smiapp-pll.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. /*
  2. * drivers/media/i2c/smiapp-pll.c
  3. *
  4. * Generic driver for SMIA/SMIA++ compliant camera modules
  5. *
  6. * Copyright (C) 2011--2012 Nokia Corporation
  7. * Contact: Sakari Ailus <sakari.ailus@iki.fi>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  21. * 02110-1301 USA
  22. *
  23. */
  24. #include <linux/gcd.h>
  25. #include <linux/lcm.h>
  26. #include <linux/module.h>
  27. #include "smiapp-pll.h"
  28. /* Return an even number or one. */
  29. static inline uint32_t clk_div_even(uint32_t a)
  30. {
  31. return max_t(uint32_t, 1, a & ~1);
  32. }
  33. /* Return an even number or one. */
  34. static inline uint32_t clk_div_even_up(uint32_t a)
  35. {
  36. if (a == 1)
  37. return 1;
  38. return (a + 1) & ~1;
  39. }
  40. static inline uint32_t is_one_or_even(uint32_t a)
  41. {
  42. if (a == 1)
  43. return 1;
  44. if (a & 1)
  45. return 0;
  46. return 1;
  47. }
  48. static int bounds_check(struct device *dev, uint32_t val,
  49. uint32_t min, uint32_t max, char *str)
  50. {
  51. if (val >= min && val <= max)
  52. return 0;
  53. dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
  54. return -EINVAL;
  55. }
  56. static void print_pll(struct device *dev, struct smiapp_pll *pll)
  57. {
  58. dev_dbg(dev, "pre_pll_clk_div\t%d\n", pll->pre_pll_clk_div);
  59. dev_dbg(dev, "pll_multiplier \t%d\n", pll->pll_multiplier);
  60. if (pll->flags != SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  61. dev_dbg(dev, "op_sys_clk_div \t%d\n", pll->op_sys_clk_div);
  62. dev_dbg(dev, "op_pix_clk_div \t%d\n", pll->op_pix_clk_div);
  63. }
  64. dev_dbg(dev, "vt_sys_clk_div \t%d\n", pll->vt_sys_clk_div);
  65. dev_dbg(dev, "vt_pix_clk_div \t%d\n", pll->vt_pix_clk_div);
  66. dev_dbg(dev, "ext_clk_freq_hz \t%d\n", pll->ext_clk_freq_hz);
  67. dev_dbg(dev, "pll_ip_clk_freq_hz \t%d\n", pll->pll_ip_clk_freq_hz);
  68. dev_dbg(dev, "pll_op_clk_freq_hz \t%d\n", pll->pll_op_clk_freq_hz);
  69. if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  70. dev_dbg(dev, "op_sys_clk_freq_hz \t%d\n",
  71. pll->op_sys_clk_freq_hz);
  72. dev_dbg(dev, "op_pix_clk_freq_hz \t%d\n",
  73. pll->op_pix_clk_freq_hz);
  74. }
  75. dev_dbg(dev, "vt_sys_clk_freq_hz \t%d\n", pll->vt_sys_clk_freq_hz);
  76. dev_dbg(dev, "vt_pix_clk_freq_hz \t%d\n", pll->vt_pix_clk_freq_hz);
  77. }
  78. static int __smiapp_pll_calculate(struct device *dev,
  79. const struct smiapp_pll_limits *limits,
  80. struct smiapp_pll *pll, uint32_t mul,
  81. uint32_t div, uint32_t lane_op_clock_ratio)
  82. {
  83. uint32_t sys_div;
  84. uint32_t best_pix_div = INT_MAX >> 1;
  85. uint32_t vt_op_binning_div;
  86. uint32_t more_mul_min, more_mul_max;
  87. uint32_t more_mul_factor;
  88. uint32_t min_vt_div, max_vt_div, vt_div;
  89. uint32_t min_sys_div, max_sys_div;
  90. unsigned int i;
  91. int rval;
  92. /*
  93. * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
  94. * too high.
