drxd_hard.c 75 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997
  1. /*
  2. * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
  3. *
  4. * Copyright (C) 2003-2007 Micronas
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * version 2 only, as published by the Free Software Foundation.
  9. *
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20. * 02110-1301, USA
  21. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/init.h>
  27. #include <linux/delay.h>
  28. #include <linux/firmware.h>
  29. #include <linux/i2c.h>
  30. #include <asm/div64.h>
  31. #include "dvb_frontend.h"
  32. #include "drxd.h"
  33. #include "drxd_firm.h"
  34. #define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  35. #define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  36. #define CHUNK_SIZE 48
  37. #define DRX_I2C_RMW 0x10
  38. #define DRX_I2C_BROADCAST 0x20
  39. #define DRX_I2C_CLEARCRC 0x80
  40. #define DRX_I2C_SINGLE_MASTER 0xC0
  41. #define DRX_I2C_MODEFLAGS 0xC0
  42. #define DRX_I2C_FLAGS 0xF0
  43. #ifndef SIZEOF_ARRAY
  44. #define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
  45. #endif
  46. #define DEFAULT_LOCK_TIMEOUT 1100
  47. #define DRX_CHANNEL_AUTO 0
  48. #define DRX_CHANNEL_HIGH 1
  49. #define DRX_CHANNEL_LOW 2
  50. #define DRX_LOCK_MPEG 1
  51. #define DRX_LOCK_FEC 2
  52. #define DRX_LOCK_DEMOD 4
  53. /****************************************************************************/
  54. enum CSCDState {
  55. CSCD_INIT = 0,
  56. CSCD_SET,
  57. CSCD_SAVED
  58. };
  59. enum CDrxdState {
  60. DRXD_UNINITIALIZED = 0,
  61. DRXD_STOPPED,
  62. DRXD_STARTED
  63. };
  64. enum AGC_CTRL_MODE {
  65. AGC_CTRL_AUTO = 0,
  66. AGC_CTRL_USER,
  67. AGC_CTRL_OFF
  68. };
  69. enum OperationMode {
  70. OM_Default,
  71. OM_DVBT_Diversity_Front,
  72. OM_DVBT_Diversity_End
  73. };
  74. struct SCfgAgc {
  75. enum AGC_CTRL_MODE ctrlMode;
  76. u16 outputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  77. u16 settleLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  78. u16 minOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  79. u16 maxOutputLevel; /* range [0, ... , 1023], 1/n of fullscale range */
  80. u16 speed; /* range [0, ... , 1023], 1/n of fullscale range */
  81. u16 R1;
  82. u16 R2;
  83. u16 R3;
  84. };
  85. struct SNoiseCal {
  86. int cpOpt;
  87. short cpNexpOfs;
  88. short tdCal2k;
  89. short tdCal8k;
  90. };
  91. enum app_env {
  92. APPENV_STATIC = 0,
  93. APPENV_PORTABLE = 1,
  94. APPENV_MOBILE = 2
  95. };
  96. enum EIFFilter {
  97. IFFILTER_SAW = 0,
  98. IFFILTER_DISCRETE = 1
  99. };
  100. struct drxd_state {
  101. struct dvb_frontend frontend;
  102. struct dvb_frontend_ops ops;
  103. struct dtv_frontend_properties props;
  104. const struct firmware *fw;
  105. struct device *dev;
  106. struct i2c_adapter *i2c;
  107. void *priv;
  108. struct drxd_config config;
  109. int i2c_access;
  110. int init_done;
  111. struct mutex mutex;
  112. u8 chip_adr;
  113. u16 hi_cfg_timing_div;
  114. u16 hi_cfg_bridge_delay;
  115. u16 hi_cfg_wakeup_key;
  116. u16 hi_cfg_ctrl;
  117. u16 intermediate_freq;
  118. u16 osc_clock_freq;
  119. enum CSCDState cscd_state;
  120. enum CDrxdState drxd_state;
  121. u16 sys_clock_freq;
  122. s16 osc_clock_deviation;
  123. u16 expected_sys_clock_freq;
  124. u16 insert_rs_byte;
  125. u16 enable_parallel;
  126. int operation_mode;
  127. struct SCfgAgc if_agc_cfg;
  128. struct SCfgAgc rf_agc_cfg;
  129. struct SNoiseCal noise_cal;
  130. u32 fe_fs_add_incr;
  131. u32 org_fe_fs_add_incr;
  132. u16 current_fe_if_incr;
  133. u16 m_FeAgRegAgPwd;
  134. u16 m_FeAgRegAgAgcSio;
  135. u16 m_EcOcRegOcModeLop;
  136. u16 m_EcOcRegSncSncLvl;
  137. u8 *m_InitAtomicRead;
  138. u8 *m_HiI2cPatch;
  139. u8 *m_ResetCEFR;
  140. u8 *m_InitFE_1;
  141. u8 *m_InitFE_2;
  142. u8 *m_InitCP;
  143. u8 *m_InitCE;
  144. u8 *m_InitEQ;
  145. u8 *m_InitSC;
  146. u8 *m_InitEC;
  147. u8 *m_ResetECRAM;
  148. u8 *m_InitDiversityFront;
  149. u8 *m_InitDiversityEnd;
  150. u8 *m_DisableDiversity;
  151. u8 *m_StartDiversityFront;
  152. u8 *m_StartDiversityEnd;
  153. u8 *m_DiversityDelay8MHZ;
  154. u8 *m_DiversityDelay6MHZ;
  155. u8 *microcode;
  156. u32 microcode_length;
  157. int type_A;
  158. int PGA;
  159. int diversity;
  160. int tuner_mirrors;
  161. enum app_env app_env_default;
  162. enum app_env app_env_diversity;
  163. };
  164. /****************************************************************************/
  165. /* I2C **********************************************************************/
  166. /****************************************************************************/
  167. static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
  168. {
  169. struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
  170. if (i2c_transfer(adap, &msg, 1) != 1)
  171. return -1;
  172. return 0;
  173. }
  174. static int i2c_read(struct i2c_adapter *adap,
  175. u8 adr, u8 *msg, int len, u8 *answ, int alen)
  176. {
  177. struct i2c_msg msgs[2] = {
  178. {
  179. .addr = adr, .flags = 0,
  180. .buf = msg, .len = len
  181. }, {
  182. .addr = adr, .flags = I2C_M_RD,
  183. .buf = answ, .len = alen
  184. }
  185. };
  186. if (i2c_transfer(adap, msgs, 2) != 2)
  187. return -1;
  188. return 0;
  189. }
  190. static inline u32 MulDiv32(u32 a, u32 b, u32 c)
  191. {
  192. u64 tmp64;
  193. tmp64 = (u64)a * (u64)b;
  194. do_div(tmp64, c);
  195. return (u32) tmp64;
  196. }
  197. static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
  198. {
  199. u8 adr = state->config.demod_address;
  200. u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
  201. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  202. };
  203. u8 mm2[2];
  204. if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
  205. return -1;
  206. if (data)
  207. *data = mm2[0] | (mm2[1] << 8);
  208. return mm2[0] | (mm2[1] << 8);
  209. }
  210. static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
  211. {
  212. u8 adr = state->config.demod_address;
  213. u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
  214. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  215. };
  216. u8 mm2[4];
  217. if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
  218. return -1;
  219. if (data)
  220. *data =
  221. mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
  222. return 0;
  223. }
  224. static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
  225. {
  226. u8 adr = state->config.demod_address;
  227. u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
  228. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
  229. data & 0xff, (data >> 8) & 0xff
  230. };
  231. if (i2c_write(state->i2c, adr, mm, 6) < 0)
  232. return -1;
  233. return 0;
  234. }
  235. static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
  236. {
  237. u8 adr = state->config.demod_address;
  238. u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
  239. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
  240. data & 0xff, (data >> 8) & 0xff,
  241. (data >> 16) & 0xff, (data >> 24) & 0xff
  242. };
  243. if (i2c_write(state->i2c, adr, mm, 8) < 0)
  244. return -1;
  245. return 0;
  246. }
  247. static int write_chunk(struct drxd_state *state,
  248. u32 reg, u8 *data, u32 len, u8 flags)
  249. {
  250. u8 adr = state->config.demod_address;
  251. u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
  252. flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
  253. };
  254. int i;
  255. for (i = 0; i < len; i++)
  256. mm[4 + i] = data[i];
  257. if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
  258. printk(KERN_ERR "error in write_chunk\n");
  259. return -1;
  260. }
  261. return 0;
  262. }
  263. static int WriteBlock(struct drxd_state *state,
  264. u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
  265. {
  266. while (BlockSize > 0) {
  267. u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
  268. if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
  269. return -1;
  270. pBlock += Chunk;
  271. Address += (Chunk >> 1);
  272. BlockSize -= Chunk;
  273. }
  274. return 0;
  275. }
  276. static int WriteTable(struct drxd_state *state, u8 * pTable)
  277. {
  278. int status = 0;
  279. if (pTable == NULL)
  280. return 0;
  281. while (!status) {
  282. u16 Length;
  283. u32 Address = pTable[0] | (pTable[1] << 8) |
  284. (pTable[2] << 16) | (pTable[3] << 24);
  285. if (Address == 0xFFFFFFFF)
  286. break;
  287. pTable += sizeof(u32);
  288. Length = pTable[0] | (pTable[1] << 8);
  289. pTable += sizeof(u16);
  290. if (!Length)
  291. break;
  292. status = WriteBlock(state, Address, Length * 2, pTable, 0);
  293. pTable += (Length * 2);
  294. }
  295. return status;
  296. }
  297. /****************************************************************************/
  298. /****************************************************************************/
  299. /****************************************************************************/
  300. static int ResetCEFR(struct drxd_state *state)
  301. {
  302. return WriteTable(state, state->m_ResetCEFR);
  303. }
  304. static int InitCP(struct drxd_state *state)
  305. {
  306. return WriteTable(state, state->m_InitCP);
  307. }
  308. static int InitCE(struct drxd_state *state)
  309. {
  310. int status;
  311. enum app_env AppEnv = state->app_env_default;
  312. do {
  313. status = WriteTable(state, state->m_InitCE);
  314. if (status < 0)
  315. break;
  316. if (state->operation_mode == OM_DVBT_Diversity_Front ||
  317. state->operation_mode == OM_DVBT_Diversity_End) {
  318. AppEnv = state->app_env_diversity;
  319. }
  320. if (AppEnv == APPENV_STATIC) {
  321. status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
  322. if (status < 0)
  323. break;
  324. } else if (AppEnv == APPENV_PORTABLE) {
  325. status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
  326. if (status < 0)
  327. break;
  328. } else if (AppEnv == APPENV_MOBILE && state->type_A) {
  329. status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
  330. if (status < 0)
  331. break;
  332. } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
  333. status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
  334. if (status < 0)
  335. break;
  336. }
  337. /* start ce */
  338. status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
  339. if (status < 0)
  340. break;
  341. } while (0);
  342. return status;
  343. }
