eba.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Author: Artem Bityutskiy (Битюцкий Артём)
  19. */
  20. /*
  21. * The UBI Eraseblock Association (EBA) sub-system.
  22. *
  23. * This sub-system is responsible for I/O to/from logical eraseblock.
  24. *
  25. * Although in this implementation the EBA table is fully kept and managed in
  26. * RAM, which assumes poor scalability, it might be (partially) maintained on
  27. * flash in future implementations.
  28. *
  29. * The EBA sub-system implements per-logical eraseblock locking. Before
  30. * accessing a logical eraseblock it is locked for reading or writing. The
  31. * per-logical eraseblock locking is implemented by means of the lock tree. The
  32. * lock tree is an RB-tree which refers all the currently locked logical
  33. * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
  34. * They are indexed by (@vol_id, @lnum) pairs.
  35. *
  36. * EBA also maintains the global sequence counter which is incremented each
  37. * time a logical eraseblock is mapped to a physical eraseblock and it is
  38. * stored in the volume identifier header. This means that each VID header has
  39. * a unique sequence number. The sequence number is only increased an we assume
  40. * 64 bits is enough to never overflow.
  41. */
  42. #include <linux/slab.h>
  43. #include <linux/crc32.h>
  44. #include <linux/err.h>
  45. #include "ubi.h"
  46. /* Number of physical eraseblocks reserved for atomic LEB change operation */
  47. #define EBA_RESERVED_PEBS 1
  48. /**
  49. * next_sqnum - get next sequence number.
  50. * @ubi: UBI device description object
  51. *
  52. * This function returns next sequence number to use, which is just the current
  53. * global sequence counter value. It also increases the global sequence
  54. * counter.
  55. */
  56. unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
  57. {
  58. unsigned long long sqnum;
  59. spin_lock(&ubi->ltree_lock);
  60. sqnum = ubi->global_sqnum++;
  61. spin_unlock(&ubi->ltree_lock);
  62. return sqnum;
  63. }
  64. /**
  65. * ubi_get_compat - get compatibility flags of a volume.
  66. * @ubi: UBI device description object
  67. * @vol_id: volume ID
  68. *
  69. * This function returns compatibility flags for an internal volume. User
  70. * volumes have no compatibility flags, so %0 is returned.
  71. */
  72. static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
  73. {
  74. if (vol_id == UBI_LAYOUT_VOLUME_ID)
  75. return UBI_LAYOUT_VOLUME_COMPAT;
  76. return 0;
  77. }
  78. /**
  79. * ltree_lookup - look up the lock tree.
  80. * @ubi: UBI device description object
  81. * @vol_id: volume ID
  82. * @lnum: logical eraseblock number
  83. *
  84. * This function returns a pointer to the corresponding &struct ubi_ltree_entry
  85. * object if the logical eraseblock is locked and %NULL if it is not.
  86. * @ubi->ltree_lock has to be locked.
  87. */
  88. static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
  89. int lnum)
  90. {
  91. struct rb_node *p;
  92. p = ubi->ltree.rb_node;
  93. while (p) {
  94. struct ubi_ltree_entry *le;
  95. le = rb_entry(p, struct ubi_ltree_entry, rb);
  96. if (vol_id < le->vol_id)
  97. p = p->rb_left;
  98. else if (vol_id > le->vol_id)
  99. p = p->rb_right;
  100. else {
  101. if (lnum < le->lnum)
  102. p = p->rb_left;
  103. else if (lnum > le->lnum)
  104. p = p->rb_right;
  105. else
  106. return le;
  107. }
  108. }
  109. return NULL;
  110. }
  111. /**
  112. * ltree_add_entry - add new entry to the lock tree.
  113. * @ubi: UBI device description object
  114. * @vol_id: volume ID
  115. * @lnum: logical eraseblock number
  116. *
  117. * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
  118. * lock tree. If such entry is already there, its usage counter is increased.
  119. * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
  120. * failed.
  121. */
  122. static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
  123. int vol_id, int lnum)
  124. {
  125. struct ubi_ltree_entry *le, *le1, *le_free;
  126. le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
  127. if (!le)
  128. return ERR_PTR(-ENOMEM);
  129. le->users = 0;
  130. init_rwsem(&le->mutex);
  131. le->vol_id = vol_id;
  132. le->lnum = lnum;
  133. spin_lock(&ubi->ltree_lock);
  134. le1 = ltree_lookup(ubi, vol_id, lnum);
  135. if (le1) {
  136. /*
  137. * This logical eraseblock is already locked. The newly
  138. * allocated lock entry is not needed.
  139. */
  140. le_free = le;
  141. le = le1;
  142. } else {
  143. struct rb_node **p, *parent = NULL;
  144. /*
  145. * No lock entry, add the newly allocated one to the
  146. * @ubi->ltree RB-tree.
  147. */
  148. le_free = NULL;
  149. p = &ubi->ltree.rb_node;
  150. while (*p) {
  151. parent = *p;
  152. le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
  153. if (vol_id < le1->vol_id)
  154. p = &(*p)->rb_left;
  155. else if (vol_id > le1->vol_id)
  156. p = &(*p)->rb_right;
  157. else {
  158. ubi_assert(lnum != le1->lnum);
  159. if (lnum < le1->lnum)
  160. p = &(*p)->rb_left;
  161. else
  162. p = &(*p)->rb_right;
  163. }
  164. }
  165. rb_link_node(&le->rb, parent, p);
  166. rb_insert_color(&le->rb, &ubi->ltree);
  167. }
  168. le->users += 1;
  169. spin_unlock(&ubi->ltree_lock);
  170. kfree(le_free);
  171. return le;
  172. }
  173. /**
  174. * leb_read_lock - lock logical eraseblock for reading.