  95. */
  96. dev_dbg(dev, "pre_pll_clk_div %d\n", pll->pre_pll_clk_div);
  97. /* Don't go above max pll multiplier. */
  98. more_mul_max = limits->max_pll_multiplier / mul;
  99. dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %d\n",
  100. more_mul_max);
  101. /* Don't go above max pll op frequency. */
  102. more_mul_max =
  103. min_t(uint32_t,
  104. more_mul_max,
  105. limits->max_pll_op_freq_hz
  106. / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
  107. dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %d\n",
  108. more_mul_max);
  109. /* Don't go above the division capability of op sys clock divider. */
  110. more_mul_max = min(more_mul_max,
  111. limits->op.max_sys_clk_div * pll->pre_pll_clk_div
  112. / div);
  113. dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %d\n",
  114. more_mul_max);
  115. /* Ensure we won't go above min_pll_multiplier. */
  116. more_mul_max = min(more_mul_max,
  117. DIV_ROUND_UP(limits->max_pll_multiplier, mul));
  118. dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %d\n",
  119. more_mul_max);
  120. /* Ensure we won't go below min_pll_op_freq_hz. */
  121. more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
  122. pll->ext_clk_freq_hz / pll->pre_pll_clk_div
  123. * mul);
  124. dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %d\n",
  125. more_mul_min);
  126. /* Ensure we won't go below min_pll_multiplier. */
  127. more_mul_min = max(more_mul_min,
  128. DIV_ROUND_UP(limits->min_pll_multiplier, mul));
  129. dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %d\n",
  130. more_mul_min);
  131. if (more_mul_min > more_mul_max) {
  132. dev_dbg(dev,
  133. "unable to compute more_mul_min and more_mul_max\n");
  134. return -EINVAL;
  135. }
  136. more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
  137. dev_dbg(dev, "more_mul_factor: %d\n", more_mul_factor);
  138. more_mul_factor = lcm(more_mul_factor, limits->op.min_sys_clk_div);
  139. dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
  140. more_mul_factor);
  141. i = roundup(more_mul_min, more_mul_factor);
  142. if (!is_one_or_even(i))
  143. i <<= 1;
  144. dev_dbg(dev, "final more_mul: %d\n", i);
  145. if (i > more_mul_max) {
  146. dev_dbg(dev, "final more_mul is bad, max %d\n", more_mul_max);
  147. return -EINVAL;
  148. }
  149. pll->pll_multiplier = mul * i;
  150. pll->op_sys_clk_div = div * i / pll->pre_pll_clk_div;
  151. dev_dbg(dev, "op_sys_clk_div: %d\n", pll->op_sys_clk_div);
  152. pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
  153. / pll->pre_pll_clk_div;
  154. pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
  155. * pll->pll_multiplier;
  156. /* Derive pll_op_clk_freq_hz. */
  157. pll->op_sys_clk_freq_hz =
  158. pll->pll_op_clk_freq_hz / pll->op_sys_clk_div;
  159. pll->op_pix_clk_div = pll->bits_per_pixel;
  160. dev_dbg(dev, "op_pix_clk_div: %d\n", pll->op_pix_clk_div);
  161. pll->op_pix_clk_freq_hz =
  162. pll->op_sys_clk_freq_hz / pll->op_pix_clk_div;
  163. /*
  164. * Some sensors perform analogue binning and some do this
  165. * digitally. The ones doing this digitally can be roughly be
  166. * found out using this formula. The ones doing this digitally
  167. * should run at higher clock rate, so smaller divisor is used
  168. * on video timing side.
  169. */
  170. if (limits->min_line_length_pck_bin > limits->min_line_length_pck
  171. / pll->binning_horizontal)
  172. vt_op_binning_div = pll->binning_horizontal;
  173. else
  174. vt_op_binning_div = 1;
  175. dev_dbg(dev, "vt_op_binning_div: %d\n", vt_op_binning_div);
  176. /*
  177. * Profile 2 supports vt_pix_clk_div E [4, 10]
  178. *
  179. * Horizontal binning can be used as a base for difference in
  180. * divisors. One must make sure that horizontal blanking is
  181. * enough to accommodate the CSI-2 sync codes.
  182. *
  183. * Take scaling factor into account as well.
  184. *
  185. * Find absolute limits for the factor of vt divider.
  186. */
  187. dev_dbg(dev, "scale_m: %d\n", pll->scale_m);
  188. min_vt_div = DIV_ROUND_UP(pll->op_pix_clk_div * pll->op_sys_clk_div
  189. * pll->scale_n,
  190. lane_op_clock_ratio * vt_op_binning_div
  191. * pll->scale_m);
  192. /* Find smallest and biggest allowed vt divisor. */
  193. dev_dbg(dev, "min_vt_div: %d\n", min_vt_div);
  194. min_vt_div = max(min_vt_div,
  195. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  196. limits->vt.max_pix_clk_freq_hz));
  197. dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %d\n",
  198. min_vt_div);
  199. min_vt_div = max_t(uint32_t, min_vt_div,
  200. limits->vt.min_pix_clk_div
  201. * limits->vt.min_sys_clk_div);
  202. dev_dbg(dev, "min_vt_div: min_vt_clk_div: %d\n", min_vt_div);
  203. max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div;
  204. dev_dbg(dev, "max_vt_div: %d\n", max_vt_div);
  205. max_vt_div = min(max_vt_div,
  206. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  207. limits->vt.min_pix_clk_freq_hz));
  208. dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %d\n",
  209. max_vt_div);
  210. /*
  211. * Find limitsits for sys_clk_div. Not all values are possible
  212. * with all values of pix_clk_div.
