ks0127.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733
  1. /*
  2. * Video Capture Driver (Video for Linux 1/2)
  3. * for the Matrox Marvel G200,G400 and Rainbow Runner-G series
  4. *
  5. * This module is an interface to the KS0127 video decoder chip.
  6. *
  7. * Copyright (C) 1999 Ryan Drake <stiletto@mediaone.net>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version 2
  12. * of the License, or (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. *****************************************************************************
  24. *
  25. * Modified and extended by
  26. * Mike Bernson <mike@mlb.org>
  27. * Gerard v.d. Horst
  28. * Leon van Stuivenberg <l.vanstuivenberg@chello.nl>
  29. * Gernot Ziegler <gz@lysator.liu.se>
  30. *
  31. * Version History:
  32. * V1.0 Ryan Drake Initial version by Ryan Drake
  33. * V1.1 Gerard v.d. Horst Added some debugoutput, reset the video-standard
  34. */
  35. #include <linux/init.h>
  36. #include <linux/module.h>
  37. #include <linux/delay.h>
  38. #include <linux/errno.h>
  39. #include <linux/kernel.h>
  40. #include <linux/i2c.h>
  41. #include <linux/videodev2.h>
  42. #include <linux/slab.h>
  43. #include <media/v4l2-device.h>
  44. #include <media/v4l2-chip-ident.h>
  45. #include "ks0127.h"
  46. MODULE_DESCRIPTION("KS0127 video decoder driver");
  47. MODULE_AUTHOR("Ryan Drake");
  48. MODULE_LICENSE("GPL");
  49. /* Addresses */
  50. #define I2C_KS0127_ADDON 0xD8
  51. #define I2C_KS0127_ONBOARD 0xDA
  52. /* ks0127 control registers */
  53. #define KS_STAT 0x00
  54. #define KS_CMDA 0x01
  55. #define KS_CMDB 0x02
  56. #define KS_CMDC 0x03
  57. #define KS_CMDD 0x04
  58. #define KS_HAVB 0x05
  59. #define KS_HAVE 0x06
  60. #define KS_HS1B 0x07
  61. #define KS_HS1E 0x08
  62. #define KS_HS2B 0x09
  63. #define KS_HS2E 0x0a
  64. #define KS_AGC 0x0b
  65. #define KS_HXTRA 0x0c
  66. #define KS_CDEM 0x0d
  67. #define KS_PORTAB 0x0e
  68. #define KS_LUMA 0x0f
  69. #define KS_CON 0x10
  70. #define KS_BRT 0x11
  71. #define KS_CHROMA 0x12
  72. #define KS_CHROMB 0x13
  73. #define KS_DEMOD 0x14
  74. #define KS_SAT 0x15
  75. #define KS_HUE 0x16
  76. #define KS_VERTIA 0x17
  77. #define KS_VERTIB 0x18
  78. #define KS_VERTIC 0x19
  79. #define KS_HSCLL 0x1a
  80. #define KS_HSCLH 0x1b
  81. #define KS_VSCLL 0x1c
  82. #define KS_VSCLH 0x1d
  83. #define KS_OFMTA 0x1e
  84. #define KS_OFMTB 0x1f
  85. #define KS_VBICTL 0x20
  86. #define KS_CCDAT2 0x21
  87. #define KS_CCDAT1 0x22
  88. #define KS_VBIL30 0x23
  89. #define KS_VBIL74 0x24
  90. #define KS_VBIL118 0x25
  91. #define KS_VBIL1512 0x26
  92. #define KS_TTFRAM 0x27
  93. #define KS_TESTA 0x28
  94. #define KS_UVOFFH 0x29
  95. #define KS_UVOFFL 0x2a
