md.c 223 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/fs.h>
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/string.h>
  34. #include <linux/hdreg.h>
  35. #include <linux/proc_fs.h>
  36. #include <linux/random.h>
  37. #include <linux/module.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(struct mddev *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(struct mddev *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  134. struct mddev *mddev)
  135. {
  136. struct bio *b;
  137. if (!mddev || !mddev->bio_set)
  138. return bio_alloc(gfp_mask, nr_iovecs);
  139. b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
  140. if (!b)
  141. return NULL;
  142. return b;
  143. }
  144. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  145. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  146. struct mddev *mddev)
  147. {
  148. if (!mddev || !mddev->bio_set)
  149. return bio_clone(bio, gfp_mask);
  150. return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
  151. }
  152. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  153. void md_trim_bio(struct bio *bio, int offset, int size)
  154. {
  155. /* 'bio' is a cloned bio which we need to trim to match
  156. * the given offset and size.
  157. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  158. */
  159. int i;
  160. struct bio_vec *bvec;
  161. int sofar = 0;
  162. size <<= 9;
  163. if (offset == 0 && size == bio->bi_size)
  164. return;
  165. bio->bi_sector += offset;
  166. bio->bi_size = size;
  167. offset <<= 9;
  168. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  169. while (bio->bi_idx < bio->bi_vcnt &&
  170. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  171. /* remove this whole bio_vec */
  172. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  173. bio->bi_idx++;
  174. }
  175. if (bio->bi_idx < bio->bi_vcnt) {
  176. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  177. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  178. }
  179. /* avoid any complications with bi_idx being non-zero*/
  180. if (bio->bi_idx) {
  181. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  182. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  183. bio->bi_vcnt -= bio->bi_idx;
  184. bio->bi_idx = 0;
  185. }
  186. /* Make sure vcnt and last bv are not too big */
  187. bio_for_each_segment(bvec, bio, i) {
  188. if (sofar + bvec->bv_len > size)
  189. bvec->bv_len = size - sofar;
  190. if (bvec->bv_len == 0) {
  191. bio->bi_vcnt = i;
  192. break;
  193. }
  194. sofar += bvec->bv_len;
  195. }
  196. }
  197. EXPORT_SYMBOL_GPL(md_trim_bio);
  198. /*
  199. * We have a system wide 'event count' that is incremented
  200. * on any 'interesting' event, and readers of /proc/mdstat
  201. * can use 'poll' or 'select' to find out when the event
  202. * count increases.
  203. *
  204. * Events are:
  205. * start array, stop array, error, add device, remove device,
  206. * start build, activate spare
  207. */
  208. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  209. static atomic_t md_event_count;
  210. void md_new_event(struct mddev *mddev)
  211. {
  212. atomic_inc(&md_event_count);
  213. wake_up(&md_event_waiters);
  214. }
  215. EXPORT_SYMBOL_GPL(md_new_event);
  216. /* Alternate version that can be called from interrupts
  217. * when calling sysfs_notify isn't needed.
  218. */
  219. static void md_new_event_inintr(struct mddev *mddev)
  220. {
  221. atomic_inc(&md_event_count);
  222. wake_up(&md_event_waiters);
  223. }
  224. /*
  225. * Enables to iterate over all existing md arrays
  226. * all_mddevs_lock protects this list.
  227. */
  228. static LIST_HEAD(all_mddevs);
  229. static DEFINE_SPINLOCK(all_mddevs_lock);
  230. /*
  231. * iterates through all used mddevs in the system.
  232. * We take care to grab the all_mddevs_lock whenever navigating
  233. * the list, and to always hold a refcount when unlocked.
  234. * Any code which breaks out of this loop while own
  235. * a reference to the current mddev and must mddev_put it.
  236. */
  237. #define for_each_mddev(_mddev,_tmp) \
  238. \
  239. for (({ spin_lock(&all_mddevs_lock); \
  240. _tmp = all_mddevs.next; \
  241. _mddev = NULL;}); \
  242. ({ if (_tmp != &all_mddevs) \
  243. mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
  244. spin_unlock(&all_mddevs_lock); \
  245. if (_mddev) mddev_put(_mddev); \
  246. _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
  247. _tmp != &all_mddevs;}); \
  248. ({ spin_lock(&all_mddevs_lock); \
  249. _tmp = _tmp->next;}) \
  250. )
  251. /* Rather than calling directly into the personality make_request function,
  252. * IO requests come here first so that we can check if the device is
  253. * being suspended pending a reconfiguration.
  254. * We hold a refcount over the call to ->make_request. By the time that
  255. * call has finished, the bio has been linked into some internal structure
  256. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  257. */
  258. static void md_make_request(struct request_queue *q, struct bio *bio)
  259. {
  260. const int rw = bio_data_dir(bio);
  261. struct mddev *mddev = q->queuedata;
  262. int cpu;
  263. unsigned int sectors;
  264. if (mddev == NULL || mddev->pers == NULL
  265. || !mddev->ready) {
  266. bio_io_error(bio);
  267. return;
  268. }
  269. if (mddev->ro == 1 && unlikely(rw == WRITE)) {
  270. bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
  271. return;
  272. }
  273. smp_rmb(); /* Ensure implications of 'active' are visible */
  274. rcu_read_lock();
  275. if (mddev->suspended) {
  276. DEFINE_WAIT(__wait);
  277. for (;;) {
  278. prepare_to_wait(&mddev->sb_wait, &__wait,
  279. TASK_UNINTERRUPTIBLE);
  280. if (!mddev->suspended)
  281. break;
  282. rcu_read_unlock();
  283. schedule();
  284. rcu_read_lock();
  285. }
  286. finish_wait(&mddev->sb_wait, &__wait);
  287. }
  288. atomic_inc(&mddev->active_io);
  289. rcu_read_unlock();
  290. /*
  291. * save the sectors now since our bio can
  292. * go away inside make_request
  293. */
  294. sectors = bio_sectors(bio);
  295. mddev->pers->make_request(mddev, bio);
  296. cpu = part_stat_lock();
  297. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  298. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  299. part_stat_unlock();
  300. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  301. wake_up(&mddev->sb_wait);
  302. }
  303. /* mddev_suspend makes sure no new requests are submitted
  304. * to the device, and that any requests that have been submitted
  305. * are completely handled.
  306. * Once ->stop is called and completes, the module will be completely
  307. * unused.
  308. */
  309. void mddev_suspend(struct mddev *mddev)
  310. {
  311. BUG_ON(mddev->suspended);
  312. mddev->suspended = 1;
  313. synchronize_rcu();
  314. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  315. mddev->pers->quiesce(mddev, 1);
  316. del_timer_sync(&mddev->safemode_timer);
  317. }
  318. EXPORT_SYMBOL_GPL(mddev_suspend);
  319. void mddev_resume(struct mddev *mddev)
  320. {
  321. mddev->suspended = 0;
  322. wake_up(&mddev->sb_wait);
  323. mddev->pers->quiesce(mddev, 0);
  324. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  325. md_wakeup_thread(mddev->thread);
  326. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  327. }
  328. EXPORT_SYMBOL_GPL(mddev_resume);
  329. int mddev_congested(struct mddev *mddev, int bits)
  330. {
  331. return mddev->suspended;
  332. }
  333. EXPORT_SYMBOL(mddev_congested);
  334. /*
  335. * Generic flush handling for md
  336. */
  337. static void md_end_flush(struct bio *bio, int err)
  338. {
  339. struct md_rdev *rdev = bio->bi_private;
  340. struct mddev *mddev = rdev->mddev;
  341. rdev_dec_pending(rdev, mddev);
  342. if (atomic_dec_and_test(&mddev->flush_pending)) {
  343. /* The pre-request flush has finished */
  344. queue_work(md_wq, &mddev->flush_work);
  345. }
  346. bio_put(bio);
  347. }
  348. static void md_submit_flush_data(struct work_struct *ws);
  349. static void submit_flushes(struct work_struct *ws)
  350. {
  351. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  352. struct md_rdev *rdev;
  353. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  354. atomic_set(&mddev->flush_pending, 1);
  355. rcu_read_lock();
  356. rdev_for_each_rcu(rdev, mddev)
  357. if (rdev->raid_disk >= 0 &&
  358. !test_bit(Faulty, &rdev->flags)) {
  359. /* Take two references, one is dropped
  360. * when request finishes, one after
  361. * we reclaim rcu_read_lock
  362. */
  363. struct bio *bi;
  364. atomic_inc(&rdev->nr_pending);
  365. atomic_inc(&rdev->nr_pending);
  366. rcu_read_unlock();
  367. bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
  368. bi->bi_end_io = md_end_flush;
  369. bi->bi_private = rdev;
  370. bi->bi_bdev = rdev->bdev;
  371. atomic_inc(&mddev->flush_pending);
  372. submit_bio(WRITE_FLUSH, bi);
  373. rcu_read_lock();
  374. rdev_dec_pending(rdev, mddev);
  375. }
  376. rcu_read_unlock();
  377. if (atomic_dec_and_test(&mddev->flush_pending))
  378. queue_work(md_wq, &mddev->flush_work);
  379. }
  380. static void md_submit_flush_data(struct work_struct *ws)
  381. {
  382. struct mddev *mddev = container_of(ws, struct mddev, flush_work);
  383. struct bio *bio = mddev->flush_bio;
  384. if (bio->bi_size == 0)
  385. /* an empty barrier - all done */
  386. bio_endio(bio, 0);
  387. else {
  388. bio->bi_rw &= ~REQ_FLUSH;
  389. mddev->pers->make_request(mddev, bio);
  390. }
  391. mddev->flush_bio = NULL;
  392. wake_up(&mddev->sb_wait);
  393. }
  394. void md_flush_request(struct mddev *mddev, struct bio *bio)
  395. {
  396. spin_lock_irq(&mddev->write_lock);
  397. wait_event_lock_irq(mddev->sb_wait,
  398. !mddev->flush_bio,
  399. mddev->write_lock);
  400. mddev->flush_bio = bio;
  401. spin_unlock_irq(&mddev->write_lock);
  402. INIT_WORK(&mddev->flush_work, submit_flushes);
  403. queue_work(md_wq, &mddev->flush_work);
  404. }
  405. EXPORT_SYMBOL(md_flush_request);
  406. void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
  407. {
  408. struct mddev *mddev = cb->data;
  409. md_wakeup_thread(mddev->thread);
  410. kfree(cb);
  411. }
  412. EXPORT_SYMBOL(md_unplug);
  413. static inline struct mddev *mddev_get(struct mddev *mddev)
  414. {
  415. atomic_inc(&mddev->active);
  416. return mddev;
  417. }
  418. static void mddev_delayed_delete(struct work_struct *ws);
  419. static void mddev_put(struct mddev *mddev)
  420. {
  421. struct bio_set *bs = NULL;
  422. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  423. return;
  424. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  425. mddev->ctime == 0 && !mddev->hold_active) {
  426. /* Array is not configured at all, and not held active,
  427. * so destroy it */
  428. list_del_init(&mddev->all_mddevs);
  429. bs = mddev->bio_set;
  430. mddev->bio_set = NULL;
  431. if (mddev->gendisk) {
  432. /* We did a probe so need to clean up. Call
  433. * queue_work inside the spinlock so that
  434. * flush_workqueue() after mddev_find will
  435. * succeed in waiting for the work to be done.