  213. */
  214. min_sys_div = limits->vt.min_sys_clk_div;
  215. dev_dbg(dev, "min_sys_div: %d\n", min_sys_div);
  216. min_sys_div = max(min_sys_div,
  217. DIV_ROUND_UP(min_vt_div,
  218. limits->vt.max_pix_clk_div));
  219. dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %d\n", min_sys_div);
  220. min_sys_div = max(min_sys_div,
  221. pll->pll_op_clk_freq_hz
  222. / limits->vt.max_sys_clk_freq_hz);
  223. dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %d\n", min_sys_div);
  224. min_sys_div = clk_div_even_up(min_sys_div);
  225. dev_dbg(dev, "min_sys_div: one or even: %d\n", min_sys_div);
  226. max_sys_div = limits->vt.max_sys_clk_div;
  227. dev_dbg(dev, "max_sys_div: %d\n", max_sys_div);
  228. max_sys_div = min(max_sys_div,
  229. DIV_ROUND_UP(max_vt_div,
  230. limits->vt.min_pix_clk_div));
  231. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %d\n", max_sys_div);
  232. max_sys_div = min(max_sys_div,
  233. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  234. limits->vt.min_pix_clk_freq_hz));
  235. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %d\n", max_sys_div);
  236. /*
  237. * Find pix_div such that a legal pix_div * sys_div results
  238. * into a value which is not smaller than div, the desired
  239. * divisor.
  240. */
  241. for (vt_div = min_vt_div; vt_div <= max_vt_div;
  242. vt_div += 2 - (vt_div & 1)) {
  243. for (sys_div = min_sys_div;
  244. sys_div <= max_sys_div;
  245. sys_div += 2 - (sys_div & 1)) {
  246. uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div);
  247. if (pix_div < limits->vt.min_pix_clk_div
  248. || pix_div > limits->vt.max_pix_clk_div) {
  249. dev_dbg(dev,
  250. "pix_div %d too small or too big (%d--%d)\n",
  251. pix_div,
  252. limits->vt.min_pix_clk_div,
  253. limits->vt.max_pix_clk_div);
  254. continue;
  255. }
  256. /* Check if this one is better. */
  257. if (pix_div * sys_div
  258. <= roundup(min_vt_div, best_pix_div))
  259. best_pix_div = pix_div;
  260. }
  261. if (best_pix_div < INT_MAX >> 1)
  262. break;
  263. }
  264. pll->vt_sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
  265. pll->vt_pix_clk_div = best_pix_div;
  266. pll->vt_sys_clk_freq_hz =
  267. pll->pll_op_clk_freq_hz / pll->vt_sys_clk_div;
  268. pll->vt_pix_clk_freq_hz =
  269. pll->vt_sys_clk_freq_hz / pll->vt_pix_clk_div;
  270. pll->pixel_rate_csi =
  271. pll->op_pix_clk_freq_hz * lane_op_clock_ratio;
  272. rval = bounds_check(dev, pll->pll_ip_clk_freq_hz,
  273. limits->min_pll_ip_freq_hz,
  274. limits->max_pll_ip_freq_hz,
  275. "pll_ip_clk_freq_hz");
  276. if (!rval)
  277. rval = bounds_check(
  278. dev, pll->pll_multiplier,
  279. limits->min_pll_multiplier, limits->max_pll_multiplier,
  280. "pll_multiplier");
  281. if (!rval)
  282. rval = bounds_check(
  283. dev, pll->pll_op_clk_freq_hz,
  284. limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
  285. "pll_op_clk_freq_hz");
  286. if (!rval)
  287. rval = bounds_check(
  288. dev, pll->op_sys_clk_div,
  289. limits->op.min_sys_clk_div, limits->op.max_sys_clk_div,
  290. "op_sys_clk_div");
  291. if (!rval)
  292. rval = bounds_check(
  293. dev, pll->op_pix_clk_div,
  294. limits->op.min_pix_clk_div, limits->op.max_pix_clk_div,
  295. "op_pix_clk_div");
  296. if (!rval)
  297. rval = bounds_check(
  298. dev, pll->op_sys_clk_freq_hz,
  299. limits->op.min_sys_clk_freq_hz,
  300. limits->op.max_sys_clk_freq_hz,
  301. "op_sys_clk_freq_hz");
  302. if (!rval)
  303. rval = bounds_check(
