sja1000.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691
  1. /*
  2. * sja1000.c - Philips SJA1000 network device driver
  3. *
  4. * Copyright (c) 2003 Matthias Brukner, Trajet Gmbh, Rebenring 33,
  5. * 38106 Braunschweig, GERMANY
  6. *
  7. * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
  8. * All rights reserved.
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. Neither the name of Volkswagen nor the names of its contributors
  19. * may be used to endorse or promote products derived from this software
  20. * without specific prior written permission.
  21. *
  22. * Alternatively, provided that this notice is retained in full, this
  23. * software may be distributed under the terms of the GNU General
  24. * Public License ("GPL") version 2, in which case the provisions of the
  25. * GPL apply INSTEAD OF those given above.
  26. *
  27. * The provided data structures and external interfaces from this code
  28. * are not restricted to be used by modules with a GPL compatible license.
  29. *
  30. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  31. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  32. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  33. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  34. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  35. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  36. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  37. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  38. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  39. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  40. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  41. * DAMAGE.
  42. *
  43. */
  44. #include <linux/module.h>
  45. #include <linux/init.h>
  46. #include <linux/kernel.h>
  47. #include <linux/sched.h>
  48. #include <linux/types.h>
  49. #include <linux/fcntl.h>
  50. #include <linux/interrupt.h>
  51. #include <linux/ptrace.h>
  52. #include <linux/string.h>
  53. #include <linux/errno.h>
  54. #include <linux/netdevice.h>
  55. #include <linux/if_arp.h>
  56. #include <linux/if_ether.h>
  57. #include <linux/skbuff.h>
  58. #include <linux/delay.h>
  59. #include <linux/can/dev.h>
  60. #include <linux/can/error.h>
  61. #include <linux/can/led.h>
  62. #include "sja1000.h"
  63. #define DRV_NAME "sja1000"
  64. MODULE_AUTHOR("Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
  65. MODULE_LICENSE("Dual BSD/GPL");
  66. MODULE_DESCRIPTION(DRV_NAME "CAN netdevice driver");
  67. static const struct can_bittiming_const sja1000_bittiming_const = {
  68. .name = DRV_NAME,
  69. .tseg1_min = 1,
  70. .tseg1_max = 16,
  71. .tseg2_min = 1,
  72. .tseg2_max = 8,
  73. .sjw_max = 4,
  74. .brp_min = 1,
  75. .brp_max = 64,
  76. .brp_inc = 1,
  77. };
  78. static void sja1000_write_cmdreg(struct sja1000_priv *priv, u8 val)
  79. {
  80. unsigned long flags;
  81. /*
  82. * The command register needs some locking and time to settle
  83. * the write_reg() operation - especially on SMP systems.
  84. */
  85. spin_lock_irqsave(&priv->cmdreg_lock, flags);
  86. priv->write_reg(priv, REG_CMR, val);
  87. priv->read_reg(priv, REG_SR);
  88. spin_unlock_irqrestore(&priv->cmdreg_lock, flags);
  89. }
  90. static int sja1000_is_absent(struct sja1000_priv *priv)
  91. {
  92. return (priv->read_reg(priv, REG_MOD) == 0xFF);
  93. }
  94. static int sja1000_probe_chip(struct net_device *dev)
  95. {
  96. struct sja1000_priv *priv = netdev_priv(dev);