  96. #define KS_UGAIN 0x2b
  97. #define KS_VGAIN 0x2c
  98. #define KS_VAVB 0x2d
  99. #define KS_VAVE 0x2e
  100. #define KS_CTRACK 0x2f
  101. #define KS_POLCTL 0x30
  102. #define KS_REFCOD 0x31
  103. #define KS_INVALY 0x32
  104. #define KS_INVALU 0x33
  105. #define KS_INVALV 0x34
  106. #define KS_UNUSEY 0x35
  107. #define KS_UNUSEU 0x36
  108. #define KS_UNUSEV 0x37
  109. #define KS_USRSAV 0x38
  110. #define KS_USREAV 0x39
  111. #define KS_SHS1A 0x3a
  112. #define KS_SHS1B 0x3b
  113. #define KS_SHS1C 0x3c
  114. #define KS_CMDE 0x3d
  115. #define KS_VSDEL 0x3e
  116. #define KS_CMDF 0x3f
  117. #define KS_GAMMA0 0x40
  118. #define KS_GAMMA1 0x41
  119. #define KS_GAMMA2 0x42
  120. #define KS_GAMMA3 0x43
  121. #define KS_GAMMA4 0x44
  122. #define KS_GAMMA5 0x45
  123. #define KS_GAMMA6 0x46
  124. #define KS_GAMMA7 0x47
  125. #define KS_GAMMA8 0x48
  126. #define KS_GAMMA9 0x49
  127. #define KS_GAMMA10 0x4a
  128. #define KS_GAMMA11 0x4b
  129. #define KS_GAMMA12 0x4c
  130. #define KS_GAMMA13 0x4d
  131. #define KS_GAMMA14 0x4e
  132. #define KS_GAMMA15 0x4f
  133. #define KS_GAMMA16 0x50
  134. #define KS_GAMMA17 0x51
  135. #define KS_GAMMA18 0x52
  136. #define KS_GAMMA19 0x53
  137. #define KS_GAMMA20 0x54
  138. #define KS_GAMMA21 0x55
  139. #define KS_GAMMA22 0x56
  140. #define KS_GAMMA23 0x57
  141. #define KS_GAMMA24 0x58
  142. #define KS_GAMMA25 0x59
  143. #define KS_GAMMA26 0x5a
  144. #define KS_GAMMA27 0x5b
  145. #define KS_GAMMA28 0x5c
  146. #define KS_GAMMA29 0x5d
  147. #define KS_GAMMA30 0x5e
  148. #define KS_GAMMA31 0x5f
  149. #define KS_GAMMAD0 0x60
  150. #define KS_GAMMAD1 0x61
  151. #define KS_GAMMAD2 0x62
  152. #define KS_GAMMAD3 0x63
  153. #define KS_GAMMAD4 0x64
  154. #define KS_GAMMAD5 0x65
  155. #define KS_GAMMAD6 0x66
  156. #define KS_GAMMAD7 0x67
  157. #define KS_GAMMAD8 0x68
  158. #define KS_GAMMAD9 0x69
  159. #define KS_GAMMAD10 0x6a
  160. #define KS_GAMMAD11 0x6b
  161. #define KS_GAMMAD12 0x6c
  162. #define KS_GAMMAD13 0x6d
  163. #define KS_GAMMAD14 0x6e
  164. #define KS_GAMMAD15 0x6f
  165. #define KS_GAMMAD16 0x70
  166. #define KS_GAMMAD17 0x71
  167. #define KS_GAMMAD18 0x72
  168. #define KS_GAMMAD19 0x73
  169. #define KS_GAMMAD20 0x74
  170. #define KS_GAMMAD21 0x75
  171. #define KS_GAMMAD22 0x76
  172. #define KS_GAMMAD23 0x77
  173. #define KS_GAMMAD24 0x78
  174. #define KS_GAMMAD25 0x79
  175. #define KS_GAMMAD26 0x7a
  176. #define KS_GAMMAD27 0x7b
  177. #define KS_GAMMAD28 0x7c
  178. #define KS_GAMMAD29 0x7d
  179. #define KS_GAMMAD30 0x7e
  180. #define KS_GAMMAD31 0x7f
  181. /****************************************************************************
  182. * mga_dev : represents one ks0127 chip.