  436. */
  437. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  438. queue_work(md_misc_wq, &mddev->del_work);
  439. } else
  440. kfree(mddev);
  441. }
  442. spin_unlock(&all_mddevs_lock);
  443. if (bs)
  444. bioset_free(bs);
  445. }
  446. void mddev_init(struct mddev *mddev)
  447. {
  448. mutex_init(&mddev->open_mutex);
  449. mutex_init(&mddev->reconfig_mutex);
  450. mutex_init(&mddev->bitmap_info.mutex);
  451. INIT_LIST_HEAD(&mddev->disks);
  452. INIT_LIST_HEAD(&mddev->all_mddevs);
  453. init_timer(&mddev->safemode_timer);
  454. atomic_set(&mddev->active, 1);
  455. atomic_set(&mddev->openers, 0);
  456. atomic_set(&mddev->active_io, 0);
  457. spin_lock_init(&mddev->write_lock);
  458. atomic_set(&mddev->flush_pending, 0);
  459. init_waitqueue_head(&mddev->sb_wait);
  460. init_waitqueue_head(&mddev->recovery_wait);
  461. mddev->reshape_position = MaxSector;
  462. mddev->reshape_backwards = 0;
  463. mddev->resync_min = 0;
  464. mddev->resync_max = MaxSector;
  465. mddev->level = LEVEL_NONE;
  466. }
  467. EXPORT_SYMBOL_GPL(mddev_init);
  468. static struct mddev * mddev_find(dev_t unit)
  469. {
  470. struct mddev *mddev, *new = NULL;
  471. if (unit && MAJOR(unit) != MD_MAJOR)
  472. unit &= ~((1<<MdpMinorShift)-1);
  473. retry:
  474. spin_lock(&all_mddevs_lock);
  475. if (unit) {
  476. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  477. if (mddev->unit == unit) {
  478. mddev_get(mddev);
  479. spin_unlock(&all_mddevs_lock);
  480. kfree(new);
  481. return mddev;
  482. }
  483. if (new) {
  484. list_add(&new->all_mddevs, &all_mddevs);
  485. spin_unlock(&all_mddevs_lock);
  486. new->hold_active = UNTIL_IOCTL;
  487. return new;
  488. }
  489. } else if (new) {
  490. /* find an unused unit number */
  491. static int next_minor = 512;
  492. int start = next_minor;
  493. int is_free = 0;
  494. int dev = 0;
  495. while (!is_free) {
  496. dev = MKDEV(MD_MAJOR, next_minor);
  497. next_minor++;
  498. if (next_minor > MINORMASK)
  499. next_minor = 0;
  500. if (next_minor == start) {
  501. /* Oh dear, all in use. */
  502. spin_unlock(&all_mddevs_lock);
  503. kfree(new);
  504. return NULL;
  505. }
  506. is_free = 1;
  507. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  508. if (mddev->unit == dev) {
  509. is_free = 0;
  510. break;
  511. }
  512. }
  513. new->unit = dev;
  514. new->md_minor = MINOR(dev);
  515. new->hold_active = UNTIL_STOP;
  516. list_add(&new->all_mddevs, &all_mddevs);
  517. spin_unlock(&all_mddevs_lock);
  518. return new;
  519. }
  520. spin_unlock(&all_mddevs_lock);
  521. new = kzalloc(sizeof(*new), GFP_KERNEL);
  522. if (!new)
  523. return NULL;
  524. new->unit = unit;
  525. if (MAJOR(unit) == MD_MAJOR)
  526. new->md_minor = MINOR(unit);
  527. else
  528. new->md_minor = MINOR(unit) >> MdpMinorShift;
  529. mddev_init(new);
  530. goto retry;
  531. }
  532. static inline int mddev_lock(struct mddev * mddev)
  533. {
  534. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  535. }
  536. static inline int mddev_is_locked(struct mddev *mddev)
  537. {
  538. return mutex_is_locked(&mddev->reconfig_mutex);
  539. }
  540. static inline int mddev_trylock(struct mddev * mddev)
  541. {
  542. return mutex_trylock(&mddev->reconfig_mutex);
  543. }
  544. static struct attribute_group md_redundancy_group;
  545. static void mddev_unlock(struct mddev * mddev)
  546. {
  547. if (mddev->to_remove) {
  548. /* These cannot be removed under reconfig_mutex as
  549. * an access to the files will try to take reconfig_mutex
  550. * while holding the file unremovable, which leads to
  551. * a deadlock.
  552. * So hold set sysfs_active while the remove in happeing,
  553. * and anything else which might set ->to_remove or my
  554. * otherwise change the sysfs namespace will fail with
  555. * -EBUSY if sysfs_active is still set.
  556. * We set sysfs_active under reconfig_mutex and elsewhere
  557. * test it under the same mutex to ensure its correct value
  558. * is seen.
  559. */
  560. struct attribute_group *to_remove = mddev->to_remove;
  561. mddev->to_remove = NULL;
  562. mddev->sysfs_active = 1;
  563. mutex_unlock(&mddev->reconfig_mutex);
  564. if (mddev->kobj.sd) {
  565. if (to_remove != &md_redundancy_group)
  566. sysfs_remove_group(&mddev->kobj, to_remove);
  567. if (mddev->pers == NULL ||
  568. mddev->pers->sync_request == NULL) {
  569. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  570. if (mddev->sysfs_action)
  571. sysfs_put(mddev->sysfs_action);
  572. mddev->sysfs_action = NULL;
  573. }
  574. }
  575. mddev->sysfs_active = 0;
  576. } else
  577. mutex_unlock(&mddev->reconfig_mutex);
  578. /* As we've dropped the mutex we need a spinlock to
  579. * make sure the thread doesn't disappear
  580. */
  581. spin_lock(&pers_lock);
  582. md_wakeup_thread(mddev->thread);
  583. spin_unlock(&pers_lock);
  584. }
  585. static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
  586. {
  587. struct md_rdev *rdev;
  588. rdev_for_each(rdev, mddev)
  589. if (rdev->desc_nr == nr)
  590. return rdev;
  591. return NULL;
  592. }
  593. static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
  594. {
  595. struct md_rdev *rdev;
  596. rdev_for_each_rcu(rdev, mddev)
  597. if (rdev->desc_nr == nr)
  598. return rdev;
  599. return NULL;
  600. }
  601. static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
  602. {
  603. struct md_rdev *rdev;
  604. rdev_for_each(rdev, mddev)
  605. if (rdev->bdev->bd_dev == dev)
  606. return rdev;
  607. return NULL;
  608. }
  609. static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
  610. {
  611. struct md_rdev *rdev;
  612. rdev_for_each_rcu(rdev, mddev)
  613. if (rdev->bdev->bd_dev == dev)
  614. return rdev;
  615. return NULL;
  616. }
  617. static struct md_personality *find_pers(int level, char *clevel)
  618. {
  619. struct md_personality *pers;
  620. list_for_each_entry(pers, &pers_list, list) {
  621. if (level != LEVEL_NONE && pers->level == level)
  622. return pers;
  623. if (strcmp(pers->name, clevel)==0)
  624. return pers;
  625. }
  626. return NULL;
  627. }
  628. /* return the offset of the super block in 512byte sectors */
  629. static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
  630. {
  631. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  632. return MD_NEW_SIZE_SECTORS(num_sectors);
  633. }
  634. static int alloc_disk_sb(struct md_rdev * rdev)
  635. {
  636. if (rdev->sb_page)
  637. MD_BUG();
  638. rdev->sb_page = alloc_page(GFP_KERNEL);
  639. if (!rdev->sb_page) {
  640. printk(KERN_ALERT "md: out of memory.\n");
  641. return -ENOMEM;
  642. }
  643. return 0;
  644. }
  645. void md_rdev_clear(struct md_rdev *rdev)
  646. {
  647. if (rdev->sb_page) {
  648. put_page(rdev->sb_page);
  649. rdev->sb_loaded = 0;
  650. rdev->sb_page = NULL;
  651. rdev->sb_start = 0;
  652. rdev->sectors = 0;
  653. }
  654. if (rdev->bb_page) {
  655. put_page(rdev->bb_page);
  656. rdev->bb_page = NULL;
  657. }
  658. kfree(rdev->badblocks.page);
  659. rdev->badblocks.page = NULL;
  660. }
  661. EXPORT_SYMBOL_GPL(md_rdev_clear);
  662. static void super_written(struct bio *bio, int error)
  663. {
  664. struct md_rdev *rdev = bio->bi_private;
  665. struct mddev *mddev = rdev->mddev;
  666. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  667. printk("md: super_written gets error=%d, uptodate=%d\n",
  668. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  669. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  670. md_error(mddev, rdev);
  671. }
  672. if (atomic_dec_and_test(&mddev->pending_writes))
  673. wake_up(&mddev->sb_wait);
  674. bio_put(bio);
  675. }
  676. void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
  677. sector_t sector, int size, struct page *page)
  678. {
  679. /* write first size bytes of page to sector of rdev
  680. * Increment mddev->pending_writes before returning
  681. * and decrement it on completion, waking up sb_wait
  682. * if zero is reached.
