nuc900_nand.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355
  1. /*
  2. * Copyright © 2009 Nuvoton technology corporation.
  3. *
  4. * Wan ZongShun <mcuos.com@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation;version 2 of the License.
  9. *
  10. */
  11. #include <linux/slab.h>
  12. #include <linux/init.h>
  13. #include <linux/module.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/io.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/delay.h>
  18. #include <linux/clk.h>
  19. #include <linux/err.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/nand.h>
  22. #include <linux/mtd/partitions.h>
  23. #define REG_FMICSR 0x00
  24. #define REG_SMCSR 0xa0
  25. #define REG_SMISR 0xac
  26. #define REG_SMCMD 0xb0
  27. #define REG_SMADDR 0xb4
  28. #define REG_SMDATA 0xb8
  29. #define RESET_FMI 0x01
  30. #define NAND_EN 0x08
  31. #define READYBUSY (0x01 << 18)
  32. #define SWRST 0x01
  33. #define PSIZE (0x01 << 3)
  34. #define DMARWEN (0x03 << 1)
  35. #define BUSWID (0x01 << 4)
  36. #define ECC4EN (0x01 << 5)
  37. #define WP (0x01 << 24)
  38. #define NANDCS (0x01 << 25)
  39. #define ENDADDR (0x01 << 31)
  40. #define read_data_reg(dev) \
  41. __raw_readl((dev)->reg + REG_SMDATA)
  42. #define write_data_reg(dev, val) \
  43. __raw_writel((val), (dev)->reg + REG_SMDATA)
  44. #define write_cmd_reg(dev, val) \
  45. __raw_writel((val), (dev)->reg + REG_SMCMD)
  46. #define write_addr_reg(dev, val) \
  47. __raw_writel((val), (dev)->reg + REG_SMADDR)
  48. struct nuc900_nand {
  49. struct mtd_info mtd;
  50. struct nand_chip chip;
  51. void __iomem *reg;
  52. struct clk *clk;
  53. spinlock_t lock;
  54. };
  55. static const struct mtd_partition partitions[] = {
  56. {
  57. .name = "NAND FS 0",
  58. .offset = 0,
  59. .size = 8 * 1024 * 1024
  60. },
  61. {
  62. .name = "NAND FS 1",
  63. .offset = MTDPART_OFS_APPEND,
  64. .size = MTDPART_SIZ_FULL
  65. }
  66. };
  67. static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd)
  68. {
  69. unsigned char ret;
  70. struct nuc900_nand *nand;
  71. nand = container_of(mtd, struct nuc900_nand, mtd);
  72. ret = (unsigned char)read_data_reg(nand);
  73. return ret;
  74. }
  75. static void nuc900_nand_read_buf(struct mtd_info *mtd,
  76. unsigned char *buf, int len)
  77. {
  78. int i;
  79. struct nuc900_nand *nand;
  80. nand = container_of(mtd, struct nuc900_nand, mtd);
  81. for (i = 0; i < len; i++)
  82. buf[i] = (unsigned char)read_data_reg(nand);
  83. }
  84. static void nuc900_nand_write_buf(struct mtd_info *mtd,
  85. const unsigned char *buf, int len)
  86. {
  87. int i;
  88. struct nuc900_nand *nand;
  89. nand = container_of(mtd, struct nuc900_nand, mtd);
  90. for (i = 0; i < len; i++)
  91. write_data_reg(nand, buf[i]);
  92. }
  93. static int nuc900_check_rb(struct nuc900_nand *nand)
  94. {
  95. unsigned int val;
  96. spin_lock(&nand->lock);
  97. val = __raw_readl(REG_SMISR);
  98. val &= READYBUSY;
  99. spin_unlock(&nand->lock);
  100. return val;
  101. }
  102. static int nuc900_nand_devready(struct mtd_info *mtd)
  103. {
  104. struct nuc900_nand *nand;
  105. int ready;
  106. nand = container_of(mtd, struct nuc900_nand, mtd);
  107. ready = (nuc900_check_rb(nand)) ? 1 : 0;
  108. return ready;
  109. }
  110. static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command,
  111. int column, int page_addr)
  112. {
  113. register struct nand_chip *chip = mtd->priv;
  114. struct nuc900_nand *nand;
  115. nand = container_of(mtd, struct nuc900_nand, mtd);
  116. if (command == NAND_CMD_READOOB) {
  117. column += mtd->writesize;
  118. command = NAND_CMD_READ0;
  119. }
  120. write_cmd_reg(nand, command & 0xff);
  121. if (column != -1 || page_addr != -1) {
  122. if (column != -1) {
  123. if (chip->options & NAND_BUSWIDTH_16)
  124. column >>= 1;
  125. write_addr_reg(nand, column);
  126. write_addr_reg(nand, column >> 8 | ENDADDR);
  127. }
  128. if (page_addr != -1) {
  129. write_addr_reg(nand, page_addr);
  130. if (chip->chipsize > (128 << 20)) {
  131. write_addr_reg(nand, page_addr >> 8);
  132. write_addr_reg(nand, page_addr >> 16 | ENDADDR);
  133. } else {
  134. write_addr_reg(nand, page_addr >> 8 | ENDADDR);
  135. }
  136. }
  137. }
  138. switch (command) {
  139. case NAND_CMD_CACHEDPROG:
  140. case NAND_CMD_PAGEPROG:
  141. case NAND_CMD_ERASE1:
  142. case NAND_CMD_ERASE2:
  143. case NAND_CMD_SEQIN:
  144. case NAND_CMD_RNDIN:
  145. case NAND_CMD_STATUS:
  146. case NAND_CMD_DEPLETE1:
  147. return;
  148. case NAND_CMD_STATUS_ERROR:
  149. case NAND_CMD_STATUS_ERROR0:
  150. case NAND_CMD_STATUS_ERROR1:
  151. case NAND_CMD_STATUS_ERROR2:
  152. case NAND_CMD_STATUS_ERROR3:
  153. udelay(chip->chip_delay);
  154. return;
  155. case NAND_CMD_RESET:
  156. if (chip->dev_ready)
  157. break;
  158. udelay(chip->chip_delay);
  159. write_cmd_reg(nand, NAND_CMD_STATUS);
  160. write_cmd_reg(nand, command);
  161. while (!nuc900_check_rb(nand))
  162. ;
  163. return;
  164. case NAND_CMD_RNDOUT:
  165. write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
  166. return;
  167. case NAND_CMD_READ0:
  168. write_cmd_reg(nand, NAND_CMD_READSTART);
  169. default:
  170. if (!chip->dev_ready) {
  171. udelay(chip->chip_delay);
  172. return;
  173. }
  174. }
  175. /* Apply this short delay always to ensure that we do wait tWB in
  176. * any case on any machine. */
  177. ndelay(100);
  178. while (!chip->dev_ready(mtd))
  179. ;
  180. }
  181. static void nuc900_nand_enable(struct nuc900_nand *nand)
  182. {
  183. unsigned int val;
  184. spin_lock(&nand->lock);
  185. __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
  186. val = __raw_readl(nand->reg + REG_FMICSR);
  187. if (!(val & NAND_EN))
  188. __raw_writel(val | NAND_EN, REG_FMICSR);
  189. val = __raw_readl(nand->reg + REG_SMCSR);
  190. val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
  191. val |= WP;
  192. __raw_writel(val, nand->reg + REG_SMCSR);
  193. spin_unlock(&nand->lock);
  194. }
  195. static int nuc900_nand_probe(struct platform_device *pdev)
  196. {
  197. struct nuc900_nand *nuc900_nand;
  198. struct nand_chip *chip;
  199. int retval;
  200. struct resource *res;
  201. retval = 0;
  202. nuc900_nand = kzalloc(sizeof(struct nuc900_nand), GFP_KERNEL);
  203. if (!nuc900_nand)
  204. return -ENOMEM;
  205. chip = &(nuc900_nand->chip);
  206. nuc900_nand->mtd.priv = chip;
  207. nuc900_nand->mtd.owner = THIS_MODULE;
  208. spin_lock_init(&nuc900_nand->lock);
  209. nuc900_nand->clk = clk_get(&pdev->dev, NULL);
  210. if (IS_ERR(nuc900_nand->clk)) {
  211. retval = -ENOENT;
  212. goto fail1;
  213. }
  214. clk_enable(nuc900_nand->clk);
  215. chip->cmdfunc = nuc900_nand_command_lp;
  216. chip->dev_ready = nuc900_nand_devready;
  217. chip->read_byte = nuc900_nand_read_byte;
  218. chip->write_buf = nuc900_nand_write_buf;
  219. chip->read_buf = nuc900_nand_read_buf;
  220. chip->chip_delay = 50;
  221. chip->options = 0;
  222. chip->ecc.mode = NAND_ECC_SOFT;
  223. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  224. if (!res) {
  225. retval = -ENXIO;
  226. goto fail1;
  227. }
  228. if (!request_mem_region(res->start, resource_size(res), pdev->name)) {
  229. retval = -EBUSY;
  230. goto fail1;
  231. }
  232. nuc900_nand->reg = ioremap(res->start, resource_size(res));
  233. if (!nuc900_nand->reg) {
  234. retval = -ENOMEM;
  235. goto fail2;
  236. }
  237. nuc900_nand_enable(nuc900_nand);
  238. if (nand_scan(&(nuc900_nand->mtd), 1)) {
  239. retval = -ENXIO;
  240. goto fail3;
  241. }
  242. mtd_device_register(&(nuc900_nand->mtd), partitions,
  243. ARRAY_SIZE(partitions));
  244. platform_set_drvdata(pdev, nuc900_nand);
  245. return retval;
  246. fail3: iounmap(nuc900_nand->reg);
  247. fail2: release_mem_region(res->start, resource_size(res));
  248. fail1: kfree(nuc900_nand);
  249. return retval;
  250. }
  251. static int nuc900_nand_remove(struct platform_device *pdev)
  252. {
  253. struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
  254. struct resource *res;
  255. nand_release(&nuc900_nand->mtd);
  256. iounmap(nuc900_nand->reg);
  257. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  258. release_mem_region(res->start, resource_size(res));
  259. clk_disable(nuc900_nand->clk);
  260. clk_put(nuc900_nand->clk);
  261. kfree(nuc900_nand);
  262. platform_set_drvdata(pdev, NULL);
  263. return 0;
  264. }
  265. static struct platform_driver nuc900_nand_driver = {
  266. .probe = nuc900_nand_probe,
  267. .remove = nuc900_nand_remove,
  268. .driver = {
  269. .name = "nuc900-fmi",
  270. .owner = THIS_MODULE,
  271. },
  272. };
  273. module_platform_driver(nuc900_nand_driver);
  274. MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
  275. MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
  276. MODULE_LICENSE("GPL");
  277. MODULE_ALIAS("platform:nuc900-fmi");