  183. ****************************************************************************/
  184. struct adjust {
  185. int contrast;
  186. int bright;
  187. int hue;
  188. int ugain;
  189. int vgain;
  190. };
  191. struct ks0127 {
  192. struct v4l2_subdev sd;
  193. v4l2_std_id norm;
  194. int ident;
  195. u8 regs[256];
  196. };
  197. static inline struct ks0127 *to_ks0127(struct v4l2_subdev *sd)
  198. {
  199. return container_of(sd, struct ks0127, sd);
  200. }
  201. static int debug; /* insmod parameter */
  202. module_param(debug, int, 0);
  203. MODULE_PARM_DESC(debug, "Debug output");
  204. static u8 reg_defaults[64];
  205. static void init_reg_defaults(void)
  206. {
  207. static int initialized;
  208. u8 *table = reg_defaults;
  209. if (initialized)
  210. return;
  211. initialized = 1;
  212. table[KS_CMDA] = 0x2c; /* VSE=0, CCIR 601, autodetect standard */
  213. table[KS_CMDB] = 0x12; /* VALIGN=0, AGC control and input */
  214. table[KS_CMDC] = 0x00; /* Test options */
  215. /* clock & input select, write 1 to PORTA */
  216. table[KS_CMDD] = 0x01;
  217. table[KS_HAVB] = 0x00; /* HAV Start Control */
  218. table[KS_HAVE] = 0x00; /* HAV End Control */
  219. table[KS_HS1B] = 0x10; /* HS1 Start Control */
  220. table[KS_HS1E] = 0x00; /* HS1 End Control */
  221. table[KS_HS2B] = 0x00; /* HS2 Start Control */
  222. table[KS_HS2E] = 0x00; /* HS2 End Control */
  223. table[KS_AGC] = 0x53; /* Manual setting for AGC */
  224. table[KS_HXTRA] = 0x00; /* Extra Bits for HAV and HS1/2 */
  225. table[KS_CDEM] = 0x00; /* Chroma Demodulation Control */
  226. table[KS_PORTAB] = 0x0f; /* port B is input, port A output GPPORT */
  227. table[KS_LUMA] = 0x01; /* Luma control */
  228. table[KS_CON] = 0x00; /* Contrast Control */
  229. table[KS_BRT] = 0x00; /* Brightness Control */
  230. table[KS_CHROMA] = 0x2a; /* Chroma control A */
  231. table[KS_CHROMB] = 0x90; /* Chroma control B */
  232. table[KS_DEMOD] = 0x00; /* Chroma Demodulation Control & Status */
  233. table[KS_SAT] = 0x00; /* Color Saturation Control*/
  234. table[KS_HUE] = 0x00; /* Hue Control */
  235. table[KS_VERTIA] = 0x00; /* Vertical Processing Control A */
  236. /* Vertical Processing Control B, luma 1 line delayed */
  237. table[KS_VERTIB] = 0x12;
  238. table[KS_VERTIC] = 0x0b; /* Vertical Processing Control C */
  239. table[KS_HSCLL] = 0x00; /* Horizontal Scaling Ratio Low */
  240. table[KS_HSCLH] = 0x00; /* Horizontal Scaling Ratio High */
  241. table[KS_VSCLL] = 0x00; /* Vertical Scaling Ratio Low */
  242. table[KS_VSCLH] = 0x00; /* Vertical Scaling Ratio High */
  243. /* 16 bit YCbCr 4:2:2 output; I can't make the bt866 like 8 bit /Sam */
  244. table[KS_OFMTA] = 0x30;
  245. table[KS_OFMTB] = 0x00; /* Output Control B */
  246. /* VBI Decoder Control; 4bit fmt: avoid Y overflow */
  247. table[KS_VBICTL] = 0x5d;
  248. table[KS_CCDAT2] = 0x00; /* Read Only register */
  249. table[KS_CCDAT1] = 0x00; /* Read Only register */
  250. table[KS_VBIL30] = 0xa8; /* VBI data decoding options */
