io.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  99. int offset, int len);
  100. /**
  101. * ubi_io_read - read data from a physical eraseblock.
  102. * @ubi: UBI device description object
  103. * @buf: buffer where to store the read data
  104. * @pnum: physical eraseblock number to read from
  105. * @offset: offset within the physical eraseblock from where to read
  106. * @len: how many bytes to read
  107. *
  108. * This function reads data from offset @offset of physical eraseblock @pnum
  109. * and stores the read data in the @buf buffer. The following return codes are
  110. * possible:
  111. *
  112. * o %0 if all the requested data were successfully read;
  113. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  114. * correctable bit-flips were detected; this is harmless but may indicate
  115. * that this eraseblock may become bad soon (but do not have to);
  116. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  117. * example it can be an ECC error in case of NAND; this most probably means
  118. * that the data is corrupted;
  119. * o %-EIO if some I/O error occurred;
  120. * o other negative error codes in case of other errors.
  121. */
  122. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  123. int len)
  124. {
  125. int err, retries = 0;
  126. size_t read;
  127. loff_t addr;
  128. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  129. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  130. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  131. ubi_assert(len > 0);
  132. err = self_check_not_bad(ubi, pnum);
  133. if (err)
  134. return err;
  135. /*
  136. * Deliberately corrupt the buffer to improve robustness. Indeed, if we
  137. * do not do this, the following may happen:
  138. * 1. The buffer contains data from previous operation, e.g., read from
  139. * another PEB previously. The data looks like expected, e.g., if we
  140. * just do not read anything and return - the caller would not
  141. * notice this. E.g., if we are reading a VID header, the buffer may
  142. * contain a valid VID header from another PEB.
  143. * 2. The driver is buggy and returns us success or -EBADMSG or
  144. * -EUCLEAN, but it does not actually put any data to the buffer.
  145. *
  146. * This may confuse UBI or upper layers - they may think the buffer
  147. * contains valid data while in fact it is just old data. This is
  148. * especially possible because UBI (and UBIFS) relies on CRC, and
  149. * treats data as correct even in case of ECC errors if the CRC is
  150. * correct.
  151. *
  152. * Try to prevent this situation by changing the first byte of the
  153. * buffer.
  154. */
  155. *((uint8_t *)buf) ^= 0xFF;
  156. addr = (loff_t)pnum * ubi->peb_size + offset;
  157. retry:
  158. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  159. if (err) {
  160. const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
  161. if (mtd_is_bitflip(err)) {
  162. /*
  163. * -EUCLEAN is reported if there was a bit-flip which
  164. * was corrected, so this is harmless.
  165. *
  166. * We do not report about it here unless debugging is
  167. * enabled. A corresponding message will be printed
  168. * later, when it is has been scrubbed.
  169. */
  170. ubi_msg("fixable bit-flip detected at PEB %d", pnum);
  171. ubi_assert(len == read);
  172. return UBI_IO_BITFLIPS;
  173. }
  174. if (retries++ < UBI_IO_RETRIES) {
  175. ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
  176. err, errstr, len, pnum, offset, read);
  177. yield();
  178. goto retry;
  179. }
  180. ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
  181. err, errstr, len, pnum, offset, read);
  182. dump_stack();
  183. /*
  184. * The driver should never return -EBADMSG if it failed to read
  185. * all the requested data. But some buggy drivers might do
  186. * this, so we change it to -EIO.
  187. */
  188. if (read != len && mtd_is_eccerr(err)) {
  189. ubi_assert(0);
  190. err = -EIO;
  191. }
  192. } else {
  193. ubi_assert(len == read);
  194. if (ubi_dbg_is_bitflip(ubi)) {
  195. dbg_gen("bit-flip (emulated)");
  196. err = UBI_IO_BITFLIPS;
  197. }
  198. }
  199. return err;
  200. }
  201. /**
  202. * ubi_io_write - write data to a physical eraseblock.
  203. * @ubi: UBI device description object
  204. * @buf: buffer with the data to write
  205. * @pnum: physical eraseblock number to write to
  206. * @offset: offset within the physical eraseblock where to write
  207. * @len: how many bytes to write
  208. *
  209. * This function writes @len bytes of data from buffer @buf to offset @offset
  210. * of physical eraseblock @pnum. If all the data were successfully written,
  211. * zero is returned. If an error occurred, this function returns a negative
  212. * error code. If %-EIO is returned, the physical eraseblock most probably went
  213. * bad.
  214. *
  215. * Note, in case of an error, it is possible that something was still written
  216. * to the flash media, but may be some garbage.
  217. */
  218. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  219. int len)
  220. {
  221. int err;
  222. size_t written;
  223. loff_t addr;
  224. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  225. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  226. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  227. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  228. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  229. if (ubi->ro_mode) {
  230. ubi_err("read-only mode");
  231. return -EROFS;
  232. }
  233. err = self_check_not_bad(ubi, pnum);
  234. if (err)
  235. return err;
  236. /* The area we are writing to has to contain all 0xFF bytes */
  237. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  238. if (err)
  239. return err;
  240. if (offset >= ubi->leb_start) {
  241. /*
  242. * We write to the data area of the physical eraseblock. Make
  243. * sure it has valid EC and VID headers.