  97. if (priv->reg_base && sja1000_is_absent(priv)) {
  98. printk(KERN_INFO "%s: probing @0x%lX failed\n",
  99. DRV_NAME, dev->base_addr);
  100. return 0;
  101. }
  102. return -1;
  103. }
  104. static void set_reset_mode(struct net_device *dev)
  105. {
  106. struct sja1000_priv *priv = netdev_priv(dev);
  107. unsigned char status = priv->read_reg(priv, REG_MOD);
  108. int i;
  109. /* disable interrupts */
  110. priv->write_reg(priv, REG_IER, IRQ_OFF);
  111. for (i = 0; i < 100; i++) {
  112. /* check reset bit */
  113. if (status & MOD_RM) {
  114. priv->can.state = CAN_STATE_STOPPED;
  115. return;
  116. }
  117. priv->write_reg(priv, REG_MOD, MOD_RM); /* reset chip */
  118. udelay(10);
  119. status = priv->read_reg(priv, REG_MOD);
  120. }
  121. netdev_err(dev, "setting SJA1000 into reset mode failed!\n");
  122. }
  123. static void set_normal_mode(struct net_device *dev)
  124. {
  125. struct sja1000_priv *priv = netdev_priv(dev);
  126. unsigned char status = priv->read_reg(priv, REG_MOD);
  127. int i;
  128. for (i = 0; i < 100; i++) {
  129. /* check reset bit */
  130. if ((status & MOD_RM) == 0) {
  131. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  132. /* enable interrupts */
  133. if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
  134. priv->write_reg(priv, REG_IER, IRQ_ALL);
  135. else
  136. priv->write_reg(priv, REG_IER,
  137. IRQ_ALL & ~IRQ_BEI);
  138. return;
  139. }
  140. /* set chip to normal mode */
  141. if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
  142. priv->write_reg(priv, REG_MOD, MOD_LOM);
  143. else
  144. priv->write_reg(priv, REG_MOD, 0x00);
  145. udelay(10);
  146. status = priv->read_reg(priv, REG_MOD);
  147. }
  148. netdev_err(dev, "setting SJA1000 into normal mode failed!\n");
  149. }
  150. static void sja1000_start(struct net_device *dev)
  151. {
  152. struct sja1000_priv *priv = netdev_priv(dev);
  153. /* leave reset mode */
  154. if (priv->can.state != CAN_STATE_STOPPED)
  155. set_reset_mode(dev);
  156. /* Clear error counters and error code capture */
  157. priv->write_reg(priv, REG_TXERR, 0x0);
  158. priv->write_reg(priv, REG_RXERR, 0x0);
  159. priv->read_reg(priv, REG_ECC);
  160. /* leave reset mode */
  161. set_normal_mode(dev);
  162. }
  163. static int sja1000_set_mode(struct net_device *dev, enum can_mode mode)
  164. {
  165. switch (mode) {
  166. case CAN_MODE_START:
  167. sja1000_start(dev);
  168. if (netif_queue_stopped(dev))
  169. netif_wake_queue(dev);
  170. break;
  171. default:
  172. return -EOPNOTSUPP;
  173. }
  174. return 0;
  175. }
  176. static int sja1000_set_bittiming(struct net_device *dev)
  177. {
  178. struct sja1000_priv *priv = netdev_priv(dev);
  179. struct can_bittiming *bt = &priv->can.bittiming;
  180. u8 btr0, btr1;
  181. btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
  182. btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
  183. (((bt->phase_seg2 - 1) & 0x7) << 4);
  184. if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
  185. btr1 |= 0x80;
  186. netdev_info(dev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
  187. priv->write_reg(priv, REG_BTR0, btr0);
  188. priv->write_reg(priv, REG_BTR1, btr1);
  189. return 0;
  190. }
  191. static int sja1000_get_berr_counter(const struct net_device *dev,
  192. struct can_berr_counter *bec)
  193. {
  194. struct sja1000_priv *priv = netdev_priv(dev);
  195. bec->txerr = priv->read_reg(priv, REG_TXERR);
