af9033.c 21 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. };
  195. /* program clock control */
  196. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  197. buf[0] = (clock_cw >> 0) & 0xff;
  198. buf[1] = (clock_cw >> 8) & 0xff;
  199. buf[2] = (clock_cw >> 16) & 0xff;
  200. buf[3] = (clock_cw >> 24) & 0xff;
  201. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  202. __func__, state->cfg.clock, clock_cw);
  203. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  204. if (ret < 0)
  205. goto err;
  206. /* program ADC control */
  207. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  208. if (clock_adc_lut[i].clock == state->cfg.clock)
  209. break;
  210. }
  211. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  212. buf[0] = (adc_cw >> 0) & 0xff;
  213. buf[1] = (adc_cw >> 8) & 0xff;
  214. buf[2] = (adc_cw >> 16) & 0xff;
  215. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  216. __func__, clock_adc_lut[i].adc, adc_cw);
  217. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  218. if (ret < 0)
  219. goto err;
  220. /* program register table */
  221. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  222. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  223. tab[i].mask);
  224. if (ret < 0)
  225. goto err;
  226. }
  227. /* settings for TS interface */
  228. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  229. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  230. if (ret < 0)
  231. goto err;
  232. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  233. if (ret < 0)
  234. goto err;
  235. } else {
  236. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  237. if (ret < 0)
  238. goto err;
  239. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  240. if (ret < 0)
  241. goto err;
  242. }
  243. /* load OFSM settings */
  244. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  245. len = ARRAY_SIZE(ofsm_init);
  246. init = ofsm_init;
  247. for (i = 0; i < len; i++) {
  248. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  249. if (ret < 0)
  250. goto err;
  251. }
  252. /* load tuner specific settings */
  253. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  254. __func__);
  255. switch (state->cfg.tuner) {
  256. case AF9033_TUNER_TUA9001:
  257. len = ARRAY_SIZE(tuner_init_tua9001);
  258. init = tuner_init_tua9001;
  259. break;
  260. case AF9033_TUNER_FC0011:
  261. len = ARRAY_SIZE(tuner_init_fc0011);
  262. init = tuner_init_fc0011;
  263. break;
  264. case AF9033_TUNER_MXL5007T:
  265. len = ARRAY_SIZE(tuner_init_mxl5007t);
  266. init = tuner_init_mxl5007t;
  267. break;
  268. case AF9033_TUNER_TDA18218:
  269. len = ARRAY_SIZE(tuner_init_tda18218);
  270. init = tuner_init_tda18218;
  271. break;
  272. case AF9033_TUNER_FC2580:
  273. len = ARRAY_SIZE(tuner_init_fc2580);
  274. init = tuner_init_fc2580;
  275. break;
  276. case AF9033_TUNER_FC0012:
  277. len = ARRAY_SIZE(tuner_init_fc0012);
  278. init = tuner_init_fc0012;
  279. break;
  280. default:
  281. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  282. __func__, state->cfg.tuner);
  283. ret = -ENODEV;
  284. goto err;
  285. }
  286. for (i = 0; i < len; i++) {
  287. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  288. if (ret < 0)
  289. goto err;
  290. }
  291. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  292. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  293. if (ret < 0)
  294. goto err;
  295. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  296. if (ret < 0)
  297. goto err;
  298. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  299. if (ret < 0)
  300. goto err;
  301. }
  302. state->bandwidth_hz = 0; /* force to program all parameters */
  303. return 0;
  304. err:
  305. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  306. return ret;
  307. }
  308. static int af9033_sleep(struct dvb_frontend *fe)
  309. {
