mcp251x.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .power_enable = mcp251x_power_enable,
  42. * .transceiver_enable = NULL,
  43. * };
  44. *
  45. * static struct spi_board_info spi_board_info[] = {
  46. * {
  47. * .modalias = "mcp2510",
  48. * // or "mcp2515" depending on your controller
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can/core.h>
  61. #include <linux/can/dev.h>
  62. #include <linux/can/led.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/slab.h>
  76. #include <linux/spi/spi.h>
  77. #include <linux/uaccess.h>
  78. /* SPI interface instruction set */
  79. #define INSTRUCTION_WRITE 0x02
  80. #define INSTRUCTION_READ 0x03
  81. #define INSTRUCTION_BIT_MODIFY 0x05
  82. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  83. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  84. #define INSTRUCTION_RESET 0xC0
  85. #define RTS_TXB0 0x01
  86. #define RTS_TXB1 0x02
  87. #define RTS_TXB2 0x04
  88. #define INSTRUCTION_RTS(n) (0x80 | ((n) & 0x07))
  89. /* MPC251x registers */
  90. #define CANSTAT 0x0e
  91. #define CANCTRL 0x0f
  92. # define CANCTRL_REQOP_MASK 0xe0
  93. # define CANCTRL_REQOP_CONF 0x80
  94. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  95. # define CANCTRL_REQOP_LOOPBACK 0x40
  96. # define CANCTRL_REQOP_SLEEP 0x20
  97. # define CANCTRL_REQOP_NORMAL 0x00
  98. # define CANCTRL_OSM 0x08
  99. # define CANCTRL_ABAT 0x10
  100. #define TEC 0x1c
  101. #define REC 0x1d
  102. #define CNF1 0x2a
  103. # define CNF1_SJW_SHIFT 6
  104. #define CNF2 0x29
  105. # define CNF2_BTLMODE 0x80
  106. # define CNF2_SAM 0x40
  107. # define CNF2_PS1_SHIFT 3
  108. #define CNF3 0x28
  109. # define CNF3_SOF 0x08
  110. # define CNF3_WAKFIL 0x04
  111. # define CNF3_PHSEG2_MASK 0x07
  112. #define CANINTE 0x2b
  113. # define CANINTE_MERRE 0x80
  114. # define CANINTE_WAKIE 0x40
  115. # define CANINTE_ERRIE 0x20
  116. # define CANINTE_TX2IE 0x10
  117. # define CANINTE_TX1IE 0x08
  118. # define CANINTE_TX0IE 0x04
  119. # define CANINTE_RX1IE 0x02
  120. # define CANINTE_RX0IE 0x01
  121. #define CANINTF 0x2c
  122. # define CANINTF_MERRF 0x80
  123. # define CANINTF_WAKIF 0x40
  124. # define CANINTF_ERRIF 0x20
  125. # define CANINTF_TX2IF 0x10
  126. # define CANINTF_TX1IF 0x08
  127. # define CANINTF_TX0IF 0x04
  128. # define CANINTF_RX1IF 0x02
  129. # define CANINTF_RX0IF 0x01
  130. # define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  131. # define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  132. # define CANINTF_ERR (CANINTF_ERRIF)
  133. #define EFLG 0x2d
  134. # define EFLG_EWARN 0x01
  135. # define EFLG_RXWAR 0x02
  136. # define EFLG_TXWAR 0x04
  137. # define EFLG_RXEP 0x08
  138. # define EFLG_TXEP 0x10
  139. # define EFLG_TXBO 0x20
  140. # define EFLG_RX0OVR 0x40
  141. # define EFLG_RX1OVR 0x80
  142. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  143. # define TXBCTRL_ABTF 0x40
  144. # define TXBCTRL_MLOA 0x20
  145. # define TXBCTRL_TXERR 0x10
  146. # define TXBCTRL_TXREQ 0x08
  147. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  148. # define SIDH_SHIFT 3
  149. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  150. # define SIDL_SID_MASK 7
  151. # define SIDL_SID_SHIFT 5
  152. # define SIDL_EXIDE_SHIFT 3
  153. # define SIDL_EID_SHIFT 16
  154. # define SIDL_EID_MASK 3
  155. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  156. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  157. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  158. # define DLC_RTR_SHIFT 6
  159. #define TXBCTRL_OFF 0
  160. #define TXBSIDH_OFF 1
  161. #define TXBSIDL_OFF 2
  162. #define TXBEID8_OFF 3
  163. #define TXBEID0_OFF 4
  164. #define TXBDLC_OFF 5
  165. #define TXBDAT_OFF 6
  166. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  167. # define RXBCTRL_BUKT 0x04
  168. # define RXBCTRL_RXM0 0x20
  169. # define RXBCTRL_RXM1 0x40
  170. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  171. # define RXBSIDH_SHIFT 3
  172. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  173. # define RXBSIDL_IDE 0x08