  196. bec->rxerr = priv->read_reg(priv, REG_RXERR);
  197. return 0;
  198. }
  199. /*
  200. * initialize SJA1000 chip:
  201. * - reset chip
  202. * - set output mode
  203. * - set baudrate
  204. * - enable interrupts
  205. * - start operating mode
  206. */
  207. static void chipset_init(struct net_device *dev)
  208. {
  209. struct sja1000_priv *priv = netdev_priv(dev);
  210. /* set clock divider and output control register */
  211. priv->write_reg(priv, REG_CDR, priv->cdr | CDR_PELICAN);
  212. /* set acceptance filter (accept all) */
  213. priv->write_reg(priv, REG_ACCC0, 0x00);
  214. priv->write_reg(priv, REG_ACCC1, 0x00);
  215. priv->write_reg(priv, REG_ACCC2, 0x00);
  216. priv->write_reg(priv, REG_ACCC3, 0x00);
  217. priv->write_reg(priv, REG_ACCM0, 0xFF);
  218. priv->write_reg(priv, REG_ACCM1, 0xFF);
  219. priv->write_reg(priv, REG_ACCM2, 0xFF);
  220. priv->write_reg(priv, REG_ACCM3, 0xFF);
  221. priv->write_reg(priv, REG_OCR, priv->ocr | OCR_MODE_NORMAL);
  222. }
  223. /*
  224. * transmit a CAN message
  225. * message layout in the sk_buff should be like this:
  226. * xx xx xx xx ff ll 00 11 22 33 44 55 66 77
  227. * [ can-id ] [flags] [len] [can data (up to 8 bytes]
  228. */
  229. static netdev_tx_t sja1000_start_xmit(struct sk_buff *skb,
  230. struct net_device *dev)
  231. {
  232. struct sja1000_priv *priv = netdev_priv(dev);
  233. struct can_frame *cf = (struct can_frame *)skb->data;
  234. uint8_t fi;
  235. uint8_t dlc;
  236. canid_t id;
  237. uint8_t dreg;
  238. int i;
  239. if (can_dropped_invalid_skb(dev, skb))
  240. return NETDEV_TX_OK;
  241. netif_stop_queue(dev);
  242. fi = dlc = cf->can_dlc;
  243. id = cf->can_id;
  244. if (id & CAN_RTR_FLAG)
  245. fi |= FI_RTR;
  246. if (id & CAN_EFF_FLAG) {
  247. fi |= FI_FF;
  248. dreg = EFF_BUF;
  249. priv->write_reg(priv, REG_FI, fi);
  250. priv->write_reg(priv, REG_ID1, (id & 0x1fe00000) >> (5 + 16));
  251. priv->write_reg(priv, REG_ID2, (id & 0x001fe000) >> (5 + 8));
  252. priv->write_reg(priv, REG_ID3, (id & 0x00001fe0) >> 5);
  253. priv->write_reg(priv, REG_ID4, (id & 0x0000001f) << 3);
  254. } else {
  255. dreg = SFF_BUF;
  256. priv->write_reg(priv, REG_FI, fi);
  257. priv->write_reg(priv, REG_ID1, (id & 0x000007f8) >> 3);
  258. priv->write_reg(priv, REG_ID2, (id & 0x00000007) << 5);
  259. }
  260. for (i = 0; i < dlc; i++)
  261. priv->write_reg(priv, dreg++, cf->data[i]);
  262. can_put_echo_skb(skb, dev, 0);
  263. if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
  264. sja1000_write_cmdreg(priv, CMD_TR | CMD_AT);
  265. else
  266. sja1000_write_cmdreg(priv, CMD_TR);
  267. return NETDEV_TX_OK;
  268. }
  269. static void sja1000_rx(struct net_device *dev)
  270. {
  271. struct sja1000_priv *priv = netdev_priv(dev);
  272. struct net_device_stats *stats = &dev->stats;
  273. struct can_frame *cf;
  274. struct sk_buff *skb;
  275. uint8_t fi;
  276. uint8_t dreg;
  277. canid_t id;
  278. int i;
  279. /* create zero'ed CAN frame buffer */
  280. skb = alloc_can_skb(dev, &cf);
  281. if (skb == NULL)
  282. return;
  283. fi = priv->read_reg(priv, REG_FI);
  284. if (fi & FI_FF) {
  285. /* extended frame format (EFF) */
  286. dreg = EFF_BUF;
  287. id = (priv->read_reg(priv, REG_ID1) << (5 + 16))
  288. | (priv->read_reg(priv, REG_ID2) << (5 + 8))
  289. | (priv->read_reg(priv, REG_ID3) << 5)
  290. | (priv->read_reg(priv, REG_ID4) >> 3);
  291. id |= CAN_EFF_FLAG;
  292. } else {