  175. * @ubi: UBI device description object
  176. * @vol_id: volume ID
  177. * @lnum: logical eraseblock number
  178. *
  179. * This function locks a logical eraseblock for reading. Returns zero in case
  180. * of success and a negative error code in case of failure.
  181. */
  182. static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
  183. {
  184. struct ubi_ltree_entry *le;
  185. le = ltree_add_entry(ubi, vol_id, lnum);
  186. if (IS_ERR(le))
  187. return PTR_ERR(le);
  188. down_read(&le->mutex);
  189. return 0;
  190. }
  191. /**
  192. * leb_read_unlock - unlock logical eraseblock.
  193. * @ubi: UBI device description object
  194. * @vol_id: volume ID
  195. * @lnum: logical eraseblock number
  196. */
  197. static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  198. {
  199. struct ubi_ltree_entry *le;
  200. spin_lock(&ubi->ltree_lock);
  201. le = ltree_lookup(ubi, vol_id, lnum);
  202. le->users -= 1;
  203. ubi_assert(le->users >= 0);
  204. up_read(&le->mutex);
  205. if (le->users == 0) {
  206. rb_erase(&le->rb, &ubi->ltree);
  207. kfree(le);
  208. }
  209. spin_unlock(&ubi->ltree_lock);
  210. }
  211. /**
  212. * leb_write_lock - lock logical eraseblock for writing.
  213. * @ubi: UBI device description object
  214. * @vol_id: volume ID
  215. * @lnum: logical eraseblock number
  216. *
  217. * This function locks a logical eraseblock for writing. Returns zero in case
  218. * of success and a negative error code in case of failure.
  219. */
  220. static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
  221. {
  222. struct ubi_ltree_entry *le;
  223. le = ltree_add_entry(ubi, vol_id, lnum);
  224. if (IS_ERR(le))
  225. return PTR_ERR(le);
  226. down_write(&le->mutex);
  227. return 0;
  228. }
  229. /**
  230. * leb_write_lock - lock logical eraseblock for writing.
  231. * @ubi: UBI device description object
  232. * @vol_id: volume ID
  233. * @lnum: logical eraseblock number
  234. *
  235. * This function locks a logical eraseblock for writing if there is no
  236. * contention and does nothing if there is contention. Returns %0 in case of
  237. * success, %1 in case of contention, and and a negative error code in case of
  238. * failure.
  239. */
  240. static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
  241. {
  242. struct ubi_ltree_entry *le;
  243. le = ltree_add_entry(ubi, vol_id, lnum);
  244. if (IS_ERR(le))
  245. return PTR_ERR(le);
  246. if (down_write_trylock(&le->mutex))
  247. return 0;
  248. /* Contention, cancel */
  249. spin_lock(&ubi->ltree_lock);
  250. le->users -= 1;
  251. ubi_assert(le->users >= 0);
  252. if (le->users == 0) {
  253. rb_erase(&le->rb, &ubi->ltree);
  254. kfree(le);
  255. }
  256. spin_unlock(&ubi->ltree_lock);
  257. return 1;
  258. }
  259. /**
  260. * leb_write_unlock - unlock logical eraseblock.
  261. * @ubi: UBI device description object
  262. * @vol_id: volume ID
  263. * @lnum: logical eraseblock number
  264. */
  265. static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
  266. {
  267. struct ubi_ltree_entry *le;
  268. spin_lock(&ubi->ltree_lock);
  269. le = ltree_lookup(ubi, vol_id, lnum);
  270. le->users -= 1;
  271. ubi_assert(le->users >= 0);
  272. up_write(&le->mutex);
  273. if (le->users == 0) {
  274. rb_erase(&le->rb, &ubi->ltree);
  275. kfree(le);
  276. }
  277. spin_unlock(&ubi->ltree_lock);
  278. }
  279. /**
  280. * ubi_eba_unmap_leb - un-map logical eraseblock.
  281. * @ubi: UBI device description object
  282. * @vol: volume description object
  283. * @lnum: logical eraseblock number
  284. *
  285. * This function un-maps logical eraseblock @lnum and schedules corresponding
  286. * physical eraseblock for erasure. Returns zero in case of success and a
  287. * negative error code in case of failure.
  288. */
  289. int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
  290. int lnum)
  291. {
  292. int err, pnum, vol_id = vol->vol_id;
  293. if (ubi->ro_mode)
  294. return -EROFS;
  295. err = leb_write_lock(ubi, vol_id, lnum);
  296. if (err)
  297. return err;
  298. pnum = vol->eba_tbl[lnum];
  299. if (pnum < 0)
  300. /* This logical eraseblock is already unmapped */
  301. goto out_unlock;
  302. dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
  303. down_read(&ubi->fm_sem);
  304. vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
  305. up_read(&ubi->fm_sem);
  306. err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
  307. out_unlock:
  308. leb_write_unlock(ubi, vol_id, lnum);
  309. return err;
  310. }
  311. /**
  312. * ubi_eba_read_leb - read data.
  313. * @ubi: UBI device description object
  314. * @vol: volume description object
  315. * @lnum: logical eraseblock number
  316. * @buf: buffer to store the read data
  317. * @offset: offset from where to read
  318. * @len: how many bytes to read
  319. * @check: data CRC check flag
  320. *
  321. * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
  322. * bytes. The @check flag only makes sense for static volumes and forces
  323. * eraseblock data CRC checking.
  324. *
  325. * In case of success this function returns zero. In case of a static volume,
  326. * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
  327. * returned for any volume type if an ECC error was detected by the MTD device
  328. * driver. Other negative error cored may be returned in case of other errors.