  244. */
  245. err = self_check_peb_ec_hdr(ubi, pnum);
  246. if (err)
  247. return err;
  248. err = self_check_peb_vid_hdr(ubi, pnum);
  249. if (err)
  250. return err;
  251. }
  252. if (ubi_dbg_is_write_failure(ubi)) {
  253. ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
  254. len, pnum, offset);
  255. dump_stack();
  256. return -EIO;
  257. }
  258. addr = (loff_t)pnum * ubi->peb_size + offset;
  259. err = mtd_write(ubi->mtd, addr, len, &written, buf);
  260. if (err) {
  261. ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
  262. err, len, pnum, offset, written);
  263. dump_stack();
  264. ubi_dump_flash(ubi, pnum, offset, len);
  265. } else
  266. ubi_assert(written == len);
  267. if (!err) {
  268. err = self_check_write(ubi, buf, pnum, offset, len);
  269. if (err)
  270. return err;
  271. /*
  272. * Since we always write sequentially, the rest of the PEB has
  273. * to contain only 0xFF bytes.
  274. */
  275. offset += len;
  276. len = ubi->peb_size - offset;
  277. if (len)
  278. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  279. }
  280. return err;
  281. }
  282. /**
  283. * erase_callback - MTD erasure call-back.
  284. * @ei: MTD erase information object.
  285. *
  286. * Note, even though MTD erase interface is asynchronous, all the current
  287. * implementations are synchronous anyway.
  288. */
  289. static void erase_callback(struct erase_info *ei)
  290. {
  291. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  292. }
  293. /**
  294. * do_sync_erase - synchronously erase a physical eraseblock.
  295. * @ubi: UBI device description object
  296. * @pnum: the physical eraseblock number to erase
  297. *
  298. * This function synchronously erases physical eraseblock @pnum and returns
  299. * zero in case of success and a negative error code in case of failure. If
  300. * %-EIO is returned, the physical eraseblock most probably went bad.
  301. */
  302. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  303. {
  304. int err, retries = 0;
  305. struct erase_info ei;
  306. wait_queue_head_t wq;
  307. dbg_io("erase PEB %d", pnum);
  308. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  309. if (ubi->ro_mode) {
  310. ubi_err("read-only mode");
  311. return -EROFS;
  312. }
  313. retry:
  314. init_waitqueue_head(&wq);
  315. memset(&ei, 0, sizeof(struct erase_info));
  316. ei.mtd = ubi->mtd;
  317. ei.addr = (loff_t)pnum * ubi->peb_size;
  318. ei.len = ubi->peb_size;
  319. ei.callback = erase_callback;
  320. ei.priv = (unsigned long)&wq;
  321. err = mtd_erase(ubi->mtd, &ei);
  322. if (err) {
  323. if (retries++ < UBI_IO_RETRIES) {
  324. ubi_warn("error %d while erasing PEB %d, retry",
  325. err, pnum);
  326. yield();
  327. goto retry;
  328. }
  329. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  330. dump_stack();
  331. return err;
  332. }
  333. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  334. ei.state == MTD_ERASE_FAILED);
  335. if (err) {
  336. ubi_err("interrupted PEB %d erasure", pnum);
  337. return -EINTR;
  338. }
  339. if (ei.state == MTD_ERASE_FAILED) {
  340. if (retries++ < UBI_IO_RETRIES) {
  341. ubi_warn("error while erasing PEB %d, retry", pnum);
  342. yield();
  343. goto retry;
  344. }
  345. ubi_err("cannot erase PEB %d", pnum);
  346. dump_stack();
  347. return -EIO;
  348. }
  349. err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  350. if (err)
  351. return err;
  352. if (ubi_dbg_is_erase_failure(ubi)) {
  353. ubi_err("cannot erase PEB %d (emulated)", pnum);
  354. return -EIO;
  355. }
  356. return 0;
  357. }
  358. /* Patterns to write to a physical eraseblock when torturing it */
  359. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  360. /**
  361. * torture_peb - test a supposedly bad physical eraseblock.
  362. * @ubi: UBI device description object
  363. * @pnum: the physical eraseblock number to test
  364. *
  365. * This function returns %-EIO if the physical eraseblock did not pass the
  366. * test, a positive number of erase operations done if the test was
  367. * successfully passed, and other negative error codes in case of other errors.
