af9013.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548
  1. /*
  2. * Afatech AF9013 demodulator driver
  3. *
  4. * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
  6. *
  7. * Thanks to Afatech who kindly provided information.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. *
  23. */
  24. #include "af9013_priv.h"
  25. struct af9013_state {
  26. struct i2c_adapter *i2c;
  27. struct dvb_frontend fe;
  28. struct af9013_config config;
  29. /* tuner/demod RF and IF AGC limits used for signal strength calc */
  30. u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
  31. u16 signal_strength;
  32. u32 ber;
  33. u32 ucblocks;
  34. u16 snr;
  35. u32 bandwidth_hz;
  36. fe_status_t fe_status;
  37. unsigned long set_frontend_jiffies;
  38. unsigned long read_status_jiffies;
  39. bool first_tune;
  40. bool i2c_gate_state;
  41. unsigned int statistics_step:3;
  42. struct delayed_work statistics_work;
  43. };
  44. /* write multiple registers */
  45. static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  46. const u8 *val, int len)
  47. {
  48. int ret;
  49. u8 buf[3+len];
  50. struct i2c_msg msg[1] = {
  51. {
  52. .addr = priv->config.i2c_addr,
  53. .flags = 0,
  54. .len = sizeof(buf),
  55. .buf = buf,
  56. }
  57. };
  58. buf[0] = (reg >> 8) & 0xff;
  59. buf[1] = (reg >> 0) & 0xff;
  60. buf[2] = mbox;
  61. memcpy(&buf[3], val, len);
  62. ret = i2c_transfer(priv->i2c, msg, 1);
  63. if (ret == 1) {
  64. ret = 0;
  65. } else {
  66. dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
  67. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  68. ret = -EREMOTEIO;
  69. }
  70. return ret;
  71. }
  72. /* read multiple registers */
  73. static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
  74. u8 *val, int len)
  75. {
  76. int ret;
  77. u8 buf[3];
  78. struct i2c_msg msg[2] = {
  79. {
  80. .addr = priv->config.i2c_addr,
  81. .flags = 0,
  82. .len = 3,
  83. .buf = buf,
  84. }, {
  85. .addr = priv->config.i2c_addr,
  86. .flags = I2C_M_RD,
  87. .len = len,
  88. .buf = val,
  89. }
  90. };
  91. buf[0] = (reg >> 8) & 0xff;
  92. buf[1] = (reg >> 0) & 0xff;
  93. buf[2] = mbox;
  94. ret = i2c_transfer(priv->i2c, msg, 2);
  95. if (ret == 2) {
  96. ret = 0;
  97. } else {
  98. dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
  99. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  100. ret = -EREMOTEIO;
  101. }
  102. return ret;
  103. }
  104. /* write multiple registers */
  105. static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
  106. int len)
  107. {
  108. int ret, i;
  109. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
  110. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  111. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  112. mbox |= ((len - 1) << 2);
  113. ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
  114. } else {
  115. for (i = 0; i < len; i++) {
  116. ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
  117. if (ret)
  118. goto err;
  119. }
  120. }
  121. err:
  122. return 0;
  123. }
  124. /* read multiple registers */
  125. static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
  126. {
  127. int ret, i;
  128. u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
  129. if ((priv->config.ts_mode == AF9013_TS_USB) &&
  130. ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
  131. mbox |= ((len - 1) << 2);
  132. ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
  133. } else {
  134. for (i = 0; i < len; i++) {
  135. ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
  136. if (ret)
  137. goto err;
  138. }
  139. }
  140. err:
  141. return 0;
  142. }
  143. /* write single register */
  144. static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
  145. {
  146. return af9013_wr_regs(priv, reg, &val, 1);
  147. }
  148. /* read single register */
  149. static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
  150. {
  151. return af9013_rd_regs(priv, reg, val, 1);
  152. }
  153. static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
  154. u8 len)
  155. {
  156. u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
  157. return af9013_wr_regs_i2c(state, mbox, reg, val, len);
  158. }
  159. static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
  160. int len, u8 val)
  161. {
  162. int ret;
  163. u8 tmp, mask;
  164. /* no need for read if whole reg is written */
  165. if (len != 8) {
  166. ret = af9013_rd_reg(state, reg, &tmp);
  167. if (ret)
  168. return ret;
  169. mask = (0xff >> (8 - len)) << pos;
  170. val <<= pos;
  171. tmp &= ~mask;
  172. val |= tmp;