  174. # define RXBSIDL_SRR 0x10
  175. # define RXBSIDL_EID 3
  176. # define RXBSIDL_SHIFT 5
  177. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  178. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  179. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  180. # define RXBDLC_LEN_MASK 0x0f
  181. # define RXBDLC_RTR 0x40
  182. #define RXBCTRL_OFF 0
  183. #define RXBSIDH_OFF 1
  184. #define RXBSIDL_OFF 2
  185. #define RXBEID8_OFF 3
  186. #define RXBEID0_OFF 4
  187. #define RXBDLC_OFF 5
  188. #define RXBDAT_OFF 6
  189. #define RXFSIDH(n) ((n) * 4)
  190. #define RXFSIDL(n) ((n) * 4 + 1)
  191. #define RXFEID8(n) ((n) * 4 + 2)
  192. #define RXFEID0(n) ((n) * 4 + 3)
  193. #define RXMSIDH(n) ((n) * 4 + 0x20)
  194. #define RXMSIDL(n) ((n) * 4 + 0x21)
  195. #define RXMEID8(n) ((n) * 4 + 0x22)
  196. #define RXMEID0(n) ((n) * 4 + 0x23)
  197. #define GET_BYTE(val, byte) \
  198. (((val) >> ((byte) * 8)) & 0xff)
  199. #define SET_BYTE(val, byte) \
  200. (((val) & 0xff) << ((byte) * 8))
  201. /*
  202. * Buffer size required for the largest SPI transfer (i.e., reading a
  203. * frame)
  204. */
  205. #define CAN_FRAME_MAX_DATA_LEN 8
  206. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  207. #define CAN_FRAME_MAX_BITS 128
  208. #define TX_ECHO_SKB_MAX 1
  209. #define DEVICE_NAME "mcp251x"
  210. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  211. module_param(mcp251x_enable_dma, int, S_IRUGO);
  212. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  213. static const struct can_bittiming_const mcp251x_bittiming_const = {
  214. .name = DEVICE_NAME,
  215. .tseg1_min = 3,
  216. .tseg1_max = 16,
  217. .tseg2_min = 2,
  218. .tseg2_max = 8,
  219. .sjw_max = 4,
  220. .brp_min = 1,
  221. .brp_max = 64,
  222. .brp_inc = 1,
  223. };
  224. enum mcp251x_model {
  225. CAN_MCP251X_MCP2510 = 0x2510,
  226. CAN_MCP251X_MCP2515 = 0x2515,
  227. };
  228. struct mcp251x_priv {
  229. struct can_priv can;
  230. struct net_device *net;
  231. struct spi_device *spi;
  232. enum mcp251x_model model;
  233. struct mutex mcp_lock; /* SPI device lock */
  234. u8 *spi_tx_buf;
  235. u8 *spi_rx_buf;
  236. dma_addr_t spi_tx_dma;
  237. dma_addr_t spi_rx_dma;
  238. struct sk_buff *tx_skb;
  239. int tx_len;
  240. struct workqueue_struct *wq;
  241. struct work_struct tx_work;
  242. struct work_struct restart_work;
  243. int force_quit;
  244. int after_suspend;
  245. #define AFTER_SUSPEND_UP 1
  246. #define AFTER_SUSPEND_DOWN 2
  247. #define AFTER_SUSPEND_POWER 4
  248. #define AFTER_SUSPEND_RESTART 8
  249. int restart_tx;
  250. };
  251. #define MCP251X_IS(_model) \
  252. static inline int mcp251x_is_##_model(struct spi_device *spi) \
  253. { \
  254. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev); \
  255. return priv->model == CAN_MCP251X_MCP##_model; \
  256. }
  257. MCP251X_IS(2510);
  258. MCP251X_IS(2515);
  259. static void mcp251x_clean(struct net_device *net)
  260. {
  261. struct mcp251x_priv *priv = netdev_priv(net);
  262. if (priv->tx_skb || priv->tx_len)
  263. net->stats.tx_errors++;
  264. if (priv->tx_skb)
  265. dev_kfree_skb(priv->tx_skb);
  266. if (priv->tx_len)
  267. can_free_echo_skb(priv->net, 0);
  268. priv->tx_skb = NULL;
  269. priv->tx_len = 0;
  270. }
  271. /*
  272. * Note about handling of error return of mcp251x_spi_trans: accessing
  273. * registers via SPI is not really different conceptually than using
  274. * normal I/O assembler instructions, although it's much more
  275. * complicated from a practical POV. So it's not advisable to always
  276. * check the return value of this function. Imagine that every
  277. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  278. * error();", it would be a great mess (well there are some situation
  279. * when exception handling C++ like could be useful after all). So we
  280. * just check that transfers are OK at the beginning of our
  281. * conversation with the chip and to avoid doing really nasty things
  282. * (like injecting bogus packets in the network stack).