  368. */
  369. static int torture_peb(struct ubi_device *ubi, int pnum)
  370. {
  371. int err, i, patt_count;
  372. ubi_msg("run torture test for PEB %d", pnum);
  373. patt_count = ARRAY_SIZE(patterns);
  374. ubi_assert(patt_count > 0);
  375. mutex_lock(&ubi->buf_mutex);
  376. for (i = 0; i < patt_count; i++) {
  377. err = do_sync_erase(ubi, pnum);
  378. if (err)
  379. goto out;
  380. /* Make sure the PEB contains only 0xFF bytes */
  381. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  382. if (err)
  383. goto out;
  384. err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
  385. if (err == 0) {
  386. ubi_err("erased PEB %d, but a non-0xFF byte found",
  387. pnum);
  388. err = -EIO;
  389. goto out;
  390. }
  391. /* Write a pattern and check it */
  392. memset(ubi->peb_buf, patterns[i], ubi->peb_size);
  393. err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  394. if (err)
  395. goto out;
  396. memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
  397. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  398. if (err)
  399. goto out;
  400. err = ubi_check_pattern(ubi->peb_buf, patterns[i],
  401. ubi->peb_size);
  402. if (err == 0) {
  403. ubi_err("pattern %x checking failed for PEB %d",
  404. patterns[i], pnum);
  405. err = -EIO;
  406. goto out;
  407. }
  408. }
  409. err = patt_count;
  410. ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
  411. out:
  412. mutex_unlock(&ubi->buf_mutex);
  413. if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
  414. /*
  415. * If a bit-flip or data integrity error was detected, the test
  416. * has not passed because it happened on a freshly erased
  417. * physical eraseblock which means something is wrong with it.
  418. */
  419. ubi_err("read problems on freshly erased PEB %d, must be bad",
  420. pnum);
  421. err = -EIO;
  422. }
  423. return err;
  424. }
  425. /**
  426. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  427. * @ubi: UBI device description object
  428. * @pnum: physical eraseblock number to prepare
  429. *
  430. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  431. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  432. * filling with zeroes starts from the end of the PEB. This was observed with
  433. * Spansion S29GL512N NOR flash.
  434. *
  435. * This means that in case of a power cut we may end up with intact data at the
  436. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  437. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  438. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  439. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  440. *
  441. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  442. * magic numbers in order to invalidate them and prevent the failures. Returns
  443. * zero in case of success and a negative error code in case of failure.
  444. */
  445. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  446. {
  447. int err, err1;
  448. size_t written;
  449. loff_t addr;
  450. uint32_t data = 0;
  451. /*
  452. * Note, we cannot generally define VID header buffers on stack,
  453. * because of the way we deal with these buffers (see the header
  454. * comment in this file). But we know this is a NOR-specific piece of
  455. * code, so we can do this. But yes, this is error-prone and we should
  456. * (pre-)allocate VID header buffer instead.
  457. */
  458. struct ubi_vid_hdr vid_hdr;
  459. /*
  460. * It is important to first invalidate the EC header, and then the VID
  461. * header. Otherwise a power cut may lead to valid EC header and
  462. * invalid VID header, in which case UBI will treat this PEB as
  463. * corrupted and will try to preserve it, and print scary warnings.
  464. */
  465. addr = (loff_t)pnum * ubi->peb_size;
  466. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  467. if (!err) {
  468. addr += ubi->vid_hdr_aloffset;
  469. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  470. if (!err)
  471. return 0;
  472. }
  473. /*
  474. * We failed to write to the media. This was observed with Spansion
  475. * S29GL512N NOR flash. Most probably the previously eraseblock erasure
  476. * was interrupted at a very inappropriate moment, so it became
  477. * unwritable. In this case we probably anyway have garbage in this
  478. * PEB.
  479. */
  480. err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  481. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
  482. err1 == UBI_IO_FF) {
  483. struct ubi_ec_hdr ec_hdr;
  484. err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  485. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
  486. err1 == UBI_IO_FF)
  487. /*
  488. * Both VID and EC headers are corrupted, so we can
  489. * safely erase this PEB and not afraid that it will be
  490. * treated as a valid PEB in case of an unclean reboot.
  491. */
  492. return 0;
  493. }
  494. /*
  495. * The PEB contains a valid VID header, but we cannot invalidate it.
  496. * Supposedly the flash media or the driver is screwed up, so return an
  497. * error.
  498. */
  499. ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
  500. pnum, err, err1);
  501. ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
  502. return -EIO;
  503. }
  504. /**
  505. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  506. * @ubi: UBI device description object
  507. * @pnum: physical eraseblock number to erase
  508. * @torture: if this physical eraseblock has to be tortured
  509. *
  510. * This function synchronously erases physical eraseblock @pnum. If @torture
  511. * flag is not zero, the physical eraseblock is checked by means of writing
  512. * different patterns to it and reading them back. If the torturing is enabled,
  513. * the physical eraseblock is erased more than once.
  514. *
  515. * This function returns the number of erasures made in case of success, %-EIO
  516. * if the erasure failed or the torturing test failed, and other negative error
  517. * codes in case of other errors. Note, %-EIO means that the physical
  518. * eraseblock is bad.