  173. }
  174. return af9013_wr_reg(state, reg, val);
  175. }
  176. static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
  177. int len, u8 *val)
  178. {
  179. int ret;
  180. u8 tmp;
  181. ret = af9013_rd_reg(state, reg, &tmp);
  182. if (ret)
  183. return ret;
  184. *val = (tmp >> pos);
  185. *val &= (0xff >> (8 - len));
  186. return 0;
  187. }
  188. static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
  189. {
  190. int ret;
  191. u8 pos;
  192. u16 addr;
  193. dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
  194. __func__, gpio, gpioval);
  195. /*
  196. * GPIO0 & GPIO1 0xd735
  197. * GPIO2 & GPIO3 0xd736
  198. */
  199. switch (gpio) {
  200. case 0:
  201. case 1:
  202. addr = 0xd735;
  203. break;
  204. case 2:
  205. case 3:
  206. addr = 0xd736;
  207. break;
  208. default:
  209. dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
  210. KBUILD_MODNAME, gpio);
  211. ret = -EINVAL;
  212. goto err;
  213. }
  214. switch (gpio) {
  215. case 0:
  216. case 2:
  217. pos = 0;
  218. break;
  219. case 1:
  220. case 3:
  221. default:
  222. pos = 4;
  223. break;
  224. }
  225. ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
  226. if (ret)
  227. goto err;
  228. return ret;
  229. err:
  230. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  231. return ret;
  232. }
  233. static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
  234. {
  235. u32 r = 0, c = 0, i;
  236. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  237. if (a > b) {
  238. c = a / b;
  239. a = a - c * b;
  240. }
  241. for (i = 0; i < x; i++) {
  242. if (a >= b) {
  243. r += 1;
  244. a -= b;
  245. }
  246. a <<= 1;
  247. r <<= 1;
  248. }
  249. r = (c << (u32)x) + r;
  250. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  251. __func__, a, b, x, r, r);
  252. return r;
  253. }
  254. static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
  255. {
  256. int ret, i;
  257. u8 tmp;
  258. dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
  259. /* enable reset */
  260. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
  261. if (ret)
  262. goto err;
  263. /* start reset mechanism */
  264. ret = af9013_wr_reg(state, 0xaeff, 1);
  265. if (ret)
  266. goto err;
  267. /* wait reset performs */
  268. for (i = 0; i < 150; i++) {
  269. ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
  270. if (ret)
  271. goto err;
  272. if (tmp)
  273. break; /* reset done */
  274. usleep_range(5000, 25000);
  275. }
  276. if (!tmp)
  277. return -ETIMEDOUT;
  278. if (onoff) {
  279. /* clear reset */
  280. ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
  281. if (ret)
  282. goto err;
  283. /* disable reset */
  284. ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
  285. /* power on */
  286. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
  287. } else {
  288. /* power off */
  289. ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
  290. }
  291. return ret;
  292. err:
  293. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  294. return ret;
  295. }
  296. static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
  297. {
  298. struct af9013_state *state = fe->demodulator_priv;
  299. int ret;
  300. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  301. /* reset and start BER counter */
  302. ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
  303. if (ret)
  304. goto err;
  305. return ret;
  306. err:
  307. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  308. return ret;
  309. }
  310. static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
  311. {
  312. struct af9013_state *state = fe->demodulator_priv;
  313. int ret;
  314. u8 buf[5];
  315. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  316. /* check if error bit count is ready */
  317. ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
  318. if (ret)
  319. goto err;
  320. if (!buf[0]) {
  321. dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
  322. return 0;
  323. }
  324. ret = af9013_rd_regs(state, 0xd387, buf, 5);
  325. if (ret)
  326. goto err;
  327. state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  328. state->ucblocks += (buf[4] << 8) | buf[3];
  329. return ret;
  330. err:
  331. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  332. return ret;
  333. }
  334. static int af9013_statistics_snr_start(struct dvb_frontend *fe)
  335. {
  336. struct af9013_state *state = fe->demodulator_priv;
  337. int ret;
  338. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  339. /* start SNR meas */
  340. ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