  329. */
  330. int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  331. void *buf, int offset, int len, int check)
  332. {
  333. int err, pnum, scrub = 0, vol_id = vol->vol_id;
  334. struct ubi_vid_hdr *vid_hdr;
  335. uint32_t uninitialized_var(crc);
  336. err = leb_read_lock(ubi, vol_id, lnum);
  337. if (err)
  338. return err;
  339. pnum = vol->eba_tbl[lnum];
  340. if (pnum < 0) {
  341. /*
  342. * The logical eraseblock is not mapped, fill the whole buffer
  343. * with 0xFF bytes. The exception is static volumes for which
  344. * it is an error to read unmapped logical eraseblocks.
  345. */
  346. dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
  347. len, offset, vol_id, lnum);
  348. leb_read_unlock(ubi, vol_id, lnum);
  349. ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
  350. memset(buf, 0xFF, len);
  351. return 0;
  352. }
  353. dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
  354. len, offset, vol_id, lnum, pnum);
  355. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  356. check = 0;
  357. retry:
  358. if (check) {
  359. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  360. if (!vid_hdr) {
  361. err = -ENOMEM;
  362. goto out_unlock;
  363. }
  364. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  365. if (err && err != UBI_IO_BITFLIPS) {
  366. if (err > 0) {
  367. /*
  368. * The header is either absent or corrupted.
  369. * The former case means there is a bug -
  370. * switch to read-only mode just in case.
  371. * The latter case means a real corruption - we
  372. * may try to recover data. FIXME: but this is
  373. * not implemented.
  374. */
  375. if (err == UBI_IO_BAD_HDR_EBADMSG ||
  376. err == UBI_IO_BAD_HDR) {
  377. ubi_warn("corrupted VID header at PEB %d, LEB %d:%d",
  378. pnum, vol_id, lnum);
  379. err = -EBADMSG;
  380. } else
  381. ubi_ro_mode(ubi);
  382. }
  383. goto out_free;
  384. } else if (err == UBI_IO_BITFLIPS)
  385. scrub = 1;
  386. ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
  387. ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
  388. crc = be32_to_cpu(vid_hdr->data_crc);
  389. ubi_free_vid_hdr(ubi, vid_hdr);
  390. }
  391. err = ubi_io_read_data(ubi, buf, pnum, offset, len);
  392. if (err) {
  393. if (err == UBI_IO_BITFLIPS) {
  394. scrub = 1;
  395. err = 0;
  396. } else if (mtd_is_eccerr(err)) {
  397. if (vol->vol_type == UBI_DYNAMIC_VOLUME)
  398. goto out_unlock;
  399. scrub = 1;
  400. if (!check) {
  401. ubi_msg("force data checking");
  402. check = 1;
  403. goto retry;
  404. }
  405. } else
  406. goto out_unlock;
  407. }
  408. if (check) {
  409. uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
  410. if (crc1 != crc) {
  411. ubi_warn("CRC error: calculated %#08x, must be %#08x",
  412. crc1, crc);
  413. err = -EBADMSG;
  414. goto out_unlock;
  415. }
  416. }
  417. if (scrub)
  418. err = ubi_wl_scrub_peb(ubi, pnum);
  419. leb_read_unlock(ubi, vol_id, lnum);
  420. return err;
  421. out_free:
  422. ubi_free_vid_hdr(ubi, vid_hdr);
  423. out_unlock:
  424. leb_read_unlock(ubi, vol_id, lnum);
  425. return err;
  426. }
  427. /**
  428. * recover_peb - recover from write failure.
  429. * @ubi: UBI device description object
  430. * @pnum: the physical eraseblock to recover
  431. * @vol_id: volume ID
  432. * @lnum: logical eraseblock number
  433. * @buf: data which was not written because of the write failure
  434. * @offset: offset of the failed write
  435. * @len: how many bytes should have been written
  436. *
  437. * This function is called in case of a write failure and moves all good data
  438. * from the potentially bad physical eraseblock to a good physical eraseblock.
  439. * This function also writes the data which was not written due to the failure.
  440. * Returns new physical eraseblock number in case of success, and a negative
  441. * error code in case of failure.
  442. */
  443. static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
  444. const void *buf, int offset, int len)
  445. {
  446. int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
  447. struct ubi_volume *vol = ubi->volumes[idx];
  448. struct ubi_vid_hdr *vid_hdr;
  449. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  450. if (!vid_hdr)
  451. return -ENOMEM;
  452. retry:
  453. new_pnum = ubi_wl_get_peb(ubi);
  454. if (new_pnum < 0) {
  455. ubi_free_vid_hdr(ubi, vid_hdr);
  456. return new_pnum;
  457. }
  458. ubi_msg("recover PEB %d, move data to PEB %d", pnum, new_pnum);
  459. err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
  460. if (err && err != UBI_IO_BITFLIPS) {
  461. if (err > 0)
  462. err = -EIO;
  463. goto out_put;
  464. }
  465. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  466. err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
  467. if (err)
  468. goto write_error;
  469. data_size = offset + len;
  470. mutex_lock(&ubi->buf_mutex);
  471. memset(ubi->peb_buf + offset, 0xFF, len);
  472. /* Read everything before the area where the write failure happened */
  473. if (offset > 0) {
  474. err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
  475. if (err && err != UBI_IO_BITFLIPS)
  476. goto out_unlock;
  477. }
  478. memcpy(ubi->peb_buf + offset, buf, len);
  479. err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
  480. if (err) {
  481. mutex_unlock(&ubi->buf_mutex);
  482. goto write_error;
  483. }
  484. mutex_unlock(&ubi->buf_mutex);
  485. ubi_free_vid_hdr(ubi, vid_hdr);
  486. down_read(&ubi->fm_sem);
  487. vol->eba_tbl[lnum] = new_pnum;
  488. up_read(&ubi->fm_sem);
  489. ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
  490. ubi_msg("data was successfully recovered");
  491. return 0;
  492. out_unlock:
  493. mutex_unlock(&ubi->buf_mutex);
  494. out_put:
  495. ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
  496. ubi_free_vid_hdr(ubi, vid_hdr);
  497. return err;
  498. write_error:
  499. /*
  500. * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
  501. * get another one.