  251. table[KS_VBIL74] = 0xaa; /* VBI data decoding options */
  252. table[KS_VBIL118] = 0x2a; /* VBI data decoding options */
  253. table[KS_VBIL1512] = 0x00; /* VBI data decoding options */
  254. table[KS_TTFRAM] = 0x00; /* Teletext frame alignment pattern */
  255. table[KS_TESTA] = 0x00; /* test register, shouldn't be written */
  256. table[KS_UVOFFH] = 0x00; /* UV Offset Adjustment High */
  257. table[KS_UVOFFL] = 0x00; /* UV Offset Adjustment Low */
  258. table[KS_UGAIN] = 0x00; /* U Component Gain Adjustment */
  259. table[KS_VGAIN] = 0x00; /* V Component Gain Adjustment */
  260. table[KS_VAVB] = 0x07; /* VAV Begin */
  261. table[KS_VAVE] = 0x00; /* VAV End */
  262. table[KS_CTRACK] = 0x00; /* Chroma Tracking Control */
  263. table[KS_POLCTL] = 0x41; /* Timing Signal Polarity Control */
  264. table[KS_REFCOD] = 0x80; /* Reference Code Insertion Control */
  265. table[KS_INVALY] = 0x10; /* Invalid Y Code */
  266. table[KS_INVALU] = 0x80; /* Invalid U Code */
  267. table[KS_INVALV] = 0x80; /* Invalid V Code */
  268. table[KS_UNUSEY] = 0x10; /* Unused Y Code */
  269. table[KS_UNUSEU] = 0x80; /* Unused U Code */
  270. table[KS_UNUSEV] = 0x80; /* Unused V Code */
  271. table[KS_USRSAV] = 0x00; /* reserved */
  272. table[KS_USREAV] = 0x00; /* reserved */
  273. table[KS_SHS1A] = 0x00; /* User Defined SHS1 A */
  274. /* User Defined SHS1 B, ALT656=1 on 0127B */
  275. table[KS_SHS1B] = 0x80;
  276. table[KS_SHS1C] = 0x00; /* User Defined SHS1 C */
  277. table[KS_CMDE] = 0x00; /* Command Register E */
  278. table[KS_VSDEL] = 0x00; /* VS Delay Control */
  279. /* Command Register F, update -immediately- */
  280. /* (there might come no vsync)*/
  281. table[KS_CMDF] = 0x02;
  282. }
  283. /* We need to manually read because of a bug in the KS0127 chip.
  284. *
  285. * An explanation from kayork@mail.utexas.edu:
  286. *
  287. * During I2C reads, the KS0127 only samples for a stop condition
  288. * during the place where the acknowledge bit should be. Any standard
  289. * I2C implementation (correctly) throws in another clock transition
  290. * at the 9th bit, and the KS0127 will not recognize the stop condition
  291. * and will continue to clock out data.
  292. *
  293. * So we have to do the read ourself. Big deal.
  294. * workaround in i2c-algo-bit
  295. */
  296. static u8 ks0127_read(struct v4l2_subdev *sd, u8 reg)
  297. {
  298. struct i2c_client *client = v4l2_get_subdevdata(sd);
  299. char val = 0;
  300. struct i2c_msg msgs[] = {
  301. {
  302. .addr = client->addr,
  303. .len = sizeof(reg),
  304. .buf = &reg
  305. },
  306. {
  307. .addr = client->addr,
  308. .flags = I2C_M_RD | I2C_M_NO_RD_ACK,
  309. .len = sizeof(val),
  310. .buf = &val
  311. }
  312. };
  313. int ret;
  314. ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
  315. if (ret != ARRAY_SIZE(msgs))
  316. v4l2_dbg(1, debug, sd, "read error\n");
  317. return val;
  318. }
  319. static void ks0127_write(struct v4l2_subdev *sd, u8 reg, u8 val)
  320. {