  304. dev, pll->op_pix_clk_freq_hz,
  305. limits->op.min_pix_clk_freq_hz,
  306. limits->op.max_pix_clk_freq_hz,
  307. "op_pix_clk_freq_hz");
  308. if (!rval)
  309. rval = bounds_check(
  310. dev, pll->vt_sys_clk_freq_hz,
  311. limits->vt.min_sys_clk_freq_hz,
  312. limits->vt.max_sys_clk_freq_hz,
  313. "vt_sys_clk_freq_hz");
  314. if (!rval)
  315. rval = bounds_check(
  316. dev, pll->vt_pix_clk_freq_hz,
  317. limits->vt.min_pix_clk_freq_hz,
  318. limits->vt.max_pix_clk_freq_hz,
  319. "vt_pix_clk_freq_hz");
  320. return rval;
  321. }
  322. int smiapp_pll_calculate(struct device *dev,
  323. const struct smiapp_pll_limits *limits,
  324. struct smiapp_pll *pll)
  325. {
  326. uint16_t min_pre_pll_clk_div;
  327. uint16_t max_pre_pll_clk_div;
  328. uint32_t lane_op_clock_ratio;
  329. uint32_t mul, div;
  330. unsigned int i;
  331. int rval = -EINVAL;
  332. if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
  333. lane_op_clock_ratio = pll->csi2.lanes;
  334. else
  335. lane_op_clock_ratio = 1;
  336. dev_dbg(dev, "lane_op_clock_ratio: %d\n", lane_op_clock_ratio);
  337. dev_dbg(dev, "binning: %dx%d\n", pll->binning_horizontal,
  338. pll->binning_vertical);
  339. switch (pll->bus_type) {
  340. case SMIAPP_PLL_BUS_TYPE_CSI2:
  341. /* CSI transfers 2 bits per clock per lane; thus times 2 */
  342. pll->pll_op_clk_freq_hz = pll->link_freq * 2
  343. * (pll->csi2.lanes / lane_op_clock_ratio);
  344. break;
  345. case SMIAPP_PLL_BUS_TYPE_PARALLEL:
  346. pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel
  347. / DIV_ROUND_UP(pll->bits_per_pixel,
  348. pll->parallel.bus_width);
  349. break;
  350. default:
  351. return -EINVAL;
  352. }
  353. /* Figure out limits for pre-pll divider based on extclk */
  354. dev_dbg(dev, "min / max pre_pll_clk_div: %d / %d\n",
  355. limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
  356. max_pre_pll_clk_div =
  357. min_t(uint16_t, limits->max_pre_pll_clk_div,
  358. clk_div_even(pll->ext_clk_freq_hz /
  359. limits->min_pll_ip_freq_hz));
  360. min_pre_pll_clk_div =
  361. max_t(uint16_t, limits->min_pre_pll_clk_div,
  362. clk_div_even_up(
  363. DIV_ROUND_UP(pll->ext_clk_freq_hz,
  364. limits->max_pll_ip_freq_hz)));
  365. dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %d / %d\n",
  366. min_pre_pll_clk_div, max_pre_pll_clk_div);
  367. i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
  368. mul = div_u64(pll->pll_op_clk_freq_hz, i);
  369. div = pll->ext_clk_freq_hz / i;
  370. dev_dbg(dev, "mul %d / div %d\n", mul, div);
  371. min_pre_pll_clk_div =
  372. max_t(uint16_t, min_pre_pll_clk_div,
  373. clk_div_even_up(
  374. DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
  375. limits->max_pll_op_freq_hz)));
  376. dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %d / %d\n",
  377. min_pre_pll_clk_div, max_pre_pll_clk_div);
  378. for (pll->pre_pll_clk_div = min_pre_pll_clk_div;
  379. pll->pre_pll_clk_div <= max_pre_pll_clk_div;
  380. pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) {
  381. rval = __smiapp_pll_calculate(dev, limits, pll, mul, div,
  382. lane_op_clock_ratio);
  383. if (rval)
  384. continue;
  385. print_pll(dev, pll);
  386. return 0;
  387. }
  388. dev_info(dev, "unable to compute pre_pll divisor\n");
  389. return rval;
  390. }
  391. EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
  392. MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
  393. MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
  394. MODULE_LICENSE("GPL");