  341. if (ret)
  342. goto err;
  343. return ret;
  344. err:
  345. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  346. return ret;
  347. }
  348. static int af9013_statistics_snr_result(struct dvb_frontend *fe)
  349. {
  350. struct af9013_state *state = fe->demodulator_priv;
  351. int ret, i, len;
  352. u8 buf[3], tmp;
  353. u32 snr_val;
  354. const struct af9013_snr *uninitialized_var(snr_lut);
  355. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  356. /* check if SNR ready */
  357. ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
  358. if (ret)
  359. goto err;
  360. if (!tmp) {
  361. dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
  362. return 0;
  363. }
  364. /* read value */
  365. ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
  366. if (ret)
  367. goto err;
  368. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  369. /* read current modulation */
  370. ret = af9013_rd_reg(state, 0xd3c1, &tmp);
  371. if (ret)
  372. goto err;
  373. switch ((tmp >> 6) & 3) {
  374. case 0:
  375. len = ARRAY_SIZE(qpsk_snr_lut);
  376. snr_lut = qpsk_snr_lut;
  377. break;
  378. case 1:
  379. len = ARRAY_SIZE(qam16_snr_lut);
  380. snr_lut = qam16_snr_lut;
  381. break;
  382. case 2:
  383. len = ARRAY_SIZE(qam64_snr_lut);
  384. snr_lut = qam64_snr_lut;
  385. break;
  386. default:
  387. goto err;
  388. break;
  389. }
  390. for (i = 0; i < len; i++) {
  391. tmp = snr_lut[i].snr;
  392. if (snr_val < snr_lut[i].val)
  393. break;
  394. }
  395. state->snr = tmp * 10; /* dB/10 */
  396. return ret;
  397. err:
  398. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  399. return ret;
  400. }
  401. static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
  402. {
  403. struct af9013_state *state = fe->demodulator_priv;
  404. int ret = 0;
  405. u8 buf[2], rf_gain, if_gain;
  406. int signal_strength;
  407. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  408. if (!state->signal_strength_en)
  409. return 0;
  410. ret = af9013_rd_regs(state, 0xd07c, buf, 2);
  411. if (ret)
  412. goto err;
  413. rf_gain = buf[0];
  414. if_gain = buf[1];
  415. signal_strength = (0xffff / \
  416. (9 * (state->rf_50 + state->if_50) - \
  417. 11 * (state->rf_80 + state->if_80))) * \
  418. (10 * (rf_gain + if_gain) - \
  419. 11 * (state->rf_80 + state->if_80));
  420. if (signal_strength < 0)
  421. signal_strength = 0;
  422. else if (signal_strength > 0xffff)
  423. signal_strength = 0xffff;
  424. state->signal_strength = signal_strength;
  425. return ret;
  426. err:
  427. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  428. return ret;
  429. }
  430. static void af9013_statistics_work(struct work_struct *work)
  431. {
  432. struct af9013_state *state = container_of(work,
  433. struct af9013_state, statistics_work.work);
  434. unsigned int next_msec;
  435. /* update only signal strength when demod is not locked */
  436. if (!(state->fe_status & FE_HAS_LOCK)) {
  437. state->statistics_step = 0;
  438. state->ber = 0;
  439. state->snr = 0;
  440. }
  441. switch (state->statistics_step) {
  442. default:
  443. state->statistics_step = 0;
  444. case 0:
  445. af9013_statistics_signal_strength(&state->fe);
  446. state->statistics_step++;
  447. next_msec = 300;
  448. break;
  449. case 1:
  450. af9013_statistics_snr_start(&state->fe);
  451. state->statistics_step++;
  452. next_msec = 200;
  453. break;
  454. case 2:
  455. af9013_statistics_ber_unc_start(&state->fe);
  456. state->statistics_step++;
  457. next_msec = 1000;
  458. break;
  459. case 3:
  460. af9013_statistics_snr_result(&state->fe);
  461. state->statistics_step++;
  462. next_msec = 400;
  463. break;
  464. case 4:
  465. af9013_statistics_ber_unc_result(&state->fe);
  466. state->statistics_step++;
  467. next_msec = 100;
  468. break;
  469. }
  470. schedule_delayed_work(&state->statistics_work,
  471. msecs_to_jiffies(next_msec));
  472. }
  473. static int af9013_get_tune_settings(struct dvb_frontend *fe,
  474. struct dvb_frontend_tune_settings *fesettings)
  475. {
  476. fesettings->min_delay_ms = 800;
  477. fesettings->step_size = 0;
  478. fesettings->max_drift = 0;
  479. return 0;
  480. }
  481. static int af9013_set_frontend(struct dvb_frontend *fe)
  482. {
  483. struct af9013_state *state = fe->demodulator_priv;
  484. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  485. int ret, i, sampling_freq;
  486. bool auto_mode, spec_inv;
  487. u8 buf[6];
  488. u32 if_frequency, freq_cw;
  489. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  490. __func__, c->frequency, c->bandwidth_hz);