  321. struct i2c_client *client = v4l2_get_subdevdata(sd);
  322. struct ks0127 *ks = to_ks0127(sd);
  323. char msg[] = { reg, val };
  324. if (i2c_master_send(client, msg, sizeof(msg)) != sizeof(msg))
  325. v4l2_dbg(1, debug, sd, "write error\n");
  326. ks->regs[reg] = val;
  327. }
  328. /* generic bit-twiddling */
  329. static void ks0127_and_or(struct v4l2_subdev *sd, u8 reg, u8 and_v, u8 or_v)
  330. {
  331. struct ks0127 *ks = to_ks0127(sd);
  332. u8 val = ks->regs[reg];
  333. val = (val & and_v) | or_v;
  334. ks0127_write(sd, reg, val);
  335. }
  336. /****************************************************************************
  337. * ks0127 private api
  338. ****************************************************************************/
  339. static void ks0127_init(struct v4l2_subdev *sd)
  340. {
  341. struct ks0127 *ks = to_ks0127(sd);
  342. u8 *table = reg_defaults;
  343. int i;
  344. ks->ident = V4L2_IDENT_KS0127;
  345. v4l2_dbg(1, debug, sd, "reset\n");
  346. msleep(1);
  347. /* initialize all registers to known values */
  348. /* (except STAT, 0x21, 0x22, TEST and 0x38,0x39) */
  349. for (i = 1; i < 33; i++)
  350. ks0127_write(sd, i, table[i]);
  351. for (i = 35; i < 40; i++)
  352. ks0127_write(sd, i, table[i]);
  353. for (i = 41; i < 56; i++)
  354. ks0127_write(sd, i, table[i]);
  355. for (i = 58; i < 64; i++)
  356. ks0127_write(sd, i, table[i]);
  357. if ((ks0127_read(sd, KS_STAT) & 0x80) == 0) {
  358. ks->ident = V4L2_IDENT_KS0122S;
  359. v4l2_dbg(1, debug, sd, "ks0122s found\n");
  360. return;
  361. }
  362. switch (ks0127_read(sd, KS_CMDE) & 0x0f) {
  363. case 0:
  364. v4l2_dbg(1, debug, sd, "ks0127 found\n");
  365. break;
  366. case 9:
  367. ks->ident = V4L2_IDENT_KS0127B;
  368. v4l2_dbg(1, debug, sd, "ks0127B Revision A found\n");
  369. break;
  370. default:
  371. v4l2_dbg(1, debug, sd, "unknown revision\n");
  372. break;
  373. }
  374. }
  375. static int ks0127_s_routing(struct v4l2_subdev *sd,
  376. u32 input, u32 output, u32 config)
  377. {
  378. struct ks0127 *ks = to_ks0127(sd);
  379. switch (input) {
  380. case KS_INPUT_COMPOSITE_1:
  381. case KS_INPUT_COMPOSITE_2:
  382. case KS_INPUT_COMPOSITE_3:
  383. case KS_INPUT_COMPOSITE_4:
  384. case KS_INPUT_COMPOSITE_5:
  385. case KS_INPUT_COMPOSITE_6:
  386. v4l2_dbg(1, debug, sd,
  387. "s_routing %d: Composite\n", input);
  388. /* autodetect 50/60 Hz */
  389. ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
  390. /* VSE=0 */
  391. ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
  392. /* set input line */
  393. ks0127_and_or(sd, KS_CMDB, 0xb0, input);
  394. /* non-freerunning mode */
  395. ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
  396. /* analog input */
  397. ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
  398. /* enable chroma demodulation */
  399. ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
  400. /* chroma trap, HYBWR=1 */
  401. ks0127_and_or(sd, KS_LUMA, 0x00,
  402. (reg_defaults[KS_LUMA])|0x0c);
  403. /* scaler fullbw, luma comb off */
