mtd_nandecctest.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/module.h>
  4. #include <linux/list.h>
  5. #include <linux/random.h>
  6. #include <linux/string.h>
  7. #include <linux/bitops.h>
  8. #include <linux/slab.h>
  9. #include <linux/mtd/nand_ecc.h>
  10. /*
  11. * Test the implementation for software ECC
  12. *
  13. * No actual MTD device is needed, So we don't need to warry about losing
  14. * important data by human error.
  15. *
  16. * This covers possible patterns of corruption which can be reliably corrected
  17. * or detected.
  18. */
  19. #if defined(CONFIG_MTD_NAND) || defined(CONFIG_MTD_NAND_MODULE)
  20. struct nand_ecc_test {
  21. const char *name;
  22. void (*prepare)(void *, void *, void *, void *, const size_t);
  23. int (*verify)(void *, void *, void *, const size_t);
  24. };
  25. /*
  26. * The reason for this __change_bit_le() instead of __change_bit() is to inject
  27. * bit error properly within the region which is not a multiple of
  28. * sizeof(unsigned long) on big-endian systems
  29. */
  30. #ifdef __LITTLE_ENDIAN
  31. #define __change_bit_le(nr, addr) __change_bit(nr, addr)
  32. #elif defined(__BIG_ENDIAN)
  33. #define __change_bit_le(nr, addr) \
  34. __change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
  35. #else
  36. #error "Unknown byte order"
  37. #endif
  38. static void single_bit_error_data(void *error_data, void *correct_data,
  39. size_t size)
  40. {
  41. unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
  42. memcpy(error_data, correct_data, size);
  43. __change_bit_le(offset, error_data);
  44. }
  45. static void double_bit_error_data(void *error_data, void *correct_data,
  46. size_t size)
  47. {
  48. unsigned int offset[2];
  49. offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
  50. do {
  51. offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
  52. } while (offset[0] == offset[1]);
  53. memcpy(error_data, correct_data, size);
  54. __change_bit_le(offset[0], error_data);
  55. __change_bit_le(offset[1], error_data);
  56. }
  57. static unsigned int random_ecc_bit(size_t size)
  58. {
  59. unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
  60. if (size == 256) {
  61. /*
  62. * Don't inject a bit error into the insignificant bits (16th
  63. * and 17th bit) in ECC code for 256 byte data block
  64. */
  65. while (offset == 16 || offset == 17)
  66. offset = prandom_u32() % (3 * BITS_PER_BYTE);
  67. }
  68. return offset;
  69. }
  70. static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
  71. size_t size)
  72. {
  73. unsigned int offset = random_ecc_bit(size);
  74. memcpy(error_ecc, correct_ecc, 3);
  75. __change_bit_le(offset, error_ecc);
  76. }
  77. static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
  78. size_t size)
  79. {
  80. unsigned int offset[2];
  81. offset[0] = random_ecc_bit(size);
  82. do {
  83. offset[1] = random_ecc_bit(size);
  84. } while (offset[0] == offset[1]);
  85. memcpy(error_ecc, correct_ecc, 3);
  86. __change_bit_le(offset[0], error_ecc);
  87. __change_bit_le(offset[1], error_ecc);
  88. }
  89. static void no_bit_error(void *error_data, void *error_ecc,
  90. void *correct_data, void *correct_ecc, const size_t size)
  91. {
  92. memcpy(error_data, correct_data, size);
  93. memcpy(error_ecc, correct_ecc, 3);
  94. }
  95. static int no_bit_error_verify(void *error_data, void *error_ecc,
  96. void *correct_data, const size_t size)
  97. {
  98. unsigned char calc_ecc[3];
  99. int ret;
  100. __nand_calculate_ecc(error_data, size, calc_ecc);
  101. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  102. if (ret == 0 && !memcmp(correct_data, error_data, size))
  103. return 0;
  104. return -EINVAL;
  105. }
  106. static void single_bit_error_in_data(void *error_data, void *error_ecc,
  107. void *correct_data, void *correct_ecc, const size_t size)
  108. {
  109. single_bit_error_data(error_data, correct_data, size);
  110. memcpy(error_ecc, correct_ecc, 3);
  111. }
  112. static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
  113. void *correct_data, void *correct_ecc, const size_t size)
  114. {
  115. memcpy(error_data, correct_data, size);
  116. single_bit_error_ecc(error_ecc, correct_ecc, size);
  117. }
  118. static int single_bit_error_correct(void *error_data, void *error_ecc,
  119. void *correct_data, const size_t size)
  120. {
  121. unsigned char calc_ecc[3];
  122. int ret;
  123. __nand_calculate_ecc(error_data, size, calc_ecc);
  124. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  125. if (ret == 1 && !memcmp(correct_data, error_data, size))
  126. return 0;