  491. /* program tuner */
  492. if (fe->ops.tuner_ops.set_params)
  493. fe->ops.tuner_ops.set_params(fe);
  494. /* program CFOE coefficients */
  495. if (c->bandwidth_hz != state->bandwidth_hz) {
  496. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  497. if (coeff_lut[i].clock == state->config.clock &&
  498. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  499. break;
  500. }
  501. }
  502. ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
  503. sizeof(coeff_lut[i].val));
  504. }
  505. /* program frequency control */
  506. if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
  507. /* get used IF frequency */
  508. if (fe->ops.tuner_ops.get_if_frequency)
  509. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  510. else
  511. if_frequency = state->config.if_frequency;
  512. dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
  513. __func__, if_frequency);
  514. sampling_freq = if_frequency;
  515. while (sampling_freq > (state->config.clock / 2))
  516. sampling_freq -= state->config.clock;
  517. if (sampling_freq < 0) {
  518. sampling_freq *= -1;
  519. spec_inv = state->config.spec_inv;
  520. } else {
  521. spec_inv = !state->config.spec_inv;
  522. }
  523. freq_cw = af9013_div(state, sampling_freq, state->config.clock,
  524. 23);
  525. if (spec_inv)
  526. freq_cw = 0x800000 - freq_cw;
  527. buf[0] = (freq_cw >> 0) & 0xff;
  528. buf[1] = (freq_cw >> 8) & 0xff;
  529. buf[2] = (freq_cw >> 16) & 0x7f;
  530. freq_cw = 0x800000 - freq_cw;
  531. buf[3] = (freq_cw >> 0) & 0xff;
  532. buf[4] = (freq_cw >> 8) & 0xff;
  533. buf[5] = (freq_cw >> 16) & 0x7f;
  534. ret = af9013_wr_regs(state, 0xd140, buf, 3);
  535. if (ret)
  536. goto err;
  537. ret = af9013_wr_regs(state, 0x9be7, buf, 6);
  538. if (ret)
  539. goto err;
  540. }
  541. /* clear TPS lock flag */
  542. ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
  543. if (ret)
  544. goto err;
  545. /* clear MPEG2 lock flag */
  546. ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
  547. if (ret)
  548. goto err;
  549. /* empty channel function */
  550. ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
  551. if (ret)
  552. goto err;
  553. /* empty DVB-T channel function */
  554. ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
  555. if (ret)
  556. goto err;
  557. /* transmission parameters */
  558. auto_mode = false;
  559. memset(buf, 0, 3);
  560. switch (c->transmission_mode) {
  561. case TRANSMISSION_MODE_AUTO:
  562. auto_mode = 1;
  563. break;
  564. case TRANSMISSION_MODE_2K:
  565. break;
  566. case TRANSMISSION_MODE_8K:
  567. buf[0] |= (1 << 0);
  568. break;
  569. default:
  570. dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
  571. __func__);
  572. auto_mode = 1;
  573. }
  574. switch (c->guard_interval) {
  575. case GUARD_INTERVAL_AUTO:
  576. auto_mode = 1;
  577. break;
  578. case GUARD_INTERVAL_1_32:
  579. break;
  580. case GUARD_INTERVAL_1_16:
  581. buf[0] |= (1 << 2);
  582. break;
  583. case GUARD_INTERVAL_1_8:
  584. buf[0] |= (2 << 2);
  585. break;
  586. case GUARD_INTERVAL_1_4:
  587. buf[0] |= (3 << 2);
  588. break;
  589. default:
  590. dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
  591. __func__);
  592. auto_mode = 1;
  593. }
  594. switch (c->hierarchy) {
  595. case HIERARCHY_AUTO:
  596. auto_mode = 1;
  597. break;
  598. case HIERARCHY_NONE:
  599. break;
  600. case HIERARCHY_1:
  601. buf[0] |= (1 << 4);
  602. break;
  603. case HIERARCHY_2:
  604. buf[0] |= (2 << 4);
  605. break;
  606. case HIERARCHY_4:
  607. buf[0] |= (3 << 4);
  608. break;
  609. default:
  610. dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
  611. auto_mode = 1;
  612. }
  613. switch (c->modulation) {
  614. case QAM_AUTO:
  615. auto_mode = 1;
  616. break;
  617. case QPSK:
  618. break;
  619. case QAM_16:
  620. buf[1] |= (1 << 6);
  621. break;
  622. case QAM_64:
  623. buf[1] |= (2 << 6);
  624. break;
  625. default:
  626. dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
  627. auto_mode = 1;
  628. }
  629. /* Use HP. How and which case we can switch to LP? */
  630. buf[1] |= (1 << 4);
  631. switch (c->code_rate_HP) {
  632. case FEC_AUTO:
  633. auto_mode = 1;
  634. break;
  635. case FEC_1_2:
  636. break;
  637. case FEC_2_3:
  638. buf[2] |= (1 << 0);
  639. break;
  640. case FEC_3_4:
  641. buf[2] |= (2 << 0);
  642. break;
  643. case FEC_5_6:
  644. buf[2] |= (3 << 0);
  645. break;
  646. case FEC_7_8:
  647. buf[2] |= (4 << 0);
  648. break;
  649. default:
  650. dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
