp);
  3793. for (addr = page_start; addr < data_start;
  3794. addr += 4, i += 4) {
  3795. rc = bnx2_nvram_write_dword(bp, addr,
  3796. &flash_buffer[i], cmd_flags);
  3797. if (rc != 0)
  3798. goto nvram_write_end;
  3799. cmd_flags = 0;
  3800. }
  3801. }
  3802. /* Loop to write the new data from data_start to data_end */
  3803. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3804. if ((addr == page_end - 4) ||
  3805. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3806. (addr == data_end - 4))) {
  3807. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3808. }
  3809. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3810. cmd_flags);
  3811. if (rc != 0)
  3812. goto nvram_write_end;
  3813. cmd_flags = 0;
  3814. buf += 4;
  3815. }
  3816. /* Loop to write back the buffer data from data_end
  3817. * to page_end */
  3818. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3819. for (addr = data_end; addr < page_end;
  3820. addr += 4, i += 4) {
  3821. if (addr == page_end-4) {
  3822. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3823. }
  3824. rc = bnx2_nvram_write_dword(bp, addr,
  3825. &flash_buffer[i], cmd_flags);
  3826. if (rc != 0)
  3827. goto nvram_write_end;
  3828. cmd_flags = 0;
  3829. }
  3830. }
  3831. /* Disable writes to flash interface (lock write-protect) */
  3832. bnx2_disable_nvram_write(bp);
  3833. /* Disable access to flash interface */
  3834. bnx2_disable_nvram_access(bp);
  3835. bnx2_release_nvram_lock(bp);
  3836. /* Increment written */
  3837. written += data_end - data_start;
  3838. }
  3839. nvram_write_end:
  3840. kfree(flash_buffer);
  3841. kfree(align_buf);
  3842. return rc;
  3843. }
  3844. static void
  3845. bnx2_init_fw_cap(struct bnx2 *bp)
  3846. {
  3847. u32 val, sig = 0;
  3848. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3849. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3850. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3851. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3852. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3853. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3854. return;
  3855. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3856. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3857. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3858. }
  3859. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3860. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3861. u32 link;
  3862. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3863. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3864. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3865. bp->phy_port = PORT_FIBRE;
  3866. else
  3867. bp->phy_port = PORT_TP;
  3868. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3869. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3870. }
  3871. if (netif_running(bp->dev) && sig)
  3872. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3873. }
  3874. static void
  3875. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3876. {
  3877. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3878. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3879. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3880. }
  3881. static int
  3882. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3883. {
  3884. u32 val;
  3885. int i, rc = 0;
  3886. u8 old_port;
  3887. /* Wait for the current PCI transaction to complete before
  3888. * issuing a reset. */
  3889. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3890. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3891. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3892. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3893. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3894. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3895. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3896. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3897. udelay(5);
  3898. } else { /* 5709 */
  3899. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3900. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3901. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3902. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3903. for (i = 0; i < 100; i++) {
  3904. msleep(1);
  3905. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3906. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3907. break;
  3908. }
  3909. }
  3910. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3911. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3912. /* Deposit a driver reset signature so the firmware knows that
  3913. * this is a soft reset. */
  3914. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3915. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3916. /* Do a dummy read to force the chip to complete all current transaction
  3917. * before we issue a reset. */
  3918. val = BNX2_RD(bp, BNX2_MISC_ID);
  3919. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3920. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3921. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3922. udelay(5);
  3923. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3924. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3925. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3926. } else {
  3927. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3928. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3929. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3930. /* Chip reset. */
  3931. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3932. /* Reading back any register after chip reset will hang the
  3933. * bus on 5706 A0 and A1. The msleep below provides plenty
  3934. * of margin for write posting.
  3935. */
  3936. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3937. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3938. msleep(20);
  3939. /* Reset takes approximate 30 usec */
  3940. for (i = 0; i < 10; i++) {
  3941. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3942. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3943. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3944. break;
  3945. udelay(10);
  3946. }
  3947. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3948. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3949. pr_err("Chip reset did not complete\n");
  3950. return -EBUSY;
  3951. }
  3952. }
  3953. /* Make sure byte swapping is properly configured. */
  3954. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3955. if (val != 0x01020304) {
  3956. pr_err("Chip not in correct endian mode\n");
  3957. return -ENODEV;
  3958. }
  3959. /* Wait for the firmware to finish its initialization. */
  3960. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3961. if (rc)
  3962. return rc;
  3963. spin_lock_bh(&bp->phy_lock);
  3964. old_port = bp->phy_port;
  3965. bnx2_init_fw_cap(bp);
  3966. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3967. old_port != bp->phy_port)
  3968. bnx2_set_default_remote_link(bp);
  3969. spin_unlock_bh(&bp->phy_lock);
  3970. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  3971. /* Adjust the voltage regular to two steps lower. The default
  3972. * of this register is 0x0000000e. */
  3973. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3974. /* Remove bad rbuf memory from the free pool. */
  3975. rc = bnx2_alloc_bad_rbuf(bp);
  3976. }
  3977. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  3978. bnx2_setup_msix_tbl(bp);
  3979. /* Prevent MSIX table reads and write from timing out */
  3980. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  3981. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  3982. }
  3983. return rc;
  3984. }
  3985. static int
  3986. bnx2_init_chip(struct bnx2 *bp)
  3987. {
  3988. u32 val, mtu;
  3989. int rc, i;
  3990. /* Make sure the interrupt is not active. */
  3991. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3992. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3993. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3994. #ifdef __BIG_ENDIAN
  3995. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3996. #endif
  3997. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3998. DMA_READ_CHANS << 12 |
  3999. DMA_WRITE_CHANS << 16;
  4000. val |= (0x2 << 20) | (1 << 11);
  4001. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4002. val |= (1 << 23);
  4003. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4004. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4005. !(bp->flags & BNX2_FLAG_PCIX))
  4006. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4007. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4008. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4009. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4010. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4011. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4012. }
  4013. if (bp->flags & BNX2_FLAG_PCIX) {
  4014. u16 val16;
  4015. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4016. &val16);
  4017. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4018. val16 & ~PCI_X_CMD_ERO);
  4019. }
  4020. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4021. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4022. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4023. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4024. /* Initialize context mapping and zero out the quick contexts. The
  4025. * context block must have already been enabled. */
  4026. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4027. rc = bnx2_init_5709_context(bp);
  4028. if (rc)
  4029. return rc;
  4030. } else
  4031. bnx2_init_context(bp);
  4032. if ((rc = bnx2_init_cpus(bp)) != 0)
  4033. return rc;
  4034. bnx2_init_nvram(bp);
  4035. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4036. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4037. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4038. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4039. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4040. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4041. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4042. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4043. }
  4044. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4045. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4046. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4047. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4048. val = (BNX2_PAGE_BITS - 8) << 24;
  4049. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4050. /* Configure page size. */
  4051. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4052. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4053. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4054. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4055. val = bp->mac_addr[0] +
  4056. (bp->mac_addr[1] << 8) +
  4057. (bp->mac_addr[2] << 16) +
  4058. bp->mac_addr[3] +
  4059. (bp->mac_addr[4] << 8) +
  4060. (bp->mac_addr[5] << 16);
  4061. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4062. /* Program the MTU. Also include 4 bytes for CRC32. */
  4063. mtu = bp->dev->mtu;
  4064. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4065. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4066. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4067. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4068. if (mtu < 1500)
  4069. mtu = 1500;
  4070. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4071. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4072. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4073. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4074. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4075. bp->bnx2_napi[i].last_status_idx = 0;
  4076. bp->idle_chk_status_idx = 0xffff;
  4077. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4078. /* Set up how to generate a link change interrupt. */
  4079. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4080. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4081. (u64) bp->status_blk_mapping & 0xffffffff);
  4082. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4083. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4084. (u64) bp->stats_blk_mapping & 0xffffffff);
  4085. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4086. (u64) bp->stats_blk_mapping >> 32);
  4087. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4088. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4089. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4090. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4091. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4092. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4093. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4094. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4095. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4096. (bp->com_ticks_int << 16) | bp->com_ticks);
  4097. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4098. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4099. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4100. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4101. else
  4102. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4103. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4104. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4105. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4106. else {
  4107. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4108. BNX2_HC_CONFIG_COLLECT_STATS;
  4109. }
  4110. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4111. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4112. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4113. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4114. }
  4115. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4116. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4117. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4118. if (bp->rx_ticks < 25)
  4119. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4120. else
  4121. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4122. for (i = 1; i < bp->irq_nvecs; i++) {
  4123. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4124. BNX2_HC_SB_CONFIG_1;
  4125. BNX2_WR(bp, base,
  4126. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4127. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4128. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4129. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4130. (bp->tx_quick_cons_trip_int << 16) |
  4131. bp->tx_quick_cons_trip);
  4132. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4133. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4134. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4135. (bp->rx_quick_cons_trip_int << 16) |
  4136. bp->rx_quick_cons_trip);
  4137. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4138. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4139. }
  4140. /* Clear internal stats counters. */
  4141. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4142. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4143. /* Initialize the receive filter. */
  4144. bnx2_set_rx_mode(bp->dev);
  4145. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4146. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4147. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4148. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4149. }
  4150. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4151. 1, 0);
  4152. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4153. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4154. udelay(20);
  4155. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4156. return rc;
  4157. }
  4158. static void
  4159. bnx2_clear_ring_states(struct bnx2 *bp)
  4160. {
  4161. struct bnx2_napi *bnapi;
  4162. struct bnx2_tx_ring_info *txr;
  4163. struct bnx2_rx_ring_info *rxr;
  4164. int i;
  4165. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4166. bnapi = &bp->bnx2_napi[i];
  4167. txr = &bnapi->tx_ring;
  4168. rxr = &bnapi->rx_ring;
  4169. txr->tx_cons = 0;
  4170. txr->hw_tx_cons = 0;
  4171. rxr->rx_prod_bseq = 0;
  4172. rxr->rx_prod = 0;
  4173. rxr->rx_cons = 0;
  4174. rxr->rx_pg_prod = 0;
  4175. rxr->rx_pg_cons = 0;
  4176. }
  4177. }
  4178. static void
  4179. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4180. {
  4181. u32 val, offset0, offset1, offset2, offset3;
  4182. u32 cid_addr = GET_CID_ADDR(cid);
  4183. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4184. offset0 = BNX2_L2CTX_TYPE_XI;
  4185. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4186. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4187. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4188. } else {
  4189. offset0 = BNX2_L2CTX_TYPE;
  4190. offset1 = BNX2_L2CTX_CMD_TYPE;
  4191. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4192. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4193. }
  4194. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4195. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4196. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4197. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4198. val = (u64) txr->tx_desc_mapping >> 32;
  4199. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4200. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4201. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4202. }
  4203. static void
  4204. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4205. {
  4206. struct bnx2_tx_bd *txbd;
  4207. u32 cid = TX_CID;
  4208. struct bnx2_napi *bnapi;
  4209. struct bnx2_tx_ring_info *txr;
  4210. bnapi = &bp->bnx2_napi[ring_num];
  4211. txr = &bnapi->tx_ring;
  4212. if (ring_num == 0)
  4213. cid = TX_CID;
  4214. else
  4215. cid = TX_TSS_CID + ring_num - 1;