  502. */
  503. ubi_warn("failed to write to PEB %d", new_pnum);
  504. ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
  505. if (++tries > UBI_IO_RETRIES) {
  506. ubi_free_vid_hdr(ubi, vid_hdr);
  507. return err;
  508. }
  509. ubi_msg("try again");
  510. goto retry;
  511. }
  512. /**
  513. * ubi_eba_write_leb - write data to dynamic volume.
  514. * @ubi: UBI device description object
  515. * @vol: volume description object
  516. * @lnum: logical eraseblock number
  517. * @buf: the data to write
  518. * @offset: offset within the logical eraseblock where to write
  519. * @len: how many bytes to write
  520. *
  521. * This function writes data to logical eraseblock @lnum of a dynamic volume
  522. * @vol. Returns zero in case of success and a negative error code in case
  523. * of failure. In case of error, it is possible that something was still
  524. * written to the flash media, but may be some garbage.
  525. */
  526. int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
  527. const void *buf, int offset, int len)
  528. {
  529. int err, pnum, tries = 0, vol_id = vol->vol_id;
  530. struct ubi_vid_hdr *vid_hdr;
  531. if (ubi->ro_mode)
  532. return -EROFS;
  533. err = leb_write_lock(ubi, vol_id, lnum);
  534. if (err)
  535. return err;
  536. pnum = vol->eba_tbl[lnum];
  537. if (pnum >= 0) {
  538. dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
  539. len, offset, vol_id, lnum, pnum);
  540. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  541. if (err) {
  542. ubi_warn("failed to write data to PEB %d", pnum);
  543. if (err == -EIO && ubi->bad_allowed)
  544. err = recover_peb(ubi, pnum, vol_id, lnum, buf,
  545. offset, len);
  546. if (err)
  547. ubi_ro_mode(ubi);
  548. }
  549. leb_write_unlock(ubi, vol_id, lnum);
  550. return err;
  551. }
  552. /*
  553. * The logical eraseblock is not mapped. We have to get a free physical
  554. * eraseblock and write the volume identifier header there first.
  555. */
  556. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  557. if (!vid_hdr) {
  558. leb_write_unlock(ubi, vol_id, lnum);
  559. return -ENOMEM;
  560. }
  561. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  562. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  563. vid_hdr->vol_id = cpu_to_be32(vol_id);
  564. vid_hdr->lnum = cpu_to_be32(lnum);
  565. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  566. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  567. retry:
  568. pnum = ubi_wl_get_peb(ubi);
  569. if (pnum < 0) {
  570. ubi_free_vid_hdr(ubi, vid_hdr);
  571. leb_write_unlock(ubi, vol_id, lnum);
  572. return pnum;
  573. }
  574. dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
  575. len, offset, vol_id, lnum, pnum);
  576. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  577. if (err) {
  578. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  579. vol_id, lnum, pnum);
  580. goto write_error;
  581. }
  582. if (len) {
  583. err = ubi_io_write_data(ubi, buf, pnum, offset, len);
  584. if (err) {
  585. ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
  586. len, offset, vol_id, lnum, pnum);
  587. goto write_error;
  588. }
  589. }
  590. down_read(&ubi->fm_sem);
  591. vol->eba_tbl[lnum] = pnum;
  592. up_read(&ubi->fm_sem);
  593. leb_write_unlock(ubi, vol_id, lnum);
  594. ubi_free_vid_hdr(ubi, vid_hdr);
  595. return 0;
  596. write_error:
  597. if (err != -EIO || !ubi->bad_allowed) {
  598. ubi_ro_mode(ubi);
  599. leb_write_unlock(ubi, vol_id, lnum);
  600. ubi_free_vid_hdr(ubi, vid_hdr);
  601. return err;
  602. }
  603. /*
  604. * Fortunately, this is the first write operation to this physical
  605. * eraseblock, so just put it and request a new one. We assume that if
  606. * this physical eraseblock went bad, the erase code will handle that.
  607. */
  608. err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
  609. if (err || ++tries > UBI_IO_RETRIES) {
  610. ubi_ro_mode(ubi);
  611. leb_write_unlock(ubi, vol_id, lnum);
  612. ubi_free_vid_hdr(ubi, vid_hdr);
  613. return err;
  614. }
  615. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  616. ubi_msg("try another PEB");
  617. goto retry;
  618. }
  619. /**
  620. * ubi_eba_write_leb_st - write data to static volume.
  621. * @ubi: UBI device description object
  622. * @vol: volume description object
  623. * @lnum: logical eraseblock number
  624. * @buf: data to write
  625. * @len: how many bytes to write
  626. * @used_ebs: how many logical eraseblocks will this volume contain
  627. *
  628. * This function writes data to logical eraseblock @lnum of static volume
  629. * @vol. The @used_ebs argument should contain total number of logical
  630. * eraseblock in this static volume.
  631. *
  632. * When writing to the last logical eraseblock, the @len argument doesn't have
  633. * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
  634. * to the real data size, although the @buf buffer has to contain the
  635. * alignment. In all other cases, @len has to be aligned.
  636. *
  637. * It is prohibited to write more than once to logical eraseblocks of static
  638. * volumes. This function returns zero in case of success and a negative error
  639. * code in case of failure.