  519. */
  520. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  521. {
  522. int err, ret = 0;
  523. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  524. err = self_check_not_bad(ubi, pnum);
  525. if (err != 0)
  526. return err;
  527. if (ubi->ro_mode) {
  528. ubi_err("read-only mode");
  529. return -EROFS;
  530. }
  531. if (ubi->nor_flash) {
  532. err = nor_erase_prepare(ubi, pnum);
  533. if (err)
  534. return err;
  535. }
  536. if (torture) {
  537. ret = torture_peb(ubi, pnum);
  538. if (ret < 0)
  539. return ret;
  540. }
  541. err = do_sync_erase(ubi, pnum);
  542. if (err)
  543. return err;
  544. return ret + 1;
  545. }
  546. /**
  547. * ubi_io_is_bad - check if a physical eraseblock is bad.
  548. * @ubi: UBI device description object
  549. * @pnum: the physical eraseblock number to check
  550. *
  551. * This function returns a positive number if the physical eraseblock is bad,
  552. * zero if not, and a negative error code if an error occurred.
  553. */
  554. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  555. {
  556. struct mtd_info *mtd = ubi->mtd;
  557. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  558. if (ubi->bad_allowed) {
  559. int ret;
  560. ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  561. if (ret < 0)
  562. ubi_err("error %d while checking if PEB %d is bad",
  563. ret, pnum);
  564. else if (ret)
  565. dbg_io("PEB %d is bad", pnum);
  566. return ret;
  567. }
  568. return 0;
  569. }
  570. /**
  571. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  572. * @ubi: UBI device description object
  573. * @pnum: the physical eraseblock number to mark
  574. *
  575. * This function returns zero in case of success and a negative error code in
  576. * case of failure.
  577. */
  578. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  579. {
  580. int err;
  581. struct mtd_info *mtd = ubi->mtd;
  582. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  583. if (ubi->ro_mode) {
  584. ubi_err("read-only mode");
  585. return -EROFS;
  586. }
  587. if (!ubi->bad_allowed)
  588. return 0;
  589. err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  590. if (err)
  591. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  592. return err;
  593. }
  594. /**
  595. * validate_ec_hdr - validate an erase counter header.
  596. * @ubi: UBI device description object
  597. * @ec_hdr: the erase counter header to check
  598. *
  599. * This function returns zero if the erase counter header is OK, and %1 if
  600. * not.
  601. */
  602. static int validate_ec_hdr(const struct ubi_device *ubi,
  603. const struct ubi_ec_hdr *ec_hdr)
  604. {
  605. long long ec;
  606. int vid_hdr_offset, leb_start;
  607. ec = be64_to_cpu(ec_hdr->ec);
  608. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  609. leb_start = be32_to_cpu(ec_hdr->data_offset);
  610. if (ec_hdr->version != UBI_VERSION) {
  611. ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
  612. UBI_VERSION, (int)ec_hdr->version);
  613. goto bad;
  614. }
  615. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  616. ubi_err("bad VID header offset %d, expected %d",
  617. vid_hdr_offset, ubi->vid_hdr_offset);
  618. goto bad;
  619. }
  620. if (leb_start != ubi->leb_start) {
  621. ubi_err("bad data offset %d, expected %d",
  622. leb_start, ubi->leb_start);
  623. goto bad;
  624. }
  625. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  626. ubi_err("bad erase counter %lld", ec);
  627. goto bad;
  628. }
  629. return 0;
  630. bad:
  631. ubi_err("bad EC header");
  632. ubi_dump_ec_hdr(ec_hdr);
  633. dump_stack();
  634. return 1;
  635. }
  636. /**
  637. * ubi_io_read_ec_hdr - read and check an erase counter header.
  638. * @ubi: UBI device description object
  639. * @pnum: physical eraseblock to read from
  640. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  641. * header
  642. * @verbose: be verbose if the header is corrupted or was not found
  643. *
  644. * This function reads erase counter header from physical eraseblock @pnum and
  645. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  646. * erase counter header. The following codes may be returned:
  647. *
  648. * o %0 if the CRC checksum is correct and the header was successfully read;
  649. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  650. * and corrected by the flash driver; this is harmless but may indicate that
  651. * this eraseblock may become bad soon (but may be not);
  652. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  653. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  654. * a data integrity error (uncorrectable ECC error in case of NAND);
  655. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  656. * o a negative error code in case of failure.
  657. */
  658. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  659. struct ubi_ec_hdr *ec_hdr, int verbose)
  660. {
  661. int err, read_err;
  662. uint32_t crc, magic, hdr_crc;
  663. dbg_io("read EC header from PEB %d", pnum);
  664. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  665. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  666. if (read_err) {
  667. if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  668. return read_err;
  669. /*
  670. * We read all the data, but either a correctable bit-flip
  671. * occurred, or MTD reported a data integrity error
  672. * (uncorrectable ECC error in case of NAND). The former is
  673. * harmless, the later may mean that the read data is
  674. * corrupted. But we have a CRC check-sum and we will detect
  675. * this. If the EC header is still OK, we just report this as
  676. * there was a bit-flip, to force scrubbing.