  344. static int StopOC(struct drxd_state *state)
  345. {
  346. int status = 0;
  347. u16 ocSyncLvl = 0;
  348. u16 ocModeLop = state->m_EcOcRegOcModeLop;
  349. u16 dtoIncLop = 0;
  350. u16 dtoIncHip = 0;
  351. do {
  352. /* Store output configuration */
  353. status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
  354. if (status < 0)
  355. break;
  356. /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
  357. state->m_EcOcRegSncSncLvl = ocSyncLvl;
  358. /* m_EcOcRegOcModeLop = ocModeLop; */
  359. /* Flush FIFO (byte-boundary) at fixed rate */
  360. status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
  361. if (status < 0)
  362. break;
  363. status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
  364. if (status < 0)
  365. break;
  366. status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
  367. if (status < 0)
  368. break;
  369. status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
  370. if (status < 0)
  371. break;
  372. ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
  373. ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
  374. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
  375. if (status < 0)
  376. break;
  377. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
  378. if (status < 0)
  379. break;
  380. msleep(1);
  381. /* Output pins to '0' */
  382. status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
  383. if (status < 0)
  384. break;
  385. /* Force the OC out of sync */
  386. ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
  387. status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
  388. if (status < 0)
  389. break;
  390. ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
  391. ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
  392. ocModeLop |= 0x2; /* Magically-out-of-sync */
  393. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
  394. if (status < 0)
  395. break;
  396. status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
  397. if (status < 0)
  398. break;
  399. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
  400. if (status < 0)
  401. break;
  402. } while (0);
  403. return status;
  404. }
  405. static int StartOC(struct drxd_state *state)
  406. {
  407. int status = 0;
  408. do {
  409. /* Stop OC */
  410. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
  411. if (status < 0)
  412. break;
  413. /* Restore output configuration */
  414. status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
  415. if (status < 0)
  416. break;
  417. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
  418. if (status < 0)
  419. break;
  420. /* Output pins active again */
  421. status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
  422. if (status < 0)
  423. break;
  424. /* Start OC */
  425. status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
  426. if (status < 0)
  427. break;
  428. } while (0);
  429. return status;
  430. }
  431. static int InitEQ(struct drxd_state *state)
  432. {
  433. return WriteTable(state, state->m_InitEQ);
  434. }
  435. static int InitEC(struct drxd_state *state)
  436. {
  437. return WriteTable(state, state->m_InitEC);
  438. }
  439. static int InitSC(struct drxd_state *state)
  440. {
  441. return WriteTable(state, state->m_InitSC);
  442. }
  443. static int InitAtomicRead(struct drxd_state *state)
  444. {
  445. return WriteTable(state, state->m_InitAtomicRead);
  446. }
  447. static int CorrectSysClockDeviation(struct drxd_state *state);
  448. static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
  449. {
  450. u16 ScRaRamLock = 0;
  451. const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
  452. SC_RA_RAM_LOCK_FEC__M |
  453. SC_RA_RAM_LOCK_DEMOD__M);
  454. const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
  455. SC_RA_RAM_LOCK_DEMOD__M);
  456. const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
  457. int status;
  458. *pLockStatus = 0;
  459. status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
  460. if (status < 0) {
  461. printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
  462. return status;
  463. }
  464. if (state->drxd_state != DRXD_STARTED)
  465. return 0;
  466. if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
  467. *pLockStatus |= DRX_LOCK_MPEG;
  468. CorrectSysClockDeviation(state);
  469. }
  470. if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
  471. *pLockStatus |= DRX_LOCK_FEC;
  472. if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
  473. *pLockStatus |= DRX_LOCK_DEMOD;
  474. return 0;
  475. }
  476. /****************************************************************************/
  477. static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
  478. {
  479. int status;
  480. if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
  481. return -1;
  482. if (cfg->ctrlMode == AGC_CTRL_USER) {
  483. do {
  484. u16 FeAgRegPm1AgcWri;
  485. u16 FeAgRegAgModeLop;
  486. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
  487. if (status < 0)
  488. break;
  489. FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
  490. FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
  491. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
  492. if (status < 0)
  493. break;
  494. FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
  495. FE_AG_REG_PM1_AGC_WRI__M);
  496. status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
  497. if (status < 0)
  498. break;
  499. } while (0);
  500. } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
  501. if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
  502. ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
  503. ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
  504. ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
  505. )
  506. return -1;
  507. do {
  508. u16 FeAgRegAgModeLop;
  509. u16 FeAgRegEgcSetLvl;
  510. u16 slope, offset;
  511. /* == Mode == */
  512. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
  513. if (status < 0)
  514. break;
  515. FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
  516. FeAgRegAgModeLop |=
  517. FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
  518. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
  519. if (status < 0)
  520. break;
  521. /* == Settle level == */
  522. FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
  523. FE_AG_REG_EGC_SET_LVL__M);
  524. status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
  525. if (status < 0)
  526. break;
  527. /* == Min/Max == */
  528. slope = (u16) ((cfg->maxOutputLevel -
  529. cfg->minOutputLevel) / 2);
  530. offset = (u16) ((cfg->maxOutputLevel +
  531. cfg->minOutputLevel) / 2 - 511);
  532. status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
  533. if (status < 0)
  534. break;
  535. status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
  536. if (status < 0)
  537. break;
  538. /* == Speed == */
  539. {
  540. const u16 maxRur = 8;
  541. const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
  542. const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
  543. 17, 18, 18, 19,
  544. 20, 21, 22, 23,
  545. 24, 26, 27, 28,
  546. 29, 31
  547. };
  548. u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
  549. (maxRur + 1);
  550. u16 fineSpeed = (u16) (cfg->speed -
  551. ((cfg->speed /
  552. fineSteps) *
  553. fineSteps));
  554. u16 invRurCount = (u16) (cfg->speed /
  555. fineSteps);
  556. u16 rurCount;
  557. if (invRurCount > maxRur) {
  558. rurCount = 0;
  559. fineSpeed += fineSteps;
  560. } else {
  561. rurCount = maxRur - invRurCount;
  562. }
  563. /*
  564. fastInc = default *
  565. (2^(fineSpeed/fineSteps))
  566. => range[default...2*default>
  567. slowInc = default *
  568. (2^(fineSpeed/fineSteps))
  569. */
  570. {
  571. u16 fastIncrDec =
  572. fastIncrDecLUT[fineSpeed /
  573. ((fineSteps /
  574. (14 + 1)) + 1)];
  575. u16 slowIncrDec =
  576. slowIncrDecLUT[fineSpeed /
  577. (fineSteps /
  578. (3 + 1))];
  579. status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
  580. if (status < 0)
  581. break;
  582. status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
  583. if (status < 0)
  584. break;
  585. status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
  586. if (status < 0)
  587. break;
  588. status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
  589. if (status < 0)
  590. break;
  591. status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
  592. if (status < 0)
  593. break;
  594. }
  595. }
  596. } while (0);
  597. } else {
  598. /* No OFF mode for IF control */
  599. return -1;
  600. }
  601. return status;
  602. }
  603. static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
  604. {
  605. int status = 0;
  606. if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
  607. return -1;
  608. if (cfg->ctrlMode == AGC_CTRL_USER) {
  609. do {
  610. u16 AgModeLop = 0;
  611. u16 level = (cfg->outputLevel);
  612. if (level == DRXD_FE_CTRL_MAX)
  613. level++;
  614. status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
  615. if (status < 0)
  616. break;
  617. /*==== Mode ====*/
  618. /* Powerdown PD2, WRI source */
  619. state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  620. state->m_FeAgRegAgPwd |=
  621. FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
  622. status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
  623. if (status < 0)
  624. break;
  625. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  626. if (status < 0)
  627. break;
  628. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  629. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  630. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  631. FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
  632. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  633. if (status < 0)
  634. break;
  635. /* enable AGC2 pin */
  636. {
  637. u16 FeAgRegAgAgcSio = 0;
  638. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  639. if (status < 0)
  640. break;
  641. FeAgRegAgAgcSio &=
  642. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  643. FeAgRegAgAgcSio |=
  644. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
  645. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  646. if (status < 0)
  647. break;
  648. }
  649. } while (0);
  650. } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
  651. u16 AgModeLop = 0;
  652. do {
  653. u16 level;
  654. /* Automatic control */