  640. */
  641. int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
  642. int lnum, const void *buf, int len, int used_ebs)
  643. {
  644. int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
  645. struct ubi_vid_hdr *vid_hdr;
  646. uint32_t crc;
  647. if (ubi->ro_mode)
  648. return -EROFS;
  649. if (lnum == used_ebs - 1)
  650. /* If this is the last LEB @len may be unaligned */
  651. len = ALIGN(data_size, ubi->min_io_size);
  652. else
  653. ubi_assert(!(len & (ubi->min_io_size - 1)));
  654. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  655. if (!vid_hdr)
  656. return -ENOMEM;
  657. err = leb_write_lock(ubi, vol_id, lnum);
  658. if (err) {
  659. ubi_free_vid_hdr(ubi, vid_hdr);
  660. return err;
  661. }
  662. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  663. vid_hdr->vol_id = cpu_to_be32(vol_id);
  664. vid_hdr->lnum = cpu_to_be32(lnum);
  665. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  666. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  667. crc = crc32(UBI_CRC32_INIT, buf, data_size);
  668. vid_hdr->vol_type = UBI_VID_STATIC;
  669. vid_hdr->data_size = cpu_to_be32(data_size);
  670. vid_hdr->used_ebs = cpu_to_be32(used_ebs);
  671. vid_hdr->data_crc = cpu_to_be32(crc);
  672. retry:
  673. pnum = ubi_wl_get_peb(ubi);
  674. if (pnum < 0) {
  675. ubi_free_vid_hdr(ubi, vid_hdr);
  676. leb_write_unlock(ubi, vol_id, lnum);
  677. return pnum;
  678. }
  679. dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
  680. len, vol_id, lnum, pnum, used_ebs);
  681. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  682. if (err) {
  683. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  684. vol_id, lnum, pnum);
  685. goto write_error;
  686. }
  687. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  688. if (err) {
  689. ubi_warn("failed to write %d bytes of data to PEB %d",
  690. len, pnum);
  691. goto write_error;
  692. }
  693. ubi_assert(vol->eba_tbl[lnum] < 0);
  694. down_read(&ubi->fm_sem);
  695. vol->eba_tbl[lnum] = pnum;
  696. up_read(&ubi->fm_sem);
  697. leb_write_unlock(ubi, vol_id, lnum);
  698. ubi_free_vid_hdr(ubi, vid_hdr);
  699. return 0;
  700. write_error:
  701. if (err != -EIO || !ubi->bad_allowed) {
  702. /*
  703. * This flash device does not admit of bad eraseblocks or
  704. * something nasty and unexpected happened. Switch to read-only
  705. * mode just in case.
  706. */
  707. ubi_ro_mode(ubi);
  708. leb_write_unlock(ubi, vol_id, lnum);
  709. ubi_free_vid_hdr(ubi, vid_hdr);
  710. return err;
  711. }
  712. err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
  713. if (err || ++tries > UBI_IO_RETRIES) {
  714. ubi_ro_mode(ubi);
  715. leb_write_unlock(ubi, vol_id, lnum);
  716. ubi_free_vid_hdr(ubi, vid_hdr);
  717. return err;
  718. }
  719. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  720. ubi_msg("try another PEB");
  721. goto retry;
  722. }
  723. /*
  724. * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
  725. * @ubi: UBI device description object
  726. * @vol: volume description object
  727. * @lnum: logical eraseblock number
  728. * @buf: data to write
  729. * @len: how many bytes to write
  730. *
  731. * This function changes the contents of a logical eraseblock atomically. @buf
  732. * has to contain new logical eraseblock data, and @len - the length of the
  733. * data, which has to be aligned. This function guarantees that in case of an
  734. * unclean reboot the old contents is preserved. Returns zero in case of
  735. * success and a negative error code in case of failure.
  736. *
  737. * UBI reserves one LEB for the "atomic LEB change" operation, so only one
  738. * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
  739. */
  740. int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
  741. int lnum, const void *buf, int len)
  742. {
  743. int err, pnum, tries = 0, vol_id = vol->vol_id;
  744. struct ubi_vid_hdr *vid_hdr;
  745. uint32_t crc;
  746. if (ubi->ro_mode)
  747. return -EROFS;
  748. if (len == 0) {
  749. /*
  750. * Special case when data length is zero. In this case the LEB
  751. * has to be unmapped and mapped somewhere else.
  752. */
  753. err = ubi_eba_unmap_leb(ubi, vol, lnum);
  754. if (err)
  755. return err;
  756. return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
  757. }
  758. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  759. if (!vid_hdr)
  760. return -ENOMEM;
  761. mutex_lock(&ubi->alc_mutex);
  762. err = leb_write_lock(ubi, vol_id, lnum);
  763. if (err)
  764. goto out_mutex;
  765. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  766. vid_hdr->vol_id = cpu_to_be32(vol_id);
  767. vid_hdr->lnum = cpu_to_be32(lnum);
  768. vid_hdr->compat = ubi_get_compat(ubi, vol_id);
  769. vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
  770. crc = crc32(UBI_CRC32_INIT, buf, len);
  771. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  772. vid_hdr->data_size = cpu_to_be32(len);
  773. vid_hdr->copy_flag = 1;
  774. vid_hdr->data_crc = cpu_to_be32(crc);
  775. retry:
  776. pnum = ubi_wl_get_peb(ubi);
  777. if (pnum < 0) {
  778. err = pnum;
  779. goto out_leb_unlock;
  780. }
  781. dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
  782. vol_id, lnum, vol->eba_tbl[lnum], pnum);
  783. err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
  784. if (err) {
  785. ubi_warn("failed to write VID header to LEB %d:%d, PEB %d",
  786. vol_id, lnum, pnum);
  787. goto write_error;
  788. }
  789. err = ubi_io_write_data(ubi, buf, pnum, 0, len);
  790. if (err) {
  791. ubi_warn("failed to write %d bytes of data to PEB %d",
  792. len, pnum);
  793. goto write_error;
  794. }
  795. if (vol->eba_tbl[lnum] >= 0) {
  796. err = ubi_wl_put_peb(ubi, vol_id, lnum, vol->eba_tbl[lnum], 0);
  797. if (err)
  798. goto out_leb_unlock;
  799. }
  800. down_read(&ubi->fm_sem);
  801. vol->eba_tbl[lnum] = pnum;
  802. up_read(&ubi->fm_sem);
  803. out_leb_unlock:
  804. leb_write_unlock(ubi, vol_id, lnum);
  805. out_mutex:
  806. mutex_unlock(&ubi->alc_mutex);
  807. ubi_free_vid_hdr(ubi, vid_hdr);
  808. return err;
  809. write_error:
  810. if (err != -EIO || !ubi->bad_allowed) {
  811. /*
  812. * This flash device does not admit of bad eraseblocks or
  813. * something nasty and unexpected happened. Switch to read-only
  814. * mode just in case.