  293. /* standard frame format (SFF) */
  294. dreg = SFF_BUF;
  295. id = (priv->read_reg(priv, REG_ID1) << 3)
  296. | (priv->read_reg(priv, REG_ID2) >> 5);
  297. }
  298. cf->can_dlc = get_can_dlc(fi & 0x0F);
  299. if (fi & FI_RTR) {
  300. id |= CAN_RTR_FLAG;
  301. } else {
  302. for (i = 0; i < cf->can_dlc; i++)
  303. cf->data[i] = priv->read_reg(priv, dreg++);
  304. }
  305. cf->can_id = id;
  306. /* release receive buffer */
  307. sja1000_write_cmdreg(priv, CMD_RRB);
  308. netif_rx(skb);
  309. stats->rx_packets++;
  310. stats->rx_bytes += cf->can_dlc;
  311. can_led_event(dev, CAN_LED_EVENT_RX);
  312. }
  313. static int sja1000_err(struct net_device *dev, uint8_t isrc, uint8_t status)
  314. {
  315. struct sja1000_priv *priv = netdev_priv(dev);
  316. struct net_device_stats *stats = &dev->stats;
  317. struct can_frame *cf;
  318. struct sk_buff *skb;
  319. enum can_state state = priv->can.state;
  320. uint8_t ecc, alc;
  321. skb = alloc_can_err_skb(dev, &cf);
  322. if (skb == NULL)
  323. return -ENOMEM;
  324. if (isrc & IRQ_DOI) {
  325. /* data overrun interrupt */
  326. netdev_dbg(dev, "data overrun interrupt\n");
  327. cf->can_id |= CAN_ERR_CRTL;
  328. cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
  329. stats->rx_over_errors++;
  330. stats->rx_errors++;
  331. sja1000_write_cmdreg(priv, CMD_CDO); /* clear bit */
  332. }
  333. if (isrc & IRQ_EI) {
  334. /* error warning interrupt */
  335. netdev_dbg(dev, "error warning interrupt\n");
  336. if (status & SR_BS) {
  337. state = CAN_STATE_BUS_OFF;
  338. cf->can_id |= CAN_ERR_BUSOFF;
  339. can_bus_off(dev);
  340. } else if (status & SR_ES) {
  341. state = CAN_STATE_ERROR_WARNING;
  342. } else
  343. state = CAN_STATE_ERROR_ACTIVE;
  344. }
  345. if (isrc & IRQ_BEI) {
  346. /* bus error interrupt */
  347. priv->can.can_stats.bus_error++;
  348. stats->rx_errors++;
  349. ecc = priv->read_reg(priv, REG_ECC);
  350. cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
  351. switch (ecc & ECC_MASK) {
  352. case ECC_BIT:
  353. cf->data[2] |= CAN_ERR_PROT_BIT;
  354. break;
  355. case ECC_FORM:
  356. cf->data[2] |= CAN_ERR_PROT_FORM;
  357. break;
  358. case ECC_STUFF:
  359. cf->data[2] |= CAN_ERR_PROT_STUFF;
  360. break;
  361. default:
  362. cf->data[2] |= CAN_ERR_PROT_UNSPEC;
  363. cf->data[3] = ecc & ECC_SEG;
  364. break;
  365. }
  366. /* Error occurred during transmission? */
  367. if ((ecc & ECC_DIR) == 0)
  368. cf->data[2] |= CAN_ERR_PROT_TX;
  369. }
  370. if (isrc & IRQ_EPI) {
  371. /* error passive interrupt */
  372. netdev_dbg(dev, "error passive interrupt\n");
  373. if (status & SR_ES)
  374. state = CAN_STATE_ERROR_PASSIVE;
  375. else
  376. state = CAN_STATE_ERROR_ACTIVE;
  377. }
  378. if (isrc & IRQ_ALI) {
  379. /* arbitration lost interrupt */
  380. netdev_dbg(dev, "arbitration lost interrupt\n");
  381. alc = priv->read_reg(priv, REG_ALC);
  382. priv->can.can_stats.arbitration_lost++;
  383. stats->tx_errors++;
  384. cf->can_id |= CAN_ERR_LOSTARB;
  385. cf->data[0] = alc & 0x1f;
  386. }
  387. if (state != priv->can.state && (state == CAN_STATE_ERROR_WARNING ||
  388. state == CAN_STATE_ERROR_PASSIVE)) {
  389. uint8_t rxerr = priv->read_reg(priv, REG_RXERR);
  390. uint8_t txerr = priv->read_reg(priv, REG_TXERR);
  391. cf->can_id |= CAN_ERR_CRTL;
  392. if (state == CAN_STATE_ERROR_WARNING) {
  393. priv->can.can_stats.error_warning++;
  394. cf->data[1] = (txerr > rxerr) ?