  655. /* Powerup PD2, AGC2 as output, TGC source */
  656. (state->m_FeAgRegAgPwd) &=
  657. ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  658. (state->m_FeAgRegAgPwd) |=
  659. FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
  660. status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
  661. if (status < 0)
  662. break;
  663. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  664. if (status < 0)
  665. break;
  666. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  667. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  668. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  669. FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
  670. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  671. if (status < 0)
  672. break;
  673. /* Settle level */
  674. level = (((cfg->settleLevel) >> 4) &
  675. FE_AG_REG_TGC_SET_LVL__M);
  676. status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
  677. if (status < 0)
  678. break;
  679. /* Min/max: don't care */
  680. /* Speed: TODO */
  681. /* enable AGC2 pin */
  682. {
  683. u16 FeAgRegAgAgcSio = 0;
  684. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  685. if (status < 0)
  686. break;
  687. FeAgRegAgAgcSio &=
  688. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  689. FeAgRegAgAgcSio |=
  690. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
  691. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  692. if (status < 0)
  693. break;
  694. }
  695. } while (0);
  696. } else {
  697. u16 AgModeLop = 0;
  698. do {
  699. /* No RF AGC control */
  700. /* Powerdown PD2, AGC2 as output, WRI source */
  701. (state->m_FeAgRegAgPwd) &=
  702. ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
  703. (state->m_FeAgRegAgPwd) |=
  704. FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
  705. status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
  706. if (status < 0)
  707. break;
  708. status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  709. if (status < 0)
  710. break;
  711. AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
  712. FE_AG_REG_AG_MODE_LOP_MODE_E__M));
  713. AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
  714. FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
  715. status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  716. if (status < 0)
  717. break;
  718. /* set FeAgRegAgAgcSio AGC2 (RF) as input */
  719. {
  720. u16 FeAgRegAgAgcSio = 0;
  721. status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
  722. if (status < 0)
  723. break;
  724. FeAgRegAgAgcSio &=
  725. ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
  726. FeAgRegAgAgcSio |=
  727. FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
  728. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
  729. if (status < 0)
  730. break;
  731. }
  732. } while (0);
  733. }
  734. return status;
  735. }
  736. static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
  737. {
  738. int status = 0;
  739. *pValue = 0;
  740. if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
  741. u16 Value;
  742. status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
  743. Value &= FE_AG_REG_GC1_AGC_DAT__M;
  744. if (status >= 0) {
  745. /* 3.3V
  746. |
  747. R1
  748. |
  749. Vin - R3 - * -- Vout
  750. |
  751. R2
  752. |
  753. GND
  754. */
  755. u32 R1 = state->if_agc_cfg.R1;
  756. u32 R2 = state->if_agc_cfg.R2;
  757. u32 R3 = state->if_agc_cfg.R3;
  758. u32 Vmax, Rpar, Vmin, Vout;
  759. if (R2 == 0 && (R1 == 0 || R3 == 0))
  760. return 0;
  761. Vmax = (3300 * R2) / (R1 + R2);
  762. Rpar = (R2 * R3) / (R3 + R2);
  763. Vmin = (3300 * Rpar) / (R1 + Rpar);
  764. Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
  765. *pValue = Vout;
  766. }
  767. }
  768. return status;
  769. }
  770. static int load_firmware(struct drxd_state *state, const char *fw_name)
  771. {
  772. const struct firmware *fw;
  773. if (request_firmware(&fw, fw_name, state->dev) < 0) {
  774. printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
  775. return -EIO;
  776. }
  777. state->microcode = kmemdup(fw->data, fw->size, GFP_KERNEL);
  778. if (state->microcode == NULL) {
  779. release_firmware(fw);
  780. printk(KERN_ERR "drxd: firmware load failure: no memory\n");
  781. return -ENOMEM;
  782. }
  783. state->microcode_length = fw->size;
  784. release_firmware(fw);
  785. return 0;
  786. }
  787. static int DownloadMicrocode(struct drxd_state *state,
  788. const u8 *pMCImage, u32 Length)
  789. {
  790. u8 *pSrc;
  791. u32 Address;
  792. u16 nBlocks;
  793. u16 BlockSize;
  794. u32 offset = 0;
  795. int i, status = 0;
  796. pSrc = (u8 *) pMCImage;
  797. /* We're not using Flags */
  798. /* Flags = (pSrc[0] << 8) | pSrc[1]; */
  799. pSrc += sizeof(u16);
  800. offset += sizeof(u16);
  801. nBlocks = (pSrc[0] << 8) | pSrc[1];
  802. pSrc += sizeof(u16);
  803. offset += sizeof(u16);
  804. for (i = 0; i < nBlocks; i++) {
  805. Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
  806. (pSrc[2] << 8) | pSrc[3];
  807. pSrc += sizeof(u32);
  808. offset += sizeof(u32);
  809. BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
  810. pSrc += sizeof(u16);
  811. offset += sizeof(u16);
  812. /* We're not using Flags */
  813. /* u16 Flags = (pSrc[0] << 8) | pSrc[1]; */
  814. pSrc += sizeof(u16);
  815. offset += sizeof(u16);
  816. /* We're not using BlockCRC */
  817. /* u16 BlockCRC = (pSrc[0] << 8) | pSrc[1]; */
  818. pSrc += sizeof(u16);
  819. offset += sizeof(u16);
  820. status = WriteBlock(state, Address, BlockSize,
  821. pSrc, DRX_I2C_CLEARCRC);
  822. if (status < 0)
  823. break;
  824. pSrc += BlockSize;
  825. offset += BlockSize;
  826. }
  827. return status;
  828. }
  829. static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
  830. {
  831. u32 nrRetries = 0;
  832. u16 waitCmd;
  833. int status;
  834. status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
  835. if (status < 0)
  836. return status;
  837. do {
  838. nrRetries += 1;
  839. if (nrRetries > DRXD_MAX_RETRIES) {
  840. status = -1;
  841. break;
  842. }
  843. status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
  844. } while (waitCmd != 0);
  845. if (status >= 0)
  846. status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
  847. return status;
  848. }
  849. static int HI_CfgCommand(struct drxd_state *state)
  850. {
  851. int status = 0;
  852. mutex_lock(&state->mutex);
  853. Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  854. Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
  855. Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
  856. Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
  857. Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
  858. Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  859. if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
  860. HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
  861. status = Write16(state, HI_RA_RAM_SRV_CMD__A,
  862. HI_RA_RAM_SRV_CMD_CONFIG, 0);
  863. else
  864. status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
  865. mutex_unlock(&state->mutex);
  866. return status;
  867. }
  868. static int InitHI(struct drxd_state *state)
  869. {
  870. state->hi_cfg_wakeup_key = (state->chip_adr);
  871. /* port/bridge/power down ctrl */
  872. state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
  873. return HI_CfgCommand(state);
  874. }
  875. static int HI_ResetCommand(struct drxd_state *state)
  876. {
  877. int status;
  878. mutex_lock(&state->mutex);
  879. status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
  880. HI_RA_RAM_SRV_RST_KEY_ACT, 0);
  881. if (status == 0)
  882. status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
  883. mutex_unlock(&state->mutex);
  884. msleep(1);
  885. return status;
  886. }
  887. static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
  888. {
  889. state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
  890. if (bEnableBridge)
  891. state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
  892. else
  893. state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
  894. return HI_CfgCommand(state);
  895. }
  896. #define HI_TR_WRITE 0x9
  897. #define HI_TR_READ 0xA
  898. #define HI_TR_READ_WRITE 0xB
  899. #define HI_TR_BROADCAST 0x4
  900. #if 0
  901. static int AtomicReadBlock(struct drxd_state *state,
  902. u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
  903. {
  904. int status;
  905. int i = 0;
  906. /* Parameter check */
  907. if ((!pData) || ((DataSize & 1) != 0))
  908. return -1;
  909. mutex_lock(&state->mutex);
  910. do {
  911. /* Instruct HI to read n bytes */
  912. /* TODO use proper names forthese egisters */
  913. status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
  914. if (status < 0)
  915. break;
  916. status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
  917. if (status < 0)
  918. break;
  919. status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
  920. if (status < 0)
  921. break;
  922. status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
  923. if (status < 0)
  924. break;
  925. status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
  926. if (status < 0)
  927. break;
  928. status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
  929. if (status < 0)
  930. break;
  931. } while (0);
  932. if (status >= 0) {
  933. for (i = 0; i < (DataSize / 2); i += 1) {
  934. u16 word;
  935. status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
  936. &word, 0);
  937. if (status < 0)
  938. break;
  939. pData[2 * i] = (u8) (word & 0xFF);
  940. pData[(2 * i) + 1] = (u8) (word >> 8);
  941. }
  942. }
  943. mutex_unlock(&state->mutex);
  944. return status;
  945. }
  946. static int AtomicReadReg32(struct drxd_state *state,
  947. u32 Addr, u32 *pData, u8 Flags)
  948. {
  949. u8 buf[sizeof(u32)];
  950. int status;
  951. if (!pData)
  952. return -1;
  953. status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
  954. *pData = (((u32) buf[0]) << 0) +
  955. (((u32) buf[1]) << 8) +
  956. (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
  957. return status;
  958. }
  959. #endif
  960. static int StopAllProcessors(struct drxd_state *state)
  961. {
  962. return Write16(state, HI_COMM_EXEC__A,
  963. SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
  964. }
  965. static int EnableAndResetMB(struct drxd_state *state)
  966. {
  967. if (state->type_A) {