  815. */
  816. ubi_ro_mode(ubi);
  817. goto out_leb_unlock;
  818. }
  819. err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
  820. if (err || ++tries > UBI_IO_RETRIES) {
  821. ubi_ro_mode(ubi);
  822. goto out_leb_unlock;
  823. }
  824. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  825. ubi_msg("try another PEB");
  826. goto retry;
  827. }
  828. /**
  829. * is_error_sane - check whether a read error is sane.
  830. * @err: code of the error happened during reading
  831. *
  832. * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
  833. * cannot read data from the target PEB (an error @err happened). If the error
  834. * code is sane, then we treat this error as non-fatal. Otherwise the error is
  835. * fatal and UBI will be switched to R/O mode later.
  836. *
  837. * The idea is that we try not to switch to R/O mode if the read error is
  838. * something which suggests there was a real read problem. E.g., %-EIO. Or a
  839. * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
  840. * mode, simply because we do not know what happened at the MTD level, and we
  841. * cannot handle this. E.g., the underlying driver may have become crazy, and
  842. * it is safer to switch to R/O mode to preserve the data.
  843. *
  844. * And bear in mind, this is about reading from the target PEB, i.e. the PEB
  845. * which we have just written.
  846. */
  847. static int is_error_sane(int err)
  848. {
  849. if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
  850. err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
  851. return 0;
  852. return 1;
  853. }
  854. /**
  855. * ubi_eba_copy_leb - copy logical eraseblock.
  856. * @ubi: UBI device description object
  857. * @from: physical eraseblock number from where to copy
  858. * @to: physical eraseblock number where to copy
  859. * @vid_hdr: VID header of the @from physical eraseblock
  860. *
  861. * This function copies logical eraseblock from physical eraseblock @from to
  862. * physical eraseblock @to. The @vid_hdr buffer may be changed by this
  863. * function. Returns:
  864. * o %0 in case of success;
  865. * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
  866. * o a negative error code in case of failure.
  867. */
  868. int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
  869. struct ubi_vid_hdr *vid_hdr)
  870. {
  871. int err, vol_id, lnum, data_size, aldata_size, idx;
  872. struct ubi_volume *vol;
  873. uint32_t crc;
  874. vol_id = be32_to_cpu(vid_hdr->vol_id);
  875. lnum = be32_to_cpu(vid_hdr->lnum);
  876. dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
  877. if (vid_hdr->vol_type == UBI_VID_STATIC) {
  878. data_size = be32_to_cpu(vid_hdr->data_size);
  879. aldata_size = ALIGN(data_size, ubi->min_io_size);
  880. } else
  881. data_size = aldata_size =
  882. ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
  883. idx = vol_id2idx(ubi, vol_id);
  884. spin_lock(&ubi->volumes_lock);
  885. /*
  886. * Note, we may race with volume deletion, which means that the volume
  887. * this logical eraseblock belongs to might be being deleted. Since the
  888. * volume deletion un-maps all the volume's logical eraseblocks, it will
  889. * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
  890. */
  891. vol = ubi->volumes[idx];
  892. spin_unlock(&ubi->volumes_lock);
  893. if (!vol) {
  894. /* No need to do further work, cancel */
  895. dbg_wl("volume %d is being removed, cancel", vol_id);
  896. return MOVE_CANCEL_RACE;
  897. }
  898. /*
  899. * We do not want anybody to write to this logical eraseblock while we
  900. * are moving it, so lock it.
  901. *
  902. * Note, we are using non-waiting locking here, because we cannot sleep
  903. * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
  904. * unmapping the LEB which is mapped to the PEB we are going to move
  905. * (@from). This task locks the LEB and goes sleep in the
  906. * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
  907. * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
  908. * LEB is already locked, we just do not move it and return
  909. * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
  910. * we do not know the reasons of the contention - it may be just a
  911. * normal I/O on this LEB, so we want to re-try.
  912. */
  913. err = leb_write_trylock(ubi, vol_id, lnum);
  914. if (err) {
  915. dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
  916. return MOVE_RETRY;
  917. }
  918. /*
  919. * The LEB might have been put meanwhile, and the task which put it is
  920. * probably waiting on @ubi->move_mutex. No need to continue the work,
  921. * cancel it.
  922. */
  923. if (vol->eba_tbl[lnum] != from) {
  924. dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
  925. vol_id, lnum, from, vol->eba_tbl[lnum]);
  926. err = MOVE_CANCEL_RACE;
  927. goto out_unlock_leb;
  928. }
  929. /*
  930. * OK, now the LEB is locked and we can safely start moving it. Since
  931. * this function utilizes the @ubi->peb_buf buffer which is shared
  932. * with some other functions - we lock the buffer by taking the
  933. * @ubi->buf_mutex.