  4216. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4217. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4218. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4219. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4220. txr->tx_prod = 0;
  4221. txr->tx_prod_bseq = 0;
  4222. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4223. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4224. bnx2_init_tx_context(bp, cid, txr);
  4225. }
  4226. static void
  4227. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4228. u32 buf_size, int num_rings)
  4229. {
  4230. int i;
  4231. struct bnx2_rx_bd *rxbd;
  4232. for (i = 0; i < num_rings; i++) {
  4233. int j;
  4234. rxbd = &rx_ring[i][0];
  4235. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4236. rxbd->rx_bd_len = buf_size;
  4237. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4238. }
  4239. if (i == (num_rings - 1))
  4240. j = 0;
  4241. else
  4242. j = i + 1;
  4243. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4244. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4245. }
  4246. }
  4247. static void
  4248. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4249. {
  4250. int i;
  4251. u16 prod, ring_prod;
  4252. u32 cid, rx_cid_addr, val;
  4253. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4254. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4255. if (ring_num == 0)
  4256. cid = RX_CID;
  4257. else
  4258. cid = RX_RSS_CID + ring_num - 1;
  4259. rx_cid_addr = GET_CID_ADDR(cid);
  4260. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4261. bp->rx_buf_use_size, bp->rx_max_ring);
  4262. bnx2_init_rx_context(bp, cid);
  4263. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4264. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4265. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4266. }
  4267. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4268. if (bp->rx_pg_ring_size) {
  4269. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4270. rxr->rx_pg_desc_mapping,
  4271. PAGE_SIZE, bp->rx_max_pg_ring);
  4272. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4273. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4274. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4275. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4276. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4277. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4278. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4279. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4280. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4281. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4282. }
  4283. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4284. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4285. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4286. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4287. ring_prod = prod = rxr->rx_pg_prod;
  4288. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4289. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4290. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4291. ring_num, i, bp->rx_pg_ring_size);
  4292. break;
  4293. }
  4294. prod = BNX2_NEXT_RX_BD(prod);
  4295. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4296. }
  4297. rxr->rx_pg_prod = prod;
  4298. ring_prod = prod = rxr->rx_prod;
  4299. for (i = 0; i < bp->rx_ring_size; i++) {
  4300. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4301. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4302. ring_num, i, bp->rx_ring_size);
  4303. break;
  4304. }
  4305. prod = BNX2_NEXT_RX_BD(prod);
  4306. ring_prod = BNX2_RX_RING_IDX(prod);
  4307. }
  4308. rxr->rx_prod = prod;
  4309. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4310. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4311. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4312. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4313. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4314. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4315. }
  4316. static void
  4317. bnx2_init_all_rings(struct bnx2 *bp)
  4318. {
  4319. int i;
  4320. u32 val;
  4321. bnx2_clear_ring_states(bp);
  4322. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4323. for (i = 0; i < bp->num_tx_rings; i++)
  4324. bnx2_init_tx_ring(bp, i);
  4325. if (bp->num_tx_rings > 1)
  4326. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4327. (TX_TSS_CID << 7));
  4328. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4329. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4330. for (i = 0; i < bp->num_rx_rings; i++)
  4331. bnx2_init_rx_ring(bp, i);
  4332. if (bp->num_rx_rings > 1) {
  4333. u32 tbl_32 = 0;
  4334. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4335. int shift = (i % 8) << 2;
  4336. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4337. if ((i % 8) == 7) {
  4338. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4339. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4340. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4341. BNX2_RLUP_RSS_COMMAND_WRITE |
  4342. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4343. tbl_32 = 0;
  4344. }
  4345. }
  4346. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4347. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4348. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4349. }
  4350. }
  4351. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4352. {
  4353. u32 max, num_rings = 1;
  4354. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4355. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4356. num_rings++;
  4357. }
  4358. /* round to next power of 2 */
  4359. max = max_size;
  4360. while ((max & num_rings) == 0)
  4361. max >>= 1;
  4362. if (num_rings != max)
  4363. max <<= 1;
  4364. return max;
  4365. }
  4366. static void
  4367. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4368. {
  4369. u32 rx_size, rx_space, jumbo_size;
  4370. /* 8 for CRC and VLAN */
  4371. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4372. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4373. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4374. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4375. bp->rx_pg_ring_size = 0;
  4376. bp->rx_max_pg_ring = 0;
  4377. bp->rx_max_pg_ring_idx = 0;
  4378. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4379. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4380. jumbo_size = size * pages;
  4381. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4382. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4383. bp->rx_pg_ring_size = jumbo_size;
  4384. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4385. BNX2_MAX_RX_PG_RINGS);
  4386. bp->rx_max_pg_ring_idx =
  4387. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4388. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4389. bp->rx_copy_thresh = 0;
  4390. }
  4391. bp->rx_buf_use_size = rx_size;
  4392. /* hw alignment + build_skb() overhead*/
  4393. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4394. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4395. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4396. bp->rx_ring_size = size;
  4397. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4398. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4399. }
  4400. static void
  4401. bnx2_free_tx_skbs(struct bnx2 *bp)
  4402. {
  4403. int i;
  4404. for (i = 0; i < bp->num_tx_rings; i++) {
  4405. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4406. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4407. int j;
  4408. if (txr->tx_buf_ring == NULL)
  4409. continue;
  4410. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4411. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4412. struct sk_buff *skb = tx_buf->skb;
  4413. int k, last;
  4414. if (skb == NULL) {
  4415. j = BNX2_NEXT_TX_BD(j);
  4416. continue;
  4417. }
  4418. dma_unmap_single(&bp->pdev->dev,
  4419. dma_unmap_addr(tx_buf, mapping),
  4420. skb_headlen(skb),
  4421. PCI_DMA_TODEVICE);
  4422. tx_buf->skb = NULL;
  4423. last = tx_buf->nr_frags;
  4424. j = BNX2_NEXT_TX_BD(j);
  4425. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4426. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4427. dma_unmap_page(&bp->pdev->dev,
  4428. dma_unmap_addr(tx_buf, mapping),
  4429. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4430. PCI_DMA_TODEVICE);
  4431. }
  4432. dev_kfree_skb(skb);
  4433. }
  4434. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4435. }
  4436. }
  4437. static void
  4438. bnx2_free_rx_skbs(struct bnx2 *bp)
  4439. {
  4440. int i;
  4441. for (i = 0; i < bp->num_rx_rings; i++) {
  4442. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4443. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4444. int j;
  4445. if (rxr->rx_buf_ring == NULL)
  4446. return;
  4447. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4448. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4449. u8 *data = rx_buf->data;
  4450. if (data == NULL)
  4451. continue;
  4452. dma_unmap_single(&bp->pdev->dev,
  4453. dma_unmap_addr(rx_buf, mapping),
  4454. bp->rx_buf_use_size,
  4455. PCI_DMA_FROMDEVICE);
  4456. rx_buf->data = NULL;
  4457. kfree(data);
  4458. }
  4459. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4460. bnx2_free_rx_page(bp, rxr, j);
  4461. }
  4462. }
  4463. static void
  4464. bnx2_free_skbs(struct bnx2 *bp)
  4465. {
  4466. bnx2_free_tx_skbs(bp);
  4467. bnx2_free_rx_skbs(bp);
  4468. }
  4469. static int
  4470. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4471. {
  4472. int rc;
  4473. rc = bnx2_reset_chip(bp, reset_code);
  4474. bnx2_free_skbs(bp);
  4475. if (rc)
  4476. return rc;
  4477. if ((rc = bnx2_init_chip(bp)) != 0)
  4478. return rc;
  4479. bnx2_init_all_rings(bp);
  4480. return 0;
  4481. }
  4482. static int
  4483. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4484. {
  4485. int rc;
  4486. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4487. return rc;
  4488. spin_lock_bh(&bp->phy_lock);
  4489. bnx2_init_phy(bp, reset_phy);
  4490. bnx2_set_link(bp);
  4491. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4492. bnx2_remote_phy_event(bp);
  4493. spin_unlock_bh(&bp->phy_lock);
  4494. return 0;
  4495. }
  4496. static int
  4497. bnx2_shutdown_chip(struct bnx2 *bp)
  4498. {
  4499. u32 reset_code;
  4500. if (bp->flags & BNX2_FLAG_NO_WOL)
  4501. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4502. else if (bp->wol)
  4503. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4504. else
  4505. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4506. return bnx2_reset_chip(bp, reset_code);
  4507. }
  4508. static int
  4509. bnx2_test_registers(struct bnx2 *bp)
  4510. {
  4511. int ret;
  4512. int i, is_5709;
  4513. static const struct {
  4514. u16 offset;
  4515. u16 flags;
  4516. #define BNX2_FL_NOT_5709 1
  4517. u32 rw_mask;
  4518. u32 ro_mask;
  4519. } reg_tbl[] = {
  4520. { 0x006c, 0, 0x00000000, 0x0000003f },
  4521. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4522. { 0x0094, 0, 0x00000000, 0x00000000 },
  4523. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4524. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4525. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4526. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4527. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4528. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4529. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4530. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4531. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4532. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4533. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4534. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4535. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4536. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4537. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4538. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4539. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4540. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4541. { 0x1000, 0, 0x00000000, 0x00000001 },
  4542. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4543. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4544. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4545. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4546. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4547. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4548. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4549. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4550. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4551. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4552. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4553. { 0x1800, 0, 0x00000000, 0x00000001 },
  4554. { 0x1804, 0, 0x00000000, 0x00000003 },
  4555. { 0x2800, 0, 0x00000000, 0x00000001 },
  4556. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4557. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4558. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4559. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4560. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4561. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4562. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4563. { 0x2840, 0, 0x00000000, 0xffffffff },
  4564. { 0x2844, 0, 0x00000000, 0xffffffff },
  4565. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4566. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4567. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4568. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4569. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4570. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4571. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4572. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4573. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4574. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4575. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4576. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4577. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4578. { 0x5004, 0, 0x00000000, 0x0000007f },
  4579. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4580. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4581. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4582. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4583. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4584. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4585. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4586. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4587. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4588. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4589. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4590. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4591. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4592. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4593. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4594. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4595. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4596. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4597. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4598. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4599. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4600. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4601. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4602. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4603. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4604. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4605. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4606. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4607. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4608. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4609. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4610. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4611. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4612. { 0xffff, 0, 0x00000000, 0x00000000 },
  4613. };
  4614. ret = 0;
  4615. is_5709 = 0;
  4616. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4617. is_5709 = 1;
  4618. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4619. u32 offset, rw_mask, ro_mask, save_val, val;
  4620. u16 flags = reg_tbl[i].flags;
  4621. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4622. continue;
  4623. offset = (u32) reg_tbl[i].offset;
  4624. rw_mask = reg_tbl[i].rw_mask;
  4625. ro_mask = reg_tbl[i].ro_mask;
  4626. save_val = readl(bp->regview + offset);
  4627. writel(0, bp->regview + offset);
  4628. val = readl(bp->regview + offset);
  4629. if ((val & rw_mask) != 0) {
  4630. goto reg_test_err;
  4631. }
  4632. if ((val & ro_mask) != (save_val & ro_mask)) {
  4633. goto reg_test_err;
  4634. }
  4635. writel(0xffffffff, bp->regview + offset);
  4636. val = readl(bp->regview + offset);
  4637. if ((val & rw_mask) != rw_mask) {
  4638. goto reg_test_err;
  4639. }
  4640. if ((val & ro_mask) != (save_val & ro_mask)) {
  4641. goto reg_test_err;
  4642. }
  4643. writel(save_val, bp->regview + offset);
  4644. continue;
  4645. reg_test_err:
  4646. writel(save_val, bp->regview + offset);
  4647. ret = -ENODEV;
  4648. break;
  4649. }
  4650. return ret;
  4651. }
  4652. static int
  4653. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4654. {
  4655. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4656. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4657. int i;
  4658. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4659. u32 offset;
  4660. for (offset = 0; offset < size; offset += 4) {
  4661. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4662. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4663. test_pattern[i]) {
  4664. return -ENODEV;
  4665. }