  677. */
  678. }
  679. magic = be32_to_cpu(ec_hdr->magic);
  680. if (magic != UBI_EC_HDR_MAGIC) {
  681. if (mtd_is_eccerr(read_err))
  682. return UBI_IO_BAD_HDR_EBADMSG;
  683. /*
  684. * The magic field is wrong. Let's check if we have read all
  685. * 0xFF. If yes, this physical eraseblock is assumed to be
  686. * empty.
  687. */
  688. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  689. /* The physical eraseblock is supposedly empty */
  690. if (verbose)
  691. ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
  692. pnum);
  693. dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
  694. pnum);
  695. if (!read_err)
  696. return UBI_IO_FF;
  697. else
  698. return UBI_IO_FF_BITFLIPS;
  699. }
  700. /*
  701. * This is not a valid erase counter header, and these are not
  702. * 0xFF bytes. Report that the header is corrupted.
  703. */
  704. if (verbose) {
  705. ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
  706. pnum, magic, UBI_EC_HDR_MAGIC);
  707. ubi_dump_ec_hdr(ec_hdr);
  708. }
  709. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  710. pnum, magic, UBI_EC_HDR_MAGIC);
  711. return UBI_IO_BAD_HDR;
  712. }
  713. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  714. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  715. if (hdr_crc != crc) {
  716. if (verbose) {
  717. ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  718. pnum, crc, hdr_crc);
  719. ubi_dump_ec_hdr(ec_hdr);
  720. }
  721. dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  722. pnum, crc, hdr_crc);
  723. if (!read_err)
  724. return UBI_IO_BAD_HDR;
  725. else
  726. return UBI_IO_BAD_HDR_EBADMSG;
  727. }
  728. /* And of course validate what has just been read from the media */
  729. err = validate_ec_hdr(ubi, ec_hdr);
  730. if (err) {
  731. ubi_err("validation failed for PEB %d", pnum);
  732. return -EINVAL;
  733. }
  734. /*
  735. * If there was %-EBADMSG, but the header CRC is still OK, report about
  736. * a bit-flip to force scrubbing on this PEB.
  737. */
  738. return read_err ? UBI_IO_BITFLIPS : 0;
  739. }
  740. /**
  741. * ubi_io_write_ec_hdr - write an erase counter header.
  742. * @ubi: UBI device description object
  743. * @pnum: physical eraseblock to write to
  744. * @ec_hdr: the erase counter header to write
  745. *
  746. * This function writes erase counter header described by @ec_hdr to physical
  747. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  748. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  749. * field.
  750. *
  751. * This function returns zero in case of success and a negative error code in
  752. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  753. * went bad.
  754. */
  755. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  756. struct ubi_ec_hdr *ec_hdr)
  757. {
  758. int err;
  759. uint32_t crc;
  760. dbg_io("write EC header to PEB %d", pnum);
  761. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  762. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  763. ec_hdr->version = UBI_VERSION;
  764. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  765. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  766. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  767. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  768. ec_hdr->hdr_crc = cpu_to_be32(crc);
  769. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  770. if (err)
  771. return err;
  772. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  773. return err;
  774. }
  775. /**
  776. * validate_vid_hdr - validate a volume identifier header.
  777. * @ubi: UBI device description object
  778. * @vid_hdr: the volume identifier header to check
  779. *
  780. * This function checks that data stored in the volume identifier header
  781. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  782. */
  783. static int validate_vid_hdr(const struct ubi_device *ubi,
  784. const struct ubi_vid_hdr *vid_hdr)
  785. {
  786. int vol_type = vid_hdr->vol_type;
  787. int copy_flag = vid_hdr->copy_flag;
  788. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  789. int lnum = be32_to_cpu(vid_hdr->lnum);
  790. int compat = vid_hdr->compat;
  791. int data_size = be32_to_cpu(vid_hdr->data_size);
  792. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  793. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  794. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  795. int usable_leb_size = ubi->leb_size - data_pad;
  796. if (copy_flag != 0 && copy_flag != 1) {
  797. ubi_err("bad copy_flag");
  798. goto bad;
  799. }
  800. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  801. data_pad < 0) {
  802. ubi_err("negative values");
  803. goto bad;
  804. }
  805. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  806. ubi_err("bad vol_id");
  807. goto bad;
  808. }
  809. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  810. ubi_err("bad compat");
  811. goto bad;
  812. }
  813. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  814. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  815. compat != UBI_COMPAT_REJECT) {
  816. ubi_err("bad compat");
  817. goto bad;
  818. }
  819. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  820. ubi_err("bad vol_type");
  821. goto bad;
  822. }
  823. if (data_pad >= ubi->leb_size / 2) {
  824. ubi_err("bad data_pad");
  825. goto bad;
  826. }
  827. if (vol_type == UBI_VID_STATIC) {
  828. /*
  829. * Although from high-level point of view static volumes may
  830. * contain zero bytes of data, but no VID headers can contain
  831. * zero at these fields, because they empty volumes do not have
  832. * mapped logical eraseblocks.