  934. */
  935. mutex_lock(&ubi->buf_mutex);
  936. dbg_wl("read %d bytes of data", aldata_size);
  937. err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
  938. if (err && err != UBI_IO_BITFLIPS) {
  939. ubi_warn("error %d while reading data from PEB %d",
  940. err, from);
  941. err = MOVE_SOURCE_RD_ERR;
  942. goto out_unlock_buf;
  943. }
  944. /*
  945. * Now we have got to calculate how much data we have to copy. In
  946. * case of a static volume it is fairly easy - the VID header contains
  947. * the data size. In case of a dynamic volume it is more difficult - we
  948. * have to read the contents, cut 0xFF bytes from the end and copy only
  949. * the first part. We must do this to avoid writing 0xFF bytes as it
  950. * may have some side-effects. And not only this. It is important not
  951. * to include those 0xFFs to CRC because later the they may be filled
  952. * by data.
  953. */
  954. if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
  955. aldata_size = data_size =
  956. ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
  957. cond_resched();
  958. crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
  959. cond_resched();
  960. /*
  961. * It may turn out to be that the whole @from physical eraseblock
  962. * contains only 0xFF bytes. Then we have to only write the VID header
  963. * and do not write any data. This also means we should not set
  964. * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
  965. */
  966. if (data_size > 0) {
  967. vid_hdr->copy_flag = 1;
  968. vid_hdr->data_size = cpu_to_be32(data_size);
  969. vid_hdr->data_crc = cpu_to_be32(crc);
  970. }
  971. vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
  972. err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
  973. if (err) {
  974. if (err == -EIO)
  975. err = MOVE_TARGET_WR_ERR;
  976. goto out_unlock_buf;
  977. }
  978. cond_resched();
  979. /* Read the VID header back and check if it was written correctly */
  980. err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
  981. if (err) {
  982. if (err != UBI_IO_BITFLIPS) {
  983. ubi_warn("error %d while reading VID header back from PEB %d",
  984. err, to);
  985. if (is_error_sane(err))
  986. err = MOVE_TARGET_RD_ERR;
  987. } else
  988. err = MOVE_TARGET_BITFLIPS;
  989. goto out_unlock_buf;
  990. }
  991. if (data_size > 0) {
  992. err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
  993. if (err) {
  994. if (err == -EIO)
  995. err = MOVE_TARGET_WR_ERR;
  996. goto out_unlock_buf;
  997. }
  998. cond_resched();
  999. /*
  1000. * We've written the data and are going to read it back to make
  1001. * sure it was written correctly.
  1002. */
  1003. memset(ubi->peb_buf, 0xFF, aldata_size);
  1004. err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
  1005. if (err) {
  1006. if (err != UBI_IO_BITFLIPS) {
  1007. ubi_warn("error %d while reading data back from PEB %d",
  1008. err, to);
  1009. if (is_error_sane(err))
  1010. err = MOVE_TARGET_RD_ERR;
  1011. } else
  1012. err = MOVE_TARGET_BITFLIPS;
  1013. goto out_unlock_buf;
  1014. }
  1015. cond_resched();
  1016. if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
  1017. ubi_warn("read data back from PEB %d and it is different",
  1018. to);
  1019. err = -EINVAL;
  1020. goto out_unlock_buf;
  1021. }
  1022. }
  1023. ubi_assert(vol->eba_tbl[lnum] == from);
  1024. down_read(&ubi->fm_sem);
  1025. vol->eba_tbl[lnum] = to;
  1026. up_read(&ubi->fm_sem);
  1027. out_unlock_buf:
  1028. mutex_unlock(&ubi->buf_mutex);
  1029. out_unlock_leb:
  1030. leb_write_unlock(ubi, vol_id, lnum);
  1031. return err;
  1032. }
  1033. /**
  1034. * print_rsvd_warning - warn about not having enough reserved PEBs.
  1035. * @ubi: UBI device description object
  1036. *
  1037. * This is a helper function for 'ubi_eba_init()' which is called when UBI
  1038. * cannot reserve enough PEBs for bad block handling. This function makes a
  1039. * decision whether we have to print a warning or not. The algorithm is as
  1040. * follows:
  1041. * o if this is a new UBI image, then just print the warning
  1042. * o if this is an UBI image which has already been used for some time, print
  1043. * a warning only if we can reserve less than 10% of the expected amount of
  1044. * the reserved PEB.
  1045. *
  1046. * The idea is that when UBI is used, PEBs become bad, and the reserved pool
  1047. * of PEBs becomes smaller, which is normal and we do not want to scare users
  1048. * with a warning every time they attach the MTD device. This was an issue
  1049. * reported by real users.
  1050. */
  1051. static void print_rsvd_warning(struct ubi_device *ubi,
  1052. struct ubi_attach_info *ai)
  1053. {
  1054. /*
  1055. * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
  1056. * large number to distinguish between newly flashed and used images.
  1057. */
  1058. if (ai->max_sqnum > (1 << 18)) {
  1059. int min = ubi->beb_rsvd_level / 10;
  1060. if (!min)
  1061. min = 1;
  1062. if (ubi->beb_rsvd_pebs > min)
  1063. return;
  1064. }
  1065. ubi_warn("cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
  1066. ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
  1067. if (ubi->corr_peb_count)
  1068. ubi_warn("%d PEBs are corrupted and not used",
  1069. ubi->corr_peb_count);
  1070. }
  1071. /**
  1072. * self_check_eba - run a self check on the EBA table constructed by fastmap.
  1073. * @ubi: UBI device description object
  1074. * @ai_fastmap: UBI attach info object created by fastmap
  1075. * @ai_scan: UBI attach info object created by scanning
  1076. *
  1077. * Returns < 0 in case of an internal error, 0 otherwise.
  1078. * If a bad EBA table entry was found it will be printed out and
  1079. * ubi_assert() triggers.