  283. */
  284. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  285. {
  286. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  287. struct spi_transfer t = {
  288. .tx_buf = priv->spi_tx_buf,
  289. .rx_buf = priv->spi_rx_buf,
  290. .len = len,
  291. .cs_change = 0,
  292. };
  293. struct spi_message m;
  294. int ret;
  295. spi_message_init(&m);
  296. if (mcp251x_enable_dma) {
  297. t.tx_dma = priv->spi_tx_dma;
  298. t.rx_dma = priv->spi_rx_dma;
  299. m.is_dma_mapped = 1;
  300. }
  301. spi_message_add_tail(&t, &m);
  302. ret = spi_sync(spi, &m);
  303. if (ret)
  304. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  305. return ret;
  306. }
  307. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  308. {
  309. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  310. u8 val = 0;
  311. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  312. priv->spi_tx_buf[1] = reg;
  313. mcp251x_spi_trans(spi, 3);
  314. val = priv->spi_rx_buf[2];
  315. return val;
  316. }
  317. static void mcp251x_read_2regs(struct spi_device *spi, uint8_t reg,
  318. uint8_t *v1, uint8_t *v2)
  319. {
  320. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  321. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  322. priv->spi_tx_buf[1] = reg;
  323. mcp251x_spi_trans(spi, 4);
  324. *v1 = priv->spi_rx_buf[2];
  325. *v2 = priv->spi_rx_buf[3];
  326. }
  327. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  328. {
  329. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  330. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  331. priv->spi_tx_buf[1] = reg;
  332. priv->spi_tx_buf[2] = val;
  333. mcp251x_spi_trans(spi, 3);
  334. }
  335. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  336. u8 mask, uint8_t val)
  337. {
  338. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  339. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  340. priv->spi_tx_buf[1] = reg;
  341. priv->spi_tx_buf[2] = mask;
  342. priv->spi_tx_buf[3] = val;
  343. mcp251x_spi_trans(spi, 4);
  344. }
  345. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  346. int len, int tx_buf_idx)
  347. {
  348. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  349. if (mcp251x_is_2510(spi)) {
  350. int i;
  351. for (i = 1; i < TXBDAT_OFF + len; i++)
  352. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  353. buf[i]);
  354. } else {
  355. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  356. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  357. }
  358. }
  359. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  360. int tx_buf_idx)
  361. {
  362. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  363. u32 sid, eid, exide, rtr;
  364. u8 buf[SPI_TRANSFER_BUF_LEN];
  365. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  366. if (exide)
  367. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  368. else
  369. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  370. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  371. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  372. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  373. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  374. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  375. (exide << SIDL_EXIDE_SHIFT) |
  376. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  377. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  378. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  379. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  380. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  381. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  382. /* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
  383. priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
  384. mcp251x_spi_trans(priv->spi, 1);
  385. }
  386. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  387. int buf_idx)
  388. {
  389. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  390. if (mcp251x_is_2510(spi)) {
  391. int i, len;
  392. for (i = 1; i < RXBDAT_OFF; i++)
  393. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  394. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  395. for (; i < (RXBDAT_OFF + len); i++)
  396. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  397. } else {
  398. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  399. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  400. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  401. }
  402. }
  403. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  404. {
  405. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  406. struct sk_buff *skb;
  407. struct can_frame *frame;
  408. u8 buf[SPI_TRANSFER_BUF_LEN];
  409. skb = alloc_can_skb(priv->net, &frame);
  410. if (!skb) {
  411. dev_err(&spi->dev, "cannot allocate RX skb\n");
  412. priv->net->stats.rx_dropped++;
  413. return;
  414. }
  415. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  416. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  417. /* Extended ID format */
  418. frame->can_id = CAN_EFF_FLAG;
  419. frame->can_id |=
  420. /* Extended ID part */
  421. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  422. SET_BYTE(buf[RXBEID8_OFF], 1) |