  683. * If an error occurred, call md_error
  684. */
  685. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  686. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  687. bio->bi_sector = sector;
  688. bio_add_page(bio, page, size, 0);
  689. bio->bi_private = rdev;
  690. bio->bi_end_io = super_written;
  691. atomic_inc(&mddev->pending_writes);
  692. submit_bio(WRITE_FLUSH_FUA, bio);
  693. }
  694. void md_super_wait(struct mddev *mddev)
  695. {
  696. /* wait for all superblock writes that were scheduled to complete */
  697. DEFINE_WAIT(wq);
  698. for(;;) {
  699. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  700. if (atomic_read(&mddev->pending_writes)==0)
  701. break;
  702. schedule();
  703. }
  704. finish_wait(&mddev->sb_wait, &wq);
  705. }
  706. static void bi_complete(struct bio *bio, int error)
  707. {
  708. complete((struct completion*)bio->bi_private);
  709. }
  710. int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
  711. struct page *page, int rw, bool metadata_op)
  712. {
  713. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  714. struct completion event;
  715. int ret;
  716. rw |= REQ_SYNC;
  717. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  718. rdev->meta_bdev : rdev->bdev;
  719. if (metadata_op)
  720. bio->bi_sector = sector + rdev->sb_start;
  721. else if (rdev->mddev->reshape_position != MaxSector &&
  722. (rdev->mddev->reshape_backwards ==
  723. (sector >= rdev->mddev->reshape_position)))
  724. bio->bi_sector = sector + rdev->new_data_offset;
  725. else
  726. bio->bi_sector = sector + rdev->data_offset;
  727. bio_add_page(bio, page, size, 0);
  728. init_completion(&event);
  729. bio->bi_private = &event;
  730. bio->bi_end_io = bi_complete;
  731. submit_bio(rw, bio);
  732. wait_for_completion(&event);
  733. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  734. bio_put(bio);
  735. return ret;
  736. }
  737. EXPORT_SYMBOL_GPL(sync_page_io);
  738. static int read_disk_sb(struct md_rdev * rdev, int size)
  739. {
  740. char b[BDEVNAME_SIZE];
  741. if (!rdev->sb_page) {
  742. MD_BUG();
  743. return -EINVAL;
  744. }
  745. if (rdev->sb_loaded)
  746. return 0;
  747. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  748. goto fail;
  749. rdev->sb_loaded = 1;
  750. return 0;
  751. fail:
  752. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  753. bdevname(rdev->bdev,b));
  754. return -EINVAL;
  755. }
  756. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  757. {
  758. return sb1->set_uuid0 == sb2->set_uuid0 &&
  759. sb1->set_uuid1 == sb2->set_uuid1 &&
  760. sb1->set_uuid2 == sb2->set_uuid2 &&
  761. sb1->set_uuid3 == sb2->set_uuid3;
  762. }
  763. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  764. {
  765. int ret;
  766. mdp_super_t *tmp1, *tmp2;
  767. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  768. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  769. if (!tmp1 || !tmp2) {
  770. ret = 0;
  771. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  772. goto abort;
  773. }
  774. *tmp1 = *sb1;
  775. *tmp2 = *sb2;
  776. /*
  777. * nr_disks is not constant
  778. */
  779. tmp1->nr_disks = 0;
  780. tmp2->nr_disks = 0;
  781. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  782. abort:
  783. kfree(tmp1);
  784. kfree(tmp2);
  785. return ret;
  786. }
  787. static u32 md_csum_fold(u32 csum)
  788. {
  789. csum = (csum & 0xffff) + (csum >> 16);
  790. return (csum & 0xffff) + (csum >> 16);
  791. }
  792. static unsigned int calc_sb_csum(mdp_super_t * sb)
  793. {
  794. u64 newcsum = 0;
  795. u32 *sb32 = (u32*)sb;
  796. int i;
  797. unsigned int disk_csum, csum;
  798. disk_csum = sb->sb_csum;
  799. sb->sb_csum = 0;
  800. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  801. newcsum += sb32[i];
  802. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  803. #ifdef CONFIG_ALPHA
  804. /* This used to use csum_partial, which was wrong for several
  805. * reasons including that different results are returned on
  806. * different architectures. It isn't critical that we get exactly
  807. * the same return value as before (we always csum_fold before
  808. * testing, and that removes any differences). However as we
  809. * know that csum_partial always returned a 16bit value on
  810. * alphas, do a fold to maximise conformity to previous behaviour.
  811. */
  812. sb->sb_csum = md_csum_fold(disk_csum);
  813. #else
  814. sb->sb_csum = disk_csum;
  815. #endif
  816. return csum;
  817. }
  818. /*
  819. * Handle superblock details.
  820. * We want to be able to handle multiple superblock formats
  821. * so we have a common interface to them all, and an array of
  822. * different handlers.
  823. * We rely on user-space to write the initial superblock, and support
  824. * reading and updating of superblocks.
  825. * Interface methods are:
  826. * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
  827. * loads and validates a superblock on dev.
  828. * if refdev != NULL, compare superblocks on both devices
  829. * Return:
  830. * 0 - dev has a superblock that is compatible with refdev
  831. * 1 - dev has a superblock that is compatible and newer than refdev
  832. * so dev should be used as the refdev in future
  833. * -EINVAL superblock incompatible or invalid
  834. * -othererror e.g. -EIO
  835. *
  836. * int validate_super(struct mddev *mddev, struct md_rdev *dev)
  837. * Verify that dev is acceptable into mddev.
  838. * The first time, mddev->raid_disks will be 0, and data from
  839. * dev should be merged in. Subsequent calls check that dev
  840. * is new enough. Return 0 or -EINVAL
  841. *
  842. * void sync_super(struct mddev *mddev, struct md_rdev *dev)
  843. * Update the superblock for rdev with data in mddev
  844. * This does not write to disc.
  845. *
  846. */
  847. struct super_type {
  848. char *name;
  849. struct module *owner;
  850. int (*load_super)(struct md_rdev *rdev,
  851. struct md_rdev *refdev,
  852. int minor_version);
  853. int (*validate_super)(struct mddev *mddev,
  854. struct md_rdev *rdev);
  855. void (*sync_super)(struct mddev *mddev,
  856. struct md_rdev *rdev);
  857. unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
  858. sector_t num_sectors);
  859. int (*allow_new_offset)(struct md_rdev *rdev,
  860. unsigned long long new_offset);
  861. };
  862. /*
  863. * Check that the given mddev has no bitmap.
  864. *
  865. * This function is called from the run method of all personalities that do not
  866. * support bitmaps. It prints an error message and returns non-zero if mddev
  867. * has a bitmap. Otherwise, it returns 0.
  868. *
  869. */
  870. int md_check_no_bitmap(struct mddev *mddev)
  871. {
  872. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  873. return 0;
  874. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  875. mdname(mddev), mddev->pers->name);
  876. return 1;
  877. }
  878. EXPORT_SYMBOL(md_check_no_bitmap);
  879. /*
  880. * load_super for 0.90.0
  881. */
  882. static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  883. {
  884. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  885. mdp_super_t *sb;
  886. int ret;
  887. /*
  888. * Calculate the position of the superblock (512byte sectors),
  889. * it's at the end of the disk.
  890. *
  891. * It also happens to be a multiple of 4Kb.
  892. */
  893. rdev->sb_start = calc_dev_sboffset(rdev);
  894. ret = read_disk_sb(rdev, MD_SB_BYTES);
  895. if (ret) return ret;
  896. ret = -EINVAL;
  897. bdevname(rdev->bdev, b);
  898. sb = page_address(rdev->sb_page);
  899. if (sb->md_magic != MD_SB_MAGIC) {
  900. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  901. b);
  902. goto abort;
  903. }
  904. if (sb->major_version != 0 ||
  905. sb->minor_version < 90 ||
  906. sb->minor_version > 91) {
  907. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  908. sb->major_version, sb->minor_version,
  909. b);
  910. goto abort;
  911. }
  912. if (sb->raid_disks <= 0)
  913. goto abort;
  914. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  915. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  916. b);
  917. goto abort;
  918. }
  919. rdev->preferred_minor = sb->md_minor;
  920. rdev->data_offset = 0;
  921. rdev->new_data_offset = 0;
  922. rdev->sb_size = MD_SB_BYTES;
  923. rdev->badblocks.shift = -1;
  924. if (sb->level == LEVEL_MULTIPATH)
  925. rdev->desc_nr = -1;
  926. else
  927. rdev->desc_nr = sb->this_disk.number;
  928. if (!refdev) {
  929. ret = 1;
  930. } else {
  931. __u64 ev1, ev2;
  932. mdp_super_t *refsb = page_address(refdev->sb_page);
  933. if (!uuid_equal(refsb, sb)) {
  934. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  935. b, bdevname(refdev->bdev,b2));
  936. goto abort;
  937. }
  938. if (!sb_equal(refsb, sb)) {
  939. printk(KERN_WARNING "md: %s has same UUID"
  940. " but different superblock to %s\n",
  941. b, bdevname(refdev->bdev, b2));
  942. goto abort;
  943. }
  944. ev1 = md_event(sb);
  945. ev2 = md_event(refsb);
  946. if (ev1 > ev2)
  947. ret = 1;
  948. else
  949. ret = 0;
  950. }
  951. rdev->sectors = rdev->sb_start;
  952. /* Limit to 4TB as metadata cannot record more than that.