  310. struct af9033_state *state = fe->demodulator_priv;
  311. int ret, i;
  312. u8 tmp;
  313. ret = af9033_wr_reg(state, 0x80004c, 1);
  314. if (ret < 0)
  315. goto err;
  316. ret = af9033_wr_reg(state, 0x800000, 0);
  317. if (ret < 0)
  318. goto err;
  319. for (i = 100, tmp = 1; i && tmp; i--) {
  320. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  321. if (ret < 0)
  322. goto err;
  323. usleep_range(200, 10000);
  324. }
  325. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  326. if (i == 0) {
  327. ret = -ETIMEDOUT;
  328. goto err;
  329. }
  330. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  331. if (ret < 0)
  332. goto err;
  333. /* prevent current leak (?) */
  334. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  335. /* enable parallel TS */
  336. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  337. if (ret < 0)
  338. goto err;
  339. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  340. if (ret < 0)
  341. goto err;
  342. }
  343. return 0;
  344. err:
  345. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  346. return ret;
  347. }
  348. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  349. struct dvb_frontend_tune_settings *fesettings)
  350. {
  351. fesettings->min_delay_ms = 800;
  352. fesettings->step_size = 0;
  353. fesettings->max_drift = 0;
  354. return 0;
  355. }
  356. static int af9033_set_frontend(struct dvb_frontend *fe)
  357. {
  358. struct af9033_state *state = fe->demodulator_priv;
  359. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  360. int ret, i, spec_inv, sampling_freq;
  361. u8 tmp, buf[3], bandwidth_reg_val;
  362. u32 if_frequency, freq_cw, adc_freq;
  363. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  364. __func__, c->frequency, c->bandwidth_hz);
  365. /* check bandwidth */
  366. switch (c->bandwidth_hz) {
  367. case 6000000:
  368. bandwidth_reg_val = 0x00;
  369. break;
  370. case 7000000:
  371. bandwidth_reg_val = 0x01;
  372. break;
  373. case 8000000:
  374. bandwidth_reg_val = 0x02;
  375. break;
  376. default:
  377. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  378. __func__);
  379. ret = -EINVAL;
  380. goto err;
  381. }
  382. /* program tuner */
  383. if (fe->ops.tuner_ops.set_params)
  384. fe->ops.tuner_ops.set_params(fe);
  385. /* program CFOE coefficients */
  386. if (c->bandwidth_hz != state->bandwidth_hz) {
  387. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  388. if (coeff_lut[i].clock == state->cfg.clock &&
  389. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  390. break;
  391. }
  392. }
  393. ret = af9033_wr_regs(state, 0x800001,
  394. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  395. }
  396. /* program frequency control */
  397. if (c->bandwidth_hz != state->bandwidth_hz) {
  398. spec_inv = state->cfg.spec_inv ? -1 : 1;
  399. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  400. if (clock_adc_lut[i].clock == state->cfg.clock)
  401. break;
  402. }
  403. adc_freq = clock_adc_lut[i].adc;
  404. /* get used IF frequency */
  405. if (fe->ops.tuner_ops.get_if_frequency)
  406. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  407. else
  408. if_frequency = 0;
  409. sampling_freq = if_frequency;
  410. while (sampling_freq > (adc_freq / 2))
  411. sampling_freq -= adc_freq;
  412. if (sampling_freq >= 0)
  413. spec_inv *= -1;
  414. else
  415. sampling_freq *= -1;
  416. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  417. if (spec_inv == -1)
  418. freq_cw = 0x800000 - freq_cw;
  419. /* get adc multiplies */
  420. ret = af9033_rd_reg(state, 0x800045, &tmp);
  421. if (ret < 0)
  422. goto err;
  423. if (tmp == 1)
  424. freq_cw /= 2;
  425. buf[0] = (freq_cw >> 0) & 0xff;
  426. buf[1] = (freq_cw >> 8) & 0xff;
  427. buf[2] = (freq_cw >> 16) & 0x7f;
  428. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  429. if (ret < 0)
  430. goto err;