  127. return -EINVAL;
  128. }
  129. static void double_bit_error_in_data(void *error_data, void *error_ecc,
  130. void *correct_data, void *correct_ecc, const size_t size)
  131. {
  132. double_bit_error_data(error_data, correct_data, size);
  133. memcpy(error_ecc, correct_ecc, 3);
  134. }
  135. static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
  136. void *correct_data, void *correct_ecc, const size_t size)
  137. {
  138. single_bit_error_data(error_data, correct_data, size);
  139. single_bit_error_ecc(error_ecc, correct_ecc, size);
  140. }
  141. static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
  142. void *correct_data, void *correct_ecc, const size_t size)
  143. {
  144. memcpy(error_data, correct_data, size);
  145. double_bit_error_ecc(error_ecc, correct_ecc, size);
  146. }
  147. static int double_bit_error_detect(void *error_data, void *error_ecc,
  148. void *correct_data, const size_t size)
  149. {
  150. unsigned char calc_ecc[3];
  151. int ret;
  152. __nand_calculate_ecc(error_data, size, calc_ecc);
  153. ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
  154. return (ret == -1) ? 0 : -EINVAL;
  155. }
  156. static const struct nand_ecc_test nand_ecc_test[] = {
  157. {
  158. .name = "no-bit-error",
  159. .prepare = no_bit_error,
  160. .verify = no_bit_error_verify,
  161. },
  162. {
  163. .name = "single-bit-error-in-data-correct",
  164. .prepare = single_bit_error_in_data,
  165. .verify = single_bit_error_correct,
  166. },
  167. {
  168. .name = "single-bit-error-in-ecc-correct",
  169. .prepare = single_bit_error_in_ecc,
  170. .verify = single_bit_error_correct,
  171. },
  172. {
  173. .name = "double-bit-error-in-data-detect",
  174. .prepare = double_bit_error_in_data,
  175. .verify = double_bit_error_detect,
  176. },
  177. {
  178. .name = "single-bit-error-in-data-and-ecc-detect",
  179. .prepare = single_bit_error_in_data_and_ecc,
  180. .verify = double_bit_error_detect,
  181. },
  182. {
  183. .name = "double-bit-error-in-ecc-detect",
  184. .prepare = double_bit_error_in_ecc,
  185. .verify = double_bit_error_detect,
  186. },
  187. };
  188. static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
  189. void *correct_ecc, const size_t size)
  190. {
  191. pr_info("hexdump of error data:\n");
  192. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  193. error_data, size, false);
  194. print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
  195. DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
  196. pr_info("hexdump of correct data:\n");
  197. print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
  198. correct_data, size, false);
  199. print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
  200. DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
  201. }
  202. static int nand_ecc_test_run(const size_t size)
  203. {
  204. int i;
  205. int err = 0;
  206. void *error_data;
  207. void *error_ecc;
  208. void *correct_data;
  209. void *correct_ecc;
  210. error_data = kmalloc(size, GFP_KERNEL);
  211. error_ecc = kmalloc(3, GFP_KERNEL);
  212. correct_data = kmalloc(size, GFP_KERNEL);
  213. correct_ecc = kmalloc(3, GFP_KERNEL);
  214. if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
  215. err = -ENOMEM;
  216. goto error;
  217. }
  218. prandom_bytes(correct_data, size);
  219. __nand_calculate_ecc(correct_data, size, correct_ecc);
  220. for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
  221. nand_ecc_test[i].prepare(error_data, error_ecc,
  222. correct_data, correct_ecc, size);
  223. err = nand_ecc_test[i].verify(error_data, error_ecc,
  224. correct_data, size);
  225. if (err) {
  226. pr_err("not ok - %s-%zd\n",
  227. nand_ecc_test[i].name, size);
  228. dump_data_ecc(error_data, error_ecc,
  229. correct_data, correct_ecc, size);
  230. break;
  231. }
  232. pr_info("ok - %s-%zd\n",
  233. nand_ecc_test[i].name, size);
  234. }
  235. error:
  236. kfree(error_data);
  237. kfree(error_ecc);
  238. kfree(correct_data);
  239. kfree(correct_ecc);
  240. return err;
  241. }
  242. #else
  243. static int nand_ecc_test_run(const size_t size)
  244. {
  245. return 0;
  246. }
  247. #endif
  248. static int __init ecc_test_init(void)
  249. {
  250. int err;
  251. err = nand_ecc_test_run(256);
  252. if (err)
  253. return err;
  254. return nand_ecc_test_run(512);
  255. }
  256. static void __exit ecc_test_exit(void)
  257. {
  258. }
  259. module_init(ecc_test_init);
  260. module_exit(ecc_test_exit);
  261. MODULE_DESCRIPTION("NAND ECC function test module");
  262. MODULE_AUTHOR("Akinobu Mita");
  263. MODULE_LICENSE("GPL");