  651. __func__);
  652. auto_mode = 1;
  653. }
  654. switch (c->code_rate_LP) {
  655. case FEC_AUTO:
  656. auto_mode = 1;
  657. break;
  658. case FEC_1_2:
  659. break;
  660. case FEC_2_3:
  661. buf[2] |= (1 << 3);
  662. break;
  663. case FEC_3_4:
  664. buf[2] |= (2 << 3);
  665. break;
  666. case FEC_5_6:
  667. buf[2] |= (3 << 3);
  668. break;
  669. case FEC_7_8:
  670. buf[2] |= (4 << 3);
  671. break;
  672. case FEC_NONE:
  673. break;
  674. default:
  675. dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
  676. __func__);
  677. auto_mode = 1;
  678. }
  679. switch (c->bandwidth_hz) {
  680. case 6000000:
  681. break;
  682. case 7000000:
  683. buf[1] |= (1 << 2);
  684. break;
  685. case 8000000:
  686. buf[1] |= (2 << 2);
  687. break;
  688. default:
  689. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  690. __func__);
  691. ret = -EINVAL;
  692. goto err;
  693. }
  694. ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
  695. if (ret)
  696. goto err;
  697. if (auto_mode) {
  698. /* clear easy mode flag */
  699. ret = af9013_wr_reg(state, 0xaefd, 0);
  700. if (ret)
  701. goto err;
  702. dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
  703. } else {
  704. /* set easy mode flag */
  705. ret = af9013_wr_reg(state, 0xaefd, 1);
  706. if (ret)
  707. goto err;
  708. ret = af9013_wr_reg(state, 0xaefe, 0);
  709. if (ret)
  710. goto err;
  711. dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
  712. }
  713. /* tune */
  714. ret = af9013_wr_reg(state, 0xffff, 0);
  715. if (ret)
  716. goto err;
  717. state->bandwidth_hz = c->bandwidth_hz;
  718. state->set_frontend_jiffies = jiffies;
  719. state->first_tune = false;
  720. return ret;
  721. err:
  722. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  723. return ret;
  724. }
  725. static int af9013_get_frontend(struct dvb_frontend *fe)
  726. {
  727. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  728. struct af9013_state *state = fe->demodulator_priv;
  729. int ret;
  730. u8 buf[3];
  731. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  732. ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
  733. if (ret)
  734. goto err;
  735. switch ((buf[1] >> 6) & 3) {
  736. case 0:
  737. c->modulation = QPSK;
  738. break;
  739. case 1:
  740. c->modulation = QAM_16;
  741. break;
  742. case 2:
  743. c->modulation = QAM_64;
  744. break;
  745. }
  746. switch ((buf[0] >> 0) & 3) {
  747. case 0:
  748. c->transmission_mode = TRANSMISSION_MODE_2K;
  749. break;
  750. case 1:
  751. c->transmission_mode = TRANSMISSION_MODE_8K;
  752. }
  753. switch ((buf[0] >> 2) & 3) {
  754. case 0:
  755. c->guard_interval = GUARD_INTERVAL_1_32;
  756. break;
  757. case 1:
  758. c->guard_interval = GUARD_INTERVAL_1_16;
  759. break;
  760. case 2:
  761. c->guard_interval = GUARD_INTERVAL_1_8;
  762. break;
  763. case 3:
  764. c->guard_interval = GUARD_INTERVAL_1_4;
  765. break;
  766. }
  767. switch ((buf[0] >> 4) & 7) {
  768. case 0:
  769. c->hierarchy = HIERARCHY_NONE;
  770. break;
  771. case 1:
  772. c->hierarchy = HIERARCHY_1;
  773. break;
  774. case 2:
  775. c->hierarchy = HIERARCHY_2;
  776. break;
  777. case 3:
  778. c->hierarchy = HIERARCHY_4;
  779. break;
  780. }
  781. switch ((buf[2] >> 0) & 7) {
  782. case 0:
  783. c->code_rate_HP = FEC_1_2;
  784. break;
  785. case 1:
  786. c->code_rate_HP = FEC_2_3;
  787. break;
  788. case 2:
  789. c->code_rate_HP = FEC_3_4;
  790. break;
  791. case 3:
  792. c->code_rate_HP = FEC_5_6;
  793. break;
  794. case 4:
  795. c->code_rate_HP = FEC_7_8;
  796. break;
  797. }
  798. switch ((buf[2] >> 3) & 7) {
  799. case 0:
  800. c->code_rate_LP = FEC_1_2;
  801. break;
  802. case 1:
  803. c->code_rate_LP = FEC_2_3;
  804. break;
  805. case 2:
  806. c->code_rate_LP = FEC_3_4;
  807. break;
  808. case 3:
  809. c->code_rate_LP = FEC_5_6;
  810. break;
  811. case 4:
  812. c->code_rate_LP = FEC_7_8;
  813. break;
  814. }
  815. switch ((buf[1] >> 2) & 3) {
  816. case 0:
  817. c->bandwidth_hz = 6000000;
  818. break;
  819. case 1:
  820. c->bandwidth_hz = 7000000;
  821. break;
  822. case 2:
  823. c->bandwidth_hz = 8000000;
  824. break;
  825. }
  826. return ret;
  827. err:
  828. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  829. return ret;
  830. }
  831. static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
  832. {
  833. struct af9013_state *state = fe->demodulator_priv;
  834. int ret;
  835. u8 tmp;
  836. /*
  837. * Return status from the cache if it is younger than 2000ms with the
  838. * exception of last tune is done during 4000ms.