  423. SET_BYTE(buf[RXBEID0_OFF], 0) |
  424. /* Standard ID part */
  425. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  426. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  427. /* Remote transmission request */
  428. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  429. frame->can_id |= CAN_RTR_FLAG;
  430. } else {
  431. /* Standard ID format */
  432. frame->can_id =
  433. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  434. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  435. if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
  436. frame->can_id |= CAN_RTR_FLAG;
  437. }
  438. /* Data length */
  439. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  440. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  441. priv->net->stats.rx_packets++;
  442. priv->net->stats.rx_bytes += frame->can_dlc;
  443. can_led_event(priv->net, CAN_LED_EVENT_RX);
  444. netif_rx_ni(skb);
  445. }
  446. static void mcp251x_hw_sleep(struct spi_device *spi)
  447. {
  448. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  449. }
  450. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  451. struct net_device *net)
  452. {
  453. struct mcp251x_priv *priv = netdev_priv(net);
  454. struct spi_device *spi = priv->spi;
  455. if (priv->tx_skb || priv->tx_len) {
  456. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  457. return NETDEV_TX_BUSY;
  458. }
  459. if (can_dropped_invalid_skb(net, skb))
  460. return NETDEV_TX_OK;
  461. netif_stop_queue(net);
  462. priv->tx_skb = skb;
  463. queue_work(priv->wq, &priv->tx_work);
  464. return NETDEV_TX_OK;
  465. }
  466. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  467. {
  468. struct mcp251x_priv *priv = netdev_priv(net);
  469. switch (mode) {
  470. case CAN_MODE_START:
  471. mcp251x_clean(net);
  472. /* We have to delay work since SPI I/O may sleep */
  473. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  474. priv->restart_tx = 1;
  475. if (priv->can.restart_ms == 0)
  476. priv->after_suspend = AFTER_SUSPEND_RESTART;
  477. queue_work(priv->wq, &priv->restart_work);
  478. break;
  479. default:
  480. return -EOPNOTSUPP;
  481. }
  482. return 0;
  483. }
  484. static int mcp251x_set_normal_mode(struct spi_device *spi)
  485. {
  486. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  487. unsigned long timeout;
  488. /* Enable interrupts */
  489. mcp251x_write_reg(spi, CANINTE,
  490. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  491. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
  492. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  493. /* Put device into loopback mode */
  494. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  495. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  496. /* Put device into listen-only mode */
  497. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  498. } else {
  499. /* Put device into normal mode */
  500. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
  501. /* Wait for the device to enter normal mode */
  502. timeout = jiffies + HZ;
  503. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  504. schedule();
  505. if (time_after(jiffies, timeout)) {
  506. dev_err(&spi->dev, "MCP251x didn't"
  507. " enter in normal mode\n");
  508. return -EBUSY;
  509. }
  510. }
  511. }
  512. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  513. return 0;
  514. }
  515. static int mcp251x_do_set_bittiming(struct net_device *net)
  516. {
  517. struct mcp251x_priv *priv = netdev_priv(net);
  518. struct can_bittiming *bt = &priv->can.bittiming;
  519. struct spi_device *spi = priv->spi;
  520. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  521. (bt->brp - 1));
  522. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  523. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  524. CNF2_SAM : 0) |
  525. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  526. (bt->prop_seg - 1));
  527. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  528. (bt->phase_seg2 - 1));
  529. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  530. mcp251x_read_reg(spi, CNF1),
  531. mcp251x_read_reg(spi, CNF2),
  532. mcp251x_read_reg(spi, CNF3));
  533. return 0;
  534. }
  535. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  536. struct spi_device *spi)
  537. {
  538. mcp251x_do_set_bittiming(net);
  539. mcp251x_write_reg(spi, RXBCTRL(0),
  540. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  541. mcp251x_write_reg(spi, RXBCTRL(1),
  542. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  543. return 0;
  544. }
  545. static int mcp251x_hw_reset(struct spi_device *spi)
  546. {
  547. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  548. int ret;
  549. unsigned long timeout;
  550. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  551. ret = spi_write(spi, priv->spi_tx_buf, 1);
  552. if (ret) {
  553. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  554. return -EIO;
  555. }
  556. /* Wait for reset to finish */
  557. timeout = jiffies + HZ;
  558. mdelay(10);
  559. while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK)
  560. != CANCTRL_REQOP_CONF) {
  561. schedule();