  968. /* disable? monitor bus observe @ EC_OC */
  969. Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
  970. }
  971. /* do inverse broadcast, followed by explicit write to HI */
  972. Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
  973. Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
  974. return 0;
  975. }
  976. static int InitCC(struct drxd_state *state)
  977. {
  978. if (state->osc_clock_freq == 0 ||
  979. state->osc_clock_freq > 20000 ||
  980. (state->osc_clock_freq % 4000) != 0) {
  981. printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
  982. return -1;
  983. }
  984. Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
  985. Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
  986. CC_REG_PLL_MODE_PUMP_CUR_12, 0);
  987. Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
  988. Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
  989. Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
  990. return 0;
  991. }
  992. static int ResetECOD(struct drxd_state *state)
  993. {
  994. int status = 0;
  995. if (state->type_A)
  996. status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
  997. else
  998. status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
  999. if (!(status < 0))
  1000. status = WriteTable(state, state->m_ResetECRAM);
  1001. if (!(status < 0))
  1002. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
  1003. return status;
  1004. }
  1005. /* Configure PGA switch */
  1006. static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
  1007. {
  1008. int status;
  1009. u16 AgModeLop = 0;
  1010. u16 AgModeHip = 0;
  1011. do {
  1012. if (pgaSwitch) {
  1013. /* PGA on */
  1014. /* fine gain */
  1015. status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  1016. if (status < 0)
  1017. break;
  1018. AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
  1019. AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
  1020. status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  1021. if (status < 0)
  1022. break;
  1023. /* coarse gain */
  1024. status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
  1025. if (status < 0)
  1026. break;
  1027. AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
  1028. AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
  1029. status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
  1030. if (status < 0)
  1031. break;
  1032. /* enable fine and coarse gain, enable AAF,
  1033. no ext resistor */
  1034. status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
  1035. if (status < 0)
  1036. break;
  1037. } else {
  1038. /* PGA off, bypass */
  1039. /* fine gain */
  1040. status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
  1041. if (status < 0)
  1042. break;
  1043. AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
  1044. AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
  1045. status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
  1046. if (status < 0)
  1047. break;
  1048. /* coarse gain */
  1049. status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
  1050. if (status < 0)
  1051. break;
  1052. AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
  1053. AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
  1054. status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
  1055. if (status < 0)
  1056. break;
  1057. /* disable fine and coarse gain, enable AAF,
  1058. no ext resistor */
  1059. status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
  1060. if (status < 0)
  1061. break;
  1062. }
  1063. } while (0);
  1064. return status;
  1065. }
  1066. static int InitFE(struct drxd_state *state)
  1067. {
  1068. int status;
  1069. do {
  1070. status = WriteTable(state, state->m_InitFE_1);
  1071. if (status < 0)
  1072. break;
  1073. if (state->type_A) {
  1074. status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
  1075. FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
  1076. 0);
  1077. } else {
  1078. if (state->PGA)
  1079. status = SetCfgPga(state, 0);
  1080. else
  1081. status =
  1082. Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
  1083. B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
  1084. 0);
  1085. }
  1086. if (status < 0)
  1087. break;
  1088. status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
  1089. if (status < 0)
  1090. break;
  1091. status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
  1092. if (status < 0)
  1093. break;
  1094. status = WriteTable(state, state->m_InitFE_2);
  1095. if (status < 0)
  1096. break;
  1097. } while (0);
  1098. return status;
  1099. }
  1100. static int InitFT(struct drxd_state *state)
  1101. {
  1102. /*
  1103. norm OFFSET, MB says =2 voor 8K en =3 voor 2K waarschijnlijk
  1104. SC stuff
  1105. */
  1106. return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
  1107. }
  1108. static int SC_WaitForReady(struct drxd_state *state)
  1109. {
  1110. u16 curCmd;
  1111. int i;
  1112. for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
  1113. int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
  1114. if (status == 0 || curCmd == 0)
  1115. return status;
  1116. }
  1117. return -1;
  1118. }
  1119. static int SC_SendCommand(struct drxd_state *state, u16 cmd)
  1120. {
  1121. int status = 0;
  1122. u16 errCode;
  1123. Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
  1124. SC_WaitForReady(state);
  1125. Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
  1126. if (errCode == 0xFFFF) {
  1127. printk(KERN_ERR "Command Error\n");
  1128. status = -1;
  1129. }
  1130. return status;
  1131. }
  1132. static int SC_ProcStartCommand(struct drxd_state *state,
  1133. u16 subCmd, u16 param0, u16 param1)
  1134. {
  1135. int status = 0;
  1136. u16 scExec;
  1137. mutex_lock(&state->mutex);
  1138. do {
  1139. Read16(state, SC_COMM_EXEC__A, &scExec, 0);
  1140. if (scExec != 1) {
  1141. status = -1;
  1142. break;
  1143. }
  1144. SC_WaitForReady(state);
  1145. Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
  1146. Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
  1147. Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
  1148. SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
  1149. } while (0);
  1150. mutex_unlock(&state->mutex);
  1151. return status;
  1152. }
  1153. static int SC_SetPrefParamCommand(struct drxd_state *state,
  1154. u16 subCmd, u16 param0, u16 param1)
  1155. {
  1156. int status;
  1157. mutex_lock(&state->mutex);
  1158. do {
  1159. status = SC_WaitForReady(state);
  1160. if (status < 0)
  1161. break;
  1162. status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
  1163. if (status < 0)
  1164. break;
  1165. status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
  1166. if (status < 0)
  1167. break;
  1168. status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
  1169. if (status < 0)
  1170. break;
  1171. status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
  1172. if (status < 0)
  1173. break;
  1174. } while (0);
  1175. mutex_unlock(&state->mutex);
  1176. return status;
  1177. }
  1178. #if 0
  1179. static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
  1180. {
  1181. int status = 0;
  1182. mutex_lock(&state->mutex);
  1183. do {
  1184. status = SC_WaitForReady(state);
  1185. if (status < 0)
  1186. break;
  1187. status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
  1188. if (status < 0)
  1189. break;
  1190. status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
  1191. if (status < 0)
  1192. break;
  1193. } while (0);
  1194. mutex_unlock(&state->mutex);
  1195. return status;
  1196. }
  1197. #endif
  1198. static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
  1199. {
  1200. int status;
  1201. do {
  1202. u16 EcOcRegIprInvMpg = 0;
  1203. u16 EcOcRegOcModeLop = 0;
  1204. u16 EcOcRegOcModeHip = 0;
  1205. u16 EcOcRegOcMpgSio = 0;
  1206. /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
  1207. if (state->operation_mode == OM_DVBT_Diversity_Front) {
  1208. if (bEnableOutput) {
  1209. EcOcRegOcModeHip |=
  1210. B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
  1211. } else
  1212. EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
  1213. EcOcRegOcModeLop |=
  1214. EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
  1215. } else {
  1216. EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
  1217. if (bEnableOutput)
  1218. EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
  1219. else
  1220. EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
  1221. /* Don't Insert RS Byte */
  1222. if (state->insert_rs_byte) {
  1223. EcOcRegOcModeLop &=
  1224. (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
  1225. EcOcRegOcModeHip &=
  1226. (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
  1227. EcOcRegOcModeHip |=
  1228. EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
  1229. } else {
  1230. EcOcRegOcModeLop |=
  1231. EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
  1232. EcOcRegOcModeHip &=
  1233. (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
  1234. EcOcRegOcModeHip |=
  1235. EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
  1236. }
  1237. /* Mode = Parallel */
  1238. if (state->enable_parallel)
  1239. EcOcRegOcModeLop &=
  1240. (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
  1241. else
  1242. EcOcRegOcModeLop |=
  1243. EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
  1244. }
  1245. /* Invert Data */
  1246. /* EcOcRegIprInvMpg |= 0x00FF; */
  1247. EcOcRegIprInvMpg &= (~(0x00FF));
  1248. /* Invert Error ( we don't use the pin ) */
  1249. /* EcOcRegIprInvMpg |= 0x0100; */
  1250. EcOcRegIprInvMpg &= (~(0x0100));
  1251. /* Invert Start ( we don't use the pin ) */
  1252. /* EcOcRegIprInvMpg |= 0x0200; */
  1253. EcOcRegIprInvMpg &= (~(0x0200));
  1254. /* Invert Valid ( we don't use the pin ) */
  1255. /* EcOcRegIprInvMpg |= 0x0400; */
  1256. EcOcRegIprInvMpg &= (~(0x0400));
  1257. /* Invert Clock */
  1258. /* EcOcRegIprInvMpg |= 0x0800; */
  1259. EcOcRegIprInvMpg &= (~(0x0800));
  1260. /* EcOcRegOcModeLop =0x05; */
  1261. status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
  1262. if (status < 0)
  1263. break;
  1264. status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
  1265. if (status < 0)
  1266. break;
  1267. status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
  1268. if (status < 0)
  1269. break;
  1270. status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