  953. * (not needed for Linear and RAID0 as metadata doesn't
  954. * record this size)
  955. */
  956. if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
  957. rdev->sectors = (2ULL << 32) - 2;
  958. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  959. /* "this cannot possibly happen" ... */
  960. ret = -EINVAL;
  961. abort:
  962. return ret;
  963. }
  964. /*
  965. * validate_super for 0.90.0
  966. */
  967. static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
  968. {
  969. mdp_disk_t *desc;
  970. mdp_super_t *sb = page_address(rdev->sb_page);
  971. __u64 ev1 = md_event(sb);
  972. rdev->raid_disk = -1;
  973. clear_bit(Faulty, &rdev->flags);
  974. clear_bit(In_sync, &rdev->flags);
  975. clear_bit(WriteMostly, &rdev->flags);
  976. if (mddev->raid_disks == 0) {
  977. mddev->major_version = 0;
  978. mddev->minor_version = sb->minor_version;
  979. mddev->patch_version = sb->patch_version;
  980. mddev->external = 0;
  981. mddev->chunk_sectors = sb->chunk_size >> 9;
  982. mddev->ctime = sb->ctime;
  983. mddev->utime = sb->utime;
  984. mddev->level = sb->level;
  985. mddev->clevel[0] = 0;
  986. mddev->layout = sb->layout;
  987. mddev->raid_disks = sb->raid_disks;
  988. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  989. mddev->events = ev1;
  990. mddev->bitmap_info.offset = 0;
  991. mddev->bitmap_info.space = 0;
  992. /* bitmap can use 60 K after the 4K superblocks */
  993. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  994. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  995. mddev->reshape_backwards = 0;
  996. if (mddev->minor_version >= 91) {
  997. mddev->reshape_position = sb->reshape_position;
  998. mddev->delta_disks = sb->delta_disks;
  999. mddev->new_level = sb->new_level;
  1000. mddev->new_layout = sb->new_layout;
  1001. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1002. if (mddev->delta_disks < 0)
  1003. mddev->reshape_backwards = 1;
  1004. } else {
  1005. mddev->reshape_position = MaxSector;
  1006. mddev->delta_disks = 0;
  1007. mddev->new_level = mddev->level;
  1008. mddev->new_layout = mddev->layout;
  1009. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1010. }
  1011. if (sb->state & (1<<MD_SB_CLEAN))
  1012. mddev->recovery_cp = MaxSector;
  1013. else {
  1014. if (sb->events_hi == sb->cp_events_hi &&
  1015. sb->events_lo == sb->cp_events_lo) {
  1016. mddev->recovery_cp = sb->recovery_cp;
  1017. } else
  1018. mddev->recovery_cp = 0;
  1019. }
  1020. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1021. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1022. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1023. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1024. mddev->max_disks = MD_SB_DISKS;
  1025. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1026. mddev->bitmap_info.file == NULL) {
  1027. mddev->bitmap_info.offset =
  1028. mddev->bitmap_info.default_offset;
  1029. mddev->bitmap_info.space =
  1030. mddev->bitmap_info.space;
  1031. }
  1032. } else if (mddev->pers == NULL) {
  1033. /* Insist on good event counter while assembling, except
  1034. * for spares (which don't need an event count) */
  1035. ++ev1;
  1036. if (sb->disks[rdev->desc_nr].state & (
  1037. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1038. if (ev1 < mddev->events)
  1039. return -EINVAL;
  1040. } else if (mddev->bitmap) {
  1041. /* if adding to array with a bitmap, then we can accept an
  1042. * older device ... but not too old.
  1043. */
  1044. if (ev1 < mddev->bitmap->events_cleared)
  1045. return 0;
  1046. } else {
  1047. if (ev1 < mddev->events)
  1048. /* just a hot-add of a new device, leave raid_disk at -1 */
  1049. return 0;
  1050. }
  1051. if (mddev->level != LEVEL_MULTIPATH) {
  1052. desc = sb->disks + rdev->desc_nr;
  1053. if (desc->state & (1<<MD_DISK_FAULTY))
  1054. set_bit(Faulty, &rdev->flags);
  1055. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1056. desc->raid_disk < mddev->raid_disks */) {
  1057. set_bit(In_sync, &rdev->flags);
  1058. rdev->raid_disk = desc->raid_disk;
  1059. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1060. /* active but not in sync implies recovery up to
  1061. * reshape position. We don't know exactly where
  1062. * that is, so set to zero for now */
  1063. if (mddev->minor_version >= 91) {
  1064. rdev->recovery_offset = 0;
  1065. rdev->raid_disk = desc->raid_disk;
  1066. }
  1067. }
  1068. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1069. set_bit(WriteMostly, &rdev->flags);
  1070. } else /* MULTIPATH are always insync */
  1071. set_bit(In_sync, &rdev->flags);
  1072. return 0;
  1073. }
  1074. /*
  1075. * sync_super for 0.90.0
  1076. */
  1077. static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
  1078. {
  1079. mdp_super_t *sb;
  1080. struct md_rdev *rdev2;
  1081. int next_spare = mddev->raid_disks;
  1082. /* make rdev->sb match mddev data..
  1083. *
  1084. * 1/ zero out disks
  1085. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1086. * 3/ any empty disks < next_spare become removed
  1087. *
  1088. * disks[0] gets initialised to REMOVED because
  1089. * we cannot be sure from other fields if it has
  1090. * been initialised or not.
  1091. */
  1092. int i;
  1093. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1094. rdev->sb_size = MD_SB_BYTES;
  1095. sb = page_address(rdev->sb_page);
  1096. memset(sb, 0, sizeof(*sb));
  1097. sb->md_magic = MD_SB_MAGIC;
  1098. sb->major_version = mddev->major_version;
  1099. sb->patch_version = mddev->patch_version;
  1100. sb->gvalid_words = 0; /* ignored */
  1101. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1102. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1103. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1104. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1105. sb->ctime = mddev->ctime;
  1106. sb->level = mddev->level;
  1107. sb->size = mddev->dev_sectors / 2;
  1108. sb->raid_disks = mddev->raid_disks;
  1109. sb->md_minor = mddev->md_minor;
  1110. sb->not_persistent = 0;
  1111. sb->utime = mddev->utime;
  1112. sb->state = 0;
  1113. sb->events_hi = (mddev->events>>32);
  1114. sb->events_lo = (u32)mddev->events;
  1115. if (mddev->reshape_position == MaxSector)
  1116. sb->minor_version = 90;
  1117. else {
  1118. sb->minor_version = 91;
  1119. sb->reshape_position = mddev->reshape_position;
  1120. sb->new_level = mddev->new_level;
  1121. sb->delta_disks = mddev->delta_disks;
  1122. sb->new_layout = mddev->new_layout;
  1123. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1124. }
  1125. mddev->minor_version = sb->minor_version;
  1126. if (mddev->in_sync)
  1127. {
  1128. sb->recovery_cp = mddev->recovery_cp;
  1129. sb->cp_events_hi = (mddev->events>>32);
  1130. sb->cp_events_lo = (u32)mddev->events;
  1131. if (mddev->recovery_cp == MaxSector)
  1132. sb->state = (1<< MD_SB_CLEAN);
  1133. } else
  1134. sb->recovery_cp = 0;
  1135. sb->layout = mddev->layout;
  1136. sb->chunk_size = mddev->chunk_sectors << 9;
  1137. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1138. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1139. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1140. rdev_for_each(rdev2, mddev) {
  1141. mdp_disk_t *d;
  1142. int desc_nr;
  1143. int is_active = test_bit(In_sync, &rdev2->flags);
  1144. if (rdev2->raid_disk >= 0 &&
  1145. sb->minor_version >= 91)
  1146. /* we have nowhere to store the recovery_offset,
  1147. * but if it is not below the reshape_position,
  1148. * we can piggy-back on that.