  4666. }
  4667. }
  4668. return 0;
  4669. }
  4670. static int
  4671. bnx2_test_memory(struct bnx2 *bp)
  4672. {
  4673. int ret = 0;
  4674. int i;
  4675. static struct mem_entry {
  4676. u32 offset;
  4677. u32 len;
  4678. } mem_tbl_5706[] = {
  4679. { 0x60000, 0x4000 },
  4680. { 0xa0000, 0x3000 },
  4681. { 0xe0000, 0x4000 },
  4682. { 0x120000, 0x4000 },
  4683. { 0x1a0000, 0x4000 },
  4684. { 0x160000, 0x4000 },
  4685. { 0xffffffff, 0 },
  4686. },
  4687. mem_tbl_5709[] = {
  4688. { 0x60000, 0x4000 },
  4689. { 0xa0000, 0x3000 },
  4690. { 0xe0000, 0x4000 },
  4691. { 0x120000, 0x4000 },
  4692. { 0x1a0000, 0x4000 },
  4693. { 0xffffffff, 0 },
  4694. };
  4695. struct mem_entry *mem_tbl;
  4696. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4697. mem_tbl = mem_tbl_5709;
  4698. else
  4699. mem_tbl = mem_tbl_5706;
  4700. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4701. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4702. mem_tbl[i].len)) != 0) {
  4703. return ret;
  4704. }
  4705. }
  4706. return ret;
  4707. }
  4708. #define BNX2_MAC_LOOPBACK 0
  4709. #define BNX2_PHY_LOOPBACK 1
  4710. static int
  4711. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4712. {
  4713. unsigned int pkt_size, num_pkts, i;
  4714. struct sk_buff *skb;
  4715. u8 *data;
  4716. unsigned char *packet;
  4717. u16 rx_start_idx, rx_idx;
  4718. dma_addr_t map;
  4719. struct bnx2_tx_bd *txbd;
  4720. struct bnx2_sw_bd *rx_buf;
  4721. struct l2_fhdr *rx_hdr;
  4722. int ret = -ENODEV;
  4723. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4724. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4725. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4726. tx_napi = bnapi;
  4727. txr = &tx_napi->tx_ring;
  4728. rxr = &bnapi->rx_ring;
  4729. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4730. bp->loopback = MAC_LOOPBACK;
  4731. bnx2_set_mac_loopback(bp);
  4732. }
  4733. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4734. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4735. return 0;
  4736. bp->loopback = PHY_LOOPBACK;
  4737. bnx2_set_phy_loopback(bp);
  4738. }
  4739. else
  4740. return -EINVAL;
  4741. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4742. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4743. if (!skb)
  4744. return -ENOMEM;
  4745. packet = skb_put(skb, pkt_size);
  4746. memcpy(packet, bp->dev->dev_addr, 6);
  4747. memset(packet + 6, 0x0, 8);
  4748. for (i = 14; i < pkt_size; i++)
  4749. packet[i] = (unsigned char) (i & 0xff);
  4750. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4751. PCI_DMA_TODEVICE);
  4752. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4753. dev_kfree_skb(skb);
  4754. return -EIO;
  4755. }
  4756. BNX2_WR(bp, BNX2_HC_COMMAND,
  4757. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4758. BNX2_RD(bp, BNX2_HC_COMMAND);
  4759. udelay(5);
  4760. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4761. num_pkts = 0;
  4762. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4763. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4764. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4765. txbd->tx_bd_mss_nbytes = pkt_size;
  4766. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4767. num_pkts++;
  4768. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4769. txr->tx_prod_bseq += pkt_size;
  4770. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4771. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4772. udelay(100);
  4773. BNX2_WR(bp, BNX2_HC_COMMAND,
  4774. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4775. BNX2_RD(bp, BNX2_HC_COMMAND);
  4776. udelay(5);
  4777. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4778. dev_kfree_skb(skb);
  4779. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4780. goto loopback_test_done;
  4781. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4782. if (rx_idx != rx_start_idx + num_pkts) {
  4783. goto loopback_test_done;
  4784. }
  4785. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4786. data = rx_buf->data;
  4787. rx_hdr = get_l2_fhdr(data);
  4788. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4789. dma_sync_single_for_cpu(&bp->pdev->dev,
  4790. dma_unmap_addr(rx_buf, mapping),
  4791. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4792. if (rx_hdr->l2_fhdr_status &
  4793. (L2_FHDR_ERRORS_BAD_CRC |
  4794. L2_FHDR_ERRORS_PHY_DECODE |
  4795. L2_FHDR_ERRORS_ALIGNMENT |
  4796. L2_FHDR_ERRORS_TOO_SHORT |
  4797. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4798. goto loopback_test_done;
  4799. }
  4800. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4801. goto loopback_test_done;
  4802. }
  4803. for (i = 14; i < pkt_size; i++) {
  4804. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4805. goto loopback_test_done;
  4806. }
  4807. }
  4808. ret = 0;
  4809. loopback_test_done:
  4810. bp->loopback = 0;
  4811. return ret;
  4812. }
  4813. #define BNX2_MAC_LOOPBACK_FAILED 1
  4814. #define BNX2_PHY_LOOPBACK_FAILED 2
  4815. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4816. BNX2_PHY_LOOPBACK_FAILED)
  4817. static int
  4818. bnx2_test_loopback(struct bnx2 *bp)
  4819. {
  4820. int rc = 0;
  4821. if (!netif_running(bp->dev))
  4822. return BNX2_LOOPBACK_FAILED;
  4823. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4824. spin_lock_bh(&bp->phy_lock);
  4825. bnx2_init_phy(bp, 1);
  4826. spin_unlock_bh(&bp->phy_lock);
  4827. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4828. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4829. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4830. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4831. return rc;
  4832. }
  4833. #define NVRAM_SIZE 0x200
  4834. #define CRC32_RESIDUAL 0xdebb20e3
  4835. static int
  4836. bnx2_test_nvram(struct bnx2 *bp)
  4837. {
  4838. __be32 buf[NVRAM_SIZE / 4];
  4839. u8 *data = (u8 *) buf;
  4840. int rc = 0;
  4841. u32 magic, csum;
  4842. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4843. goto test_nvram_done;
  4844. magic = be32_to_cpu(buf[0]);
  4845. if (magic != 0x669955aa) {
  4846. rc = -ENODEV;
  4847. goto test_nvram_done;
  4848. }
  4849. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4850. goto test_nvram_done;
  4851. csum = ether_crc_le(0x100, data);
  4852. if (csum != CRC32_RESIDUAL) {
  4853. rc = -ENODEV;
  4854. goto test_nvram_done;
  4855. }
  4856. csum = ether_crc_le(0x100, data + 0x100);
  4857. if (csum != CRC32_RESIDUAL) {
  4858. rc = -ENODEV;
  4859. }
  4860. test_nvram_done:
  4861. return rc;
  4862. }
  4863. static int
  4864. bnx2_test_link(struct bnx2 *bp)
  4865. {
  4866. u32 bmsr;
  4867. if (!netif_running(bp->dev))
  4868. return -ENODEV;
  4869. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4870. if (bp->link_up)
  4871. return 0;
  4872. return -ENODEV;
  4873. }
  4874. spin_lock_bh(&bp->phy_lock);
  4875. bnx2_enable_bmsr1(bp);
  4876. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4877. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4878. bnx2_disable_bmsr1(bp);
  4879. spin_unlock_bh(&bp->phy_lock);
  4880. if (bmsr & BMSR_LSTATUS) {
  4881. return 0;
  4882. }
  4883. return -ENODEV;
  4884. }
  4885. static int
  4886. bnx2_test_intr(struct bnx2 *bp)
  4887. {
  4888. int i;
  4889. u16 status_idx;
  4890. if (!netif_running(bp->dev))
  4891. return -ENODEV;
  4892. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4893. /* This register is not touched during run-time. */
  4894. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4895. BNX2_RD(bp, BNX2_HC_COMMAND);
  4896. for (i = 0; i < 10; i++) {
  4897. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4898. status_idx) {
  4899. break;
  4900. }
  4901. msleep_interruptible(10);
  4902. }
  4903. if (i < 10)
  4904. return 0;
  4905. return -ENODEV;
  4906. }
  4907. /* Determining link for parallel detection. */
  4908. static int
  4909. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4910. {
  4911. u32 mode_ctl, an_dbg, exp;
  4912. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4913. return 0;
  4914. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4915. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4916. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4917. return 0;
  4918. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4919. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4920. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4921. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4922. return 0;
  4923. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4924. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4925. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4926. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4927. return 0;
  4928. return 1;
  4929. }
  4930. static void
  4931. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4932. {
  4933. int check_link = 1;
  4934. spin_lock(&bp->phy_lock);
  4935. if (bp->serdes_an_pending) {
  4936. bp->serdes_an_pending--;
  4937. check_link = 0;
  4938. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4939. u32 bmcr;
  4940. bp->current_interval = BNX2_TIMER_INTERVAL;
  4941. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4942. if (bmcr & BMCR_ANENABLE) {
  4943. if (bnx2_5706_serdes_has_link(bp)) {
  4944. bmcr &= ~BMCR_ANENABLE;
  4945. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4946. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4947. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4948. }
  4949. }
  4950. }
  4951. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4952. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4953. u32 phy2;
  4954. bnx2_write_phy(bp, 0x17, 0x0f01);
  4955. bnx2_read_phy(bp, 0x15, &phy2);
  4956. if (phy2 & 0x20) {
  4957. u32 bmcr;
  4958. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4959. bmcr |= BMCR_ANENABLE;
  4960. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4961. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4962. }
  4963. } else
  4964. bp->current_interval = BNX2_TIMER_INTERVAL;
  4965. if (check_link) {
  4966. u32 val;
  4967. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4968. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4969. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4970. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4971. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4972. bnx2_5706s_force_link_dn(bp, 1);
  4973. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4974. } else
  4975. bnx2_set_link(bp);
  4976. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4977. bnx2_set_link(bp);
  4978. }
  4979. spin_unlock(&bp->phy_lock);
  4980. }
  4981. static void
  4982. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4983. {
  4984. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4985. return;
  4986. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4987. bp->serdes_an_pending = 0;
  4988. return;
  4989. }
  4990. spin_lock(&bp->phy_lock);
  4991. if (bp->serdes_an_pending)
  4992. bp->serdes_an_pending--;
  4993. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4994. u32 bmcr;
  4995. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4996. if (bmcr & BMCR_ANENABLE) {
  4997. bnx2_enable_forced_2g5(bp);
  4998. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4999. } else {
  5000. bnx2_disable_forced_2g5(bp);
  5001. bp->serdes_an_pending = 2;
  5002. bp->current_interval = BNX2_TIMER_INTERVAL;
  5003. }
  5004. } else
  5005. bp->current_interval = BNX2_TIMER_INTERVAL;
  5006. spin_unlock(&bp->phy_lock);
  5007. }
  5008. static void
  5009. bnx2_timer(unsigned long data)
  5010. {
  5011. struct bnx2 *bp = (struct bnx2 *) data;
  5012. if (!netif_running(bp->dev))
  5013. return;
  5014. if (atomic_read(&bp->intr_sem) != 0)
  5015. goto bnx2_restart_timer;
  5016. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5017. BNX2_FLAG_USING_MSI)
  5018. bnx2_chk_missed_msi(bp);
  5019. bnx2_send_heart_beat(bp);
  5020. bp->stats_blk->stat_FwRxDrop =
  5021. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5022. /* workaround occasional corrupted counters */
  5023. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5024. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5025. BNX2_HC_COMMAND_STATS_NOW);
  5026. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5027. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5028. bnx2_5706_serdes_timer(bp);
  5029. else
  5030. bnx2_5708_serdes_timer(bp);
  5031. }
  5032. bnx2_restart_timer:
  5033. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5034. }
  5035. static int
  5036. bnx2_request_irq(struct bnx2 *bp)
  5037. {
  5038. unsigned long flags;
  5039. struct bnx2_irq *irq;
  5040. int rc = 0, i;
  5041. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5042. flags = 0;
  5043. else
  5044. flags = IRQF_SHARED;
  5045. for (i = 0; i < bp->irq_nvecs; i++) {
  5046. irq = &bp->irq_tbl[i];
  5047. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5048. &bp->bnx2_napi[i]);
  5049. if (rc)
  5050. break;
  5051. irq->requested = 1;
  5052. }
  5053. return rc;
  5054. }
  5055. static void
  5056. __bnx2_free_irq(struct bnx2 *bp)
  5057. {
  5058. struct bnx2_irq *irq;
  5059. int i;
  5060. for (i = 0; i < bp->irq_nvecs; i++) {
  5061. irq = &bp->irq_tbl[i];
  5062. if (irq->requested)
  5063. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5064. irq->requested = 0;
  5065. }
  5066. }
  5067. static void
  5068. bnx2_free_irq(struct bnx2 *bp)
  5069. {
  5070. __bnx2_free_irq(bp);
  5071. if (bp->flags & BNX2_FLAG_USING_MSI)
  5072. pci_disable_msi(bp->pdev);
  5073. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5074. pci_disable_msix(bp->pdev);
  5075. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5076. }
  5077. static void
  5078. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5079. {
  5080. int i, total_vecs, rc;
  5081. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5082. struct net_device *dev = bp->dev;
  5083. const int len = sizeof(bp->irq_tbl[0].name);
  5084. bnx2_setup_msix_tbl(bp);
  5085. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5086. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5087. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5088. /* Need to flush the previous three writes to ensure MSI-X
  5089. * is setup properly */
  5090. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5091. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5092. msix_ent[i].entry = i;
  5093. msix_ent[i].vector = 0;
  5094. }
  5095. total_vecs = msix_vecs;
  5096. #ifdef BCM_CNIC
  5097. total_vecs++;
  5098. #endif
  5099. rc = -ENOSPC;
  5100. while (total_vecs >= BNX2_MIN_MSIX_VEC) {
  5101. rc = pci_enable_msix(bp->pdev, msix_ent, total_vecs);
  5102. if (rc <= 0)
  5103. break;
  5104. if (rc > 0)
  5105. total_vecs = rc;
  5106. }
  5107. if (rc != 0)
  5108. return;
  5109. msix_vecs = total_vecs;
  5110. #ifdef BCM_CNIC
  5111. msix_vecs--;
  5112. #endif
  5113. bp->irq_nvecs = msix_vecs;
  5114. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5115. for (i = 0; i < total_vecs; i++) {
  5116. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5117. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5118. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5119. }
  5120. }
  5121. static int
  5122. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5123. {
  5124. int cpus = netif_get_num_default_rss_queues();
  5125. int msix_vecs;
  5126. if (!bp->num_req_rx_rings)
  5127. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5128. else if (!bp->num_req_tx_rings)
  5129. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5130. else
  5131. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5132. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5133. bp->irq_tbl[0].handler = bnx2_interrupt;
  5134. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5135. bp->irq_nvecs = 1;
  5136. bp->irq_tbl[0].vector = bp->pdev->irq;
  5137. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5138. bnx2_enable_msix(bp, msix_vecs);
  5139. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5140. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5141. if (pci_enable_msi(bp->pdev) == 0) {
  5142. bp->flags |= BNX2_FLAG_USING_MSI;
  5143. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5144. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5145. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5146. } else
  5147. bp->irq_tbl[0].handler = bnx2_msi;
  5148. bp->irq_tbl[0].vector = bp->pdev->irq;
  5149. }
  5150. }
  5151. if (!bp->num_req_tx_rings)
  5152. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5153. else
  5154. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5155. if (!bp->num_req_rx_rings)
  5156. bp->num_rx_rings = bp->irq_nvecs;
  5157. else
  5158. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5159. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5160. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5161. }
  5162. /* Called with rtnl_lock */
  5163. static int
  5164. bnx2_open(struct net_device *dev)
  5165. {
  5166. struct bnx2 *bp = netdev_priv(dev);
  5167. int rc;
  5168. rc = bnx2_request_firmware(bp);
  5169. if (rc < 0)
  5170. goto out;
  5171. netif_carrier_off(dev);
  5172. bnx2_set_power_state(bp, PCI_D0);
  5173. bnx2_disable_int(bp);
  5174. rc = bnx2_setup_int_mode(bp, disable_msi);
  5175. if (rc)
  5176. goto open_err;
  5177. bnx2_init_napi(bp);
  5178. bnx2_napi_enable(bp);
  5179. rc = bnx2_alloc_mem(bp);
  5180. if (rc)
  5181. goto open_err;
  5182. rc = bnx2_request_irq(bp);
  5183. if (rc)
  5184. goto open_err;
  5185. rc = bnx2_init_nic(bp, 1);
  5186. if (rc)
  5187. goto open_err;
  5188. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5189. atomic_set(&bp->intr_sem, 0);