  1271. if (status < 0)
  1272. break;
  1273. } while (0);
  1274. return status;
  1275. }
  1276. static int SetDeviceTypeId(struct drxd_state *state)
  1277. {
  1278. int status = 0;
  1279. u16 deviceId = 0;
  1280. do {
  1281. status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
  1282. if (status < 0)
  1283. break;
  1284. /* TODO: why twice? */
  1285. status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
  1286. if (status < 0)
  1287. break;
  1288. printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
  1289. state->type_A = 0;
  1290. state->PGA = 0;
  1291. state->diversity = 0;
  1292. if (deviceId == 0) { /* on A2 only 3975 available */
  1293. state->type_A = 1;
  1294. printk(KERN_INFO "DRX3975D-A2\n");
  1295. } else {
  1296. deviceId >>= 12;
  1297. printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
  1298. switch (deviceId) {
  1299. case 4:
  1300. state->diversity = 1;
  1301. case 3:
  1302. case 7:
  1303. state->PGA = 1;
  1304. break;
  1305. case 6:
  1306. state->diversity = 1;
  1307. case 5:
  1308. case 8:
  1309. break;
  1310. default:
  1311. status = -1;
  1312. break;
  1313. }
  1314. }
  1315. } while (0);
  1316. if (status < 0)
  1317. return status;
  1318. /* Init Table selection */
  1319. state->m_InitAtomicRead = DRXD_InitAtomicRead;
  1320. state->m_InitSC = DRXD_InitSC;
  1321. state->m_ResetECRAM = DRXD_ResetECRAM;
  1322. if (state->type_A) {
  1323. state->m_ResetCEFR = DRXD_ResetCEFR;
  1324. state->m_InitFE_1 = DRXD_InitFEA2_1;
  1325. state->m_InitFE_2 = DRXD_InitFEA2_2;
  1326. state->m_InitCP = DRXD_InitCPA2;
  1327. state->m_InitCE = DRXD_InitCEA2;
  1328. state->m_InitEQ = DRXD_InitEQA2;
  1329. state->m_InitEC = DRXD_InitECA2;
  1330. if (load_firmware(state, DRX_FW_FILENAME_A2))
  1331. return -EIO;
  1332. } else {
  1333. state->m_ResetCEFR = NULL;
  1334. state->m_InitFE_1 = DRXD_InitFEB1_1;
  1335. state->m_InitFE_2 = DRXD_InitFEB1_2;
  1336. state->m_InitCP = DRXD_InitCPB1;
  1337. state->m_InitCE = DRXD_InitCEB1;
  1338. state->m_InitEQ = DRXD_InitEQB1;
  1339. state->m_InitEC = DRXD_InitECB1;
  1340. if (load_firmware(state, DRX_FW_FILENAME_B1))
  1341. return -EIO;
  1342. }
  1343. if (state->diversity) {
  1344. state->m_InitDiversityFront = DRXD_InitDiversityFront;
  1345. state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
  1346. state->m_DisableDiversity = DRXD_DisableDiversity;
  1347. state->m_StartDiversityFront = DRXD_StartDiversityFront;
  1348. state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
  1349. state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
  1350. state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
  1351. } else {
  1352. state->m_InitDiversityFront = NULL;
  1353. state->m_InitDiversityEnd = NULL;
  1354. state->m_DisableDiversity = NULL;
  1355. state->m_StartDiversityFront = NULL;
  1356. state->m_StartDiversityEnd = NULL;
  1357. state->m_DiversityDelay8MHZ = NULL;
  1358. state->m_DiversityDelay6MHZ = NULL;
  1359. }
  1360. return status;
  1361. }
  1362. static int CorrectSysClockDeviation(struct drxd_state *state)
  1363. {
  1364. int status;
  1365. s32 incr = 0;
  1366. s32 nomincr = 0;
  1367. u32 bandwidth = 0;
  1368. u32 sysClockInHz = 0;
  1369. u32 sysClockFreq = 0; /* in kHz */
  1370. s16 oscClockDeviation;
  1371. s16 Diff;
  1372. do {
  1373. /* Retrieve bandwidth and incr, sanity check */
  1374. /* These accesses should be AtomicReadReg32, but that
  1375. causes trouble (at least for diversity */
  1376. status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
  1377. if (status < 0)
  1378. break;
  1379. status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
  1380. if (status < 0)
  1381. break;
  1382. if (state->type_A) {
  1383. if ((nomincr - incr < -500) || (nomincr - incr > 500))
  1384. break;
  1385. } else {
  1386. if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
  1387. break;
  1388. }
  1389. switch (state->props.bandwidth_hz) {
  1390. case 8000000:
  1391. bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
  1392. break;
  1393. case 7000000:
  1394. bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
  1395. break;
  1396. case 6000000:
  1397. bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
  1398. break;
  1399. default:
  1400. return -1;
  1401. break;
  1402. }
  1403. /* Compute new sysclock value
  1404. sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
  1405. incr += (1 << 23);
  1406. sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
  1407. sysClockFreq = (u32) (sysClockInHz / 1000);
  1408. /* rounding */
  1409. if ((sysClockInHz % 1000) > 500)
  1410. sysClockFreq++;
  1411. /* Compute clock deviation in ppm */
  1412. oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
  1413. (s32)
  1414. (state->expected_sys_clock_freq)) *
  1415. 1000000L) /
  1416. (s32)
  1417. (state->expected_sys_clock_freq));
  1418. Diff = oscClockDeviation - state->osc_clock_deviation;
  1419. /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
  1420. if (Diff >= -200 && Diff <= 200) {
  1421. state->sys_clock_freq = (u16) sysClockFreq;
  1422. if (oscClockDeviation != state->osc_clock_deviation) {
  1423. if (state->config.osc_deviation) {
  1424. state->config.osc_deviation(state->priv,
  1425. oscClockDeviation,
  1426. 1);
  1427. state->osc_clock_deviation =
  1428. oscClockDeviation;
  1429. }
  1430. }
  1431. /* switch OFF SRMM scan in SC */
  1432. status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
  1433. if (status < 0)
  1434. break;
  1435. /* overrule FE_IF internal value for
  1436. proper re-locking */
  1437. status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
  1438. if (status < 0)
  1439. break;
  1440. state->cscd_state = CSCD_SAVED;
  1441. }
  1442. } while (0);
  1443. return status;
  1444. }
  1445. static int DRX_Stop(struct drxd_state *state)
  1446. {
  1447. int status;
  1448. if (state->drxd_state != DRXD_STARTED)
  1449. return 0;
  1450. do {
  1451. if (state->cscd_state != CSCD_SAVED) {
  1452. u32 lock;
  1453. status = DRX_GetLockStatus(state, &lock);
  1454. if (status < 0)
  1455. break;
  1456. }
  1457. status = StopOC(state);
  1458. if (status < 0)
  1459. break;
  1460. state->drxd_state = DRXD_STOPPED;
  1461. status = ConfigureMPEGOutput(state, 0);
  1462. if (status < 0)
  1463. break;
  1464. if (state->type_A) {
  1465. /* Stop relevant processors off the device */
  1466. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
  1467. if (status < 0)
  1468. break;
  1469. status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1470. if (status < 0)
  1471. break;
  1472. status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1473. if (status < 0)
  1474. break;
  1475. } else {
  1476. /* Stop all processors except HI & CC & FE */
  1477. status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1478. if (status < 0)
  1479. break;
  1480. status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1481. if (status < 0)
  1482. break;
  1483. status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1484. if (status < 0)
  1485. break;
  1486. status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1487. if (status < 0)
  1488. break;
  1489. status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1490. if (status < 0)
  1491. break;
  1492. status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  1493. if (status < 0)
  1494. break;
  1495. status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
  1496. if (status < 0)
  1497. break;
  1498. }
  1499. } while (0);
  1500. return status;
  1501. }
  1502. #if 0 /* Currently unused */
  1503. static int SetOperationMode(struct drxd_state *state, int oMode)
  1504. {
  1505. int status;
  1506. do {
  1507. if (state->drxd_state != DRXD_STOPPED) {
  1508. status = -1;
  1509. break;
  1510. }
  1511. if (oMode == state->operation_mode) {
  1512. status = 0;
  1513. break;
  1514. }
  1515. if (oMode != OM_Default && !state->diversity) {
  1516. status = -1;
  1517. break;
  1518. }
  1519. switch (oMode) {
  1520. case OM_DVBT_Diversity_Front:
  1521. status = WriteTable(state, state->m_InitDiversityFront);
  1522. break;
  1523. case OM_DVBT_Diversity_End:
  1524. status = WriteTable(state, state->m_InitDiversityEnd);
  1525. break;
  1526. case OM_Default:
  1527. /* We need to check how to
  1528. get DRXD out of diversity */
  1529. default:
  1530. status = WriteTable(state, state->m_DisableDiversity);
  1531. break;
  1532. }
  1533. } while (0);
  1534. if (!status)
  1535. state->operation_mode = oMode;
  1536. return status;
  1537. }
  1538. #endif
  1539. static int StartDiversity(struct drxd_state *state)
  1540. {
  1541. int status = 0;
  1542. u16 rcControl;
  1543. do {
  1544. if (state->operation_mode == OM_DVBT_Diversity_Front) {
  1545. status = WriteTable(state, state->m_StartDiversityFront);
  1546. if (status < 0)
  1547. break;
  1548. } else if (state->operation_mode == OM_DVBT_Diversity_End) {
  1549. status = WriteTable(state, state->m_StartDiversityEnd);
  1550. if (status < 0)
  1551. break;
  1552. if (state->props.bandwidth_hz == 8000000) {
  1553. status = WriteTable(state, state->m_DiversityDelay8MHZ);
  1554. if (status < 0)
  1555. break;
  1556. } else {
  1557. status = WriteTable(state, state->m_DiversityDelay6MHZ);
  1558. if (status < 0)
  1559. break;
  1560. }
  1561. status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
  1562. if (status < 0)
  1563. break;
  1564. rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
  1565. rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
  1566. /* combining enabled */
  1567. B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
  1568. B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
  1569. B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
  1570. status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
  1571. if (status < 0)
  1572. break;
  1573. }
  1574. } while (0);
  1575. return status;
  1576. }
  1577. static int SetFrequencyShift(struct drxd_state *state,
  1578. u32 offsetFreq, int channelMirrored)
  1579. {
  1580. int negativeShift = (state->tuner_mirrors == channelMirrored);
  1581. /* Handle all mirroring
  1582. *
  1583. * Note: ADC mirroring (aliasing) is implictly handled by limiting
  1584. * feFsRegAddInc to 28 bits below
  1585. * (if the result before masking is more than 28 bits, this means
  1586. * that the ADC is mirroring.