  833. */
  834. if (used_ebs == 0) {
  835. ubi_err("zero used_ebs");
  836. goto bad;
  837. }
  838. if (data_size == 0) {
  839. ubi_err("zero data_size");
  840. goto bad;
  841. }
  842. if (lnum < used_ebs - 1) {
  843. if (data_size != usable_leb_size) {
  844. ubi_err("bad data_size");
  845. goto bad;
  846. }
  847. } else if (lnum == used_ebs - 1) {
  848. if (data_size == 0) {
  849. ubi_err("bad data_size at last LEB");
  850. goto bad;
  851. }
  852. } else {
  853. ubi_err("too high lnum");
  854. goto bad;
  855. }
  856. } else {
  857. if (copy_flag == 0) {
  858. if (data_crc != 0) {
  859. ubi_err("non-zero data CRC");
  860. goto bad;
  861. }
  862. if (data_size != 0) {
  863. ubi_err("non-zero data_size");
  864. goto bad;
  865. }
  866. } else {
  867. if (data_size == 0) {
  868. ubi_err("zero data_size of copy");
  869. goto bad;
  870. }
  871. }
  872. if (used_ebs != 0) {
  873. ubi_err("bad used_ebs");
  874. goto bad;
  875. }
  876. }
  877. return 0;
  878. bad:
  879. ubi_err("bad VID header");
  880. ubi_dump_vid_hdr(vid_hdr);
  881. dump_stack();
  882. return 1;
  883. }
  884. /**
  885. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  886. * @ubi: UBI device description object
  887. * @pnum: physical eraseblock number to read from
  888. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  889. * identifier header
  890. * @verbose: be verbose if the header is corrupted or wasn't found
  891. *
  892. * This function reads the volume identifier header from physical eraseblock
  893. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  894. * volume identifier header. The error codes are the same as in
  895. * 'ubi_io_read_ec_hdr()'.
  896. *
  897. * Note, the implementation of this function is also very similar to
  898. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  899. */
  900. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  901. struct ubi_vid_hdr *vid_hdr, int verbose)
  902. {
  903. int err, read_err;
  904. uint32_t crc, magic, hdr_crc;
  905. void *p;
  906. dbg_io("read VID header from PEB %d", pnum);
  907. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  908. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  909. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  910. ubi->vid_hdr_alsize);
  911. if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  912. return read_err;
  913. magic = be32_to_cpu(vid_hdr->magic);
  914. if (magic != UBI_VID_HDR_MAGIC) {
  915. if (mtd_is_eccerr(read_err))
  916. return UBI_IO_BAD_HDR_EBADMSG;
  917. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  918. if (verbose)
  919. ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
  920. pnum);
  921. dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
  922. pnum);
  923. if (!read_err)
  924. return UBI_IO_FF;
  925. else
  926. return UBI_IO_FF_BITFLIPS;
  927. }
  928. if (verbose) {
  929. ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
  930. pnum, magic, UBI_VID_HDR_MAGIC);
  931. ubi_dump_vid_hdr(vid_hdr);
  932. }
  933. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  934. pnum, magic, UBI_VID_HDR_MAGIC);
  935. return UBI_IO_BAD_HDR;
  936. }
  937. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  938. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  939. if (hdr_crc != crc) {
  940. if (verbose) {
  941. ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
  942. pnum, crc, hdr_crc);
  943. ubi_dump_vid_hdr(vid_hdr);
  944. }
  945. dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
  946. pnum, crc, hdr_crc);
  947. if (!read_err)
  948. return UBI_IO_BAD_HDR;
  949. else
  950. return UBI_IO_BAD_HDR_EBADMSG;
  951. }
  952. err = validate_vid_hdr(ubi, vid_hdr);
  953. if (err) {
  954. ubi_err("validation failed for PEB %d", pnum);
  955. return -EINVAL;
  956. }
  957. return read_err ? UBI_IO_BITFLIPS : 0;
  958. }
  959. /**
  960. * ubi_io_write_vid_hdr - write a volume identifier header.
  961. * @ubi: UBI device description object
  962. * @pnum: the physical eraseblock number to write to
  963. * @vid_hdr: the volume identifier header to write
  964. *
  965. * This function writes the volume identifier header described by @vid_hdr to
  966. * physical eraseblock @pnum. This function automatically fills the
  967. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  968. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  969. *
  970. * This function returns zero in case of success and a negative error code in
  971. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  972. * bad.