  404. ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
  405. /* manual chroma comb .25 .5 .25 */
  406. ks0127_and_or(sd, KS_VERTIC, 0x0f, 0x90);
  407. /* chroma path delay */
  408. ks0127_and_or(sd, KS_CHROMB, 0x0f, 0x90);
  409. ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
  410. ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
  411. ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
  412. ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
  413. break;
  414. case KS_INPUT_SVIDEO_1:
  415. case KS_INPUT_SVIDEO_2:
  416. case KS_INPUT_SVIDEO_3:
  417. v4l2_dbg(1, debug, sd,
  418. "s_routing %d: S-Video\n", input);
  419. /* autodetect 50/60 Hz */
  420. ks0127_and_or(sd, KS_CMDA, 0xfc, 0x00);
  421. /* VSE=0 */
  422. ks0127_and_or(sd, KS_CMDA, ~0x40, 0x00);
  423. /* set input line */
  424. ks0127_and_or(sd, KS_CMDB, 0xb0, input);
  425. /* non-freerunning mode */
  426. ks0127_and_or(sd, KS_CMDC, 0x70, 0x0a);
  427. /* analog input */
  428. ks0127_and_or(sd, KS_CMDD, 0x03, 0x00);
  429. /* enable chroma demodulation */
  430. ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x00);
  431. ks0127_and_or(sd, KS_LUMA, 0x00,
  432. reg_defaults[KS_LUMA]);
  433. /* disable luma comb */
  434. ks0127_and_or(sd, KS_VERTIA, 0x08,
  435. (reg_defaults[KS_VERTIA]&0xf0)|0x01);
  436. ks0127_and_or(sd, KS_VERTIC, 0x0f,
  437. reg_defaults[KS_VERTIC]&0xf0);
  438. ks0127_and_or(sd, KS_CHROMB, 0x0f,
  439. reg_defaults[KS_CHROMB]&0xf0);
  440. ks0127_write(sd, KS_UGAIN, reg_defaults[KS_UGAIN]);
  441. ks0127_write(sd, KS_VGAIN, reg_defaults[KS_VGAIN]);
  442. ks0127_write(sd, KS_UVOFFH, reg_defaults[KS_UVOFFH]);
  443. ks0127_write(sd, KS_UVOFFL, reg_defaults[KS_UVOFFL]);
  444. break;
  445. case KS_INPUT_YUV656:
  446. v4l2_dbg(1, debug, sd, "s_routing 15: YUV656\n");
  447. if (ks->norm & V4L2_STD_525_60)
  448. /* force 60 Hz */
  449. ks0127_and_or(sd, KS_CMDA, 0xfc, 0x03);
  450. else
  451. /* force 50 Hz */
  452. ks0127_and_or(sd, KS_CMDA, 0xfc, 0x02);
  453. ks0127_and_or(sd, KS_CMDA, 0xff, 0x40); /* VSE=1 */
  454. /* set input line and VALIGN */
  455. ks0127_and_or(sd, KS_CMDB, 0xb0, (input | 0x40));
  456. /* freerunning mode, */
  457. /* TSTGEN = 1 TSTGFR=11 TSTGPH=0 TSTGPK=0 VMEM=1*/
  458. ks0127_and_or(sd, KS_CMDC, 0x70, 0x87);
  459. /* digital input, SYNDIR = 0 INPSL=01 CLKDIR=0 EAV=0 */
  460. ks0127_and_or(sd, KS_CMDD, 0x03, 0x08);
  461. /* disable chroma demodulation */
  462. ks0127_and_or(sd, KS_CTRACK, 0xcf, 0x30);
  463. /* HYPK =01 CTRAP = 0 HYBWR=0 PED=1 RGBH=1 UNIT=1 */
  464. ks0127_and_or(sd, KS_LUMA, 0x00, 0x71);
  465. ks0127_and_or(sd, KS_VERTIC, 0x0f,
  466. reg_defaults[KS_VERTIC]&0xf0);
  467. /* scaler fullbw, luma comb off */
  468. ks0127_and_or(sd, KS_VERTIA, 0x08, 0x81);
  469. ks0127_and_or(sd, KS_CHROMB, 0x0f,
  470. reg_defaults[KS_CHROMB]&0xf0);
  471. ks0127_and_or(sd, KS_CON, 0x00, 0x00);
  472. ks0127_and_or(sd, KS_BRT, 0x00, 32); /* spec: 34 */
  473. /* spec: 229 (e5) */
  474. ks0127_and_or(sd, KS_SAT, 0x00, 0xe8);