  431. state->bandwidth_hz = c->bandwidth_hz;
  432. }
  433. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  434. if (ret < 0)
  435. goto err;
  436. ret = af9033_wr_reg(state, 0x800040, 0x00);
  437. if (ret < 0)
  438. goto err;
  439. ret = af9033_wr_reg(state, 0x800047, 0x00);
  440. if (ret < 0)
  441. goto err;
  442. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  443. if (ret < 0)
  444. goto err;
  445. if (c->frequency <= 230000000)
  446. tmp = 0x00; /* VHF */
  447. else
  448. tmp = 0x01; /* UHF */
  449. ret = af9033_wr_reg(state, 0x80004b, tmp);
  450. if (ret < 0)
  451. goto err;
  452. ret = af9033_wr_reg(state, 0x800000, 0x00);
  453. if (ret < 0)
  454. goto err;
  455. return 0;
  456. err:
  457. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  458. return ret;
  459. }
  460. static int af9033_get_frontend(struct dvb_frontend *fe)
  461. {
  462. struct af9033_state *state = fe->demodulator_priv;
  463. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  464. int ret;
  465. u8 buf[8];
  466. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  467. /* read all needed registers */
  468. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  469. if (ret < 0)
  470. goto err;
  471. switch ((buf[0] >> 0) & 3) {
  472. case 0:
  473. c->transmission_mode = TRANSMISSION_MODE_2K;
  474. break;
  475. case 1:
  476. c->transmission_mode = TRANSMISSION_MODE_8K;
  477. break;
  478. }
  479. switch ((buf[1] >> 0) & 3) {
  480. case 0:
  481. c->guard_interval = GUARD_INTERVAL_1_32;
  482. break;
  483. case 1:
  484. c->guard_interval = GUARD_INTERVAL_1_16;
  485. break;
  486. case 2:
  487. c->guard_interval = GUARD_INTERVAL_1_8;
  488. break;
  489. case 3:
  490. c->guard_interval = GUARD_INTERVAL_1_4;
  491. break;
  492. }
  493. switch ((buf[2] >> 0) & 7) {
  494. case 0:
  495. c->hierarchy = HIERARCHY_NONE;
  496. break;
  497. case 1:
  498. c->hierarchy = HIERARCHY_1;
  499. break;
  500. case 2:
  501. c->hierarchy = HIERARCHY_2;
  502. break;
  503. case 3:
  504. c->hierarchy = HIERARCHY_4;
  505. break;
  506. }
  507. switch ((buf[3] >> 0) & 3) {
  508. case 0:
  509. c->modulation = QPSK;
  510. break;
  511. case 1:
  512. c->modulation = QAM_16;
  513. break;
  514. case 2:
  515. c->modulation = QAM_64;
  516. break;
  517. }
  518. switch ((buf[4] >> 0) & 3) {
  519. case 0:
  520. c->bandwidth_hz = 6000000;
  521. break;
  522. case 1:
  523. c->bandwidth_hz = 7000000;
  524. break;
  525. case 2:
  526. c->bandwidth_hz = 8000000;
  527. break;
  528. }
  529. switch ((buf[6] >> 0) & 7) {
  530. case 0:
  531. c->code_rate_HP = FEC_1_2;
  532. break;
  533. case 1:
  534. c->code_rate_HP = FEC_2_3;
  535. break;
  536. case 2:
  537. c->code_rate_HP = FEC_3_4;
  538. break;
  539. case 3:
  540. c->code_rate_HP = FEC_5_6;
  541. break;
  542. case 4:
  543. c->code_rate_HP = FEC_7_8;
  544. break;
  545. case 5:
  546. c->code_rate_HP = FEC_NONE;
  547. break;
  548. }
  549. switch ((buf[7] >> 0) & 7) {
  550. case 0:
  551. c->code_rate_LP = FEC_1_2;
  552. break;
  553. case 1:
  554. c->code_rate_LP = FEC_2_3;
  555. break;
  556. case 2:
  557. c->code_rate_LP = FEC_3_4;
  558. break;
  559. case 3:
  560. c->code_rate_LP = FEC_5_6;
  561. break;
  562. case 4:
  563. c->code_rate_LP = FEC_7_8;
  564. break;
  565. case 5:
  566. c->code_rate_LP = FEC_NONE;
  567. break;
  568. }
  569. return 0;
  570. err:
  571. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  572. return ret;
  573. }
  574. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  575. {
  576. struct af9033_state *state = fe->demodulator_priv;
  577. int ret;
  578. u8 tmp;
  579. *status = 0;
  580. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  581. ret = af9033_rd_reg(state, 0x800047, &tmp);
  582. if (ret < 0)
  583. goto err;
  584. /* has signal */
  585. if (tmp == 0x01)
  586. *status |= FE_HAS_SIGNAL;
  587. if (tmp != 0x02) {