  562. if (time_after(jiffies, timeout)) {
  563. dev_err(&spi->dev, "MCP251x didn't"
  564. " enter in conf mode after reset\n");
  565. return -EBUSY;
  566. }
  567. }
  568. return 0;
  569. }
  570. static int mcp251x_hw_probe(struct spi_device *spi)
  571. {
  572. int st1, st2;
  573. mcp251x_hw_reset(spi);
  574. /*
  575. * Please note that these are "magic values" based on after
  576. * reset defaults taken from data sheet which allows us to see
  577. * if we really have a chip on the bus (we avoid common all
  578. * zeroes or all ones situations)
  579. */
  580. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  581. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  582. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  583. /* Check for power up default values */
  584. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  585. }
  586. static void mcp251x_open_clean(struct net_device *net)
  587. {
  588. struct mcp251x_priv *priv = netdev_priv(net);
  589. struct spi_device *spi = priv->spi;
  590. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  591. free_irq(spi->irq, priv);
  592. mcp251x_hw_sleep(spi);
  593. if (pdata->transceiver_enable)
  594. pdata->transceiver_enable(0);
  595. close_candev(net);
  596. }
  597. static int mcp251x_stop(struct net_device *net)
  598. {
  599. struct mcp251x_priv *priv = netdev_priv(net);
  600. struct spi_device *spi = priv->spi;
  601. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  602. close_candev(net);
  603. priv->force_quit = 1;
  604. free_irq(spi->irq, priv);
  605. destroy_workqueue(priv->wq);
  606. priv->wq = NULL;
  607. mutex_lock(&priv->mcp_lock);
  608. /* Disable and clear pending interrupts */
  609. mcp251x_write_reg(spi, CANINTE, 0x00);
  610. mcp251x_write_reg(spi, CANINTF, 0x00);
  611. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  612. mcp251x_clean(net);
  613. mcp251x_hw_sleep(spi);
  614. if (pdata->transceiver_enable)
  615. pdata->transceiver_enable(0);
  616. priv->can.state = CAN_STATE_STOPPED;
  617. mutex_unlock(&priv->mcp_lock);
  618. can_led_event(net, CAN_LED_EVENT_STOP);
  619. return 0;
  620. }
  621. static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
  622. {
  623. struct sk_buff *skb;
  624. struct can_frame *frame;
  625. skb = alloc_can_err_skb(net, &frame);
  626. if (skb) {
  627. frame->can_id |= can_id;
  628. frame->data[1] = data1;
  629. netif_rx_ni(skb);
  630. } else {
  631. netdev_err(net, "cannot allocate error skb\n");
  632. }
  633. }
  634. static void mcp251x_tx_work_handler(struct work_struct *ws)
  635. {
  636. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  637. tx_work);
  638. struct spi_device *spi = priv->spi;
  639. struct net_device *net = priv->net;
  640. struct can_frame *frame;
  641. mutex_lock(&priv->mcp_lock);
  642. if (priv->tx_skb) {
  643. if (priv->can.state == CAN_STATE_BUS_OFF) {
  644. mcp251x_clean(net);
  645. } else {
  646. frame = (struct can_frame *)priv->tx_skb->data;
  647. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  648. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  649. mcp251x_hw_tx(spi, frame, 0);
  650. priv->tx_len = 1 + frame->can_dlc;
  651. can_put_echo_skb(priv->tx_skb, net, 0);
  652. priv->tx_skb = NULL;
  653. }
  654. }
  655. mutex_unlock(&priv->mcp_lock);
  656. }
  657. static void mcp251x_restart_work_handler(struct work_struct *ws)
  658. {
  659. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  660. restart_work);
  661. struct spi_device *spi = priv->spi;
  662. struct net_device *net = priv->net;
  663. mutex_lock(&priv->mcp_lock);
  664. if (priv->after_suspend) {
  665. mdelay(10);
  666. mcp251x_hw_reset(spi);
  667. mcp251x_setup(net, priv, spi);
  668. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  669. mcp251x_set_normal_mode(spi);
  670. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  671. netif_device_attach(net);
  672. mcp251x_clean(net);
  673. mcp251x_set_normal_mode(spi);
  674. netif_wake_queue(net);
  675. } else {
  676. mcp251x_hw_sleep(spi);
  677. }
  678. priv->after_suspend = 0;
  679. priv->force_quit = 0;
  680. }
  681. if (priv->restart_tx) {
  682. priv->restart_tx = 0;
  683. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  684. mcp251x_clean(net);
  685. netif_wake_queue(net);
  686. mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
  687. }
  688. mutex_unlock(&priv->mcp_lock);
  689. }
  690. static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
  691. {
  692. struct mcp251x_priv *priv = dev_id;
  693. struct spi_device *spi = priv->spi;
  694. struct net_device *net = priv->net;
  695. mutex_lock(&priv->mcp_lock);
  696. while (!priv->force_quit) {
  697. enum can_state new_state;
  698. u8 intf, eflag;
  699. u8 clear_intf = 0;
  700. int can_id = 0, data1 = 0;
  701. mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
  702. /* mask out flags we don't care about */
  703. intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
  704. /* receive buffer 0 */
  705. if (intf & CANINTF_RX0IF) {
  706. mcp251x_hw_rx(spi, 0);
  707. /*
  708. * Free one buffer ASAP
  709. * (The MCP2515 does this automatically.)