  395. CAN_ERR_CRTL_TX_WARNING :
  396. CAN_ERR_CRTL_RX_WARNING;
  397. } else {
  398. priv->can.can_stats.error_passive++;
  399. cf->data[1] = (txerr > rxerr) ?
  400. CAN_ERR_CRTL_TX_PASSIVE :
  401. CAN_ERR_CRTL_RX_PASSIVE;
  402. }
  403. cf->data[6] = txerr;
  404. cf->data[7] = rxerr;
  405. }
  406. priv->can.state = state;
  407. netif_rx(skb);
  408. stats->rx_packets++;
  409. stats->rx_bytes += cf->can_dlc;
  410. return 0;
  411. }
  412. irqreturn_t sja1000_interrupt(int irq, void *dev_id)
  413. {
  414. struct net_device *dev = (struct net_device *)dev_id;
  415. struct sja1000_priv *priv = netdev_priv(dev);
  416. struct net_device_stats *stats = &dev->stats;
  417. uint8_t isrc, status;
  418. int n = 0;
  419. /* Shared interrupts and IRQ off? */
  420. if (priv->read_reg(priv, REG_IER) == IRQ_OFF)
  421. return IRQ_NONE;
  422. if (priv->pre_irq)
  423. priv->pre_irq(priv);
  424. while ((isrc = priv->read_reg(priv, REG_IR)) && (n < SJA1000_MAX_IRQ)) {
  425. n++;
  426. status = priv->read_reg(priv, REG_SR);
  427. /* check for absent controller due to hw unplug */
  428. if (status == 0xFF && sja1000_is_absent(priv))
  429. return IRQ_NONE;
  430. if (isrc & IRQ_WUI)
  431. netdev_warn(dev, "wakeup interrupt\n");
  432. if (isrc & IRQ_TI) {
  433. /* transmission buffer released */
  434. if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT &&
  435. !(status & SR_TCS)) {
  436. stats->tx_errors++;
  437. can_free_echo_skb(dev, 0);
  438. } else {
  439. /* transmission complete */
  440. stats->tx_bytes +=
  441. priv->read_reg(priv, REG_FI) & 0xf;
  442. stats->tx_packets++;
  443. can_get_echo_skb(dev, 0);
  444. }
  445. netif_wake_queue(dev);
  446. can_led_event(dev, CAN_LED_EVENT_TX);
  447. }
  448. if (isrc & IRQ_RI) {
  449. /* receive interrupt */
  450. while (status & SR_RBS) {
  451. sja1000_rx(dev);
  452. status = priv->read_reg(priv, REG_SR);
  453. /* check for absent controller */
  454. if (status == 0xFF && sja1000_is_absent(priv))
  455. return IRQ_NONE;
  456. }
  457. }
  458. if (isrc & (IRQ_DOI | IRQ_EI | IRQ_BEI | IRQ_EPI | IRQ_ALI)) {
  459. /* error interrupt */
  460. if (sja1000_err(dev, isrc, status))
  461. break;
  462. }
  463. }
  464. if (priv->post_irq)
  465. priv->post_irq(priv);
  466. if (n >= SJA1000_MAX_IRQ)
  467. netdev_dbg(dev, "%d messages handled in ISR", n);
  468. return (n) ? IRQ_HANDLED : IRQ_NONE;
  469. }
  470. EXPORT_SYMBOL_GPL(sja1000_interrupt);
  471. static int sja1000_open(struct net_device *dev)
  472. {
  473. struct sja1000_priv *priv = netdev_priv(dev);
  474. int err;
  475. /* set chip into reset mode */
  476. set_reset_mode(dev);
  477. /* common open */
  478. err = open_candev(dev);
  479. if (err)
  480. return err;
  481. /* register interrupt handler, if not done by the device driver */
  482. if (!(priv->flags & SJA1000_CUSTOM_IRQ_HANDLER)) {