  588. /* TPS lock */
  589. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  590. if (ret < 0)
  591. goto err;
  592. if (tmp)
  593. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  594. FE_HAS_VITERBI;
  595. /* full lock */
  596. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  597. if (ret < 0)
  598. goto err;
  599. if (tmp)
  600. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  601. FE_HAS_VITERBI | FE_HAS_SYNC |
  602. FE_HAS_LOCK;
  603. }
  604. return 0;
  605. err:
  606. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  607. return ret;
  608. }
  609. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  610. {
  611. struct af9033_state *state = fe->demodulator_priv;
  612. int ret, i, len;
  613. u8 buf[3], tmp;
  614. u32 snr_val;
  615. const struct val_snr *uninitialized_var(snr_lut);
  616. /* read value */
  617. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  618. if (ret < 0)
  619. goto err;
  620. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  621. /* read current modulation */
  622. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  623. if (ret < 0)
  624. goto err;
  625. switch ((tmp >> 0) & 3) {
  626. case 0:
  627. len = ARRAY_SIZE(qpsk_snr_lut);
  628. snr_lut = qpsk_snr_lut;
  629. break;
  630. case 1:
  631. len = ARRAY_SIZE(qam16_snr_lut);
  632. snr_lut = qam16_snr_lut;
  633. break;
  634. case 2:
  635. len = ARRAY_SIZE(qam64_snr_lut);
  636. snr_lut = qam64_snr_lut;
  637. break;
  638. default:
  639. goto err;
  640. }
  641. for (i = 0; i < len; i++) {
  642. tmp = snr_lut[i].snr;
  643. if (snr_val < snr_lut[i].val)
  644. break;
  645. }
  646. *snr = tmp * 10; /* dB/10 */
  647. return 0;
  648. err:
  649. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  650. return ret;
  651. }
  652. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  653. {
  654. struct af9033_state *state = fe->demodulator_priv;
  655. int ret;
  656. u8 strength2;
  657. /* read signal strength of 0-100 scale */
  658. ret = af9033_rd_reg(state, 0x800048, &strength2);
  659. if (ret < 0)
  660. goto err;
  661. /* scale value to 0x0000-0xffff */
  662. *strength = strength2 * 0xffff / 100;
  663. return 0;
  664. err:
  665. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  666. return ret;
  667. }
  668. static int af9033_update_ch_stat(struct af9033_state *state)
  669. {
  670. int ret = 0;
  671. u32 err_cnt, bit_cnt;
  672. u16 abort_cnt;
  673. u8 buf[7];
  674. /* only update data every half second */
  675. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  676. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  677. if (ret < 0)
  678. goto err;
  679. /* in 8 byte packets? */
  680. abort_cnt = (buf[1] << 8) + buf[0];
  681. /* in bits */
  682. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  683. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  684. bit_cnt = (buf[6] << 8) + buf[5];
  685. if (bit_cnt < abort_cnt) {
  686. abort_cnt = 1000;
  687. state->ber = 0xffffffff;
  688. } else {
  689. /* 8 byte packets, that have not been rejected already */
  690. bit_cnt -= (u32)abort_cnt;
  691. if (bit_cnt == 0) {
  692. state->ber = 0xffffffff;
  693. } else {
  694. err_cnt -= (u32)abort_cnt * 8 * 8;
  695. bit_cnt *= 8 * 8;
  696. state->ber = err_cnt * (0xffffffff / bit_cnt);
  697. }
  698. }
  699. state->ucb += abort_cnt;
  700. state->last_stat_check = jiffies;
  701. }
  702. return 0;
  703. err:
  704. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  705. return ret;
  706. }
  707. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  708. {
  709. struct af9033_state *state = fe->demodulator_priv;
  710. int ret;
  711. ret = af9033_update_ch_stat(state);
  712. if (ret < 0)
  713. return ret;
  714. *ber = state->ber;
  715. return 0;
  716. }
  717. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  718. {