  1587. * The masking is in fact the aliasing of the ADC)
  1588. *
  1589. */
  1590. /* Compute register value, unsigned computation */
  1591. state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
  1592. offsetFreq,
  1593. 1 << 28, state->sys_clock_freq);
  1594. /* Remove integer part */
  1595. state->fe_fs_add_incr &= 0x0FFFFFFFL;
  1596. if (negativeShift)
  1597. state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
  1598. /* Save the frequency shift without tunerOffset compensation
  1599. for CtrlGetChannel. */
  1600. state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
  1601. 1 << 28, state->sys_clock_freq);
  1602. /* Remove integer part */
  1603. state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
  1604. if (negativeShift)
  1605. state->org_fe_fs_add_incr = ((1L << 28) -
  1606. state->org_fe_fs_add_incr);
  1607. return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
  1608. state->fe_fs_add_incr, 0);
  1609. }
  1610. static int SetCfgNoiseCalibration(struct drxd_state *state,
  1611. struct SNoiseCal *noiseCal)
  1612. {
  1613. u16 beOptEna;
  1614. int status = 0;
  1615. do {
  1616. status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
  1617. if (status < 0)
  1618. break;
  1619. if (noiseCal->cpOpt) {
  1620. beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
  1621. } else {
  1622. beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
  1623. status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
  1624. if (status < 0)
  1625. break;
  1626. }
  1627. status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
  1628. if (status < 0)
  1629. break;
  1630. if (!state->type_A) {
  1631. status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
  1632. if (status < 0)
  1633. break;
  1634. status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
  1635. if (status < 0)
  1636. break;
  1637. }
  1638. } while (0);
  1639. return status;
  1640. }
  1641. static int DRX_Start(struct drxd_state *state, s32 off)
  1642. {
  1643. struct dtv_frontend_properties *p = &state->props;
  1644. int status;
  1645. u16 transmissionParams = 0;
  1646. u16 operationMode = 0;
  1647. u16 qpskTdTpsPwr = 0;
  1648. u16 qam16TdTpsPwr = 0;
  1649. u16 qam64TdTpsPwr = 0;
  1650. u32 feIfIncr = 0;
  1651. u32 bandwidth = 0;
  1652. int mirrorFreqSpect;
  1653. u16 qpskSnCeGain = 0;
  1654. u16 qam16SnCeGain = 0;
  1655. u16 qam64SnCeGain = 0;
  1656. u16 qpskIsGainMan = 0;
  1657. u16 qam16IsGainMan = 0;
  1658. u16 qam64IsGainMan = 0;
  1659. u16 qpskIsGainExp = 0;
  1660. u16 qam16IsGainExp = 0;
  1661. u16 qam64IsGainExp = 0;
  1662. u16 bandwidthParam = 0;
  1663. if (off < 0)
  1664. off = (off - 500) / 1000;
  1665. else
  1666. off = (off + 500) / 1000;
  1667. do {
  1668. if (state->drxd_state != DRXD_STOPPED)
  1669. return -1;
  1670. status = ResetECOD(state);
  1671. if (status < 0)
  1672. break;
  1673. if (state->type_A) {
  1674. status = InitSC(state);
  1675. if (status < 0)
  1676. break;
  1677. } else {
  1678. status = InitFT(state);
  1679. if (status < 0)
  1680. break;
  1681. status = InitCP(state);
  1682. if (status < 0)
  1683. break;
  1684. status = InitCE(state);
  1685. if (status < 0)
  1686. break;
  1687. status = InitEQ(state);
  1688. if (status < 0)
  1689. break;
  1690. status = InitSC(state);
  1691. if (status < 0)
  1692. break;
  1693. }
  1694. /* Restore current IF & RF AGC settings */
  1695. status = SetCfgIfAgc(state, &state->if_agc_cfg);
  1696. if (status < 0)
  1697. break;
  1698. status = SetCfgRfAgc(state, &state->rf_agc_cfg);
  1699. if (status < 0)
  1700. break;
  1701. mirrorFreqSpect = (state->props.inversion == INVERSION_ON);
  1702. switch (p->transmission_mode) {
  1703. default: /* Not set, detect it automatically */
  1704. operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
  1705. /* fall through , try first guess DRX_FFTMODE_8K */
  1706. case TRANSMISSION_MODE_8K:
  1707. transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
  1708. if (state->type_A) {
  1709. status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
  1710. if (status < 0)
  1711. break;
  1712. qpskSnCeGain = 99;
  1713. qam16SnCeGain = 83;
  1714. qam64SnCeGain = 67;
  1715. }
  1716. break;
  1717. case TRANSMISSION_MODE_2K:
  1718. transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
  1719. if (state->type_A) {
  1720. status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
  1721. if (status < 0)
  1722. break;
  1723. qpskSnCeGain = 97;
  1724. qam16SnCeGain = 71;
  1725. qam64SnCeGain = 65;
  1726. }
  1727. break;
  1728. }
  1729. switch (p->guard_interval) {
  1730. case GUARD_INTERVAL_1_4:
  1731. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
  1732. break;
  1733. case GUARD_INTERVAL_1_8:
  1734. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
  1735. break;
  1736. case GUARD_INTERVAL_1_16:
  1737. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
  1738. break;
  1739. case GUARD_INTERVAL_1_32:
  1740. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
  1741. break;
  1742. default: /* Not set, detect it automatically */
  1743. operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
  1744. /* try first guess 1/4 */
  1745. transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
  1746. break;
  1747. }
  1748. switch (p->hierarchy) {
  1749. case HIERARCHY_1:
  1750. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
  1751. if (state->type_A) {
  1752. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
  1753. if (status < 0)
  1754. break;
  1755. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
  1756. if (status < 0)
  1757. break;
  1758. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1759. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
  1760. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
  1761. qpskIsGainMan =
  1762. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1763. qam16IsGainMan =
  1764. SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
  1765. qam64IsGainMan =
  1766. SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
  1767. qpskIsGainExp =
  1768. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1769. qam16IsGainExp =
  1770. SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
  1771. qam64IsGainExp =
  1772. SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
  1773. }
  1774. break;
  1775. case HIERARCHY_2:
  1776. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
  1777. if (state->type_A) {
  1778. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
  1779. if (status < 0)
  1780. break;
  1781. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
  1782. if (status < 0)
  1783. break;
  1784. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1785. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
  1786. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
  1787. qpskIsGainMan =
  1788. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1789. qam16IsGainMan =
  1790. SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
  1791. qam64IsGainMan =
  1792. SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
  1793. qpskIsGainExp =
  1794. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1795. qam16IsGainExp =
  1796. SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
  1797. qam64IsGainExp =
  1798. SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
  1799. }
  1800. break;
  1801. case HIERARCHY_4:
  1802. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
  1803. if (state->type_A) {
  1804. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
  1805. if (status < 0)
  1806. break;
  1807. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
  1808. if (status < 0)
  1809. break;
  1810. qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
  1811. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
  1812. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
  1813. qpskIsGainMan =
  1814. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
  1815. qam16IsGainMan =
  1816. SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
  1817. qam64IsGainMan =
  1818. SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
  1819. qpskIsGainExp =
  1820. SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
  1821. qam16IsGainExp =
  1822. SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
  1823. qam64IsGainExp =
  1824. SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
  1825. }
  1826. break;
  1827. case HIERARCHY_AUTO:
  1828. default:
  1829. /* Not set, detect it automatically, start with none */
  1830. operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
  1831. transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
  1832. if (state->type_A) {
  1833. status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
  1834. if (status < 0)
  1835. break;
  1836. status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
  1837. if (status < 0)
  1838. break;
  1839. qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
  1840. qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
  1841. qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
  1842. qpskIsGainMan =
  1843. SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
  1844. qam16IsGainMan =
  1845. SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
  1846. qam64IsGainMan =
  1847. SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
  1848. qpskIsGainExp =
  1849. SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
  1850. qam16IsGainExp =
  1851. SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
  1852. qam64IsGainExp =
  1853. SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
  1854. }
  1855. break;
  1856. }
  1857. status = status;
  1858. if (status < 0)
  1859. break;
  1860. switch (p->modulation) {
  1861. default:
  1862. operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
  1863. /* fall through , try first guess
  1864. DRX_CONSTELLATION_QAM64 */
  1865. case QAM_64:
  1866. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
  1867. if (state->type_A) {
  1868. status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
  1869. if (status < 0)
  1870. break;
  1871. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
  1872. if (status < 0)
  1873. break;
  1874. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
  1875. if (status < 0)
  1876. break;
  1877. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
  1878. if (status < 0)
  1879. break;
  1880. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
  1881. if (status < 0)
  1882. break;
  1883. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
  1884. if (status < 0)
  1885. break;
  1886. status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
  1887. if (status < 0)
  1888. break;
  1889. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
  1890. if (status < 0)
  1891. break;
  1892. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
  1893. if (status < 0)
  1894. break;
  1895. }
  1896. break;
  1897. case QPSK:
  1898. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
  1899. if (state->type_A) {
  1900. status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
  1901. if (status < 0)
  1902. break;
  1903. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
  1904. if (status < 0)
  1905. break;
  1906. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
  1907. if (status < 0)
  1908. break;
  1909. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
  1910. if (status < 0)
  1911. break;
  1912. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
  1913. if (status < 0)
  1914. break;
  1915. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
  1916. if (status < 0)
  1917. break;
  1918. status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
  1919. if (status < 0)
  1920. break;
  1921. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
  1922. if (status < 0)
  1923. break;
  1924. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
  1925. if (status < 0)
  1926. break;
  1927. }
  1928. break;