  5190. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5191. bnx2_enable_int(bp);
  5192. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5193. /* Test MSI to make sure it is working
  5194. * If MSI test fails, go back to INTx mode
  5195. */
  5196. if (bnx2_test_intr(bp) != 0) {
  5197. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5198. bnx2_disable_int(bp);
  5199. bnx2_free_irq(bp);
  5200. bnx2_setup_int_mode(bp, 1);
  5201. rc = bnx2_init_nic(bp, 0);
  5202. if (!rc)
  5203. rc = bnx2_request_irq(bp);
  5204. if (rc) {
  5205. del_timer_sync(&bp->timer);
  5206. goto open_err;
  5207. }
  5208. bnx2_enable_int(bp);
  5209. }
  5210. }
  5211. if (bp->flags & BNX2_FLAG_USING_MSI)
  5212. netdev_info(dev, "using MSI\n");
  5213. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5214. netdev_info(dev, "using MSIX\n");
  5215. netif_tx_start_all_queues(dev);
  5216. out:
  5217. return rc;
  5218. open_err:
  5219. bnx2_napi_disable(bp);
  5220. bnx2_free_skbs(bp);
  5221. bnx2_free_irq(bp);
  5222. bnx2_free_mem(bp);
  5223. bnx2_del_napi(bp);
  5224. bnx2_release_firmware(bp);
  5225. goto out;
  5226. }
  5227. static void
  5228. bnx2_reset_task(struct work_struct *work)
  5229. {
  5230. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5231. int rc;
  5232. u16 pcicmd;
  5233. rtnl_lock();
  5234. if (!netif_running(bp->dev)) {
  5235. rtnl_unlock();
  5236. return;
  5237. }
  5238. bnx2_netif_stop(bp, true);
  5239. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5240. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5241. /* in case PCI block has reset */
  5242. pci_restore_state(bp->pdev);
  5243. pci_save_state(bp->pdev);
  5244. }
  5245. rc = bnx2_init_nic(bp, 1);
  5246. if (rc) {
  5247. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5248. bnx2_napi_enable(bp);
  5249. dev_close(bp->dev);
  5250. rtnl_unlock();
  5251. return;
  5252. }
  5253. atomic_set(&bp->intr_sem, 1);
  5254. bnx2_netif_start(bp, true);
  5255. rtnl_unlock();
  5256. }
  5257. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5258. static void
  5259. bnx2_dump_ftq(struct bnx2 *bp)
  5260. {
  5261. int i;
  5262. u32 reg, bdidx, cid, valid;
  5263. struct net_device *dev = bp->dev;
  5264. static const struct ftq_reg {
  5265. char *name;
  5266. u32 off;
  5267. } ftq_arr[] = {
  5268. BNX2_FTQ_ENTRY(RV2P_P),
  5269. BNX2_FTQ_ENTRY(RV2P_T),
  5270. BNX2_FTQ_ENTRY(RV2P_M),
  5271. BNX2_FTQ_ENTRY(TBDR_),
  5272. BNX2_FTQ_ENTRY(TDMA_),
  5273. BNX2_FTQ_ENTRY(TXP_),
  5274. BNX2_FTQ_ENTRY(TXP_),
  5275. BNX2_FTQ_ENTRY(TPAT_),
  5276. BNX2_FTQ_ENTRY(RXP_C),
  5277. BNX2_FTQ_ENTRY(RXP_),
  5278. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5279. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5280. BNX2_FTQ_ENTRY(COM_COMQ_),
  5281. BNX2_FTQ_ENTRY(CP_CPQ_),
  5282. };
  5283. netdev_err(dev, "<--- start FTQ dump --->\n");
  5284. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5285. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5286. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5287. netdev_err(dev, "CPU states:\n");
  5288. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5289. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5290. reg, bnx2_reg_rd_ind(bp, reg),
  5291. bnx2_reg_rd_ind(bp, reg + 4),
  5292. bnx2_reg_rd_ind(bp, reg + 8),
  5293. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5294. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5295. bnx2_reg_rd_ind(bp, reg + 0x20));
  5296. netdev_err(dev, "<--- end FTQ dump --->\n");
  5297. netdev_err(dev, "<--- start TBDC dump --->\n");
  5298. netdev_err(dev, "TBDC free cnt: %ld\n",
  5299. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5300. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5301. for (i = 0; i < 0x20; i++) {
  5302. int j = 0;
  5303. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5304. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5305. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5306. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5307. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5308. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5309. j++;
  5310. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5311. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5312. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5313. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5314. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5315. bdidx >> 24, (valid >> 8) & 0x0ff);
  5316. }
  5317. netdev_err(dev, "<--- end TBDC dump --->\n");
  5318. }
  5319. static void
  5320. bnx2_dump_state(struct bnx2 *bp)
  5321. {
  5322. struct net_device *dev = bp->dev;
  5323. u32 val1, val2;
  5324. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5325. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5326. atomic_read(&bp->intr_sem), val1);
  5327. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5328. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5329. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5330. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5331. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5332. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5333. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5334. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5335. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5336. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5337. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5338. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5339. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5340. }
  5341. static void
  5342. bnx2_tx_timeout(struct net_device *dev)
  5343. {
  5344. struct bnx2 *bp = netdev_priv(dev);
  5345. bnx2_dump_ftq(bp);
  5346. bnx2_dump_state(bp);
  5347. bnx2_dump_mcp_state(bp);
  5348. /* This allows the netif to be shutdown gracefully before resetting */
  5349. schedule_work(&bp->reset_task);
  5350. }
  5351. /* Called with netif_tx_lock.
  5352. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5353. * netif_wake_queue().
  5354. */
  5355. static netdev_tx_t
  5356. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5357. {
  5358. struct bnx2 *bp = netdev_priv(dev);
  5359. dma_addr_t mapping;
  5360. struct bnx2_tx_bd *txbd;
  5361. struct bnx2_sw_tx_bd *tx_buf;
  5362. u32 len, vlan_tag_flags, last_frag, mss;
  5363. u16 prod, ring_prod;
  5364. int i;
  5365. struct bnx2_napi *bnapi;
  5366. struct bnx2_tx_ring_info *txr;
  5367. struct netdev_queue *txq;
  5368. /* Determine which tx ring we will be placed on */
  5369. i = skb_get_queue_mapping(skb);
  5370. bnapi = &bp->bnx2_napi[i];
  5371. txr = &bnapi->tx_ring;
  5372. txq = netdev_get_tx_queue(dev, i);
  5373. if (unlikely(bnx2_tx_avail(bp, txr) <
  5374. (skb_shinfo(skb)->nr_frags + 1))) {
  5375. netif_tx_stop_queue(txq);
  5376. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5377. return NETDEV_TX_BUSY;
  5378. }
  5379. len = skb_headlen(skb);
  5380. prod = txr->tx_prod;
  5381. ring_prod = BNX2_TX_RING_IDX(prod);
  5382. vlan_tag_flags = 0;
  5383. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5384. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5385. }
  5386. if (vlan_tx_tag_present(skb)) {
  5387. vlan_tag_flags |=
  5388. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5389. }
  5390. if ((mss = skb_shinfo(skb)->gso_size)) {
  5391. u32 tcp_opt_len;
  5392. struct iphdr *iph;
  5393. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5394. tcp_opt_len = tcp_optlen(skb);
  5395. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5396. u32 tcp_off = skb_transport_offset(skb) -
  5397. sizeof(struct ipv6hdr) - ETH_HLEN;
  5398. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5399. TX_BD_FLAGS_SW_FLAGS;
  5400. if (likely(tcp_off == 0))
  5401. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5402. else {
  5403. tcp_off >>= 3;
  5404. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5405. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5406. ((tcp_off & 0x10) <<
  5407. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5408. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5409. }
  5410. } else {
  5411. iph = ip_hdr(skb);
  5412. if (tcp_opt_len || (iph->ihl > 5)) {
  5413. vlan_tag_flags |= ((iph->ihl - 5) +
  5414. (tcp_opt_len >> 2)) << 8;
  5415. }
  5416. }
  5417. } else
  5418. mss = 0;
  5419. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5420. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5421. dev_kfree_skb(skb);
  5422. return NETDEV_TX_OK;
  5423. }
  5424. tx_buf = &txr->tx_buf_ring[ring_prod];
  5425. tx_buf->skb = skb;
  5426. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5427. txbd = &txr->tx_desc_ring[ring_prod];
  5428. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5429. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5430. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5431. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5432. last_frag = skb_shinfo(skb)->nr_frags;
  5433. tx_buf->nr_frags = last_frag;
  5434. tx_buf->is_gso = skb_is_gso(skb);
  5435. for (i = 0; i < last_frag; i++) {
  5436. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5437. prod = BNX2_NEXT_TX_BD(prod);
  5438. ring_prod = BNX2_TX_RING_IDX(prod);
  5439. txbd = &txr->tx_desc_ring[ring_prod];
  5440. len = skb_frag_size(frag);
  5441. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5442. DMA_TO_DEVICE);
  5443. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5444. goto dma_error;
  5445. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5446. mapping);
  5447. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5448. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5449. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5450. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5451. }
  5452. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5453. /* Sync BD data before updating TX mailbox */
  5454. wmb();
  5455. netdev_tx_sent_queue(txq, skb->len);
  5456. prod = BNX2_NEXT_TX_BD(prod);
  5457. txr->tx_prod_bseq += skb->len;
  5458. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5459. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5460. mmiowb();
  5461. txr->tx_prod = prod;
  5462. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5463. netif_tx_stop_queue(txq);
  5464. /* netif_tx_stop_queue() must be done before checking
  5465. * tx index in bnx2_tx_avail() below, because in
  5466. * bnx2_tx_int(), we update tx index before checking for
  5467. * netif_tx_queue_stopped().
  5468. */
  5469. smp_mb();
  5470. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5471. netif_tx_wake_queue(txq);
  5472. }
  5473. return NETDEV_TX_OK;
  5474. dma_error:
  5475. /* save value of frag that failed */
  5476. last_frag = i;
  5477. /* start back at beginning and unmap skb */
  5478. prod = txr->tx_prod;
  5479. ring_prod = BNX2_TX_RING_IDX(prod);
  5480. tx_buf = &txr->tx_buf_ring[ring_prod];
  5481. tx_buf->skb = NULL;
  5482. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5483. skb_headlen(skb), PCI_DMA_TODEVICE);
  5484. /* unmap remaining mapped pages */
  5485. for (i = 0; i < last_frag; i++) {
  5486. prod = BNX2_NEXT_TX_BD(prod);
  5487. ring_prod = BNX2_TX_RING_IDX(prod);
  5488. tx_buf = &txr->tx_buf_ring[ring_prod];
  5489. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5490. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5491. PCI_DMA_TODEVICE);
  5492. }
  5493. dev_kfree_skb(skb);
  5494. return NETDEV_TX_OK;
  5495. }
  5496. /* Called with rtnl_lock */
  5497. static int
  5498. bnx2_close(struct net_device *dev)
  5499. {
  5500. struct bnx2 *bp = netdev_priv(dev);
  5501. bnx2_disable_int_sync(bp);
  5502. bnx2_napi_disable(bp);
  5503. netif_tx_disable(dev);
  5504. del_timer_sync(&bp->timer);
  5505. bnx2_shutdown_chip(bp);
  5506. bnx2_free_irq(bp);
  5507. bnx2_free_skbs(bp);
  5508. bnx2_free_mem(bp);
  5509. bnx2_del_napi(bp);
  5510. bp->link_up = 0;
  5511. netif_carrier_off(bp->dev);
  5512. bnx2_set_power_state(bp, PCI_D3hot);
  5513. return 0;
  5514. }
  5515. static void
  5516. bnx2_save_stats(struct bnx2 *bp)
  5517. {
  5518. u32 *hw_stats = (u32 *) bp->stats_blk;
  5519. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5520. int i;
  5521. /* The 1st 10 counters are 64-bit counters */
  5522. for (i = 0; i < 20; i += 2) {
  5523. u32 hi;
  5524. u64 lo;
  5525. hi = temp_stats[i] + hw_stats[i];
  5526. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5527. if (lo > 0xffffffff)
  5528. hi++;
  5529. temp_stats[i] = hi;
  5530. temp_stats[i + 1] = lo & 0xffffffff;
  5531. }
  5532. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5533. temp_stats[i] += hw_stats[i];
  5534. }
  5535. #define GET_64BIT_NET_STATS64(ctr) \
  5536. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5537. #define GET_64BIT_NET_STATS(ctr) \
  5538. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5539. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5540. #define GET_32BIT_NET_STATS(ctr) \
  5541. (unsigned long) (bp->stats_blk->ctr + \
  5542. bp->temp_stats_blk->ctr)
  5543. static struct rtnl_link_stats64 *
  5544. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5545. {
  5546. struct bnx2 *bp = netdev_priv(dev);
  5547. if (bp->stats_blk == NULL)
  5548. return net_stats;
  5549. net_stats->rx_packets =
  5550. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5551. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5552. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5553. net_stats->tx_packets =
  5554. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5555. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5556. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5557. net_stats->rx_bytes =
  5558. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5559. net_stats->tx_bytes =
  5560. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5561. net_stats->multicast =
  5562. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5563. net_stats->collisions =
  5564. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5565. net_stats->rx_length_errors =
  5566. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5567. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5568. net_stats->rx_over_errors =
  5569. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5570. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5571. net_stats->rx_frame_errors =
  5572. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5573. net_stats->rx_crc_errors =
  5574. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5575. net_stats->rx_errors = net_stats->rx_length_errors +
  5576. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5577. net_stats->rx_crc_errors;
  5578. net_stats->tx_aborted_errors =
  5579. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5580. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5581. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5582. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5583. net_stats->tx_carrier_errors = 0;
  5584. else {
  5585. net_stats->tx_carrier_errors =
  5586. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5587. }
  5588. net_stats->tx_errors =
  5589. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5590. net_stats->tx_aborted_errors +
  5591. net_stats->tx_carrier_errors;
  5592. net_stats->rx_missed_errors =
  5593. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5594. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5595. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5596. return net_stats;
  5597. }
  5598. /* All ethtool functions called with rtnl_lock */
  5599. static int
  5600. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5601. {
  5602. struct bnx2 *bp = netdev_priv(dev);
  5603. int support_serdes = 0, support_copper = 0;
  5604. cmd->supported = SUPPORTED_Autoneg;
  5605. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5606. support_serdes = 1;
  5607. support_copper = 1;
  5608. } else if (bp->phy_port == PORT_FIBRE)
  5609. support_serdes = 1;
  5610. else
  5611. support_copper = 1;
  5612. if (support_serdes) {
  5613. cmd->supported |= SUPPORTED_1000baseT_Full |
  5614. SUPPORTED_FIBRE;
  5615. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5616. cmd->supported |= SUPPORTED_2500baseX_Full;
  5617. }
  5618. if (support_copper) {
  5619. cmd->supported |= SUPPORTED_10baseT_Half |
  5620. SUPPORTED_10baseT_Full |
  5621. SUPPORTED_100baseT_Half |
  5622. SUPPORTED_100baseT_Full |
  5623. SUPPORTED_1000baseT_Full |
  5624. SUPPORTED_TP;
  5625. }
  5626. spin_lock_bh(&bp->phy_lock);
  5627. cmd->port = bp->phy_port;
  5628. cmd->advertising = bp->advertising;
  5629. if (bp->autoneg & AUTONEG_SPEED) {
  5630. cmd->autoneg = AUTONEG_ENABLE;
  5631. } else {
  5632. cmd->autoneg = AUTONEG_DISABLE;
  5633. }
  5634. if (netif_carrier_ok(dev)) {
  5635. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5636. cmd->duplex = bp->duplex;
  5637. }
  5638. else {
  5639. ethtool_cmd_speed_set(cmd, -1);
  5640. cmd->duplex = -1;
  5641. }
  5642. spin_unlock_bh(&bp->phy_lock);
  5643. cmd->transceiver = XCVR_INTERNAL;
  5644. cmd->phy_address = bp->phy_addr;
  5645. return 0;
  5646. }
  5647. static int
  5648. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5649. {
  5650. struct bnx2 *bp = netdev_priv(dev);
  5651. u8 autoneg = bp->autoneg;
  5652. u8 req_duplex = bp->req_duplex;
  5653. u16 req_line_speed = bp->req_line_speed;
  5654. u32 advertising = bp->advertising;
  5655. int err = -EINVAL;
  5656. spin_lock_bh(&bp->phy_lock);
  5657. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5658. goto err_out_unlock;
  5659. if (cmd->port != bp->phy_port &&
  5660. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5661. goto err_out_unlock;
  5662. /* If device is down, we can store the settings only if the user
  5663. * is setting the currently active port.