  839. */
  840. if (time_is_after_jiffies(
  841. state->read_status_jiffies + msecs_to_jiffies(2000)) &&
  842. time_is_before_jiffies(
  843. state->set_frontend_jiffies + msecs_to_jiffies(4000))
  844. ) {
  845. *status = state->fe_status;
  846. return 0;
  847. } else {
  848. *status = 0;
  849. }
  850. /* MPEG2 lock */
  851. ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
  852. if (ret)
  853. goto err;
  854. if (tmp)
  855. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
  856. FE_HAS_SYNC | FE_HAS_LOCK;
  857. if (!*status) {
  858. /* TPS lock */
  859. ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
  860. if (ret)
  861. goto err;
  862. if (tmp)
  863. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  864. FE_HAS_VITERBI;
  865. }
  866. state->fe_status = *status;
  867. state->read_status_jiffies = jiffies;
  868. return ret;
  869. err:
  870. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  871. return ret;
  872. }
  873. static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
  874. {
  875. struct af9013_state *state = fe->demodulator_priv;
  876. *snr = state->snr;
  877. return 0;
  878. }
  879. static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  880. {
  881. struct af9013_state *state = fe->demodulator_priv;
  882. *strength = state->signal_strength;
  883. return 0;
  884. }
  885. static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
  886. {
  887. struct af9013_state *state = fe->demodulator_priv;
  888. *ber = state->ber;
  889. return 0;
  890. }
  891. static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  892. {
  893. struct af9013_state *state = fe->demodulator_priv;
  894. *ucblocks = state->ucblocks;
  895. return 0;
  896. }
  897. static int af9013_init(struct dvb_frontend *fe)
  898. {
  899. struct af9013_state *state = fe->demodulator_priv;
  900. int ret, i, len;
  901. u8 buf[3], tmp;
  902. u32 adc_cw;
  903. const struct af9013_reg_bit *init;
  904. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  905. /* power on */
  906. ret = af9013_power_ctrl(state, 1);
  907. if (ret)
  908. goto err;
  909. /* enable ADC */
  910. ret = af9013_wr_reg(state, 0xd73a, 0xa4);
  911. if (ret)
  912. goto err;
  913. /* write API version to firmware */
  914. ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
  915. if (ret)
  916. goto err;
  917. /* program ADC control */
  918. switch (state->config.clock) {
  919. case 28800000: /* 28.800 MHz */
  920. tmp = 0;
  921. break;
  922. case 20480000: /* 20.480 MHz */
  923. tmp = 1;
  924. break;
  925. case 28000000: /* 28.000 MHz */
  926. tmp = 2;
  927. break;
  928. case 25000000: /* 25.000 MHz */
  929. tmp = 3;
  930. break;
  931. default:
  932. dev_err(&state->i2c->dev, "%s: invalid clock\n",
  933. KBUILD_MODNAME);
  934. return -EINVAL;
  935. }
  936. adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
  937. buf[0] = (adc_cw >> 0) & 0xff;
  938. buf[1] = (adc_cw >> 8) & 0xff;
  939. buf[2] = (adc_cw >> 16) & 0xff;
  940. ret = af9013_wr_regs(state, 0xd180, buf, 3);
  941. if (ret)
  942. goto err;
  943. ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
  944. if (ret)
  945. goto err;
  946. /* set I2C master clock */
  947. ret = af9013_wr_reg(state, 0xd416, 0x14);
  948. if (ret)
  949. goto err;
  950. /* set 16 embx */
  951. ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
  952. if (ret)
  953. goto err;
  954. /* set no trigger */
  955. ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
  956. if (ret)
  957. goto err;
  958. /* set read-update bit for constellation */
  959. ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
  960. if (ret)
  961. goto err;
  962. /* settings for mp2if */
  963. if (state->config.ts_mode == AF9013_TS_USB) {
  964. /* AF9015 split PSB to 1.5k + 0.5k */
  965. ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
  966. if (ret)
  967. goto err;
  968. } else {
  969. /* AF9013 change the output bit to data7 */
  970. ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
  971. if (ret)
  972. goto err;
  973. /* AF9013 set mpeg to full speed */
  974. ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
  975. if (ret)
  976. goto err;
  977. }
  978. ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
  979. if (ret)
  980. goto err;
  981. /* load OFSM settings */
  982. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  983. len = ARRAY_SIZE(ofsm_init);
  984. init = ofsm_init;
  985. for (i = 0; i < len; i++) {
  986. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  987. init[i].len, init[i].val);
  988. if (ret)
  989. goto err;
  990. }
  991. /* load tuner specific settings */
  992. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  993. __func__);
  994. switch (state->config.tuner) {
  995. case AF9013_TUNER_MXL5003D:
  996. len = ARRAY_SIZE(tuner_init_mxl5003d);
  997. init = tuner_init_mxl5003d;
  998. break;
  999. case AF9013_TUNER_MXL5005D:
  1000. case AF9013_TUNER_MXL5005R:
  1001. case AF9013_TUNER_MXL5007T:
  1002. len = ARRAY_SIZE(tuner_init_mxl5005);
  1003. init = tuner_init_mxl5005;
  1004. break;
  1005. case AF9013_TUNER_ENV77H11D5:
  1006. len = ARRAY_SIZE(tuner_init_env77h11d5);