  1149. */
  1150. is_active = 1;
  1151. if (rdev2->raid_disk < 0 ||
  1152. test_bit(Faulty, &rdev2->flags))
  1153. is_active = 0;
  1154. if (is_active)
  1155. desc_nr = rdev2->raid_disk;
  1156. else
  1157. desc_nr = next_spare++;
  1158. rdev2->desc_nr = desc_nr;
  1159. d = &sb->disks[rdev2->desc_nr];
  1160. nr_disks++;
  1161. d->number = rdev2->desc_nr;
  1162. d->major = MAJOR(rdev2->bdev->bd_dev);
  1163. d->minor = MINOR(rdev2->bdev->bd_dev);
  1164. if (is_active)
  1165. d->raid_disk = rdev2->raid_disk;
  1166. else
  1167. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1168. if (test_bit(Faulty, &rdev2->flags))
  1169. d->state = (1<<MD_DISK_FAULTY);
  1170. else if (is_active) {
  1171. d->state = (1<<MD_DISK_ACTIVE);
  1172. if (test_bit(In_sync, &rdev2->flags))
  1173. d->state |= (1<<MD_DISK_SYNC);
  1174. active++;
  1175. working++;
  1176. } else {
  1177. d->state = 0;
  1178. spare++;
  1179. working++;
  1180. }
  1181. if (test_bit(WriteMostly, &rdev2->flags))
  1182. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1183. }
  1184. /* now set the "removed" and "faulty" bits on any missing devices */
  1185. for (i=0 ; i < mddev->raid_disks ; i++) {
  1186. mdp_disk_t *d = &sb->disks[i];
  1187. if (d->state == 0 && d->number == 0) {
  1188. d->number = i;
  1189. d->raid_disk = i;
  1190. d->state = (1<<MD_DISK_REMOVED);
  1191. d->state |= (1<<MD_DISK_FAULTY);
  1192. failed++;
  1193. }
  1194. }
  1195. sb->nr_disks = nr_disks;
  1196. sb->active_disks = active;
  1197. sb->working_disks = working;
  1198. sb->failed_disks = failed;
  1199. sb->spare_disks = spare;
  1200. sb->this_disk = sb->disks[rdev->desc_nr];
  1201. sb->sb_csum = calc_sb_csum(sb);
  1202. }
  1203. /*
  1204. * rdev_size_change for 0.90.0
  1205. */
  1206. static unsigned long long
  1207. super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1208. {
  1209. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1210. return 0; /* component must fit device */
  1211. if (rdev->mddev->bitmap_info.offset)
  1212. return 0; /* can't move bitmap */
  1213. rdev->sb_start = calc_dev_sboffset(rdev);
  1214. if (!num_sectors || num_sectors > rdev->sb_start)
  1215. num_sectors = rdev->sb_start;
  1216. /* Limit to 4TB as metadata cannot record more than that.
  1217. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1218. */
  1219. if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
  1220. num_sectors = (2ULL << 32) - 2;
  1221. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1222. rdev->sb_page);
  1223. md_super_wait(rdev->mddev);
  1224. return num_sectors;
  1225. }
  1226. static int
  1227. super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
  1228. {
  1229. /* non-zero offset changes not possible with v0.90 */
  1230. return new_offset == 0;
  1231. }
  1232. /*
  1233. * version 1 superblock
  1234. */
  1235. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1236. {
  1237. __le32 disk_csum;
  1238. u32 csum;
  1239. unsigned long long newcsum;
  1240. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1241. __le32 *isuper = (__le32*)sb;
  1242. disk_csum = sb->sb_csum;
  1243. sb->sb_csum = 0;
  1244. newcsum = 0;
  1245. for (; size >= 4; size -= 4)
  1246. newcsum += le32_to_cpu(*isuper++);
  1247. if (size == 2)
  1248. newcsum += le16_to_cpu(*(__le16*) isuper);
  1249. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1250. sb->sb_csum = disk_csum;
  1251. return cpu_to_le32(csum);
  1252. }
  1253. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1254. int acknowledged);
  1255. static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
  1256. {
  1257. struct mdp_superblock_1 *sb;
  1258. int ret;
  1259. sector_t sb_start;
  1260. sector_t sectors;
  1261. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1262. int bmask;
  1263. /*
  1264. * Calculate the position of the superblock in 512byte sectors.
  1265. * It is always aligned to a 4K boundary and
  1266. * depeding on minor_version, it can be:
  1267. * 0: At least 8K, but less than 12K, from end of device
  1268. * 1: At start of device
  1269. * 2: 4K from start of device.
  1270. */
  1271. switch(minor_version) {
  1272. case 0:
  1273. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1274. sb_start -= 8*2;
  1275. sb_start &= ~(sector_t)(4*2-1);
  1276. break;
  1277. case 1:
  1278. sb_start = 0;
  1279. break;
  1280. case 2:
  1281. sb_start = 8;
  1282. break;
  1283. default:
  1284. return -EINVAL;
  1285. }
  1286. rdev->sb_start = sb_start;
  1287. /* superblock is rarely larger than 1K, but it can be larger,
  1288. * and it is safe to read 4k, so we do that
  1289. */
  1290. ret = read_disk_sb(rdev, 4096);
  1291. if (ret) return ret;
  1292. sb = page_address(rdev->sb_page);
  1293. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1294. sb->major_version != cpu_to_le32(1) ||
  1295. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1296. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1297. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1298. return -EINVAL;
  1299. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1300. printk("md: invalid superblock checksum on %s\n",
  1301. bdevname(rdev->bdev,b));
  1302. return -EINVAL;
  1303. }
  1304. if (le64_to_cpu(sb->data_size) < 10) {
  1305. printk("md: data_size too small on %s\n",
  1306. bdevname(rdev->bdev,b));
  1307. return -EINVAL;
  1308. }
  1309. if (sb->pad0 ||
  1310. sb->pad3[0] ||
  1311. memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
  1312. /* Some padding is non-zero, might be a new feature */
  1313. return -EINVAL;
  1314. rdev->preferred_minor = 0xffff;
  1315. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1316. rdev->new_data_offset = rdev->data_offset;
  1317. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
  1318. (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
  1319. rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
  1320. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1321. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1322. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1323. if (rdev->sb_size & bmask)
  1324. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1325. if (minor_version
  1326. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1327. return -EINVAL;
  1328. if (minor_version
  1329. && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
  1330. return -EINVAL;
  1331. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1332. rdev->desc_nr = -1;
  1333. else
  1334. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1335. if (!rdev->bb_page) {
  1336. rdev->bb_page = alloc_page(GFP_KERNEL);
  1337. if (!rdev->bb_page)
  1338. return -ENOMEM;
  1339. }
  1340. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1341. rdev->badblocks.count == 0) {
  1342. /* need to load the bad block list.
  1343. * Currently we limit it to one page.
  1344. */
  1345. s32 offset;
  1346. sector_t bb_sector;
  1347. u64 *bbp;
  1348. int i;
  1349. int sectors = le16_to_cpu(sb->bblog_size);
  1350. if (sectors > (PAGE_SIZE / 512))
  1351. return -EINVAL;
  1352. offset = le32_to_cpu(sb->bblog_offset);
  1353. if (offset == 0)
  1354. return -EINVAL;
  1355. bb_sector = (long long)offset;
  1356. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1357. rdev->bb_page, READ, true))
  1358. return -EIO;
  1359. bbp = (u64 *)page_address(rdev->bb_page);
  1360. rdev->badblocks.shift = sb->bblog_shift;
  1361. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1362. u64 bb = le64_to_cpu(*bbp);
  1363. int count = bb & (0x3ff);
  1364. u64 sector = bb >> 10;
  1365. sector <<= sb->bblog_shift;
  1366. count <<= sb->bblog_shift;
  1367. if (bb + 1 == 0)
  1368. break;
  1369. if (md_set_badblocks(&rdev->badblocks,
  1370. sector, count, 1) == 0)
  1371. return -EINVAL;
  1372. }
  1373. } else if (sb->bblog_offset == 0)
  1374. rdev->badblocks.shift = -1;
  1375. if (!refdev) {
  1376. ret = 1;
  1377. } else {
  1378. __u64 ev1, ev2;
  1379. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1380. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1381. sb->level != refsb->level ||
  1382. sb->layout != refsb->layout ||
  1383. sb->chunksize != refsb->chunksize) {
  1384. printk(KERN_WARNING "md: %s has strangely different"
  1385. " superblock to %s\n",
  1386. bdevname(rdev->bdev,b),
  1387. bdevname(refdev->bdev,b2));
  1388. return -EINVAL;
  1389. }
  1390. ev1 = le64_to_cpu(sb->events);
  1391. ev2 = le64_to_cpu(refsb->events);
  1392. if (ev1 > ev2)
  1393. ret = 1;
  1394. else
  1395. ret = 0;
  1396. }
  1397. if (minor_version) {
  1398. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
  1399. sectors -= rdev->data_offset;
  1400. } else
  1401. sectors = rdev->sb_start;
  1402. if (sectors < le64_to_cpu(sb->data_size))
  1403. return -EINVAL;
  1404. rdev->sectors = le64_to_cpu(sb->data_size);
  1405. return ret;
  1406. }
  1407. static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
  1408. {
  1409. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1410. __u64 ev1 = le64_to_cpu(sb->events);
  1411. rdev->raid_disk = -1;
  1412. clear_bit(Faulty, &rdev->flags);
  1413. clear_bit(In_sync, &rdev->flags);
  1414. clear_bit(WriteMostly, &rdev->flags);
  1415. if (mddev->raid_disks == 0) {
  1416. mddev->major_version = 1;
  1417. mddev->patch_version = 0;
  1418. mddev->external = 0;
  1419. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1420. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1421. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1422. mddev->level = le32_to_cpu(sb->level);
  1423. mddev->clevel[0] = 0;
  1424. mddev->layout = le32_to_cpu(sb->layout);
  1425. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1426. mddev->dev_sectors = le64_to_cpu(sb->size);
  1427. mddev->events = ev1;
  1428. mddev->bitmap_info.offset = 0;
  1429. mddev->bitmap_info.space = 0;
  1430. /* Default location for bitmap is 1K after superblock
  1431. * using 3K - total of 4K
  1432. */
  1433. mddev->bitmap_info.default_offset = 1024 >> 9;
  1434. mddev->bitmap_info.default_space = (4096-1024) >> 9;
  1435. mddev->reshape_backwards = 0;
  1436. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1437. memcpy(mddev->uuid, sb->set_uuid, 16);
  1438. mddev->max_disks = (4096-256)/2;
  1439. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1440. mddev->bitmap_info.file == NULL) {
  1441. mddev->bitmap_info.offset =
  1442. (__s32)le32_to_cpu(sb->bitmap_offset);
  1443. /* Metadata doesn't record how much space is available.