  5664. */
  5665. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5666. goto err_out_unlock;
  5667. if (cmd->autoneg == AUTONEG_ENABLE) {
  5668. autoneg |= AUTONEG_SPEED;
  5669. advertising = cmd->advertising;
  5670. if (cmd->port == PORT_TP) {
  5671. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5672. if (!advertising)
  5673. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5674. } else {
  5675. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5676. if (!advertising)
  5677. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5678. }
  5679. advertising |= ADVERTISED_Autoneg;
  5680. }
  5681. else {
  5682. u32 speed = ethtool_cmd_speed(cmd);
  5683. if (cmd->port == PORT_FIBRE) {
  5684. if ((speed != SPEED_1000 &&
  5685. speed != SPEED_2500) ||
  5686. (cmd->duplex != DUPLEX_FULL))
  5687. goto err_out_unlock;
  5688. if (speed == SPEED_2500 &&
  5689. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5690. goto err_out_unlock;
  5691. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5692. goto err_out_unlock;
  5693. autoneg &= ~AUTONEG_SPEED;
  5694. req_line_speed = speed;
  5695. req_duplex = cmd->duplex;
  5696. advertising = 0;
  5697. }
  5698. bp->autoneg = autoneg;
  5699. bp->advertising = advertising;
  5700. bp->req_line_speed = req_line_speed;
  5701. bp->req_duplex = req_duplex;
  5702. err = 0;
  5703. /* If device is down, the new settings will be picked up when it is
  5704. * brought up.
  5705. */
  5706. if (netif_running(dev))
  5707. err = bnx2_setup_phy(bp, cmd->port);
  5708. err_out_unlock:
  5709. spin_unlock_bh(&bp->phy_lock);
  5710. return err;
  5711. }
  5712. static void
  5713. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5714. {
  5715. struct bnx2 *bp = netdev_priv(dev);
  5716. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5717. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5718. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5719. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5720. }
  5721. #define BNX2_REGDUMP_LEN (32 * 1024)
  5722. static int
  5723. bnx2_get_regs_len(struct net_device *dev)
  5724. {
  5725. return BNX2_REGDUMP_LEN;
  5726. }
  5727. static void
  5728. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5729. {
  5730. u32 *p = _p, i, offset;
  5731. u8 *orig_p = _p;
  5732. struct bnx2 *bp = netdev_priv(dev);
  5733. static const u32 reg_boundaries[] = {
  5734. 0x0000, 0x0098, 0x0400, 0x045c,
  5735. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5736. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5737. 0x1040, 0x1048, 0x1080, 0x10a4,
  5738. 0x1400, 0x1490, 0x1498, 0x14f0,
  5739. 0x1500, 0x155c, 0x1580, 0x15dc,
  5740. 0x1600, 0x1658, 0x1680, 0x16d8,
  5741. 0x1800, 0x1820, 0x1840, 0x1854,
  5742. 0x1880, 0x1894, 0x1900, 0x1984,
  5743. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5744. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5745. 0x2000, 0x2030, 0x23c0, 0x2400,
  5746. 0x2800, 0x2820, 0x2830, 0x2850,
  5747. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5748. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5749. 0x4080, 0x4090, 0x43c0, 0x4458,
  5750. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5751. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5752. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5753. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5754. 0x6800, 0x6848, 0x684c, 0x6860,
  5755. 0x6888, 0x6910, 0x8000
  5756. };
  5757. regs->version = 0;
  5758. memset(p, 0, BNX2_REGDUMP_LEN);
  5759. if (!netif_running(bp->dev))
  5760. return;
  5761. i = 0;
  5762. offset = reg_boundaries[0];
  5763. p += offset;
  5764. while (offset < BNX2_REGDUMP_LEN) {
  5765. *p++ = BNX2_RD(bp, offset);
  5766. offset += 4;
  5767. if (offset == reg_boundaries[i + 1]) {
  5768. offset = reg_boundaries[i + 2];
  5769. p = (u32 *) (orig_p + offset);
  5770. i += 2;
  5771. }
  5772. }
  5773. }
  5774. static void
  5775. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5776. {
  5777. struct bnx2 *bp = netdev_priv(dev);
  5778. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5779. wol->supported = 0;
  5780. wol->wolopts = 0;
  5781. }
  5782. else {
  5783. wol->supported = WAKE_MAGIC;
  5784. if (bp->wol)
  5785. wol->wolopts = WAKE_MAGIC;
  5786. else
  5787. wol->wolopts = 0;
  5788. }
  5789. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5790. }
  5791. static int
  5792. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5793. {
  5794. struct bnx2 *bp = netdev_priv(dev);
  5795. if (wol->wolopts & ~WAKE_MAGIC)
  5796. return -EINVAL;
  5797. if (wol->wolopts & WAKE_MAGIC) {
  5798. if (bp->flags & BNX2_FLAG_NO_WOL)
  5799. return -EINVAL;
  5800. bp->wol = 1;
  5801. }
  5802. else {
  5803. bp->wol = 0;
  5804. }
  5805. return 0;
  5806. }
  5807. static int
  5808. bnx2_nway_reset(struct net_device *dev)
  5809. {
  5810. struct bnx2 *bp = netdev_priv(dev);
  5811. u32 bmcr;
  5812. if (!netif_running(dev))
  5813. return -EAGAIN;
  5814. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5815. return -EINVAL;
  5816. }
  5817. spin_lock_bh(&bp->phy_lock);
  5818. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5819. int rc;
  5820. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5821. spin_unlock_bh(&bp->phy_lock);
  5822. return rc;
  5823. }
  5824. /* Force a link down visible on the other side */
  5825. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5826. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5827. spin_unlock_bh(&bp->phy_lock);
  5828. msleep(20);
  5829. spin_lock_bh(&bp->phy_lock);
  5830. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5831. bp->serdes_an_pending = 1;
  5832. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5833. }
  5834. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5835. bmcr &= ~BMCR_LOOPBACK;
  5836. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5837. spin_unlock_bh(&bp->phy_lock);
  5838. return 0;
  5839. }
  5840. static u32
  5841. bnx2_get_link(struct net_device *dev)
  5842. {
  5843. struct bnx2 *bp = netdev_priv(dev);
  5844. return bp->link_up;
  5845. }
  5846. static int
  5847. bnx2_get_eeprom_len(struct net_device *dev)
  5848. {
  5849. struct bnx2 *bp = netdev_priv(dev);
  5850. if (bp->flash_info == NULL)
  5851. return 0;
  5852. return (int) bp->flash_size;
  5853. }
  5854. static int
  5855. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5856. u8 *eebuf)
  5857. {
  5858. struct bnx2 *bp = netdev_priv(dev);
  5859. int rc;
  5860. if (!netif_running(dev))
  5861. return -EAGAIN;
  5862. /* parameters already validated in ethtool_get_eeprom */
  5863. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5864. return rc;
  5865. }
  5866. static int
  5867. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5868. u8 *eebuf)
  5869. {
  5870. struct bnx2 *bp = netdev_priv(dev);
  5871. int rc;
  5872. if (!netif_running(dev))
  5873. return -EAGAIN;
  5874. /* parameters already validated in ethtool_set_eeprom */
  5875. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5876. return rc;
  5877. }
  5878. static int
  5879. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5880. {
  5881. struct bnx2 *bp = netdev_priv(dev);
  5882. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5883. coal->rx_coalesce_usecs = bp->rx_ticks;
  5884. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5885. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5886. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5887. coal->tx_coalesce_usecs = bp->tx_ticks;
  5888. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5889. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5890. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5891. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5892. return 0;
  5893. }
  5894. static int
  5895. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5896. {
  5897. struct bnx2 *bp = netdev_priv(dev);
  5898. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5899. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5900. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5901. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5902. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5903. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5904. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5905. if (bp->rx_quick_cons_trip_int > 0xff)
  5906. bp->rx_quick_cons_trip_int = 0xff;
  5907. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5908. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5909. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5910. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5911. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5912. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5913. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5914. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5915. 0xff;
  5916. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5917. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5918. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5919. bp->stats_ticks = USEC_PER_SEC;
  5920. }
  5921. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5922. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5923. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5924. if (netif_running(bp->dev)) {
  5925. bnx2_netif_stop(bp, true);
  5926. bnx2_init_nic(bp, 0);
  5927. bnx2_netif_start(bp, true);
  5928. }
  5929. return 0;
  5930. }
  5931. static void
  5932. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5933. {
  5934. struct bnx2 *bp = netdev_priv(dev);
  5935. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5936. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5937. ering->rx_pending = bp->rx_ring_size;
  5938. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5939. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5940. ering->tx_pending = bp->tx_ring_size;
  5941. }
  5942. static int
  5943. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5944. {
  5945. if (netif_running(bp->dev)) {
  5946. /* Reset will erase chipset stats; save them */
  5947. bnx2_save_stats(bp);
  5948. bnx2_netif_stop(bp, true);
  5949. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5950. if (reset_irq) {
  5951. bnx2_free_irq(bp);
  5952. bnx2_del_napi(bp);
  5953. } else {
  5954. __bnx2_free_irq(bp);
  5955. }
  5956. bnx2_free_skbs(bp);
  5957. bnx2_free_mem(bp);
  5958. }
  5959. bnx2_set_rx_ring_size(bp, rx);
  5960. bp->tx_ring_size = tx;
  5961. if (netif_running(bp->dev)) {
  5962. int rc = 0;
  5963. if (reset_irq) {
  5964. rc = bnx2_setup_int_mode(bp, disable_msi);
  5965. bnx2_init_napi(bp);
  5966. }
  5967. if (!rc)
  5968. rc = bnx2_alloc_mem(bp);
  5969. if (!rc)
  5970. rc = bnx2_request_irq(bp);
  5971. if (!rc)
  5972. rc = bnx2_init_nic(bp, 0);
  5973. if (rc) {
  5974. bnx2_napi_enable(bp);
  5975. dev_close(bp->dev);
  5976. return rc;
  5977. }
  5978. #ifdef BCM_CNIC
  5979. mutex_lock(&bp->cnic_lock);
  5980. /* Let cnic know about the new status block. */
  5981. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  5982. bnx2_setup_cnic_irq_info(bp);
  5983. mutex_unlock(&bp->cnic_lock);
  5984. #endif
  5985. bnx2_netif_start(bp, true);
  5986. }
  5987. return 0;
  5988. }
  5989. static int
  5990. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5991. {
  5992. struct bnx2 *bp = netdev_priv(dev);
  5993. int rc;
  5994. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  5995. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  5996. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5997. return -EINVAL;
  5998. }
  5999. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6000. false);
  6001. return rc;
  6002. }
  6003. static void
  6004. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6005. {
  6006. struct bnx2 *bp = netdev_priv(dev);
  6007. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6008. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6009. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6010. }
  6011. static int
  6012. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6013. {
  6014. struct bnx2 *bp = netdev_priv(dev);
  6015. bp->req_flow_ctrl = 0;
  6016. if (epause->rx_pause)
  6017. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6018. if (epause->tx_pause)
  6019. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6020. if (epause->autoneg) {
  6021. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6022. }
  6023. else {
  6024. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6025. }
  6026. if (netif_running(dev)) {
  6027. spin_lock_bh(&bp->phy_lock);
  6028. bnx2_setup_phy(bp, bp->phy_port);
  6029. spin_unlock_bh(&bp->phy_lock);
  6030. }
  6031. return 0;
  6032. }
  6033. static struct {
  6034. char string[ETH_GSTRING_LEN];
  6035. } bnx2_stats_str_arr[] = {
  6036. { "rx_bytes" },
  6037. { "rx_error_bytes" },
  6038. { "tx_bytes" },
  6039. { "tx_error_bytes" },
  6040. { "rx_ucast_packets" },
  6041. { "rx_mcast_packets" },
  6042. { "rx_bcast_packets" },
  6043. { "tx_ucast_packets" },
  6044. { "tx_mcast_packets" },
  6045. { "tx_bcast_packets" },
  6046. { "tx_mac_errors" },
  6047. { "tx_carrier_errors" },
  6048. { "rx_crc_errors" },
  6049. { "rx_align_errors" },
  6050. { "tx_single_collisions" },
  6051. { "tx_multi_collisions" },
  6052. { "tx_deferred" },
  6053. { "tx_excess_collisions" },
  6054. { "tx_late_collisions" },
  6055. { "tx_total_collisions" },
  6056. { "rx_fragments" },
  6057. { "rx_jabbers" },
  6058. { "rx_undersize_packets" },
  6059. { "rx_oversize_packets" },
  6060. { "rx_64_byte_packets" },
  6061. { "rx_65_to_127_byte_packets" },
  6062. { "rx_128_to_255_byte_packets" },
  6063. { "rx_256_to_511_byte_packets" },
  6064. { "rx_512_to_1023_byte_packets" },
  6065. { "rx_1024_to_1522_byte_packets" },
  6066. { "rx_1523_to_9022_byte_packets" },
  6067. { "tx_64_byte_packets" },
  6068. { "tx_65_to_127_byte_packets" },
  6069. { "tx_128_to_255_byte_packets" },
  6070. { "tx_256_to_511_byte_packets" },
  6071. { "tx_512_to_1023_byte_packets" },
  6072. { "tx_1024_to_1522_byte_packets" },
  6073. { "tx_1523_to_9022_byte_packets" },
  6074. { "rx_xon_frames" },
  6075. { "rx_xoff_frames" },
  6076. { "tx_xon_frames" },
  6077. { "tx_xoff_frames" },
  6078. { "rx_mac_ctrl_frames" },
  6079. { "rx_filtered_packets" },
  6080. { "rx_ftq_discards" },
  6081. { "rx_discards" },
  6082. { "rx_fw_discards" },
  6083. };
  6084. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6085. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6086. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6087. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6088. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6089. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6090. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6091. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6092. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6093. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6094. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6095. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6096. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6097. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6098. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6099. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6100. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6101. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6102. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6103. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6104. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6105. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6106. STATS_OFFSET32(stat_EtherStatsCollisions),
  6107. STATS_OFFSET32(stat_EtherStatsFragments),
  6108. STATS_OFFSET32(stat_EtherStatsJabbers),
  6109. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6110. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6111. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6112. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6113. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6114. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6115. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6116. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6117. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6118. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6119. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6120. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6121. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6122. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6123. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6124. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6125. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6126. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6127. STATS_OFFSET32(stat_OutXonSent),
  6128. STATS_OFFSET32(stat_OutXoffSent),
  6129. STATS_OFFSET32(stat_MacControlFramesReceived),
  6130. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6131. STATS_OFFSET32(stat_IfInFTQDiscards),
  6132. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6133. STATS_OFFSET32(stat_FwRxDrop),
  6134. };
  6135. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6136. * skipped because of errata.