  710. */
  711. if (mcp251x_is_2510(spi))
  712. mcp251x_write_bits(spi, CANINTF, CANINTF_RX0IF, 0x00);
  713. }
  714. /* receive buffer 1 */
  715. if (intf & CANINTF_RX1IF) {
  716. mcp251x_hw_rx(spi, 1);
  717. /* the MCP2515 does this automatically */
  718. if (mcp251x_is_2510(spi))
  719. clear_intf |= CANINTF_RX1IF;
  720. }
  721. /* any error or tx interrupt we need to clear? */
  722. if (intf & (CANINTF_ERR | CANINTF_TX))
  723. clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
  724. if (clear_intf)
  725. mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
  726. if (eflag)
  727. mcp251x_write_bits(spi, EFLG, eflag, 0x00);
  728. /* Update can state */
  729. if (eflag & EFLG_TXBO) {
  730. new_state = CAN_STATE_BUS_OFF;
  731. can_id |= CAN_ERR_BUSOFF;
  732. } else if (eflag & EFLG_TXEP) {
  733. new_state = CAN_STATE_ERROR_PASSIVE;
  734. can_id |= CAN_ERR_CRTL;
  735. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  736. } else if (eflag & EFLG_RXEP) {
  737. new_state = CAN_STATE_ERROR_PASSIVE;
  738. can_id |= CAN_ERR_CRTL;
  739. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  740. } else if (eflag & EFLG_TXWAR) {
  741. new_state = CAN_STATE_ERROR_WARNING;
  742. can_id |= CAN_ERR_CRTL;
  743. data1 |= CAN_ERR_CRTL_TX_WARNING;
  744. } else if (eflag & EFLG_RXWAR) {
  745. new_state = CAN_STATE_ERROR_WARNING;
  746. can_id |= CAN_ERR_CRTL;
  747. data1 |= CAN_ERR_CRTL_RX_WARNING;
  748. } else {
  749. new_state = CAN_STATE_ERROR_ACTIVE;
  750. }
  751. /* Update can state statistics */
  752. switch (priv->can.state) {
  753. case CAN_STATE_ERROR_ACTIVE:
  754. if (new_state >= CAN_STATE_ERROR_WARNING &&
  755. new_state <= CAN_STATE_BUS_OFF)
  756. priv->can.can_stats.error_warning++;
  757. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  758. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  759. new_state <= CAN_STATE_BUS_OFF)
  760. priv->can.can_stats.error_passive++;
  761. break;
  762. default:
  763. break;
  764. }
  765. priv->can.state = new_state;
  766. if (intf & CANINTF_ERRIF) {
  767. /* Handle overflow counters */
  768. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  769. if (eflag & EFLG_RX0OVR) {
  770. net->stats.rx_over_errors++;
  771. net->stats.rx_errors++;
  772. }
  773. if (eflag & EFLG_RX1OVR) {
  774. net->stats.rx_over_errors++;
  775. net->stats.rx_errors++;
  776. }
  777. can_id |= CAN_ERR_CRTL;
  778. data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
  779. }
  780. mcp251x_error_skb(net, can_id, data1);
  781. }
  782. if (priv->can.state == CAN_STATE_BUS_OFF) {
  783. if (priv->can.restart_ms == 0) {
  784. priv->force_quit = 1;
  785. can_bus_off(net);
  786. mcp251x_hw_sleep(spi);
  787. break;
  788. }
  789. }
  790. if (intf == 0)
  791. break;
  792. if (intf & CANINTF_TX) {
  793. net->stats.tx_packets++;
  794. net->stats.tx_bytes += priv->tx_len - 1;
  795. can_led_event(net, CAN_LED_EVENT_TX);
  796. if (priv->tx_len) {
  797. can_get_echo_skb(net, 0);
  798. priv->tx_len = 0;
  799. }
  800. netif_wake_queue(net);
  801. }
  802. }
  803. mutex_unlock(&priv->mcp_lock);
  804. return IRQ_HANDLED;
  805. }
  806. static int mcp251x_open(struct net_device *net)
  807. {
  808. struct mcp251x_priv *priv = netdev_priv(net);
  809. struct spi_device *spi = priv->spi;
  810. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  811. int ret;
  812. ret = open_candev(net);
  813. if (ret) {
  814. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  815. return ret;
  816. }
  817. mutex_lock(&priv->mcp_lock);
  818. if (pdata->transceiver_enable)
  819. pdata->transceiver_enable(1);
  820. priv->force_quit = 0;
  821. priv->tx_skb = NULL;
  822. priv->tx_len = 0;
  823. ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
  824. pdata->irq_flags ? pdata->irq_flags : IRQF_TRIGGER_FALLING,
  825. DEVICE_NAME, priv);
  826. if (ret) {
  827. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  828. if (pdata->transceiver_enable)