  719. struct af9033_state *state = fe->demodulator_priv;
  720. int ret;
  721. ret = af9033_update_ch_stat(state);
  722. if (ret < 0)
  723. return ret;
  724. *ucblocks = state->ucb;
  725. return 0;
  726. }
  727. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  728. {
  729. struct af9033_state *state = fe->demodulator_priv;
  730. int ret;
  731. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  732. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  733. if (ret < 0)
  734. goto err;
  735. return 0;
  736. err:
  737. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  738. return ret;
  739. }
  740. static struct dvb_frontend_ops af9033_ops;
  741. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  742. struct i2c_adapter *i2c)
  743. {
  744. int ret;
  745. struct af9033_state *state;
  746. u8 buf[8];
  747. dev_dbg(&i2c->dev, "%s:\n", __func__);
  748. /* allocate memory for the internal state */
  749. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  750. if (state == NULL)
  751. goto err;
  752. /* setup the state */
  753. state->i2c = i2c;
  754. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  755. if (state->cfg.clock != 12000000) {
  756. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  757. "only 12000000 Hz is supported currently\n",
  758. KBUILD_MODNAME, state->cfg.clock);
  759. goto err;
  760. }
  761. /* firmware version */
  762. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  763. if (ret < 0)
  764. goto err;
  765. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  766. if (ret < 0)
  767. goto err;
  768. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  769. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  770. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  771. /* sleep */
  772. ret = af9033_wr_reg(state, 0x80004c, 1);
  773. if (ret < 0)
  774. goto err;
  775. ret = af9033_wr_reg(state, 0x800000, 0);
  776. if (ret < 0)
  777. goto err;
  778. /* configure internal TS mode */
  779. switch (state->cfg.ts_mode) {
  780. case AF9033_TS_MODE_PARALLEL:
  781. state->ts_mode_parallel = true;
  782. break;
  783. case AF9033_TS_MODE_SERIAL:
  784. state->ts_mode_serial = true;
  785. break;
  786. case AF9033_TS_MODE_USB:
  787. /* usb mode for AF9035 */
  788. default:
  789. break;
  790. }
  791. /* create dvb_frontend */
  792. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  793. state->fe.demodulator_priv = state;
  794. return &state->fe;
  795. err:
  796. kfree(state);
  797. return NULL;
  798. }
  799. EXPORT_SYMBOL(af9033_attach);
  800. static struct dvb_frontend_ops af9033_ops = {
  801. .delsys = { SYS_DVBT },
  802. .info = {
  803. .name = "Afatech AF9033 (DVB-T)",
  804. .frequency_min = 174000000,
  805. .frequency_max = 862000000,
  806. .frequency_stepsize = 250000,
  807. .frequency_tolerance = 0,
  808. .caps = FE_CAN_FEC_1_2 |
  809. FE_CAN_FEC_2_3 |
  810. FE_CAN_FEC_3_4 |
  811. FE_CAN_FEC_5_6 |
  812. FE_CAN_FEC_7_8 |
  813. FE_CAN_FEC_AUTO |
  814. FE_CAN_QPSK |
  815. FE_CAN_QAM_16 |
  816. FE_CAN_QAM_64 |
  817. FE_CAN_QAM_AUTO |
  818. FE_CAN_TRANSMISSION_MODE_AUTO |
  819. FE_CAN_GUARD_INTERVAL_AUTO |
  820. FE_CAN_HIERARCHY_AUTO |
  821. FE_CAN_RECOVER |
  822. FE_CAN_MUTE_TS
  823. },
  824. .release = af9033_release,
  825. .init = af9033_init,
  826. .sleep = af9033_sleep,
  827. .get_tune_settings = af9033_get_tune_settings,
  828. .set_frontend = af9033_set_frontend,
  829. .get_frontend = af9033_get_frontend,
  830. .read_status = af9033_read_status,
  831. .read_snr = af9033_read_snr,
  832. .read_signal_strength = af9033_read_signal_strength,
  833. .read_ber = af9033_read_ber,
  834. .read_ucblocks = af9033_read_ucblocks,
  835. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  836. };
  837. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  838. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  839. MODULE_LICENSE("GPL");