  1929. case QAM_16:
  1930. transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
  1931. if (state->type_A) {
  1932. status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
  1933. if (status < 0)
  1934. break;
  1935. status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
  1936. if (status < 0)
  1937. break;
  1938. status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
  1939. if (status < 0)
  1940. break;
  1941. status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
  1942. if (status < 0)
  1943. break;
  1944. status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
  1945. if (status < 0)
  1946. break;
  1947. status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
  1948. if (status < 0)
  1949. break;
  1950. status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
  1951. if (status < 0)
  1952. break;
  1953. status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
  1954. if (status < 0)
  1955. break;
  1956. status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
  1957. if (status < 0)
  1958. break;
  1959. }
  1960. break;
  1961. }
  1962. status = status;
  1963. if (status < 0)
  1964. break;
  1965. switch (DRX_CHANNEL_HIGH) {
  1966. default:
  1967. case DRX_CHANNEL_AUTO:
  1968. case DRX_CHANNEL_LOW:
  1969. transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
  1970. status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
  1971. if (status < 0)
  1972. break;
  1973. break;
  1974. case DRX_CHANNEL_HIGH:
  1975. transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
  1976. status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
  1977. if (status < 0)
  1978. break;
  1979. break;
  1980. }
  1981. switch (p->code_rate_HP) {
  1982. case FEC_1_2:
  1983. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
  1984. if (state->type_A) {
  1985. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
  1986. if (status < 0)
  1987. break;
  1988. }
  1989. break;
  1990. default:
  1991. operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
  1992. case FEC_2_3:
  1993. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
  1994. if (state->type_A) {
  1995. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
  1996. if (status < 0)
  1997. break;
  1998. }
  1999. break;
  2000. case FEC_3_4:
  2001. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
  2002. if (state->type_A) {
  2003. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
  2004. if (status < 0)
  2005. break;
  2006. }
  2007. break;
  2008. case FEC_5_6:
  2009. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
  2010. if (state->type_A) {
  2011. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
  2012. if (status < 0)
  2013. break;
  2014. }
  2015. break;
  2016. case FEC_7_8:
  2017. transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
  2018. if (state->type_A) {
  2019. status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
  2020. if (status < 0)
  2021. break;
  2022. }
  2023. break;
  2024. }
  2025. status = status;
  2026. if (status < 0)
  2027. break;
  2028. /* First determine real bandwidth (Hz) */
  2029. /* Also set delay for impulse noise cruncher (only A2) */
  2030. /* Also set parameters for EC_OC fix, note
  2031. EC_OC_REG_TMD_HIL_MAR is changed
  2032. by SC for fix for some 8K,1/8 guard but is restored by
  2033. InitEC and ResetEC
  2034. functions */
  2035. switch (p->bandwidth_hz) {
  2036. case 0:
  2037. p->bandwidth_hz = 8000000;
  2038. /* fall through */
  2039. case 8000000:
  2040. /* (64/7)*(8/8)*1000000 */
  2041. bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
  2042. bandwidthParam = 0;
  2043. status = Write16(state,
  2044. FE_AG_REG_IND_DEL__A, 50, 0x0000);
  2045. break;
  2046. case 7000000:
  2047. /* (64/7)*(7/8)*1000000 */
  2048. bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
  2049. bandwidthParam = 0x4807; /*binary:0100 1000 0000 0111 */
  2050. status = Write16(state,
  2051. FE_AG_REG_IND_DEL__A, 59, 0x0000);
  2052. break;
  2053. case 6000000:
  2054. /* (64/7)*(6/8)*1000000 */
  2055. bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
  2056. bandwidthParam = 0x0F07; /*binary: 0000 1111 0000 0111 */
  2057. status = Write16(state,
  2058. FE_AG_REG_IND_DEL__A, 71, 0x0000);
  2059. break;
  2060. default:
  2061. status = -EINVAL;
  2062. }
  2063. if (status < 0)
  2064. break;
  2065. status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
  2066. if (status < 0)
  2067. break;
  2068. {
  2069. u16 sc_config;
  2070. status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
  2071. if (status < 0)
  2072. break;
  2073. /* enable SLAVE mode in 2k 1/32 to
  2074. prevent timing change glitches */
  2075. if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
  2076. (p->guard_interval == GUARD_INTERVAL_1_32)) {
  2077. /* enable slave */
  2078. sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
  2079. } else {
  2080. /* disable slave */
  2081. sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
  2082. }
  2083. status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
  2084. if (status < 0)
  2085. break;
  2086. }
  2087. status = SetCfgNoiseCalibration(state, &state->noise_cal);
  2088. if (status < 0)
  2089. break;
  2090. if (state->cscd_state == CSCD_INIT) {
  2091. /* switch on SRMM scan in SC */
  2092. status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
  2093. if (status < 0)
  2094. break;
  2095. /* CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
  2096. state->cscd_state = CSCD_SET;
  2097. }
  2098. /* Now compute FE_IF_REG_INCR */
  2099. /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
  2100. ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
  2101. feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
  2102. (1ULL << 21), bandwidth) - (1 << 23);
  2103. status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
  2104. if (status < 0)
  2105. break;
  2106. status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
  2107. if (status < 0)
  2108. break;
  2109. /* Bandwidth setting done */
  2110. /* Mirror & frequency offset */
  2111. SetFrequencyShift(state, off, mirrorFreqSpect);
  2112. /* Start SC, write channel settings to SC */
  2113. /* Enable SC after setting all other parameters */
  2114. status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
  2115. if (status < 0)
  2116. break;
  2117. status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
  2118. if (status < 0)
  2119. break;
  2120. /* Write SC parameter registers, operation mode */
  2121. #if 1
  2122. operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
  2123. SC_RA_RAM_OP_AUTO_GUARD__M |
  2124. SC_RA_RAM_OP_AUTO_CONST__M |
  2125. SC_RA_RAM_OP_AUTO_HIER__M |
  2126. SC_RA_RAM_OP_AUTO_RATE__M);
  2127. #endif
  2128. status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
  2129. if (status < 0)
  2130. break;
  2131. /* Start correct processes to get in lock */
  2132. status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
  2133. if (status < 0)
  2134. break;
  2135. status = StartOC(state);
  2136. if (status < 0)
  2137. break;
  2138. if (state->operation_mode != OM_Default) {
  2139. status = StartDiversity(state);
  2140. if (status < 0)
  2141. break;
  2142. }
  2143. state->drxd_state = DRXD_STARTED;
  2144. } while (0);
  2145. return status;
  2146. }
  2147. static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
  2148. {
  2149. u32 ulRfAgcOutputLevel = 0xffffffff;
  2150. u32 ulRfAgcSettleLevel = 528; /* Optimum value for MT2060 */
  2151. u32 ulRfAgcMinLevel = 0; /* Currently unused */
  2152. u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
  2153. u32 ulRfAgcSpeed = 0; /* Currently unused */
  2154. u32 ulRfAgcMode = 0; /*2; Off */
  2155. u32 ulRfAgcR1 = 820;
  2156. u32 ulRfAgcR2 = 2200;
  2157. u32 ulRfAgcR3 = 150;
  2158. u32 ulIfAgcMode = 0; /* Auto */
  2159. u32 ulIfAgcOutputLevel = 0xffffffff;
  2160. u32 ulIfAgcSettleLevel = 0xffffffff;
  2161. u32 ulIfAgcMinLevel = 0xffffffff;
  2162. u32 ulIfAgcMaxLevel = 0xffffffff;
  2163. u32 ulIfAgcSpeed = 0xffffffff;
  2164. u32 ulIfAgcR1 = 820;
  2165. u32 ulIfAgcR2 = 2200;
  2166. u32 ulIfAgcR3 = 150;
  2167. u32 ulClock = state->config.clock;
  2168. u32 ulSerialMode = 0;
  2169. u32 ulEcOcRegOcModeLop = 4; /* Dynamic DTO source */
  2170. u32 ulHiI2cDelay = HI_I2C_DELAY;
  2171. u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
  2172. u32 ulHiI2cPatch = 0;
  2173. u32 ulEnvironment = APPENV_PORTABLE;
  2174. u32 ulEnvironmentDiversity = APPENV_MOBILE;
  2175. u32 ulIFFilter = IFFILTER_SAW;
  2176. state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2177. state->if_agc_cfg.outputLevel = 0;
  2178. state->if_agc_cfg.settleLevel = 140;
  2179. state->if_agc_cfg.minOutputLevel = 0;
  2180. state->if_agc_cfg.maxOutputLevel = 1023;
  2181. state->if_agc_cfg.speed = 904;
  2182. if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
  2183. state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
  2184. state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
  2185. }
  2186. if (ulIfAgcMode == 0 &&
  2187. ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
  2188. ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
  2189. ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
  2190. ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
  2191. state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2192. state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
  2193. state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
  2194. state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
  2195. state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
  2196. }
  2197. state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
  2198. state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
  2199. state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
  2200. state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
  2201. state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
  2202. state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
  2203. state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2204. /* rest of the RFAgcCfg structure currently unused */
  2205. if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
  2206. state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
  2207. state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
  2208. }
  2209. if (ulRfAgcMode == 0 &&
  2210. ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
  2211. ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
  2212. ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
  2213. ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
  2214. state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
  2215. state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
  2216. state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
  2217. state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
  2218. state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
  2219. }
  2220. if (ulRfAgcMode == 2)
  2221. state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
  2222. if (ulEnvironment <= 2)
  2223. state->app_env_default = (enum app_env)
  2224. (ulEnvironment);
  2225. if (ulEnvironmentDiversity <= 2)
  2226. state->app_env_diversity = (enum app_env)
  2227. (ulEnvironmentDiversity);
  2228. if (ulIFFilter == IFFILTER_DISCRETE) {
  2229. /* discrete filter */
  2230. state->noise_cal.cpOpt = 0;
  2231. state->noise_cal.cpNexpOfs = 40;
  2232. state->noise_cal.tdCal2k = -40;
  2233. state->noise_cal.tdCal8k = -24;
  2234. } else {
  2235. /* SAW filter */
  2236. state->noise_cal.cpOpt = 1;
  2237. state->noise_cal.cpNexpOfs = 0;
  2238. state->noise_cal.tdCal2k = -21;
  2239. state->noise_cal.tdCal8k = -24;
  2240. }
  2241. state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
  2242. state->chip_adr = (state->config.demod_address << 1) | 1;
  2243. switch (ulHiI2cPatch) {
  2244. case 1:
  2245. state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
  2246. break;
  2247. case 3:
  2248. state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
  2249. break;
  2250. default:
  2251. state->m_HiI2cPatch = NULL;
  2252. }
  2253. /* modify tuner and clock attributes */
  2254. state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
  2255. /* expected system clock frequency in kHz */
  2256. state->expected_sys_clock_freq = 48000;
  2257. /* real system clock frequency in kHz */
  2258. state->sys_clock_freq = 48000;
  2259. state->osc_clock_freq = (u16) ulClock;
  2260. state->osc_clock_deviation = 0;
  2261. state->cscd_state = CSCD_INIT;
  2262. state->drxd_state = DRXD_UNINITIALIZED;
  2263. state->PGA = 0;
  2264. state->type_A = 0;
  2265. state->tuner_mirrors = 0;
  2266. /* modify MPEG output attributes */
  2267. state->insert_rs_byte = state->config.insert_rs_byte;
  2268. state->enable_parallel = (ulSerialMode != 1);
  2269. /* Timing div, 250ns/Psys */
  2270. /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
  2271. state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
  2272. ulHiI2cDelay) / 1000;
  2273. /* Bridge delay, uses oscilator clock */
  2274. /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
  2275. state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
  2276. ulHiI2cBridgeDelay) / 1000;
  2277. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
  2278. /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
  2279. state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
  2280. return 0;
  2281. }
  2282. static int DRXD_init(struct drxd_state *state, const u8 *fw, u32 fw_size)
  2283. {
  2284. int status = 0;
  2285. u32 driverVersion;
  2286. if (state->init_done)
  2287. return 0;
  2288. CDRXD(state, state->config.IF ? state->config.IF : 36000000);
  2289. do {
  2290. state->operation_mode = OM_Default;
  2291. status = SetDeviceTypeId(state);
  2292. if (status < 0)
  2293. break;
  2294. /* Apply I2c address patch to B1 */
  2295. if (!state->type_A && state->m_HiI2cPatch != NULL)
  2296. status = WriteTable(state, state->m_HiI2cPatch);
  2297. if (status < 0)
  2298. break;
  2299. if (state->type_A) {
  2300. /* HI firmware patch for UIO readout,
  2301. avoid clearing of result register */
  2302. status = Write16(state, 0x43012D, 0x047f, 0);
  2303. if (status < 0)
  2304. break;
  2305. }
  2306. status = HI_ResetCommand(state);
  2307. if (status < 0)
  2308. break;
  2309. status = StopAllProcessors(state);
  2310. if (status < 0)
  2311. break;
  2312. status = InitCC(state);
  2313. if (status < 0)
  2314. break;
  2315. state->osc_clock_deviation = 0;
  2316. if (state->config.osc_deviation)
  2317. state->osc_clock_deviation =
  2318. state->config.osc_deviation(state->priv, 0, 0);
  2319. {
  2320. /* Handle clock deviation */
  2321. s32 devB;
  2322. s32 devA = (s32) (state->osc_clock_deviation) *
  2323. (s32) (state->expected_sys_clock_freq);
  2324. /* deviation in kHz */
  2325. s32 deviation = (devA / (1000000L));
  2326. /* rounding, signed */
  2327. if (devA > 0)
  2328. devB = (2);
  2329. else
  2330. devB = (-2);
  2331. if ((devB * (devA % 1000000L) > 1000000L)) {
  2332. /* add +1 or -1 */
  2333. deviation += (devB / 2);
  2334. }
  2335. state->sys_clock_freq =
  2336. (u16) ((state->expected_sys_clock_freq) +
  2337. deviation);
  2338. }
  2339. status = InitHI(state);
  2340. if (status < 0)
  2341. break;
  2342. status = InitAtomicRead(state);
  2343. if (status < 0)
  2344. break;
  2345. status = EnableAndResetMB(state);
  2346. if (status < 0)
  2347. break;
  2348. if (state->type_A)
  2349. status = ResetCEFR(state);
  2350. if (status < 0)
  2351. break;
  2352. if (fw) {
  2353. status = DownloadMicrocode(state, fw, fw_size);
  2354. if (status < 0)
  2355. break;
  2356. } else {
  2357. status = DownloadMicrocode(state, state->microcode, state->microcode_length);
  2358. if (status < 0)
  2359. break;
  2360. }
  2361. if (state->PGA) {
  2362. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
  2363. SetCfgPga(state, 0); /* PGA = 0 dB */
  2364. } else {
  2365. state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
  2366. }
  2367. state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
  2368. status = InitFE(state);
  2369. if (status < 0)
  2370. break;
  2371. status = InitFT(state);
  2372. if (status < 0)
  2373. break;
  2374. status = InitCP(state);
  2375. if (status < 0)
  2376. break;
  2377. status = InitCE(state);
  2378. if (status < 0)
  2379. break;
  2380. status = InitEQ(state);
  2381. if (status < 0)
  2382. break;
  2383. status = InitEC(state);
  2384. if (status < 0)
  2385. break;
  2386. status = InitSC(state);
  2387. if (status < 0)
  2388. break;
  2389. status = SetCfgIfAgc(state, &state->if_agc_cfg);
  2390. if (status < 0)
  2391. break;
  2392. status = SetCfgRfAgc(state, &state->rf_agc_cfg);
  2393. if (status < 0)
  2394. break;
  2395. state->cscd_state = CSCD_INIT;
  2396. status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  2397. if (status < 0)
  2398. break;
  2399. status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
  2400. if (status < 0)
  2401. break;
  2402. driverVersion = (((VERSION_MAJOR / 10) << 4) +
  2403. (VERSION_MAJOR % 10)) << 24;
  2404. driverVersion += (((VERSION_MINOR / 10) << 4) +
  2405. (VERSION_MINOR % 10)) << 16;
  2406. driverVersion += ((VERSION_PATCH / 1000) << 12) +
  2407. ((VERSION_PATCH / 100) << 8) +
  2408. ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
  2409. status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
  2410. if (status < 0)
  2411. break;
  2412. status = StopOC(state);
  2413. if (status < 0)
  2414. break;
  2415. state->drxd_state = DRXD_STOPPED;
  2416. state->init_done = 1;
  2417. status = 0;
  2418. } while (0);
  2419. return status;
  2420. }
  2421. static int DRXD_status(struct drxd_state *state, u32 *pLockStatus)
  2422. {
  2423. DRX_GetLockStatus(state, pLockStatus);
  2424. /*if (*pLockStatus&DRX_LOCK_MPEG) */
  2425. if (*pLockStatus & DRX_LOCK_FEC) {
  2426. ConfigureMPEGOutput(state, 1);
  2427. /* Get status again, in case we have MPEG lock now */
  2428. /*DRX_GetLockStatus(state, pLockStatus); */
  2429. }
  2430. return 0;
  2431. }
  2432. /****************************************************************************/
  2433. /****************************************************************************/
  2434. /****************************************************************************/
  2435. static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  2436. {
  2437. struct drxd_state *state = fe->demodulator_priv;
  2438. u32 value;
  2439. int res;
  2440. res = ReadIFAgc(state, &value);
  2441. if (res < 0)
  2442. *strength = 0;
  2443. else
  2444. *strength = 0xffff - (value << 4);
  2445. return 0;
  2446. }
  2447. static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
  2448. {
  2449. struct drxd_state *state = fe->demodulator_priv;
  2450. u32 lock;
  2451. DRXD_status(state, &lock);
  2452. *status = 0;
  2453. /* No MPEG lock in V255 firmware, bug ? */
  2454. #if 1
  2455. if (lock & DRX_LOCK_MPEG)
  2456. *status |= FE_HAS_LOCK;
  2457. #else
  2458. if (lock & DRX_LOCK_FEC)
  2459. *status |= FE_HAS_LOCK;
  2460. #endif
  2461. if (lock & DRX_LOCK_FEC)
  2462. *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
  2463. if (lock & DRX_LOCK_DEMOD)
  2464. *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
  2465. return 0;
  2466. }
  2467. static int drxd_init(struct dvb_frontend *fe)
  2468. {
  2469. struct drxd_state *state = fe->demodulator_priv;
  2470. int err = 0;
  2471. /* if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
  2472. return DRXD_init(state, 0, 0);
  2473. err = DRXD_init(state, state->fw->data, state->fw->size);
  2474. release_firmware(state->fw);
  2475. return err;
  2476. }
  2477. int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
  2478. {
  2479. struct drxd_state *state = fe->demodulator_priv;
  2480. if (state->config.disable_i2c_gate_ctrl == 1)
  2481. return 0;
  2482. return DRX_ConfigureI2CBridge(state, onoff);
  2483. }
  2484. EXPORT_SYMBOL(drxd_config_i2c);
  2485. static int drxd_get_tune_settings(struct dvb_frontend *fe,
  2486. struct dvb_frontend_tune_settings *sets)
  2487. {
  2488. sets->min_delay_ms = 10000;
  2489. sets->max_drift = 0;
  2490. sets->step_size = 0;
  2491. return 0;
  2492. }
  2493. static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
  2494. {
  2495. *ber = 0;
  2496. return 0;
  2497. }
  2498. static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
  2499. {
  2500. *snr = 0;
  2501. return 0;
  2502. }
  2503. static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
  2504. {
  2505. *ucblocks = 0;
  2506. return 0;
  2507. }
  2508. static int drxd_sleep(struct dvb_frontend *fe)
  2509. {
  2510. struct drxd_state *state = fe->demodulator_priv;
  2511. ConfigureMPEGOutput(state, 0);
  2512. return 0;
  2513. }
  2514. static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  2515. {
  2516. return drxd_config_i2c(fe, enable);
  2517. }
  2518. static int drxd_set_frontend(struct dvb_frontend *fe)
  2519. {
  2520. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  2521. struct drxd_state *state = fe->demodulator_priv;
  2522. s32 off = 0;
  2523. state->props = *p;
  2524. DRX_Stop(state);
  2525. if (fe->ops.tuner_ops.set_params) {
  2526. fe->ops.tuner_ops.set_params(fe);
  2527. if (fe->ops.i2c_gate_ctrl)
  2528. fe->ops.i2c_gate_ctrl(fe, 0);
  2529. }
  2530. msleep(200);
  2531. return DRX_Start(state, off);
  2532. }
  2533. static void drxd_release(struct dvb_frontend *fe)
  2534. {
  2535. struct drxd_state *state = fe->demodulator_priv;
  2536. kfree(state);
  2537. }
  2538. static struct dvb_frontend_ops drxd_ops = {
  2539. .delsys = { SYS_DVBT},
  2540. .info = {
  2541. .name = "Micronas DRXD DVB-T",
  2542. .frequency_min = 47125000,
  2543. .frequency_max = 855250000,
  2544. .frequency_stepsize = 166667,
  2545. .frequency_tolerance = 0,
  2546. .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
  2547. FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
  2548. FE_CAN_FEC_AUTO |
  2549. FE_CAN_QAM_16 | FE_CAN_QAM_64 |
  2550. FE_CAN_QAM_AUTO |
  2551. FE_CAN_TRANSMISSION_MODE_AUTO |
  2552. FE_CAN_GUARD_INTERVAL_AUTO |
  2553. FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
  2554. .release = drxd_release,
  2555. .init = drxd_init,
  2556. .sleep = drxd_sleep,
  2557. .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
  2558. .set_frontend = drxd_set_frontend,
  2559. .get_tune_settings = drxd_get_tune_settings,
  2560. .read_status = drxd_read_status,
  2561. .read_ber = drxd_read_ber,
  2562. .read_signal_strength = drxd_read_signal_strength,
  2563. .read_snr = drxd_read_snr,
  2564. .read_ucblocks = drxd_read_ucblocks,
  2565. };
  2566. struct dvb_frontend *drxd_attach(const struct drxd_config *config,
  2567. void *priv, struct i2c_adapter *i2c,
  2568. struct device *dev)
  2569. {
  2570. struct drxd_state *state = NULL;
  2571. state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
  2572. if (!state)
  2573. return NULL;
  2574. memset(state, 0, sizeof(*state));
  2575. state->ops = drxd_ops;
  2576. state->dev = dev;
  2577. state->config = *config;
  2578. state->i2c = i2c;
  2579. state->priv = priv;
  2580. mutex_init(&state->mutex);
  2581. if (Read16(state, 0, 0, 0) < 0)
  2582. goto error;
  2583. state->frontend.ops = drxd_ops;
  2584. state->frontend.demodulator_priv = state;
  2585. ConfigureMPEGOutput(state, 0);
  2586. /* add few initialization to allow gate control */
  2587. CDRXD(state, state->config.IF ? state->config.IF : 36000000);
  2588. InitHI(state);
  2589. return &state->frontend;
  2590. error:
  2591. printk(KERN_ERR "drxd: not found\n");
  2592. kfree(state);
  2593. return NULL;
  2594. }
  2595. EXPORT_SYMBOL(drxd_attach);
  2596. MODULE_DESCRIPTION("DRXD driver");
  2597. MODULE_AUTHOR("Micronas");
  2598. MODULE_LICENSE("GPL");