  829. pdata->transceiver_enable(0);
  830. close_candev(net);
  831. goto open_unlock;
  832. }
  833. priv->wq = create_freezable_workqueue("mcp251x_wq");
  834. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  835. INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
  836. ret = mcp251x_hw_reset(spi);
  837. if (ret) {
  838. mcp251x_open_clean(net);
  839. goto open_unlock;
  840. }
  841. ret = mcp251x_setup(net, priv, spi);
  842. if (ret) {
  843. mcp251x_open_clean(net);
  844. goto open_unlock;
  845. }
  846. ret = mcp251x_set_normal_mode(spi);
  847. if (ret) {
  848. mcp251x_open_clean(net);
  849. goto open_unlock;
  850. }
  851. can_led_event(net, CAN_LED_EVENT_OPEN);
  852. netif_wake_queue(net);
  853. open_unlock:
  854. mutex_unlock(&priv->mcp_lock);
  855. return ret;
  856. }
  857. static const struct net_device_ops mcp251x_netdev_ops = {
  858. .ndo_open = mcp251x_open,
  859. .ndo_stop = mcp251x_stop,
  860. .ndo_start_xmit = mcp251x_hard_start_xmit,
  861. };
  862. static int mcp251x_can_probe(struct spi_device *spi)
  863. {
  864. struct net_device *net;
  865. struct mcp251x_priv *priv;
  866. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  867. int ret = -ENODEV;
  868. if (!pdata)
  869. /* Platform data is required for osc freq */
  870. goto error_out;
  871. /* Allocate can/net device */
  872. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  873. if (!net) {
  874. ret = -ENOMEM;
  875. goto error_alloc;
  876. }
  877. net->netdev_ops = &mcp251x_netdev_ops;
  878. net->flags |= IFF_ECHO;
  879. priv = netdev_priv(net);
  880. priv->can.bittiming_const = &mcp251x_bittiming_const;
  881. priv->can.do_set_mode = mcp251x_do_set_mode;
  882. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  883. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  884. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  885. priv->model = spi_get_device_id(spi)->driver_data;
  886. priv->net = net;
  887. dev_set_drvdata(&spi->dev, priv);
  888. priv->spi = spi;
  889. mutex_init(&priv->mcp_lock);
  890. /* If requested, allocate DMA buffers */
  891. if (mcp251x_enable_dma) {
  892. spi->dev.coherent_dma_mask = ~0;
  893. /*
  894. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  895. * that much and share it between Tx and Rx DMA buffers.
  896. */
  897. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  898. PAGE_SIZE,
  899. &priv->spi_tx_dma,
  900. GFP_DMA);
  901. if (priv->spi_tx_buf) {
  902. priv->spi_rx_buf = (priv->spi_tx_buf + (PAGE_SIZE / 2));
  903. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  904. (PAGE_SIZE / 2));
  905. } else {
  906. /* Fall back to non-DMA */
  907. mcp251x_enable_dma = 0;
  908. }
  909. }
  910. /* Allocate non-DMA buffers */
  911. if (!mcp251x_enable_dma) {
  912. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  913. if (!priv->spi_tx_buf) {
  914. ret = -ENOMEM;
  915. goto error_tx_buf;
  916. }
  917. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  918. if (!priv->spi_rx_buf) {
  919. ret = -ENOMEM;
  920. goto error_rx_buf;
  921. }
  922. }
  923. if (pdata->power_enable)
  924. pdata->power_enable(1);
  925. /* Call out to platform specific setup */
  926. if (pdata->board_specific_setup)
  927. pdata->board_specific_setup(spi);
  928. SET_NETDEV_DEV(net, &spi->dev);
  929. /* Configure the SPI bus */
  930. spi->mode = SPI_MODE_0;
  931. spi->bits_per_word = 8;
  932. spi_setup(spi);
  933. /* Here is OK to not lock the MCP, no one knows about it yet */
  934. if (!mcp251x_hw_probe(spi)) {
  935. dev_info(&spi->dev, "Probe failed\n");
  936. goto error_probe;
  937. }
  938. mcp251x_hw_sleep(spi);
  939. if (pdata->transceiver_enable)
  940. pdata->transceiver_enable(0);
  941. ret = register_candev(net);
  942. if (ret)
  943. goto error_probe;
  944. devm_can_led_init(net);
  945. dev_info(&spi->dev, "probed\n");
  946. return ret;