  1007. init = tuner_init_env77h11d5;
  1008. break;
  1009. case AF9013_TUNER_MT2060:
  1010. len = ARRAY_SIZE(tuner_init_mt2060);
  1011. init = tuner_init_mt2060;
  1012. break;
  1013. case AF9013_TUNER_MC44S803:
  1014. len = ARRAY_SIZE(tuner_init_mc44s803);
  1015. init = tuner_init_mc44s803;
  1016. break;
  1017. case AF9013_TUNER_QT1010:
  1018. case AF9013_TUNER_QT1010A:
  1019. len = ARRAY_SIZE(tuner_init_qt1010);
  1020. init = tuner_init_qt1010;
  1021. break;
  1022. case AF9013_TUNER_MT2060_2:
  1023. len = ARRAY_SIZE(tuner_init_mt2060_2);
  1024. init = tuner_init_mt2060_2;
  1025. break;
  1026. case AF9013_TUNER_TDA18271:
  1027. case AF9013_TUNER_TDA18218:
  1028. len = ARRAY_SIZE(tuner_init_tda18271);
  1029. init = tuner_init_tda18271;
  1030. break;
  1031. case AF9013_TUNER_UNKNOWN:
  1032. default:
  1033. len = ARRAY_SIZE(tuner_init_unknown);
  1034. init = tuner_init_unknown;
  1035. break;
  1036. }
  1037. for (i = 0; i < len; i++) {
  1038. ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
  1039. init[i].len, init[i].val);
  1040. if (ret)
  1041. goto err;
  1042. }
  1043. /* TS mode */
  1044. ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
  1045. if (ret)
  1046. goto err;
  1047. /* enable lock led */
  1048. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
  1049. if (ret)
  1050. goto err;
  1051. /* check if we support signal strength */
  1052. if (!state->signal_strength_en) {
  1053. ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
  1054. &state->signal_strength_en);
  1055. if (ret)
  1056. goto err;
  1057. }
  1058. /* read values needed for signal strength calculation */
  1059. if (state->signal_strength_en && !state->rf_50) {
  1060. ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
  1061. if (ret)
  1062. goto err;
  1063. ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
  1064. if (ret)
  1065. goto err;
  1066. ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
  1067. if (ret)
  1068. goto err;
  1069. ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
  1070. if (ret)
  1071. goto err;
  1072. }
  1073. /* SNR */
  1074. ret = af9013_wr_reg(state, 0xd2e2, 1);
  1075. if (ret)
  1076. goto err;
  1077. /* BER / UCB */
  1078. buf[0] = (10000 >> 0) & 0xff;
  1079. buf[1] = (10000 >> 8) & 0xff;
  1080. ret = af9013_wr_regs(state, 0xd385, buf, 2);
  1081. if (ret)
  1082. goto err;
  1083. /* enable FEC monitor */
  1084. ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
  1085. if (ret)
  1086. goto err;
  1087. state->first_tune = true;
  1088. schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
  1089. return ret;
  1090. err:
  1091. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1092. return ret;
  1093. }
  1094. static int af9013_sleep(struct dvb_frontend *fe)
  1095. {
  1096. struct af9013_state *state = fe->demodulator_priv;
  1097. int ret;
  1098. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  1099. /* stop statistics polling */
  1100. cancel_delayed_work_sync(&state->statistics_work);
  1101. /* disable lock led */
  1102. ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
  1103. if (ret)
  1104. goto err;
  1105. /* power off */
  1106. ret = af9013_power_ctrl(state, 0);
  1107. if (ret)
  1108. goto err;
  1109. return ret;
  1110. err:
  1111. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1112. return ret;
  1113. }
  1114. static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  1115. {
  1116. int ret;
  1117. struct af9013_state *state = fe->demodulator_priv;
  1118. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  1119. /* gate already open or close */
  1120. if (state->i2c_gate_state == enable)
  1121. return 0;
  1122. if (state->config.ts_mode == AF9013_TS_USB)
  1123. ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
  1124. else
  1125. ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
  1126. if (ret)
  1127. goto err;
  1128. state->i2c_gate_state = enable;
  1129. return ret;
  1130. err:
  1131. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  1132. return ret;
  1133. }
  1134. static void af9013_release(struct dvb_frontend *fe)
  1135. {
  1136. struct af9013_state *state = fe->demodulator_priv;
  1137. kfree(state);
  1138. }
  1139. static struct dvb_frontend_ops af9013_ops;
  1140. static int af9013_download_firmware(struct af9013_state *state)
  1141. {
  1142. int i, len, remaining, ret;
  1143. const struct firmware *fw;
  1144. u16 checksum = 0;
  1145. u8 val;
  1146. u8 fw_params[4];
  1147. u8 *fw_file = AF9013_FIRMWARE;
  1148. msleep(100);
  1149. /* check whether firmware is already running */
  1150. ret = af9013_rd_reg(state, 0x98be, &val);
  1151. if (ret)
  1152. goto err;
  1153. else
  1154. dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
  1155. __func__, val);
  1156. if (val == 0x0c) /* fw is running, no need for download */
  1157. goto exit;
  1158. dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
  1159. "to load a firmware\n",
  1160. KBUILD_MODNAME, af9013_ops.info.name);
  1161. /* request the firmware, this will block and timeout */
  1162. ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
  1163. if (ret) {