  475. ks0127_and_or(sd, KS_HUE, 0x00, 0);
  476. ks0127_and_or(sd, KS_UGAIN, 0x00, 238);
  477. ks0127_and_or(sd, KS_VGAIN, 0x00, 0x00);
  478. /*UOFF:0x30, VOFF:0x30, TSTCGN=1 */
  479. ks0127_and_or(sd, KS_UVOFFH, 0x00, 0x4f);
  480. ks0127_and_or(sd, KS_UVOFFL, 0x00, 0x00);
  481. break;
  482. default:
  483. v4l2_dbg(1, debug, sd,
  484. "s_routing: Unknown input %d\n", input);
  485. break;
  486. }
  487. /* hack: CDMLPF sometimes spontaneously switches on; */
  488. /* force back off */
  489. ks0127_write(sd, KS_DEMOD, reg_defaults[KS_DEMOD]);
  490. return 0;
  491. }
  492. static int ks0127_s_std(struct v4l2_subdev *sd, v4l2_std_id std)
  493. {
  494. struct ks0127 *ks = to_ks0127(sd);
  495. /* Set to automatic SECAM/Fsc mode */
  496. ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
  497. ks->norm = std;
  498. if (std & V4L2_STD_NTSC) {
  499. v4l2_dbg(1, debug, sd,
  500. "s_std: NTSC_M\n");
  501. ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
  502. } else if (std & V4L2_STD_PAL_N) {
  503. v4l2_dbg(1, debug, sd,
  504. "s_std: NTSC_N (fixme)\n");
  505. ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
  506. } else if (std & V4L2_STD_PAL) {
  507. v4l2_dbg(1, debug, sd,
  508. "s_std: PAL_N\n");
  509. ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x20);
  510. } else if (std & V4L2_STD_PAL_M) {
  511. v4l2_dbg(1, debug, sd,
  512. "s_std: PAL_M (fixme)\n");
  513. ks0127_and_or(sd, KS_CHROMA, 0x9f, 0x40);
  514. } else if (std & V4L2_STD_SECAM) {
  515. v4l2_dbg(1, debug, sd,
  516. "s_std: SECAM\n");
  517. /* set to secam autodetection */
  518. ks0127_and_or(sd, KS_CHROMA, 0xdf, 0x20);
  519. ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x00);
  520. schedule_timeout_interruptible(HZ/10+1);
  521. /* did it autodetect? */
  522. if (!(ks0127_read(sd, KS_DEMOD) & 0x40))
  523. /* force to secam mode */
  524. ks0127_and_or(sd, KS_DEMOD, 0xf0, 0x0f);
  525. } else {
  526. v4l2_dbg(1, debug, sd, "s_std: Unknown norm %llx\n",
  527. (unsigned long long)std);
  528. }
  529. return 0;
  530. }
  531. static int ks0127_s_stream(struct v4l2_subdev *sd, int enable)
  532. {
  533. v4l2_dbg(1, debug, sd, "s_stream(%d)\n", enable);
  534. if (enable) {
  535. /* All output pins on */
  536. ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x30);
  537. /* Obey the OEN pin */
  538. ks0127_and_or(sd, KS_CDEM, 0x7f, 0x00);
  539. } else {
  540. /* Video output pins off */
  541. ks0127_and_or(sd, KS_OFMTA, 0xcf, 0x00);
  542. /* Ignore the OEN pin */
  543. ks0127_and_or(sd, KS_CDEM, 0x7f, 0x80);
  544. }
  545. return 0;
  546. }
  547. static int ks0127_status(struct v4l2_subdev *sd, u32 *pstatus, v4l2_std_id *pstd)
  548. {
  549. int stat = V4L2_IN_ST_NO_SIGNAL;
  550. u8 status;
  551. v4l2_std_id std = V4L2_STD_ALL;
  552. status = ks0127_read(sd, KS_STAT);
  553. if (!(status & 0x20)) /* NOVID not set */
  554. stat = 0;
  555. if (!(status & 0x01)) /* CLOCK set */
  556. stat |= V4L2_IN_ST_NO_COLOR;
  557. if ((status & 0x08)) /* PALDET set */