  1444. * For 1.0, we assume we can use up to the superblock
  1445. * if before, else to 4K beyond superblock.
  1446. * For others, assume no change is possible.
  1447. */
  1448. if (mddev->minor_version > 0)
  1449. mddev->bitmap_info.space = 0;
  1450. else if (mddev->bitmap_info.offset > 0)
  1451. mddev->bitmap_info.space =
  1452. 8 - mddev->bitmap_info.offset;
  1453. else
  1454. mddev->bitmap_info.space =
  1455. -mddev->bitmap_info.offset;
  1456. }
  1457. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1458. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1459. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1460. mddev->new_level = le32_to_cpu(sb->new_level);
  1461. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1462. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1463. if (mddev->delta_disks < 0 ||
  1464. (mddev->delta_disks == 0 &&
  1465. (le32_to_cpu(sb->feature_map)
  1466. & MD_FEATURE_RESHAPE_BACKWARDS)))
  1467. mddev->reshape_backwards = 1;
  1468. } else {
  1469. mddev->reshape_position = MaxSector;
  1470. mddev->delta_disks = 0;
  1471. mddev->new_level = mddev->level;
  1472. mddev->new_layout = mddev->layout;
  1473. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1474. }
  1475. } else if (mddev->pers == NULL) {
  1476. /* Insist of good event counter while assembling, except for
  1477. * spares (which don't need an event count) */
  1478. ++ev1;
  1479. if (rdev->desc_nr >= 0 &&
  1480. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1481. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1482. if (ev1 < mddev->events)
  1483. return -EINVAL;
  1484. } else if (mddev->bitmap) {
  1485. /* If adding to array with a bitmap, then we can accept an
  1486. * older device, but not too old.
  1487. */
  1488. if (ev1 < mddev->bitmap->events_cleared)
  1489. return 0;
  1490. } else {
  1491. if (ev1 < mddev->events)
  1492. /* just a hot-add of a new device, leave raid_disk at -1 */
  1493. return 0;
  1494. }
  1495. if (mddev->level != LEVEL_MULTIPATH) {
  1496. int role;
  1497. if (rdev->desc_nr < 0 ||
  1498. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1499. role = 0xffff;
  1500. rdev->desc_nr = -1;
  1501. } else
  1502. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1503. switch(role) {
  1504. case 0xffff: /* spare */
  1505. break;
  1506. case 0xfffe: /* faulty */
  1507. set_bit(Faulty, &rdev->flags);
  1508. break;
  1509. default:
  1510. if ((le32_to_cpu(sb->feature_map) &
  1511. MD_FEATURE_RECOVERY_OFFSET))
  1512. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1513. else
  1514. set_bit(In_sync, &rdev->flags);
  1515. rdev->raid_disk = role;
  1516. break;
  1517. }
  1518. if (sb->devflags & WriteMostly1)
  1519. set_bit(WriteMostly, &rdev->flags);
  1520. if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
  1521. set_bit(Replacement, &rdev->flags);
  1522. } else /* MULTIPATH are always insync */
  1523. set_bit(In_sync, &rdev->flags);
  1524. return 0;
  1525. }
  1526. static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
  1527. {
  1528. struct mdp_superblock_1 *sb;
  1529. struct md_rdev *rdev2;
  1530. int max_dev, i;
  1531. /* make rdev->sb match mddev and rdev data. */
  1532. sb = page_address(rdev->sb_page);
  1533. sb->feature_map = 0;
  1534. sb->pad0 = 0;
  1535. sb->recovery_offset = cpu_to_le64(0);
  1536. memset(sb->pad3, 0, sizeof(sb->pad3));
  1537. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1538. sb->events = cpu_to_le64(mddev->events);
  1539. if (mddev->in_sync)
  1540. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1541. else
  1542. sb->resync_offset = cpu_to_le64(0);
  1543. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1544. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1545. sb->size = cpu_to_le64(mddev->dev_sectors);
  1546. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1547. sb->level = cpu_to_le32(mddev->level);
  1548. sb->layout = cpu_to_le32(mddev->layout);
  1549. if (test_bit(WriteMostly, &rdev->flags))
  1550. sb->devflags |= WriteMostly1;
  1551. else
  1552. sb->devflags &= ~WriteMostly1;
  1553. sb->data_offset = cpu_to_le64(rdev->data_offset);
  1554. sb->data_size = cpu_to_le64(rdev->sectors);
  1555. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1556. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1557. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1558. }
  1559. if (rdev->raid_disk >= 0 &&
  1560. !test_bit(In_sync, &rdev->flags)) {
  1561. sb->feature_map |=
  1562. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1563. sb->recovery_offset =
  1564. cpu_to_le64(rdev->recovery_offset);
  1565. }
  1566. if (test_bit(Replacement, &rdev->flags))
  1567. sb->feature_map |=
  1568. cpu_to_le32(MD_FEATURE_REPLACEMENT);
  1569. if (mddev->reshape_position != MaxSector) {
  1570. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1571. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1572. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1573. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1574. sb->new_level = cpu_to_le32(mddev->new_level);
  1575. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1576. if (mddev->delta_disks == 0 &&
  1577. mddev->reshape_backwards)
  1578. sb->feature_map
  1579. |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
  1580. if (rdev->new_data_offset != rdev->data_offset) {
  1581. sb->feature_map
  1582. |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
  1583. sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
  1584. - rdev->data_offset));
  1585. }
  1586. }
  1587. if (rdev->badblocks.count == 0)
  1588. /* Nothing to do for bad blocks*/ ;
  1589. else if (sb->bblog_offset == 0)
  1590. /* Cannot record bad blocks on this device */
  1591. md_error(mddev, rdev);
  1592. else {
  1593. struct badblocks *bb = &rdev->badblocks;
  1594. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1595. u64 *p = bb->page;
  1596. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1597. if (bb->changed) {
  1598. unsigned seq;
  1599. retry:
  1600. seq = read_seqbegin(&bb->lock);
  1601. memset(bbp, 0xff, PAGE_SIZE);
  1602. for (i = 0 ; i < bb->count ; i++) {
  1603. u64 internal_bb = p[i];
  1604. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1605. | BB_LEN(internal_bb));
  1606. bbp[i] = cpu_to_le64(store_bb);
  1607. }
  1608. bb->changed = 0;
  1609. if (read_seqretry(&bb->lock, seq))
  1610. goto retry;
  1611. bb->sector = (rdev->sb_start +
  1612. (int)le32_to_cpu(sb->bblog_offset));
  1613. bb->size = le16_to_cpu(sb->bblog_size);
  1614. }
  1615. }
  1616. max_dev = 0;
  1617. rdev_for_each(rdev2, mddev)
  1618. if (rdev2->desc_nr+1 > max_dev)
  1619. max_dev = rdev2->desc_nr+1;
  1620. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1621. int bmask;
  1622. sb->max_dev = cpu_to_le32(max_dev);
  1623. rdev->sb_size = max_dev * 2 + 256;
  1624. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1625. if (rdev->sb_size & bmask)
  1626. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1627. } else
  1628. max_dev = le32_to_cpu(sb->max_dev);
  1629. for (i=0; i<max_dev;i++)
  1630. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1631. rdev_for_each(rdev2, mddev) {
  1632. i = rdev2->desc_nr;
  1633. if (test_bit(Faulty, &rdev2->flags))
  1634. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1635. else if (test_bit(In_sync, &rdev2->flags))
  1636. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1637. else if (rdev2->raid_disk >= 0)
  1638. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1639. else
  1640. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1641. }
  1642. sb->sb_csum = calc_sb_1_csum(sb);
  1643. }
  1644. static unsigned long long
  1645. super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
  1646. {
  1647. struct mdp_superblock_1 *sb;
  1648. sector_t max_sectors;
  1649. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1650. return 0; /* component must fit device */
  1651. if (rdev->data_offset != rdev->new_data_offset)
  1652. return 0; /* too confusing */
  1653. if (rdev->sb_start < rdev->data_offset) {
  1654. /* minor versions 1 and 2; superblock before data */
  1655. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1656. max_sectors -= rdev->data_offset;
  1657. if (!num_sectors || num_sectors > max_sectors)
  1658. num_sectors = max_sectors;
  1659. } else if (rdev->mddev->bitmap_info.offset) {
  1660. /* minor version 0 with bitmap we can't move */
  1661. return 0;
  1662. } else {
  1663. /* minor version 0; superblock after data */
  1664. sector_t sb_start;
  1665. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1666. sb_start &= ~(sector_t)(4*2 - 1);
  1667. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1668. if (!num_sectors || num_sectors > max_sectors)
  1669. num_sectors = max_sectors;
  1670. rdev->sb_start = sb_start;
  1671. }
  1672. sb = page_address(rdev->sb_page);
  1673. sb->data_size = cpu_to_le64(num_sectors);
  1674. sb->super_offset = rdev->sb_start;
  1675. sb->sb_csum = calc_sb_1_csum(sb);
  1676. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1677. rdev->sb_page);
  1678. md_super_wait(rdev->mddev);
  1679. return num_sectors;
  1680. }
  1681. static int
  1682. super_1_allow_new_offset(struct md_rdev *rdev,
  1683. unsigned long long new_offset)
  1684. {
  1685. /* All necessary checks on new >= old have been done */
  1686. struct bitmap *bitmap;
  1687. if (new_offset >= rdev->data_offset)
  1688. return 1;
  1689. /* with 1.0 metadata, there is no metadata to tread on
  1690. * so we can always move back */
  1691. if (rdev->mddev->minor_version == 0)
  1692. return 1;
  1693. /* otherwise we must be sure not to step on
  1694. * any metadata, so stay:
  1695. * 36K beyond start of superblock
  1696. * beyond end of badblocks
  1697. * beyond write-intent bitmap
  1698. */
  1699. if (rdev->sb_start + (32+4)*2 > new_offset)
  1700. return 0;
  1701. bitmap = rdev->mddev->bitmap;
  1702. if (bitmap && !rdev->mddev->bitmap_info.file &&
  1703. rdev->sb_start + rdev->mddev->bitmap_info.offset +
  1704. bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
  1705. return 0;
  1706. if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
  1707. return 0;
  1708. return 1;
  1709. }
  1710. static struct super_type super_types[] = {
  1711. [0] = {
  1712. .name = "0.90.0",
  1713. .owner = THIS_MODULE,
  1714. .load_super = super_90_load,
  1715. .validate_super = super_90_validate,
  1716. .sync_super = super_90_sync,
  1717. .rdev_size_change = super_90_rdev_size_change,
  1718. .allow_new_offset = super_90_allow_new_offset,
  1719. },
  1720. [1] = {
  1721. .name = "md-1",
  1722. .owner = THIS_MODULE,
  1723. .load_super = super_1_load,
  1724. .validate_super = super_1_validate,
  1725. .sync_super = super_1_sync,
  1726. .rdev_size_change = super_1_rdev_size_change,
  1727. .allow_new_offset = super_1_allow_new_offset,
  1728. },
  1729. };
  1730. static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
  1731. {
  1732. if (mddev->sync_super) {
  1733. mddev->sync_super(mddev, rdev);
  1734. return;
  1735. }
  1736. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1737. super_types[mddev->major_version].sync_super(mddev, rdev);
  1738. }
  1739. static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
  1740. {
  1741. struct md_rdev *rdev, *rdev2;
  1742. rcu_read_lock();
  1743. rdev_for_each_rcu(rdev, mddev1)
  1744. rdev_for_each_rcu(rdev2, mddev2)
  1745. if (rdev->bdev->bd_contains ==
  1746. rdev2->bdev->bd_contains) {
  1747. rcu_read_unlock();
  1748. return 1;
  1749. }
  1750. rcu_read_unlock();
  1751. return 0;
  1752. }
  1753. static LIST_HEAD(pending_raid_disks);
  1754. /*
  1755. * Try to register data integrity profile for an mddev
  1756. *
  1757. * This is called when an array is started and after a disk has been kicked
  1758. * from the array. It only succeeds if all working and active component devices
  1759. * are integrity capable with matching profiles.