  6137. */
  6138. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6139. 8,0,8,8,8,8,8,8,8,8,
  6140. 4,0,4,4,4,4,4,4,4,4,
  6141. 4,4,4,4,4,4,4,4,4,4,
  6142. 4,4,4,4,4,4,4,4,4,4,
  6143. 4,4,4,4,4,4,4,
  6144. };
  6145. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6146. 8,0,8,8,8,8,8,8,8,8,
  6147. 4,4,4,4,4,4,4,4,4,4,
  6148. 4,4,4,4,4,4,4,4,4,4,
  6149. 4,4,4,4,4,4,4,4,4,4,
  6150. 4,4,4,4,4,4,4,
  6151. };
  6152. #define BNX2_NUM_TESTS 6
  6153. static struct {
  6154. char string[ETH_GSTRING_LEN];
  6155. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6156. { "register_test (offline)" },
  6157. { "memory_test (offline)" },
  6158. { "loopback_test (offline)" },
  6159. { "nvram_test (online)" },
  6160. { "interrupt_test (online)" },
  6161. { "link_test (online)" },
  6162. };
  6163. static int
  6164. bnx2_get_sset_count(struct net_device *dev, int sset)
  6165. {
  6166. switch (sset) {
  6167. case ETH_SS_TEST:
  6168. return BNX2_NUM_TESTS;
  6169. case ETH_SS_STATS:
  6170. return BNX2_NUM_STATS;
  6171. default:
  6172. return -EOPNOTSUPP;
  6173. }
  6174. }
  6175. static void
  6176. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6177. {
  6178. struct bnx2 *bp = netdev_priv(dev);
  6179. bnx2_set_power_state(bp, PCI_D0);
  6180. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6181. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6182. int i;
  6183. bnx2_netif_stop(bp, true);
  6184. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6185. bnx2_free_skbs(bp);
  6186. if (bnx2_test_registers(bp) != 0) {
  6187. buf[0] = 1;
  6188. etest->flags |= ETH_TEST_FL_FAILED;
  6189. }
  6190. if (bnx2_test_memory(bp) != 0) {
  6191. buf[1] = 1;
  6192. etest->flags |= ETH_TEST_FL_FAILED;
  6193. }
  6194. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6195. etest->flags |= ETH_TEST_FL_FAILED;
  6196. if (!netif_running(bp->dev))
  6197. bnx2_shutdown_chip(bp);
  6198. else {
  6199. bnx2_init_nic(bp, 1);
  6200. bnx2_netif_start(bp, true);
  6201. }
  6202. /* wait for link up */
  6203. for (i = 0; i < 7; i++) {
  6204. if (bp->link_up)
  6205. break;
  6206. msleep_interruptible(1000);
  6207. }
  6208. }
  6209. if (bnx2_test_nvram(bp) != 0) {
  6210. buf[3] = 1;
  6211. etest->flags |= ETH_TEST_FL_FAILED;
  6212. }
  6213. if (bnx2_test_intr(bp) != 0) {
  6214. buf[4] = 1;
  6215. etest->flags |= ETH_TEST_FL_FAILED;
  6216. }
  6217. if (bnx2_test_link(bp) != 0) {
  6218. buf[5] = 1;
  6219. etest->flags |= ETH_TEST_FL_FAILED;
  6220. }
  6221. if (!netif_running(bp->dev))
  6222. bnx2_set_power_state(bp, PCI_D3hot);
  6223. }
  6224. static void
  6225. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6226. {
  6227. switch (stringset) {
  6228. case ETH_SS_STATS:
  6229. memcpy(buf, bnx2_stats_str_arr,
  6230. sizeof(bnx2_stats_str_arr));
  6231. break;
  6232. case ETH_SS_TEST:
  6233. memcpy(buf, bnx2_tests_str_arr,
  6234. sizeof(bnx2_tests_str_arr));
  6235. break;
  6236. }
  6237. }
  6238. static void
  6239. bnx2_get_ethtool_stats(struct net_device *dev,
  6240. struct ethtool_stats *stats, u64 *buf)
  6241. {
  6242. struct bnx2 *bp = netdev_priv(dev);
  6243. int i;
  6244. u32 *hw_stats = (u32 *) bp->stats_blk;
  6245. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6246. u8 *stats_len_arr = NULL;
  6247. if (hw_stats == NULL) {
  6248. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6249. return;
  6250. }
  6251. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6252. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6253. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6254. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6255. stats_len_arr = bnx2_5706_stats_len_arr;
  6256. else
  6257. stats_len_arr = bnx2_5708_stats_len_arr;
  6258. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6259. unsigned long offset;
  6260. if (stats_len_arr[i] == 0) {
  6261. /* skip this counter */
  6262. buf[i] = 0;
  6263. continue;
  6264. }
  6265. offset = bnx2_stats_offset_arr[i];
  6266. if (stats_len_arr[i] == 4) {
  6267. /* 4-byte counter */
  6268. buf[i] = (u64) *(hw_stats + offset) +
  6269. *(temp_stats + offset);
  6270. continue;
  6271. }
  6272. /* 8-byte counter */
  6273. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6274. *(hw_stats + offset + 1) +
  6275. (((u64) *(temp_stats + offset)) << 32) +
  6276. *(temp_stats + offset + 1);
  6277. }
  6278. }
  6279. static int
  6280. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6281. {
  6282. struct bnx2 *bp = netdev_priv(dev);
  6283. switch (state) {
  6284. case ETHTOOL_ID_ACTIVE:
  6285. bnx2_set_power_state(bp, PCI_D0);
  6286. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6287. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6288. return 1; /* cycle on/off once per second */
  6289. case ETHTOOL_ID_ON:
  6290. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6291. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6292. BNX2_EMAC_LED_100MB_OVERRIDE |
  6293. BNX2_EMAC_LED_10MB_OVERRIDE |
  6294. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6295. BNX2_EMAC_LED_TRAFFIC);
  6296. break;
  6297. case ETHTOOL_ID_OFF:
  6298. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6299. break;
  6300. case ETHTOOL_ID_INACTIVE:
  6301. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6302. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6303. if (!netif_running(dev))
  6304. bnx2_set_power_state(bp, PCI_D3hot);
  6305. break;
  6306. }
  6307. return 0;
  6308. }
  6309. static netdev_features_t
  6310. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6311. {
  6312. struct bnx2 *bp = netdev_priv(dev);
  6313. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6314. features |= NETIF_F_HW_VLAN_RX;
  6315. return features;
  6316. }
  6317. static int
  6318. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6319. {
  6320. struct bnx2 *bp = netdev_priv(dev);
  6321. /* TSO with VLAN tag won't work with current firmware */
  6322. if (features & NETIF_F_HW_VLAN_TX)
  6323. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6324. else
  6325. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6326. if ((!!(features & NETIF_F_HW_VLAN_RX) !=
  6327. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6328. netif_running(dev)) {
  6329. bnx2_netif_stop(bp, false);
  6330. dev->features = features;
  6331. bnx2_set_rx_mode(dev);
  6332. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6333. bnx2_netif_start(bp, false);
  6334. return 1;
  6335. }
  6336. return 0;
  6337. }
  6338. static void bnx2_get_channels(struct net_device *dev,
  6339. struct ethtool_channels *channels)
  6340. {
  6341. struct bnx2 *bp = netdev_priv(dev);
  6342. u32 max_rx_rings = 1;
  6343. u32 max_tx_rings = 1;
  6344. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6345. max_rx_rings = RX_MAX_RINGS;
  6346. max_tx_rings = TX_MAX_RINGS;
  6347. }
  6348. channels->max_rx = max_rx_rings;
  6349. channels->max_tx = max_tx_rings;
  6350. channels->max_other = 0;
  6351. channels->max_combined = 0;
  6352. channels->rx_count = bp->num_rx_rings;
  6353. channels->tx_count = bp->num_tx_rings;
  6354. channels->other_count = 0;
  6355. channels->combined_count = 0;
  6356. }
  6357. static int bnx2_set_channels(struct net_device *dev,
  6358. struct ethtool_channels *channels)
  6359. {
  6360. struct bnx2 *bp = netdev_priv(dev);
  6361. u32 max_rx_rings = 1;
  6362. u32 max_tx_rings = 1;
  6363. int rc = 0;
  6364. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6365. max_rx_rings = RX_MAX_RINGS;
  6366. max_tx_rings = TX_MAX_RINGS;
  6367. }
  6368. if (channels->rx_count > max_rx_rings ||
  6369. channels->tx_count > max_tx_rings)
  6370. return -EINVAL;
  6371. bp->num_req_rx_rings = channels->rx_count;
  6372. bp->num_req_tx_rings = channels->tx_count;
  6373. if (netif_running(dev))
  6374. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6375. bp->tx_ring_size, true);
  6376. return rc;
  6377. }
  6378. static const struct ethtool_ops bnx2_ethtool_ops = {
  6379. .get_settings = bnx2_get_settings,
  6380. .set_settings = bnx2_set_settings,
  6381. .get_drvinfo = bnx2_get_drvinfo,
  6382. .get_regs_len = bnx2_get_regs_len,
  6383. .get_regs = bnx2_get_regs,
  6384. .get_wol = bnx2_get_wol,
  6385. .set_wol = bnx2_set_wol,
  6386. .nway_reset = bnx2_nway_reset,
  6387. .get_link = bnx2_get_link,
  6388. .get_eeprom_len = bnx2_get_eeprom_len,
  6389. .get_eeprom = bnx2_get_eeprom,
  6390. .set_eeprom = bnx2_set_eeprom,
  6391. .get_coalesce = bnx2_get_coalesce,
  6392. .set_coalesce = bnx2_set_coalesce,
  6393. .get_ringparam = bnx2_get_ringparam,
  6394. .set_ringparam = bnx2_set_ringparam,
  6395. .get_pauseparam = bnx2_get_pauseparam,
  6396. .set_pauseparam = bnx2_set_pauseparam,
  6397. .self_test = bnx2_self_test,
  6398. .get_strings = bnx2_get_strings,
  6399. .set_phys_id = bnx2_set_phys_id,
  6400. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6401. .get_sset_count = bnx2_get_sset_count,
  6402. .get_channels = bnx2_get_channels,
  6403. .set_channels = bnx2_set_channels,
  6404. };
  6405. /* Called with rtnl_lock */
  6406. static int
  6407. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6408. {
  6409. struct mii_ioctl_data *data = if_mii(ifr);
  6410. struct bnx2 *bp = netdev_priv(dev);
  6411. int err;
  6412. switch(cmd) {
  6413. case SIOCGMIIPHY:
  6414. data->phy_id = bp->phy_addr;
  6415. /* fallthru */
  6416. case SIOCGMIIREG: {
  6417. u32 mii_regval;
  6418. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6419. return -EOPNOTSUPP;
  6420. if (!netif_running(dev))
  6421. return -EAGAIN;
  6422. spin_lock_bh(&bp->phy_lock);
  6423. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6424. spin_unlock_bh(&bp->phy_lock);
  6425. data->val_out = mii_regval;
  6426. return err;
  6427. }
  6428. case SIOCSMIIREG:
  6429. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6430. return -EOPNOTSUPP;
  6431. if (!netif_running(dev))
  6432. return -EAGAIN;
  6433. spin_lock_bh(&bp->phy_lock);
  6434. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6435. spin_unlock_bh(&bp->phy_lock);
  6436. return err;
  6437. default:
  6438. /* do nothing */
  6439. break;
  6440. }
  6441. return -EOPNOTSUPP;
  6442. }
  6443. /* Called with rtnl_lock */
  6444. static int
  6445. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6446. {
  6447. struct sockaddr *addr = p;
  6448. struct bnx2 *bp = netdev_priv(dev);
  6449. if (!is_valid_ether_addr(addr->sa_data))
  6450. return -EADDRNOTAVAIL;
  6451. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6452. if (netif_running(dev))
  6453. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6454. return 0;
  6455. }
  6456. /* Called with rtnl_lock */
  6457. static int
  6458. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6459. {
  6460. struct bnx2 *bp = netdev_priv(dev);
  6461. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6462. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6463. return -EINVAL;
  6464. dev->mtu = new_mtu;
  6465. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6466. false);
  6467. }
  6468. #ifdef CONFIG_NET_POLL_CONTROLLER
  6469. static void
  6470. poll_bnx2(struct net_device *dev)
  6471. {
  6472. struct bnx2 *bp = netdev_priv(dev);
  6473. int i;
  6474. for (i = 0; i < bp->irq_nvecs; i++) {
  6475. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6476. disable_irq(irq->vector);
  6477. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6478. enable_irq(irq->vector);
  6479. }
  6480. }
  6481. #endif
  6482. static void
  6483. bnx2_get_5709_media(struct bnx2 *bp)
  6484. {
  6485. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6486. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6487. u32 strap;
  6488. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6489. return;
  6490. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6491. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6492. return;
  6493. }
  6494. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6495. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6496. else
  6497. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6498. if (bp->func == 0) {
  6499. switch (strap) {
  6500. case 0x4:
  6501. case 0x5:
  6502. case 0x6:
  6503. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6504. return;
  6505. }
  6506. } else {
  6507. switch (strap) {
  6508. case 0x1:
  6509. case 0x2:
  6510. case 0x4:
  6511. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6512. return;
  6513. }
  6514. }
  6515. }
  6516. static void
  6517. bnx2_get_pci_speed(struct bnx2 *bp)
  6518. {
  6519. u32 reg;
  6520. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6521. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6522. u32 clkreg;
  6523. bp->flags |= BNX2_FLAG_PCIX;
  6524. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6525. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6526. switch (clkreg) {
  6527. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6528. bp->bus_speed_mhz = 133;
  6529. break;
  6530. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6531. bp->bus_speed_mhz = 100;
  6532. break;
  6533. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6534. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6535. bp->bus_speed_mhz = 66;
  6536. break;
  6537. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6538. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6539. bp->bus_speed_mhz = 50;
  6540. break;
  6541. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6542. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6543. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6544. bp->bus_speed_mhz = 33;
  6545. break;
  6546. }
  6547. }
  6548. else {
  6549. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6550. bp->bus_speed_mhz = 66;
  6551. else
  6552. bp->bus_speed_mhz = 33;
  6553. }
  6554. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6555. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6556. }
  6557. static void
  6558. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6559. {
  6560. int rc, i, j;
  6561. u8 *data;
  6562. unsigned int block_end, rosize, len;
  6563. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6564. #define BNX2_VPD_LEN 128
  6565. #define BNX2_MAX_VER_SLEN 30
  6566. data = kmalloc(256, GFP_KERNEL);
  6567. if (!data)
  6568. return;
  6569. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6570. BNX2_VPD_LEN);
  6571. if (rc)
  6572. goto vpd_done;
  6573. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6574. data[i] = data[i + BNX2_VPD_LEN + 3];
  6575. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6576. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6577. data[i + 3] = data[i + BNX2_VPD_LEN];
  6578. }
  6579. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6580. if (i < 0)
  6581. goto vpd_done;
  6582. rosize = pci_vpd_lrdt_size(&data[i]);
  6583. i += PCI_VPD_LRDT_TAG_SIZE;
  6584. block_end = i + rosize;
  6585. if (block_end > BNX2_VPD_LEN)
  6586. goto vpd_done;
  6587. j = pci_vpd_find_info_keyword(data, i, rosize,
  6588. PCI_VPD_RO_KEYWORD_MFR_ID);
  6589. if (j < 0)
  6590. goto vpd_done;
  6591. len = pci_vpd_info_field_size(&data[j]);
  6592. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6593. if (j + len > block_end || len != 4 ||
  6594. memcmp(&data[j], "1028", 4))
  6595. goto vpd_done;
  6596. j = pci_vpd_find_info_keyword(data, i, rosize,
  6597. PCI_VPD_RO_KEYWORD_VENDOR0);
  6598. if (j < 0)
  6599. goto vpd_done;
  6600. len = pci_vpd_info_field_size(&data[j]);
  6601. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6602. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6603. goto vpd_done;
  6604. memcpy(bp->fw_version, &data[j], len);
  6605. bp->fw_version[len] = ' ';
  6606. vpd_done:
  6607. kfree(data);
  6608. }
  6609. static int
  6610. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6611. {
  6612. struct bnx2 *bp;
  6613. int rc, i, j;
  6614. u32 reg;
  6615. u64 dma_mask, persist_dma_mask;
  6616. int err;
  6617. SET_NETDEV_DEV(dev, &pdev->dev);
  6618. bp = netdev_priv(dev);
  6619. bp->flags = 0;
  6620. bp->phy_flags = 0;
  6621. bp->temp_stats_blk =
  6622. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6623. if (bp->temp_stats_blk == NULL) {
  6624. rc = -ENOMEM;
  6625. goto err_out;
  6626. }
  6627. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6628. rc = pci_enable_device(pdev);
  6629. if (rc) {
  6630. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6631. goto err_out;
  6632. }
  6633. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6634. dev_err(&pdev->dev,
  6635. "Cannot find PCI device base address, aborting\n");
  6636. rc = -ENODEV;
  6637. goto err_out_disable;
  6638. }
  6639. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6640. if (rc) {
  6641. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6642. goto err_out_disable;
  6643. }
  6644. pci_set_master(pdev);
  6645. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6646. if (bp->pm_cap == 0) {
  6647. dev_err(&pdev->dev,
  6648. "Cannot find power management capability, aborting\n");
  6649. rc = -EIO;
  6650. goto err_out_release;
  6651. }
  6652. bp->dev = dev;
  6653. bp->pdev = pdev;
  6654. spin_lock_init(&bp->phy_lock);
  6655. spin_lock_init(&bp->indirect_lock);
  6656. #ifdef BCM_CNIC
  6657. mutex_init(&bp->cnic_lock);
  6658. #endif
  6659. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6660. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6661. TX_MAX_TSS_RINGS + 1));
  6662. if (!bp->regview) {
  6663. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6664. rc = -ENOMEM;
  6665. goto err_out_release;
  6666. }
  6667. bnx2_set_power_state(bp, PCI_D0);
  6668. /* Configure byte swap and enable write to the reg_window registers.
  6669. * Rely on CPU to do target byte swapping on big endian systems
  6670. * The chip's target access swapping will not swap all accesses
  6671. */
  6672. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6673. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6674. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6675. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6676. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6677. if (!pci_is_pcie(pdev)) {
  6678. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6679. rc = -EIO;
  6680. goto err_out_unmap;
  6681. }
  6682. bp->flags |= BNX2_FLAG_PCIE;
  6683. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6684. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6685. /* AER (Advanced Error Reporting) hooks */
  6686. err = pci_enable_pcie_error_reporting(pdev);
  6687. if (!err)
  6688. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6689. } else {
  6690. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6691. if (bp->pcix_cap == 0) {
  6692. dev_err(&pdev->dev,
  6693. "Cannot find PCIX capability, aborting\n");
  6694. rc = -EIO;
  6695. goto err_out_unmap;
  6696. }
  6697. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6698. }
  6699. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6700. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6701. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6702. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6703. }
  6704. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6705. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6706. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6707. bp->flags |= BNX2_FLAG_MSI_CAP;
  6708. }
  6709. /* 5708 cannot support DMA addresses > 40-bit. */
  6710. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6711. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6712. else
  6713. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6714. /* Configure DMA attributes. */
  6715. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6716. dev->features |= NETIF_F_HIGHDMA;
  6717. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6718. if (rc) {
  6719. dev_err(&pdev->dev,
  6720. "pci_set_consistent_dma_mask failed, aborting\n");
  6721. goto err_out_unmap;
  6722. }
  6723. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6724. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6725. goto err_out_unmap;
  6726. }
  6727. if (!(bp->flags & BNX2_FLAG_PCIE))
  6728. bnx2_get_pci_speed(bp);
  6729. /* 5706A0 may falsely detect SERR and PERR. */
  6730. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6731. reg = BNX2_RD(bp, PCI_COMMAND);
  6732. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6733. BNX2_WR(bp, PCI_COMMAND, reg);
  6734. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6735. !(bp->flags & BNX2_FLAG_PCIX)) {
  6736. dev_err(&pdev->dev,
  6737. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6738. goto err_out_unmap;
  6739. }
  6740. bnx2_init_nvram(bp);
  6741. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6742. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6743. bp->func = 1;
  6744. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6745. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6746. u32 off = bp->func << 2;
  6747. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6748. } else
  6749. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6750. /* Get the permanent MAC address. First we need to make sure the
  6751. * firmware is actually running.
  6752. */
  6753. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6754. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6755. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6756. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6757. rc = -ENODEV;
  6758. goto err_out_unmap;
  6759. }
  6760. bnx2_read_vpd_fw_ver(bp);
  6761. j = strlen(bp->fw_version);
  6762. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6763. for (i = 0; i < 3 && j < 24; i++) {
  6764. u8 num, k, skip0;
  6765. if (i == 0) {
  6766. bp->fw_version[j++] = 'b';
  6767. bp->fw_version[j++] = 'c';
  6768. bp->fw_version[j++] = ' ';
  6769. }
  6770. num = (u8) (reg >> (24 - (i * 8)));
  6771. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6772. if (num >= k || !skip0 || k == 1) {
  6773. bp->fw_version[j++] = (num / k) + '0';
  6774. skip0 = 0;
  6775. }
  6776. }
  6777. if (i != 2)
  6778. bp->fw_version[j++] = '.';
  6779. }
  6780. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6781. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6782. bp->wol = 1;
  6783. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6784. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6785. for (i = 0; i < 30; i++) {
  6786. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6787. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6788. break;
  6789. msleep(10);
  6790. }
  6791. }
  6792. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6793. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6794. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6795. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6796. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6797. if (j < 32)
  6798. bp->fw_version[j++] = ' ';
  6799. for (i = 0; i < 3 && j < 28; i++) {
  6800. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6801. reg = be32_to_cpu(reg);
  6802. memcpy(&bp->fw_version[j], &reg, 4);
  6803. j += 4;
  6804. }
  6805. }
  6806. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6807. bp->mac_addr[0] = (u8) (reg >> 8);
  6808. bp->mac_addr[1] = (u8) reg;
  6809. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6810. bp->mac_addr[2] = (u8) (reg >> 24);
  6811. bp->mac_addr[3] = (u8) (reg >> 16);
  6812. bp->mac_addr[4] = (u8) (reg >> 8);
  6813. bp->mac_addr[5] = (u8) reg;
  6814. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6815. bnx2_set_rx_ring_size(bp, 255);
  6816. bp->tx_quick_cons_trip_int = 2;
  6817. bp->tx_quick_cons_trip = 20;
  6818. bp->tx_ticks_int = 18;
  6819. bp->tx_ticks = 80;
  6820. bp->rx_quick_cons_trip_int = 2;
  6821. bp->rx_quick_cons_trip = 12;
  6822. bp->rx_ticks_int = 18;
  6823. bp->rx_ticks = 18;
  6824. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6825. bp->current_interval = BNX2_TIMER_INTERVAL;
  6826. bp->phy_addr = 1;
  6827. /* Disable WOL support if we are running on a SERDES chip. */
  6828. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6829. bnx2_get_5709_media(bp);
  6830. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6831. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6832. bp->phy_port = PORT_TP;
  6833. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6834. bp->phy_port = PORT_FIBRE;
  6835. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6836. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6837. bp->flags |= BNX2_FLAG_NO_WOL;
  6838. bp->wol = 0;
  6839. }
  6840. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6841. /* Don't do parallel detect on this board because of
  6842. * some board problems. The link will not go down
  6843. * if we do parallel detect.