  483. err = request_irq(dev->irq, sja1000_interrupt, priv->irq_flags,
  484. dev->name, (void *)dev);
  485. if (err) {
  486. close_candev(dev);
  487. return -EAGAIN;
  488. }
  489. }
  490. /* init and start chi */
  491. sja1000_start(dev);
  492. can_led_event(dev, CAN_LED_EVENT_OPEN);
  493. netif_start_queue(dev);
  494. return 0;
  495. }
  496. static int sja1000_close(struct net_device *dev)
  497. {
  498. struct sja1000_priv *priv = netdev_priv(dev);
  499. netif_stop_queue(dev);
  500. set_reset_mode(dev);
  501. if (!(priv->flags & SJA1000_CUSTOM_IRQ_HANDLER))
  502. free_irq(dev->irq, (void *)dev);
  503. close_candev(dev);
  504. can_led_event(dev, CAN_LED_EVENT_STOP);
  505. return 0;
  506. }
  507. struct net_device *alloc_sja1000dev(int sizeof_priv)
  508. {
  509. struct net_device *dev;
  510. struct sja1000_priv *priv;
  511. dev = alloc_candev(sizeof(struct sja1000_priv) + sizeof_priv,
  512. SJA1000_ECHO_SKB_MAX);
  513. if (!dev)
  514. return NULL;
  515. priv = netdev_priv(dev);
  516. priv->dev = dev;
  517. priv->can.bittiming_const = &sja1000_bittiming_const;
  518. priv->can.do_set_bittiming = sja1000_set_bittiming;
  519. priv->can.do_set_mode = sja1000_set_mode;
  520. priv->can.do_get_berr_counter = sja1000_get_berr_counter;
  521. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  522. CAN_CTRLMODE_BERR_REPORTING | CAN_CTRLMODE_LISTENONLY |
  523. CAN_CTRLMODE_ONE_SHOT;
  524. spin_lock_init(&priv->cmdreg_lock);
  525. if (sizeof_priv)
  526. priv->priv = (void *)priv + sizeof(struct sja1000_priv);
  527. return dev;
  528. }
  529. EXPORT_SYMBOL_GPL(alloc_sja1000dev);
  530. void free_sja1000dev(struct net_device *dev)
  531. {
  532. free_candev(dev);
  533. }
  534. EXPORT_SYMBOL_GPL(free_sja1000dev);
  535. static const struct net_device_ops sja1000_netdev_ops = {
  536. .ndo_open = sja1000_open,
  537. .ndo_stop = sja1000_close,
  538. .ndo_start_xmit = sja1000_start_xmit,
  539. };
  540. int register_sja1000dev(struct net_device *dev)
  541. {
  542. int ret;
  543. if (!sja1000_probe_chip(dev))
  544. return -ENODEV;
  545. dev->flags |= IFF_ECHO; /* we support local echo */
  546. dev->netdev_ops = &sja1000_netdev_ops;
  547. set_reset_mode(dev);
  548. chipset_init(dev);
  549. ret = register_candev(dev);
  550. if (!ret)
  551. devm_can_led_init(dev);
  552. return ret;
  553. }
  554. EXPORT_SYMBOL_GPL(register_sja1000dev);
  555. void unregister_sja1000dev(struct net_device *dev)
  556. {
  557. set_reset_mode(dev);
  558. unregister_candev(dev);
  559. }
  560. EXPORT_SYMBOL_GPL(unregister_sja1000dev);
  561. static __init int sja1000_init(void)
  562. {
  563. printk(KERN_INFO "%s CAN netdevice driver\n", DRV_NAME);
  564. return 0;
  565. }
  566. module_init(sja1000_init);
  567. static __exit void sja1000_exit(void)
  568. {
  569. printk(KERN_INFO "%s: driver removed\n", DRV_NAME);
  570. }
  571. module_exit(sja1000_exit);