  1164. dev_info(&state->i2c->dev, "%s: did not find the firmware " \
  1165. "file. (%s) Please see linux/Documentation/dvb/ for " \
  1166. "more details on firmware-problems. (%d)\n",
  1167. KBUILD_MODNAME, fw_file, ret);
  1168. goto err;
  1169. }
  1170. dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
  1171. KBUILD_MODNAME, fw_file);
  1172. /* calc checksum */
  1173. for (i = 0; i < fw->size; i++)
  1174. checksum += fw->data[i];
  1175. fw_params[0] = checksum >> 8;
  1176. fw_params[1] = checksum & 0xff;
  1177. fw_params[2] = fw->size >> 8;
  1178. fw_params[3] = fw->size & 0xff;
  1179. /* write fw checksum & size */
  1180. ret = af9013_write_ofsm_regs(state, 0x50fc,
  1181. fw_params, sizeof(fw_params));
  1182. if (ret)
  1183. goto err_release;
  1184. #define FW_ADDR 0x5100 /* firmware start address */
  1185. #define LEN_MAX 16 /* max packet size */
  1186. for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
  1187. len = remaining;
  1188. if (len > LEN_MAX)
  1189. len = LEN_MAX;
  1190. ret = af9013_write_ofsm_regs(state,
  1191. FW_ADDR + fw->size - remaining,
  1192. (u8 *) &fw->data[fw->size - remaining], len);
  1193. if (ret) {
  1194. dev_err(&state->i2c->dev,
  1195. "%s: firmware download failed=%d\n",
  1196. KBUILD_MODNAME, ret);
  1197. goto err_release;
  1198. }
  1199. }
  1200. /* request boot firmware */
  1201. ret = af9013_wr_reg(state, 0xe205, 1);
  1202. if (ret)
  1203. goto err_release;
  1204. for (i = 0; i < 15; i++) {
  1205. msleep(100);
  1206. /* check firmware status */
  1207. ret = af9013_rd_reg(state, 0x98be, &val);
  1208. if (ret)
  1209. goto err_release;
  1210. dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
  1211. __func__, val);
  1212. if (val == 0x0c || val == 0x04) /* success or fail */
  1213. break;
  1214. }
  1215. if (val == 0x04) {
  1216. dev_err(&state->i2c->dev, "%s: firmware did not run\n",
  1217. KBUILD_MODNAME);
  1218. ret = -ENODEV;
  1219. } else if (val != 0x0c) {
  1220. dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
  1221. KBUILD_MODNAME);
  1222. ret = -ENODEV;
  1223. }
  1224. err_release:
  1225. release_firmware(fw);
  1226. err:
  1227. exit:
  1228. if (!ret)
  1229. dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
  1230. KBUILD_MODNAME, af9013_ops.info.name);
  1231. return ret;
  1232. }
  1233. struct dvb_frontend *af9013_attach(const struct af9013_config *config,
  1234. struct i2c_adapter *i2c)
  1235. {
  1236. int ret;
  1237. struct af9013_state *state = NULL;
  1238. u8 buf[4], i;
  1239. /* allocate memory for the internal state */
  1240. state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
  1241. if (state == NULL)
  1242. goto err;
  1243. /* setup the state */
  1244. state->i2c = i2c;
  1245. memcpy(&state->config, config, sizeof(struct af9013_config));
  1246. /* download firmware */
  1247. if (state->config.ts_mode != AF9013_TS_USB) {
  1248. ret = af9013_download_firmware(state);
  1249. if (ret)
  1250. goto err;
  1251. }
  1252. /* firmware version */
  1253. ret = af9013_rd_regs(state, 0x5103, buf, 4);
  1254. if (ret)
  1255. goto err;
  1256. dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
  1257. KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
  1258. /* set GPIOs */
  1259. for (i = 0; i < sizeof(state->config.gpio); i++) {
  1260. ret = af9013_set_gpio(state, i, state->config.gpio[i]);
  1261. if (ret)
  1262. goto err;
  1263. }
  1264. /* create dvb_frontend */
  1265. memcpy(&state->fe.ops, &af9013_ops,
  1266. sizeof(struct dvb_frontend_ops));
  1267. state->fe.demodulator_priv = state;
  1268. INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
  1269. return &state->fe;
  1270. err:
  1271. kfree(state);
  1272. return NULL;
  1273. }
  1274. EXPORT_SYMBOL(af9013_attach);
  1275. static struct dvb_frontend_ops af9013_ops = {
  1276. .delsys = { SYS_DVBT },
  1277. .info = {
  1278. .name = "Afatech AF9013",
  1279. .frequency_min = 174000000,
  1280. .frequency_max = 862000000,
  1281. .frequency_stepsize = 250000,
  1282. .frequency_tolerance = 0,
  1283. .caps = FE_CAN_FEC_1_2 |
  1284. FE_CAN_FEC_2_3 |
  1285. FE_CAN_FEC_3_4 |
  1286. FE_CAN_FEC_5_6 |
  1287. FE_CAN_FEC_7_8 |
  1288. FE_CAN_FEC_AUTO |
  1289. FE_CAN_QPSK |
  1290. FE_CAN_QAM_16 |
  1291. FE_CAN_QAM_64 |
  1292. FE_CAN_QAM_AUTO |
  1293. FE_CAN_TRANSMISSION_MODE_AUTO |
  1294. FE_CAN_GUARD_INTERVAL_AUTO |
  1295. FE_CAN_HIERARCHY_AUTO |
  1296. FE_CAN_RECOVER |
  1297. FE_CAN_MUTE_TS
  1298. },
  1299. .release = af9013_release,
  1300. .init = af9013_init,
  1301. .sleep = af9013_sleep,
  1302. .get_tune_settings = af9013_get_tune_settings,
  1303. .set_frontend = af9013_set_frontend,
  1304. .get_frontend = af9013_get_frontend,
  1305. .read_status = af9013_read_status,
  1306. .read_snr = af9013_read_snr,
  1307. .read_signal_strength = af9013_read_signal_strength,
  1308. .read_ber = af9013_read_ber,
  1309. .read_ucblocks = af9013_read_ucblocks,
  1310. .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
  1311. };
  1312. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  1313. MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
  1314. MODULE_LICENSE("GPL");
  1315. MODULE_FIRMWARE(AF9013_FIRMWARE);