  558. std = V4L2_STD_PAL;
  559. else
  560. std = V4L2_STD_NTSC;
  561. if (pstd)
  562. *pstd = std;
  563. if (pstatus)
  564. *pstatus = stat;
  565. return 0;
  566. }
  567. static int ks0127_querystd(struct v4l2_subdev *sd, v4l2_std_id *std)
  568. {
  569. v4l2_dbg(1, debug, sd, "querystd\n");
  570. return ks0127_status(sd, NULL, std);
  571. }
  572. static int ks0127_g_input_status(struct v4l2_subdev *sd, u32 *status)
  573. {
  574. v4l2_dbg(1, debug, sd, "g_input_status\n");
  575. return ks0127_status(sd, status, NULL);
  576. }
  577. static int ks0127_g_chip_ident(struct v4l2_subdev *sd, struct v4l2_dbg_chip_ident *chip)
  578. {
  579. struct i2c_client *client = v4l2_get_subdevdata(sd);
  580. struct ks0127 *ks = to_ks0127(sd);
  581. return v4l2_chip_ident_i2c_client(client, chip, ks->ident, 0);
  582. }
  583. /* ----------------------------------------------------------------------- */
  584. static const struct v4l2_subdev_core_ops ks0127_core_ops = {
  585. .g_chip_ident = ks0127_g_chip_ident,
  586. .s_std = ks0127_s_std,
  587. };
  588. static const struct v4l2_subdev_video_ops ks0127_video_ops = {
  589. .s_routing = ks0127_s_routing,
  590. .s_stream = ks0127_s_stream,
  591. .querystd = ks0127_querystd,
  592. .g_input_status = ks0127_g_input_status,
  593. };
  594. static const struct v4l2_subdev_ops ks0127_ops = {
  595. .core = &ks0127_core_ops,
  596. .video = &ks0127_video_ops,
  597. };
  598. /* ----------------------------------------------------------------------- */
  599. static int ks0127_probe(struct i2c_client *client, const struct i2c_device_id *id)
  600. {
  601. struct ks0127 *ks;
  602. struct v4l2_subdev *sd;
  603. v4l_info(client, "%s chip found @ 0x%x (%s)\n",
  604. client->addr == (I2C_KS0127_ADDON >> 1) ? "addon" : "on-board",
  605. client->addr << 1, client->adapter->name);
  606. ks = kzalloc(sizeof(*ks), GFP_KERNEL);
  607. if (ks == NULL)
  608. return -ENOMEM;
  609. sd = &ks->sd;
  610. v4l2_i2c_subdev_init(sd, client, &ks0127_ops);
  611. /* power up */
  612. init_reg_defaults();
  613. ks0127_write(sd, KS_CMDA, 0x2c);
  614. mdelay(10);
  615. /* reset the device */
  616. ks0127_init(sd);
  617. return 0;
  618. }
  619. static int ks0127_remove(struct i2c_client *client)
  620. {
  621. struct v4l2_subdev *sd = i2c_get_clientdata(client);
  622. v4l2_device_unregister_subdev(sd);
  623. ks0127_write(sd, KS_OFMTA, 0x20); /* tristate */
  624. ks0127_write(sd, KS_CMDA, 0x2c | 0x80); /* power down */
  625. kfree(to_ks0127(sd));
  626. return 0;
  627. }
  628. static const struct i2c_device_id ks0127_id[] = {
  629. { "ks0127", 0 },
  630. { "ks0127b", 0 },
  631. { "ks0122s", 0 },
  632. { }
  633. };
  634. MODULE_DEVICE_TABLE(i2c, ks0127_id);
  635. static struct i2c_driver ks0127_driver = {
  636. .driver = {
  637. .owner = THIS_MODULE,
  638. .name = "ks0127",
  639. },
  640. .probe = ks0127_probe,
  641. .remove = ks0127_remove,
  642. .id_table = ks0127_id,
  643. };
  644. module_i2c_driver(ks0127_driver);