  1080. */
  1081. int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
  1082. struct ubi_attach_info *ai_scan)
  1083. {
  1084. int i, j, num_volumes, ret = 0;
  1085. int **scan_eba, **fm_eba;
  1086. struct ubi_ainf_volume *av;
  1087. struct ubi_volume *vol;
  1088. struct ubi_ainf_peb *aeb;
  1089. struct rb_node *rb;
  1090. num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
  1091. scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
  1092. if (!scan_eba)
  1093. return -ENOMEM;
  1094. fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
  1095. if (!fm_eba) {
  1096. kfree(scan_eba);
  1097. return -ENOMEM;
  1098. }
  1099. for (i = 0; i < num_volumes; i++) {
  1100. vol = ubi->volumes[i];
  1101. if (!vol)
  1102. continue;
  1103. scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
  1104. GFP_KERNEL);
  1105. if (!scan_eba[i]) {
  1106. ret = -ENOMEM;
  1107. goto out_free;
  1108. }
  1109. fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
  1110. GFP_KERNEL);
  1111. if (!fm_eba[i]) {
  1112. ret = -ENOMEM;
  1113. goto out_free;
  1114. }
  1115. for (j = 0; j < vol->reserved_pebs; j++)
  1116. scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
  1117. av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
  1118. if (!av)
  1119. continue;
  1120. ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
  1121. scan_eba[i][aeb->lnum] = aeb->pnum;
  1122. av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
  1123. if (!av)
  1124. continue;
  1125. ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
  1126. fm_eba[i][aeb->lnum] = aeb->pnum;
  1127. for (j = 0; j < vol->reserved_pebs; j++) {
  1128. if (scan_eba[i][j] != fm_eba[i][j]) {
  1129. if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
  1130. fm_eba[i][j] == UBI_LEB_UNMAPPED)
  1131. continue;
  1132. ubi_err("LEB:%i:%i is PEB:%i instead of %i!",
  1133. vol->vol_id, i, fm_eba[i][j],
  1134. scan_eba[i][j]);
  1135. ubi_assert(0);
  1136. }
  1137. }
  1138. }
  1139. out_free:
  1140. for (i = 0; i < num_volumes; i++) {
  1141. if (!ubi->volumes[i])
  1142. continue;
  1143. kfree(scan_eba[i]);
  1144. kfree(fm_eba[i]);
  1145. }
  1146. kfree(scan_eba);
  1147. kfree(fm_eba);
  1148. return ret;
  1149. }
  1150. /**
  1151. * ubi_eba_init - initialize the EBA sub-system using attaching information.
  1152. * @ubi: UBI device description object
  1153. * @ai: attaching information
  1154. *
  1155. * This function returns zero in case of success and a negative error code in
  1156. * case of failure.
  1157. */
  1158. int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
  1159. {
  1160. int i, j, err, num_volumes;
  1161. struct ubi_ainf_volume *av;
  1162. struct ubi_volume *vol;
  1163. struct ubi_ainf_peb *aeb;
  1164. struct rb_node *rb;
  1165. dbg_eba("initialize EBA sub-system");
  1166. spin_lock_init(&ubi->ltree_lock);
  1167. mutex_init(&ubi->alc_mutex);
  1168. ubi->ltree = RB_ROOT;
  1169. ubi->global_sqnum = ai->max_sqnum + 1;
  1170. num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
  1171. for (i = 0; i < num_volumes; i++) {
  1172. vol = ubi->volumes[i];
  1173. if (!vol)
  1174. continue;
  1175. cond_resched();
  1176. vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
  1177. GFP_KERNEL);
  1178. if (!vol->eba_tbl) {
  1179. err = -ENOMEM;
  1180. goto out_free;
  1181. }
  1182. for (j = 0; j < vol->reserved_pebs; j++)
  1183. vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
  1184. av = ubi_find_av(ai, idx2vol_id(ubi, i));
  1185. if (!av)
  1186. continue;
  1187. ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
  1188. if (aeb->lnum >= vol->reserved_pebs)
  1189. /*
  1190. * This may happen in case of an unclean reboot
  1191. * during re-size.
  1192. */
  1193. ubi_move_aeb_to_list(av, aeb, &ai->erase);
  1194. vol->eba_tbl[aeb->lnum] = aeb->pnum;
  1195. }
  1196. }
  1197. if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
  1198. ubi_err("no enough physical eraseblocks (%d, need %d)",
  1199. ubi->avail_pebs, EBA_RESERVED_PEBS);
  1200. if (ubi->corr_peb_count)
  1201. ubi_err("%d PEBs are corrupted and not used",
  1202. ubi->corr_peb_count);
  1203. err = -ENOSPC;
  1204. goto out_free;
  1205. }
  1206. ubi->avail_pebs -= EBA_RESERVED_PEBS;
  1207. ubi->rsvd_pebs += EBA_RESERVED_PEBS;
  1208. if (ubi->bad_allowed) {
  1209. ubi_calculate_reserved(ubi);
  1210. if (ubi->avail_pebs < ubi->beb_rsvd_level) {
  1211. /* No enough free physical eraseblocks */
  1212. ubi->beb_rsvd_pebs = ubi->avail_pebs;
  1213. print_rsvd_warning(ubi, ai);
  1214. } else
  1215. ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
  1216. ubi->avail_pebs -= ubi->beb_rsvd_pebs;
  1217. ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
  1218. }
  1219. dbg_eba("EBA sub-system is initialized");
  1220. return 0;
  1221. out_free:
  1222. for (i = 0; i < num_volumes; i++) {
  1223. if (!ubi->volumes[i])
  1224. continue;
  1225. kfree(ubi->volumes[i]->eba_tbl);
  1226. ubi->volumes[i]->eba_tbl = NULL;
  1227. }
  1228. return err;
  1229. }