  1760. */
  1761. int md_integrity_register(struct mddev *mddev)
  1762. {
  1763. struct md_rdev *rdev, *reference = NULL;
  1764. if (list_empty(&mddev->disks))
  1765. return 0; /* nothing to do */
  1766. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1767. return 0; /* shouldn't register, or already is */
  1768. rdev_for_each(rdev, mddev) {
  1769. /* skip spares and non-functional disks */
  1770. if (test_bit(Faulty, &rdev->flags))
  1771. continue;
  1772. if (rdev->raid_disk < 0)
  1773. continue;
  1774. if (!reference) {
  1775. /* Use the first rdev as the reference */
  1776. reference = rdev;
  1777. continue;
  1778. }
  1779. /* does this rdev's profile match the reference profile? */
  1780. if (blk_integrity_compare(reference->bdev->bd_disk,
  1781. rdev->bdev->bd_disk) < 0)
  1782. return -EINVAL;
  1783. }
  1784. if (!reference || !bdev_get_integrity(reference->bdev))
  1785. return 0;
  1786. /*
  1787. * All component devices are integrity capable and have matching
  1788. * profiles, register the common profile for the md device.
  1789. */
  1790. if (blk_integrity_register(mddev->gendisk,
  1791. bdev_get_integrity(reference->bdev)) != 0) {
  1792. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1793. mdname(mddev));
  1794. return -EINVAL;
  1795. }
  1796. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1797. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1798. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1799. mdname(mddev));
  1800. return -EINVAL;
  1801. }
  1802. return 0;
  1803. }
  1804. EXPORT_SYMBOL(md_integrity_register);
  1805. /* Disable data integrity if non-capable/non-matching disk is being added */
  1806. void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
  1807. {
  1808. struct blk_integrity *bi_rdev;
  1809. struct blk_integrity *bi_mddev;
  1810. if (!mddev->gendisk)
  1811. return;
  1812. bi_rdev = bdev_get_integrity(rdev->bdev);
  1813. bi_mddev = blk_get_integrity(mddev->gendisk);
  1814. if (!bi_mddev) /* nothing to do */
  1815. return;
  1816. if (rdev->raid_disk < 0) /* skip spares */
  1817. return;
  1818. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1819. rdev->bdev->bd_disk) >= 0)
  1820. return;
  1821. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1822. blk_integrity_unregister(mddev->gendisk);
  1823. }
  1824. EXPORT_SYMBOL(md_integrity_add_rdev);
  1825. static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
  1826. {
  1827. char b[BDEVNAME_SIZE];
  1828. struct kobject *ko;
  1829. char *s;
  1830. int err;
  1831. if (rdev->mddev) {
  1832. MD_BUG();
  1833. return -EINVAL;
  1834. }
  1835. /* prevent duplicates */
  1836. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1837. return -EEXIST;
  1838. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1839. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1840. rdev->sectors < mddev->dev_sectors)) {
  1841. if (mddev->pers) {
  1842. /* Cannot change size, so fail
  1843. * If mddev->level <= 0, then we don't care
  1844. * about aligning sizes (e.g. linear)
  1845. */
  1846. if (mddev->level > 0)
  1847. return -ENOSPC;
  1848. } else
  1849. mddev->dev_sectors = rdev->sectors;
  1850. }
  1851. /* Verify rdev->desc_nr is unique.
  1852. * If it is -1, assign a free number, else
  1853. * check number is not in use
  1854. */
  1855. if (rdev->desc_nr < 0) {
  1856. int choice = 0;
  1857. if (mddev->pers) choice = mddev->raid_disks;
  1858. while (find_rdev_nr(mddev, choice))
  1859. choice++;
  1860. rdev->desc_nr = choice;
  1861. } else {
  1862. if (find_rdev_nr(mddev, rdev->desc_nr))
  1863. return -EBUSY;
  1864. }
  1865. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1866. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1867. mdname(mddev), mddev->max_disks);
  1868. return -EBUSY;
  1869. }
  1870. bdevname(rdev->bdev,b);
  1871. while ( (s=strchr(b, '/')) != NULL)
  1872. *s = '!';
  1873. rdev->mddev = mddev;
  1874. printk(KERN_INFO "md: bind<%s>\n", b);
  1875. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1876. goto fail;
  1877. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1878. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1879. /* failure here is OK */;
  1880. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1881. list_add_rcu(&rdev->same_set, &mddev->disks);
  1882. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1883. /* May as well allow recovery to be retried once */
  1884. mddev->recovery_disabled++;
  1885. return 0;
  1886. fail:
  1887. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1888. b, mdname(mddev));
  1889. return err;
  1890. }
  1891. static void md_delayed_delete(struct work_struct *ws)
  1892. {
  1893. struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
  1894. kobject_del(&rdev->kobj);
  1895. kobject_put(&rdev->kobj);
  1896. }
  1897. static void unbind_rdev_from_array(struct md_rdev * rdev)
  1898. {
  1899. char b[BDEVNAME_SIZE];
  1900. if (!rdev->mddev) {
  1901. MD_BUG();
  1902. return;
  1903. }
  1904. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1905. list_del_rcu(&rdev->same_set);
  1906. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1907. rdev->mddev = NULL;
  1908. sysfs_remove_link(&rdev->kobj, "block");
  1909. sysfs_put(rdev->sysfs_state);
  1910. rdev->sysfs_state = NULL;
  1911. rdev->badblocks.count = 0;
  1912. /* We need to delay this, otherwise we can deadlock when
  1913. * writing to 'remove' to "dev/state". We also need
  1914. * to delay it due to rcu usage.
  1915. */
  1916. synchronize_rcu();
  1917. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1918. kobject_get(&rdev->kobj);
  1919. queue_work(md_misc_wq, &rdev->del_work);
  1920. }
  1921. /*
  1922. * prevent the device from being mounted, repartitioned or
  1923. * otherwise reused by a RAID array (or any other kernel
  1924. * subsystem), by bd_claiming the device.