  973. */
  974. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  975. struct ubi_vid_hdr *vid_hdr)
  976. {
  977. int err;
  978. uint32_t crc;
  979. void *p;
  980. dbg_io("write VID header to PEB %d", pnum);
  981. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  982. err = self_check_peb_ec_hdr(ubi, pnum);
  983. if (err)
  984. return err;
  985. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  986. vid_hdr->version = UBI_VERSION;
  987. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  988. vid_hdr->hdr_crc = cpu_to_be32(crc);
  989. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  990. if (err)
  991. return err;
  992. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  993. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  994. ubi->vid_hdr_alsize);
  995. return err;
  996. }
  997. /**
  998. * self_check_not_bad - ensure that a physical eraseblock is not bad.
  999. * @ubi: UBI device description object
  1000. * @pnum: physical eraseblock number to check
  1001. *
  1002. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  1003. * it is bad and a negative error code if an error occurred.
  1004. */
  1005. static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
  1006. {
  1007. int err;
  1008. if (!ubi_dbg_chk_io(ubi))
  1009. return 0;
  1010. err = ubi_io_is_bad(ubi, pnum);
  1011. if (!err)
  1012. return err;
  1013. ubi_err("self-check failed for PEB %d", pnum);
  1014. dump_stack();
  1015. return err > 0 ? -EINVAL : err;
  1016. }
  1017. /**
  1018. * self_check_ec_hdr - check if an erase counter header is all right.
  1019. * @ubi: UBI device description object
  1020. * @pnum: physical eraseblock number the erase counter header belongs to
  1021. * @ec_hdr: the erase counter header to check
  1022. *
  1023. * This function returns zero if the erase counter header contains valid
  1024. * values, and %-EINVAL if not.
  1025. */
  1026. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1027. const struct ubi_ec_hdr *ec_hdr)
  1028. {
  1029. int err;
  1030. uint32_t magic;
  1031. if (!ubi_dbg_chk_io(ubi))
  1032. return 0;
  1033. magic = be32_to_cpu(ec_hdr->magic);
  1034. if (magic != UBI_EC_HDR_MAGIC) {
  1035. ubi_err("bad magic %#08x, must be %#08x",
  1036. magic, UBI_EC_HDR_MAGIC);
  1037. goto fail;
  1038. }
  1039. err = validate_ec_hdr(ubi, ec_hdr);
  1040. if (err) {
  1041. ubi_err("self-check failed for PEB %d", pnum);
  1042. goto fail;
  1043. }
  1044. return 0;
  1045. fail:
  1046. ubi_dump_ec_hdr(ec_hdr);
  1047. dump_stack();
  1048. return -EINVAL;
  1049. }
  1050. /**
  1051. * self_check_peb_ec_hdr - check erase counter header.
  1052. * @ubi: UBI device description object
  1053. * @pnum: the physical eraseblock number to check
  1054. *
  1055. * This function returns zero if the erase counter header is all right and and
  1056. * a negative error code if not or if an error occurred.
  1057. */
  1058. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1059. {
  1060. int err;
  1061. uint32_t crc, hdr_crc;
  1062. struct ubi_ec_hdr *ec_hdr;
  1063. if (!ubi_dbg_chk_io(ubi))
  1064. return 0;
  1065. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1066. if (!ec_hdr)
  1067. return -ENOMEM;
  1068. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1069. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1070. goto exit;
  1071. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1072. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1073. if (hdr_crc != crc) {
  1074. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1075. ubi_err("self-check failed for PEB %d", pnum);
  1076. ubi_dump_ec_hdr(ec_hdr);
  1077. dump_stack();
  1078. err = -EINVAL;
  1079. goto exit;
  1080. }
  1081. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  1082. exit:
  1083. kfree(ec_hdr);
  1084. return err;
  1085. }
  1086. /**
  1087. * self_check_vid_hdr - check that a volume identifier header is all right.
  1088. * @ubi: UBI device description object
  1089. * @pnum: physical eraseblock number the volume identifier header belongs to
  1090. * @vid_hdr: the volume identifier header to check
  1091. *
  1092. * This function returns zero if the volume identifier header is all right, and
  1093. * %-EINVAL if not.
  1094. */
  1095. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1096. const struct ubi_vid_hdr *vid_hdr)
  1097. {
  1098. int err;
  1099. uint32_t magic;
  1100. if (!ubi_dbg_chk_io(ubi))
  1101. return 0;
  1102. magic = be32_to_cpu(vid_hdr->magic);
  1103. if (magic != UBI_VID_HDR_MAGIC) {
  1104. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1105. magic, pnum, UBI_VID_HDR_MAGIC);
  1106. goto fail;
  1107. }
  1108. err = validate_vid_hdr(ubi, vid_hdr);
  1109. if (err) {
  1110. ubi_err("self-check failed for PEB %d", pnum);
  1111. goto fail;
  1112. }
  1113. return err;
  1114. fail:
  1115. ubi_err("self-check failed for PEB %d", pnum);
  1116. ubi_dump_vid_hdr(vid_hdr);
  1117. dump_stack();
  1118. return -EINVAL;
  1119. }
  1120. /**
  1121. * self_check_peb_vid_hdr - check volume identifier header.