  947. error_probe:
  948. if (!mcp251x_enable_dma)
  949. kfree(priv->spi_rx_buf);
  950. error_rx_buf:
  951. if (!mcp251x_enable_dma)
  952. kfree(priv->spi_tx_buf);
  953. error_tx_buf:
  954. free_candev(net);
  955. if (mcp251x_enable_dma)
  956. dma_free_coherent(&spi->dev, PAGE_SIZE,
  957. priv->spi_tx_buf, priv->spi_tx_dma);
  958. error_alloc:
  959. if (pdata->power_enable)
  960. pdata->power_enable(0);
  961. dev_err(&spi->dev, "probe failed\n");
  962. error_out:
  963. return ret;
  964. }
  965. static int mcp251x_can_remove(struct spi_device *spi)
  966. {
  967. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  968. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  969. struct net_device *net = priv->net;
  970. unregister_candev(net);
  971. free_candev(net);
  972. if (mcp251x_enable_dma) {
  973. dma_free_coherent(&spi->dev, PAGE_SIZE,
  974. priv->spi_tx_buf, priv->spi_tx_dma);
  975. } else {
  976. kfree(priv->spi_tx_buf);
  977. kfree(priv->spi_rx_buf);
  978. }
  979. if (pdata->power_enable)
  980. pdata->power_enable(0);
  981. return 0;
  982. }
  983. #ifdef CONFIG_PM
  984. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  985. {
  986. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  987. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  988. struct net_device *net = priv->net;
  989. priv->force_quit = 1;
  990. disable_irq(spi->irq);
  991. /*
  992. * Note: at this point neither IST nor workqueues are running.
  993. * open/stop cannot be called anyway so locking is not needed
  994. */
  995. if (netif_running(net)) {
  996. netif_device_detach(net);
  997. mcp251x_hw_sleep(spi);
  998. if (pdata->transceiver_enable)
  999. pdata->transceiver_enable(0);
  1000. priv->after_suspend = AFTER_SUSPEND_UP;
  1001. } else {
  1002. priv->after_suspend = AFTER_SUSPEND_DOWN;
  1003. }
  1004. if (pdata->power_enable) {
  1005. pdata->power_enable(0);
  1006. priv->after_suspend |= AFTER_SUSPEND_POWER;
  1007. }
  1008. return 0;
  1009. }
  1010. static int mcp251x_can_resume(struct spi_device *spi)
  1011. {
  1012. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  1013. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  1014. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  1015. pdata->power_enable(1);
  1016. queue_work(priv->wq, &priv->restart_work);
  1017. } else {
  1018. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  1019. if (pdata->transceiver_enable)
  1020. pdata->transceiver_enable(1);
  1021. queue_work(priv->wq, &priv->restart_work);
  1022. } else {
  1023. priv->after_suspend = 0;
  1024. }
  1025. }
  1026. priv->force_quit = 0;
  1027. enable_irq(spi->irq);
  1028. return 0;
  1029. }
  1030. #else
  1031. #define mcp251x_can_suspend NULL
  1032. #define mcp251x_can_resume NULL
  1033. #endif
  1034. static const struct spi_device_id mcp251x_id_table[] = {
  1035. { "mcp2510", CAN_MCP251X_MCP2510 },
  1036. { "mcp2515", CAN_MCP251X_MCP2515 },
  1037. { },
  1038. };
  1039. MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
  1040. static struct spi_driver mcp251x_can_driver = {
  1041. .driver = {
  1042. .name = DEVICE_NAME,
  1043. .bus = &spi_bus_type,
  1044. .owner = THIS_MODULE,
  1045. },
  1046. .id_table = mcp251x_id_table,
  1047. .probe = mcp251x_can_probe,
  1048. .remove = mcp251x_can_remove,
  1049. .suspend = mcp251x_can_suspend,
  1050. .resume = mcp251x_can_resume,
  1051. };
  1052. static int __init mcp251x_can_init(void)
  1053. {
  1054. return spi_register_driver(&mcp251x_can_driver);
  1055. }
  1056. static void __exit mcp251x_can_exit(void)
  1057. {
  1058. spi_unregister_driver(&mcp251x_can_driver);
  1059. }
  1060. module_init(mcp251x_can_init);
  1061. module_exit(mcp251x_can_exit);
  1062. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  1063. "Christian Pellegrin <chripell@evolware.org>");
  1064. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  1065. MODULE_LICENSE("GPL v2");