  6844. */
  6845. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6846. pdev->subsystem_device == 0x310c)
  6847. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6848. } else {
  6849. bp->phy_addr = 2;
  6850. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6851. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6852. }
  6853. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6854. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6855. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6856. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6857. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6858. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6859. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6860. bnx2_init_fw_cap(bp);
  6861. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6862. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6863. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6864. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6865. bp->flags |= BNX2_FLAG_NO_WOL;
  6866. bp->wol = 0;
  6867. }
  6868. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6869. bp->tx_quick_cons_trip_int =
  6870. bp->tx_quick_cons_trip;
  6871. bp->tx_ticks_int = bp->tx_ticks;
  6872. bp->rx_quick_cons_trip_int =
  6873. bp->rx_quick_cons_trip;
  6874. bp->rx_ticks_int = bp->rx_ticks;
  6875. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6876. bp->com_ticks_int = bp->com_ticks;
  6877. bp->cmd_ticks_int = bp->cmd_ticks;
  6878. }
  6879. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6880. *
  6881. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6882. * with byte enables disabled on the unused 32-bit word. This is legal
  6883. * but causes problems on the AMD 8132 which will eventually stop
  6884. * responding after a while.
  6885. *
  6886. * AMD believes this incompatibility is unique to the 5706, and
  6887. * prefers to locally disable MSI rather than globally disabling it.
  6888. */
  6889. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6890. struct pci_dev *amd_8132 = NULL;
  6891. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6892. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6893. amd_8132))) {
  6894. if (amd_8132->revision >= 0x10 &&
  6895. amd_8132->revision <= 0x13) {
  6896. disable_msi = 1;
  6897. pci_dev_put(amd_8132);
  6898. break;
  6899. }
  6900. }
  6901. }
  6902. bnx2_set_default_link(bp);
  6903. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6904. init_timer(&bp->timer);
  6905. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6906. bp->timer.data = (unsigned long) bp;
  6907. bp->timer.function = bnx2_timer;
  6908. #ifdef BCM_CNIC
  6909. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6910. bp->cnic_eth_dev.max_iscsi_conn =
  6911. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6912. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6913. bp->cnic_probe = bnx2_cnic_probe;
  6914. #endif
  6915. pci_save_state(pdev);
  6916. return 0;
  6917. err_out_unmap:
  6918. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6919. pci_disable_pcie_error_reporting(pdev);
  6920. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6921. }
  6922. pci_iounmap(pdev, bp->regview);
  6923. bp->regview = NULL;
  6924. err_out_release:
  6925. pci_release_regions(pdev);
  6926. err_out_disable:
  6927. pci_disable_device(pdev);
  6928. pci_set_drvdata(pdev, NULL);
  6929. err_out:
  6930. return rc;
  6931. }
  6932. static char *
  6933. bnx2_bus_string(struct bnx2 *bp, char *str)
  6934. {
  6935. char *s = str;
  6936. if (bp->flags & BNX2_FLAG_PCIE) {
  6937. s += sprintf(s, "PCI Express");
  6938. } else {
  6939. s += sprintf(s, "PCI");
  6940. if (bp->flags & BNX2_FLAG_PCIX)
  6941. s += sprintf(s, "-X");
  6942. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6943. s += sprintf(s, " 32-bit");
  6944. else
  6945. s += sprintf(s, " 64-bit");
  6946. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6947. }
  6948. return str;
  6949. }
  6950. static void
  6951. bnx2_del_napi(struct bnx2 *bp)
  6952. {
  6953. int i;
  6954. for (i = 0; i < bp->irq_nvecs; i++)
  6955. netif_napi_del(&bp->bnx2_napi[i].napi);
  6956. }
  6957. static void
  6958. bnx2_init_napi(struct bnx2 *bp)
  6959. {
  6960. int i;
  6961. for (i = 0; i < bp->irq_nvecs; i++) {
  6962. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6963. int (*poll)(struct napi_struct *, int);
  6964. if (i == 0)
  6965. poll = bnx2_poll;
  6966. else
  6967. poll = bnx2_poll_msix;
  6968. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6969. bnapi->bp = bp;
  6970. }
  6971. }
  6972. static const struct net_device_ops bnx2_netdev_ops = {
  6973. .ndo_open = bnx2_open,
  6974. .ndo_start_xmit = bnx2_start_xmit,
  6975. .ndo_stop = bnx2_close,
  6976. .ndo_get_stats64 = bnx2_get_stats64,
  6977. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6978. .ndo_do_ioctl = bnx2_ioctl,
  6979. .ndo_validate_addr = eth_validate_addr,
  6980. .ndo_set_mac_address = bnx2_change_mac_addr,
  6981. .ndo_change_mtu = bnx2_change_mtu,
  6982. .ndo_fix_features = bnx2_fix_features,
  6983. .ndo_set_features = bnx2_set_features,
  6984. .ndo_tx_timeout = bnx2_tx_timeout,
  6985. #ifdef CONFIG_NET_POLL_CONTROLLER
  6986. .ndo_poll_controller = poll_bnx2,
  6987. #endif
  6988. };
  6989. static int
  6990. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6991. {
  6992. static int version_printed = 0;
  6993. struct net_device *dev;
  6994. struct bnx2 *bp;
  6995. int rc;
  6996. char str[40];
  6997. if (version_printed++ == 0)
  6998. pr_info("%s", version);
  6999. /* dev zeroed in init_etherdev */
  7000. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7001. if (!dev)
  7002. return -ENOMEM;
  7003. rc = bnx2_init_board(pdev, dev);
  7004. if (rc < 0)
  7005. goto err_free;
  7006. dev->netdev_ops = &bnx2_netdev_ops;
  7007. dev->watchdog_timeo = TX_TIMEOUT;
  7008. dev->ethtool_ops = &bnx2_ethtool_ops;
  7009. bp = netdev_priv(dev);
  7010. pci_set_drvdata(pdev, dev);
  7011. memcpy(dev->dev_addr, bp->mac_addr, 6);
  7012. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7013. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7014. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7015. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7016. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7017. dev->vlan_features = dev->hw_features;
  7018. dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  7019. dev->features |= dev->hw_features;
  7020. dev->priv_flags |= IFF_UNICAST_FLT;
  7021. if ((rc = register_netdev(dev))) {
  7022. dev_err(&pdev->dev, "Cannot register net device\n");
  7023. goto error;
  7024. }
  7025. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7026. "node addr %pM\n", board_info[ent->driver_data].name,
  7027. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7028. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7029. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7030. pdev->irq, dev->dev_addr);
  7031. return 0;
  7032. error:
  7033. pci_iounmap(pdev, bp->regview);
  7034. pci_release_regions(pdev);
  7035. pci_disable_device(pdev);
  7036. pci_set_drvdata(pdev, NULL);
  7037. err_free:
  7038. free_netdev(dev);
  7039. return rc;
  7040. }
  7041. static void
  7042. bnx2_remove_one(struct pci_dev *pdev)
  7043. {
  7044. struct net_device *dev = pci_get_drvdata(pdev);
  7045. struct bnx2 *bp = netdev_priv(dev);
  7046. unregister_netdev(dev);
  7047. del_timer_sync(&bp->timer);
  7048. cancel_work_sync(&bp->reset_task);
  7049. pci_iounmap(bp->pdev, bp->regview);
  7050. kfree(bp->temp_stats_blk);
  7051. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7052. pci_disable_pcie_error_reporting(pdev);
  7053. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7054. }
  7055. bnx2_release_firmware(bp);
  7056. free_netdev(dev);
  7057. pci_release_regions(pdev);
  7058. pci_disable_device(pdev);
  7059. pci_set_drvdata(pdev, NULL);
  7060. }
  7061. static int
  7062. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  7063. {
  7064. struct net_device *dev = pci_get_drvdata(pdev);
  7065. struct bnx2 *bp = netdev_priv(dev);
  7066. /* PCI register 4 needs to be saved whether netif_running() or not.
  7067. * MSI address and data need to be saved if using MSI and
  7068. * netif_running().
  7069. */
  7070. pci_save_state(pdev);
  7071. if (!netif_running(dev))
  7072. return 0;
  7073. cancel_work_sync(&bp->reset_task);
  7074. bnx2_netif_stop(bp, true);
  7075. netif_device_detach(dev);
  7076. del_timer_sync(&bp->timer);
  7077. bnx2_shutdown_chip(bp);
  7078. bnx2_free_skbs(bp);
  7079. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  7080. return 0;
  7081. }
  7082. static int
  7083. bnx2_resume(struct pci_dev *pdev)
  7084. {
  7085. struct net_device *dev = pci_get_drvdata(pdev);
  7086. struct bnx2 *bp = netdev_priv(dev);
  7087. pci_restore_state(pdev);
  7088. if (!netif_running(dev))
  7089. return 0;
  7090. bnx2_set_power_state(bp, PCI_D0);
  7091. netif_device_attach(dev);
  7092. bnx2_init_nic(bp, 1);
  7093. bnx2_netif_start(bp, true);
  7094. return 0;
  7095. }
  7096. /**
  7097. * bnx2_io_error_detected - called when PCI error is detected
  7098. * @pdev: Pointer to PCI device
  7099. * @state: The current pci connection state
  7100. *
  7101. * This function is called after a PCI bus error affecting
  7102. * this device has been detected.
  7103. */
  7104. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7105. pci_channel_state_t state)
  7106. {
  7107. struct net_device *dev = pci_get_drvdata(pdev);
  7108. struct bnx2 *bp = netdev_priv(dev);
  7109. rtnl_lock();
  7110. netif_device_detach(dev);
  7111. if (state == pci_channel_io_perm_failure) {
  7112. rtnl_unlock();
  7113. return PCI_ERS_RESULT_DISCONNECT;
  7114. }
  7115. if (netif_running(dev)) {
  7116. bnx2_netif_stop(bp, true);
  7117. del_timer_sync(&bp->timer);
  7118. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7119. }
  7120. pci_disable_device(pdev);
  7121. rtnl_unlock();
  7122. /* Request a slot slot reset. */
  7123. return PCI_ERS_RESULT_NEED_RESET;
  7124. }
  7125. /**
  7126. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7127. * @pdev: Pointer to PCI device
  7128. *
  7129. * Restart the card from scratch, as if from a cold-boot.
  7130. */
  7131. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7132. {
  7133. struct net_device *dev = pci_get_drvdata(pdev);
  7134. struct bnx2 *bp = netdev_priv(dev);
  7135. pci_ers_result_t result;
  7136. int err;
  7137. rtnl_lock();
  7138. if (pci_enable_device(pdev)) {
  7139. dev_err(&pdev->dev,
  7140. "Cannot re-enable PCI device after reset\n");
  7141. result = PCI_ERS_RESULT_DISCONNECT;
  7142. } else {
  7143. pci_set_master(pdev);
  7144. pci_restore_state(pdev);
  7145. pci_save_state(pdev);
  7146. if (netif_running(dev)) {
  7147. bnx2_set_power_state(bp, PCI_D0);
  7148. bnx2_init_nic(bp, 1);
  7149. }
  7150. result = PCI_ERS_RESULT_RECOVERED;
  7151. }
  7152. rtnl_unlock();
  7153. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7154. return result;
  7155. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7156. if (err) {
  7157. dev_err(&pdev->dev,
  7158. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7159. err); /* non-fatal, continue */
  7160. }
  7161. return result;
  7162. }
  7163. /**
  7164. * bnx2_io_resume - called when traffic can start flowing again.
  7165. * @pdev: Pointer to PCI device
  7166. *
  7167. * This callback is called when the error recovery driver tells us that
  7168. * its OK to resume normal operation.
  7169. */
  7170. static void bnx2_io_resume(struct pci_dev *pdev)
  7171. {
  7172. struct net_device *dev = pci_get_drvdata(pdev);
  7173. struct bnx2 *bp = netdev_priv(dev);
  7174. rtnl_lock();
  7175. if (netif_running(dev))
  7176. bnx2_netif_start(bp, true);
  7177. netif_device_attach(dev);
  7178. rtnl_unlock();
  7179. }
  7180. static const struct pci_error_handlers bnx2_err_handler = {
  7181. .error_detected = bnx2_io_error_detected,
  7182. .slot_reset = bnx2_io_slot_reset,
  7183. .resume = bnx2_io_resume,
  7184. };
  7185. static struct pci_driver bnx2_pci_driver = {
  7186. .name = DRV_MODULE_NAME,
  7187. .id_table = bnx2_pci_tbl,
  7188. .probe = bnx2_init_one,
  7189. .remove = bnx2_remove_one,
  7190. .suspend = bnx2_suspend,
  7191. .resume = bnx2_resume,
  7192. .err_handler = &bnx2_err_handler,
  7193. };
  7194. static int __init bnx2_init(void)
  7195. {
  7196. return pci_register_driver(&bnx2_pci_driver);
  7197. }
  7198. static void __exit bnx2_cleanup(void)
  7199. {
  7200. pci_unregister_driver(&bnx2_pci_driver);
  7201. }
  7202. module_init(bnx2_init);
  7203. module_exit(bnx2_cleanup);