  1122. * @ubi: UBI device description object
  1123. * @pnum: the physical eraseblock number to check
  1124. *
  1125. * This function returns zero if the volume identifier header is all right,
  1126. * and a negative error code if not or if an error occurred.
  1127. */
  1128. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1129. {
  1130. int err;
  1131. uint32_t crc, hdr_crc;
  1132. struct ubi_vid_hdr *vid_hdr;
  1133. void *p;
  1134. if (!ubi_dbg_chk_io(ubi))
  1135. return 0;
  1136. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1137. if (!vid_hdr)
  1138. return -ENOMEM;
  1139. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1140. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1141. ubi->vid_hdr_alsize);
  1142. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1143. goto exit;
  1144. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1145. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1146. if (hdr_crc != crc) {
  1147. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
  1148. pnum, crc, hdr_crc);
  1149. ubi_err("self-check failed for PEB %d", pnum);
  1150. ubi_dump_vid_hdr(vid_hdr);
  1151. dump_stack();
  1152. err = -EINVAL;
  1153. goto exit;
  1154. }
  1155. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  1156. exit:
  1157. ubi_free_vid_hdr(ubi, vid_hdr);
  1158. return err;
  1159. }
  1160. /**
  1161. * self_check_write - make sure write succeeded.
  1162. * @ubi: UBI device description object
  1163. * @buf: buffer with data which were written
  1164. * @pnum: physical eraseblock number the data were written to
  1165. * @offset: offset within the physical eraseblock the data were written to
  1166. * @len: how many bytes were written
  1167. *
  1168. * This functions reads data which were recently written and compares it with
  1169. * the original data buffer - the data have to match. Returns zero if the data
  1170. * match and a negative error code if not or in case of failure.
  1171. */
  1172. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1173. int offset, int len)
  1174. {
  1175. int err, i;
  1176. size_t read;
  1177. void *buf1;
  1178. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1179. if (!ubi_dbg_chk_io(ubi))
  1180. return 0;
  1181. buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1182. if (!buf1) {
  1183. ubi_err("cannot allocate memory to check writes");
  1184. return 0;
  1185. }
  1186. err = mtd_read(ubi->mtd, addr, len, &read, buf1);
  1187. if (err && !mtd_is_bitflip(err))
  1188. goto out_free;
  1189. for (i = 0; i < len; i++) {
  1190. uint8_t c = ((uint8_t *)buf)[i];
  1191. uint8_t c1 = ((uint8_t *)buf1)[i];
  1192. int dump_len;
  1193. if (c == c1)
  1194. continue;
  1195. ubi_err("self-check failed for PEB %d:%d, len %d",
  1196. pnum, offset, len);
  1197. ubi_msg("data differ at position %d", i);
  1198. dump_len = max_t(int, 128, len - i);
  1199. ubi_msg("hex dump of the original buffer from %d to %d",
  1200. i, i + dump_len);
  1201. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1202. buf + i, dump_len, 1);
  1203. ubi_msg("hex dump of the read buffer from %d to %d",
  1204. i, i + dump_len);
  1205. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1206. buf1 + i, dump_len, 1);
  1207. dump_stack();
  1208. err = -EINVAL;
  1209. goto out_free;
  1210. }
  1211. vfree(buf1);
  1212. return 0;
  1213. out_free:
  1214. vfree(buf1);
  1215. return err;
  1216. }
  1217. /**
  1218. * ubi_self_check_all_ff - check that a region of flash is empty.
  1219. * @ubi: UBI device description object
  1220. * @pnum: the physical eraseblock number to check
  1221. * @offset: the starting offset within the physical eraseblock to check
  1222. * @len: the length of the region to check
  1223. *
  1224. * This function returns zero if only 0xFF bytes are present at offset
  1225. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1226. * or if an error occurred.
  1227. */
  1228. int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1229. {
  1230. size_t read;
  1231. int err;
  1232. void *buf;
  1233. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1234. if (!ubi_dbg_chk_io(ubi))
  1235. return 0;
  1236. buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1237. if (!buf) {
  1238. ubi_err("cannot allocate memory to check for 0xFFs");
  1239. return 0;
  1240. }
  1241. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  1242. if (err && !mtd_is_bitflip(err)) {
  1243. ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
  1244. err, len, pnum, offset, read);
  1245. goto error;
  1246. }
  1247. err = ubi_check_pattern(buf, 0xFF, len);
  1248. if (err == 0) {
  1249. ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
  1250. pnum, offset, len);
  1251. goto fail;
  1252. }
  1253. vfree(buf);
  1254. return 0;
  1255. fail:
  1256. ubi_err("self-check failed for PEB %d", pnum);
  1257. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1258. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
  1259. err = -EINVAL;
  1260. error:
  1261. dump_stack();
  1262. vfree(buf);
  1263. return err;
  1264. }