  1925. */
  1926. static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
  1927. {
  1928. int err = 0;
  1929. struct block_device *bdev;
  1930. char b[BDEVNAME_SIZE];
  1931. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1932. shared ? (struct md_rdev *)lock_rdev : rdev);
  1933. if (IS_ERR(bdev)) {
  1934. printk(KERN_ERR "md: could not open %s.\n",
  1935. __bdevname(dev, b));
  1936. return PTR_ERR(bdev);
  1937. }
  1938. rdev->bdev = bdev;
  1939. return err;
  1940. }
  1941. static void unlock_rdev(struct md_rdev *rdev)
  1942. {
  1943. struct block_device *bdev = rdev->bdev;
  1944. rdev->bdev = NULL;
  1945. if (!bdev)
  1946. MD_BUG();
  1947. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1948. }
  1949. void md_autodetect_dev(dev_t dev);
  1950. static void export_rdev(struct md_rdev * rdev)
  1951. {
  1952. char b[BDEVNAME_SIZE];
  1953. printk(KERN_INFO "md: export_rdev(%s)\n",
  1954. bdevname(rdev->bdev,b));
  1955. if (rdev->mddev)
  1956. MD_BUG();
  1957. md_rdev_clear(rdev);
  1958. #ifndef MODULE
  1959. if (test_bit(AutoDetected, &rdev->flags))
  1960. md_autodetect_dev(rdev->bdev->bd_dev);
  1961. #endif
  1962. unlock_rdev(rdev);
  1963. kobject_put(&rdev->kobj);
  1964. }
  1965. static void kick_rdev_from_array(struct md_rdev * rdev)
  1966. {
  1967. unbind_rdev_from_array(rdev);
  1968. export_rdev(rdev);
  1969. }
  1970. static void export_array(struct mddev *mddev)
  1971. {
  1972. struct md_rdev *rdev, *tmp;
  1973. rdev_for_each_safe(rdev, tmp, mddev) {
  1974. if (!rdev->mddev) {
  1975. MD_BUG();
  1976. continue;
  1977. }
  1978. kick_rdev_from_array(rdev);
  1979. }
  1980. if (!list_empty(&mddev->disks))
  1981. MD_BUG();
  1982. mddev->raid_disks = 0;
  1983. mddev->major_version = 0;
  1984. }
  1985. static void print_desc(mdp_disk_t *desc)
  1986. {
  1987. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1988. desc->major,desc->minor,desc->raid_disk,desc->state);
  1989. }
  1990. static void print_sb_90(mdp_super_t *sb)
  1991. {
  1992. int i;
  1993. printk(KERN_INFO
  1994. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1995. sb->major_version, sb->minor_version, sb->patch_version,
  1996. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1997. sb->ctime);
  1998. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1999. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  2000. sb->md_minor, sb->layout, sb->chunk_size);
  2001. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  2002. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  2003. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  2004. sb->failed_disks, sb->spare_disks,
  2005. sb->sb_csum, (unsigned long)sb->events_lo);
  2006. printk(KERN_INFO);
  2007. for (i = 0; i < MD_SB_DISKS; i++) {
  2008. mdp_disk_t *desc;
  2009. desc = sb->disks + i;
  2010. if (desc->number || desc->major || desc->minor ||
  2011. desc->raid_disk || (desc->state && (desc->state != 4))) {
  2012. printk(" D %2d: ", i);
  2013. print_desc(desc);
  2014. }
  2015. }
  2016. printk(KERN_INFO "md: THIS: ");
  2017. print_desc(&sb->this_disk);
  2018. }
  2019. static void print_sb_1(struct mdp_superblock_1 *sb)
  2020. {
  2021. __u8 *uuid;
  2022. uuid = sb->set_uuid;
  2023. printk(KERN_INFO
  2024. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  2025. "md: Name: \"%s\" CT:%llu\n",
  2026. le32_to_cpu(sb->major_version),
  2027. le32_to_cpu(sb->feature_map),
  2028. uuid,
  2029. sb->set_name,
  2030. (unsigned long long)le64_to_cpu(sb->ctime)
  2031. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  2032. uuid = sb->device_uuid;
  2033. printk(KERN_INFO
  2034. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  2035. " RO:%llu\n"
  2036. "md: Dev:%08x UUID: %pU\n"
  2037. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  2038. "md: (MaxDev:%u) \n",
  2039. le32_to_cpu(sb->level),
  2040. (unsigned long long)le64_to_cpu(sb->size),
  2041. le32_to_cpu(sb->raid_disks),
  2042. le32_to_cpu(sb->layout),
  2043. le32_to_cpu(sb->chunksize),
  2044. (unsigned long long)le64_to_cpu(sb->data_offset),
  2045. (unsigned long long)le64_to_cpu(sb->data_size),
  2046. (unsigned long long)le64_to_cpu(sb->super_offset),
  2047. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  2048. le32_to_cpu(sb->dev_number),
  2049. uuid,
  2050. sb->devflags,
  2051. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  2052. (unsigned long long)le64_to_cpu(sb->events),
  2053. (unsigned long long)le64_to_cpu(sb->resync_offset),
  2054. le32_to_cpu(sb->sb_csum),
  2055. le32_to_cpu(sb->max_dev)
  2056. );
  2057. }
  2058. static void print_rdev(struct md_rdev *rdev, int major_version)
  2059. {
  2060. char b[BDEVNAME_SIZE];
  2061. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  2062. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2063. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2064. rdev->desc_nr);
  2065. if (rdev->sb_loaded) {
  2066. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2067. switch (major_version) {
  2068. case 0:
  2069. print_sb_90(page_address(rdev->sb_page));
  2070. break;
  2071. case 1:
  2072. print_sb_1(page_address(rdev->sb_page));
  2073. break;
  2074. }
  2075. } else
  2076. printk(KERN_INFO "md: no rdev superblock!\n");
  2077. }
  2078. static void md_print_devices(void)
  2079. {
  2080. struct list_head *tmp;
  2081. struct md_rdev *rdev;
  2082. struct mddev *mddev;
  2083. char b[BDEVNAME_SIZE];
  2084. printk("\n");
  2085. printk("md: **********************************\n");
  2086. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2087. printk("md: **********************************\n");
  2088. for_each_mddev(mddev, tmp) {
  2089. if (mddev->bitmap)
  2090. bitmap_print_sb(mddev->bitmap);
  2091. else
  2092. printk("%s: ", mdname(mddev));
  2093. rdev_for_each(rdev, mddev)
  2094. printk("<%s>", bdevname(rdev->bdev,b));
  2095. printk("\n");
  2096. rdev_for_each(rdev, mddev)
  2097. print_rdev(rdev, mddev->major_version);
  2098. }
  2099. printk("md: **********************************\n");
  2100. printk("\n");
  2101. }
  2102. static void sync_sbs(struct mddev * mddev, int nospares)
  2103. {
  2104. /* Update each superblock (in-memory image), but
  2105. * if we are allowed to, skip spares which already
  2106. * have the right event counter, or have one earlier
  2107. * (which would mean they aren't being marked as dirty
  2108. * with the rest of the array)
  2109. */
  2110. struct md_rdev *rdev;
  2111. rdev_for_each(rdev, mddev) {
  2112. if (rdev->sb_events == mddev->events ||
  2113. (nospares &&
  2114. rdev->raid_disk < 0 &&
  2115. rdev->sb_events+1 == mddev->events)) {
  2116. /* Don't update this superblock */
  2117. rdev->sb_loaded = 2;
  2118. } else {
  2119. sync_super(mddev, rdev);
  2120. rdev->sb_loaded = 1;
  2121. }
  2122. }
  2123. }
  2124. static void md_update_sb(struct mddev * mddev, int force_change)
  2125. {
  2126. struct md_rdev *rdev;
  2127. int sync_req;
  2128. int nospares = 0;
  2129. int any_badblocks_changed = 0;
  2130. repeat:
  2131. /* First make sure individual recovery_offsets are correct */
  2132. rdev_for_each(rdev, mddev) {
  2133. if (rdev->raid_disk >= 0 &&
  2134. mddev->delta_disks >= 0 &&
  2135. !test_bit(In_sync, &rdev->flags) &&
  2136. mddev->curr_resync_completed > rdev->recovery_offset)
  2137. rdev->recovery_offset = mddev->curr_resync_completed;
  2138. }
  2139. if (!mddev->persistent) {
  2140. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2141. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2142. if (!mddev->external) {
  2143. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2144. rdev_for_each(rdev, mddev) {
  2145. if (rdev->badblocks.changed) {
  2146. rdev->badblocks.changed = 0;
  2147. md_ack_all_badblocks(&rdev->badblocks);
  2148. md_error(mddev, rdev);
  2149. }
  2150. clear_bit(Blocked, &rdev->flags);
  2151. clear_bit(BlockedBadBlocks, &rdev->flags);
  2152. wake_up(&rdev->blocked_wait);
  2153. }
  2154. }
  2155. wake_up(&mddev->sb_wait);
  2156. return;
  2157. }
  2158. spin_lock_irq(&mddev->write_lock);
  2159. mddev->utime = get_seconds();
  2160. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2161. force_change = 1;
  2162. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2163. /* just a clean<-> dirty transition, possibly leave spares alone,
  2164. * though if events isn't the right even/odd, we will have to do
  2165. * spares after all
  2166. */
  2167. nospares = 1;
  2168. if (force_change)
  2169. nospares = 0;
  2170. if (mddev->degraded)
  2171. /* If the array is degraded, then skipping spares is both
  2172. * dangerous and fairly pointless.
  2173. * Dangerous because a device that was removed from the array
  2174. * might have a event_count that still looks up-to-date,
  2175. * so it can be re-added without a resync.
  2176. * Pointless because if there are any spares to skip,
  2177. * then a recovery will happen and soon that array won't
  2178. * be degraded any more and the spare can go back to sleep then.
  2179. */
  2180. nospares = 0;
  2181. sync_req = mddev->in_sync;
  2182. /* If this is just a dirty<->clean transition, and the array is clean
  2183. * and 'events' is odd, we can roll back to the previous clean state */
  2184. if (nospares
  2185. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2186. && mddev->can_decrease_events
  2187. && mddev->events != 1) {
  2188. mddev->events--;
  2189. mddev->can_decrease_events = 0;
  2190. } else {
  2191. /* otherwise we have to go forward and ... */
  2192. mddev->events ++;
  2193. mddev->can_decrease_events = nospares;
  2194. }
  2195. if (!mddev->events) {
  2196. /*
  2197. * oops, this 64-bit counter should never wrap.
  2198. * Either we are in around ~1 trillion A.C., assuming
  2199. * 1 reboot per second, or we have a bug:
  2200. */
  2201. MD_BUG();
  2202. mddev->events --;
  2203. }
  2204. rdev_for_each(rdev, mddev) {
  2205. if (rdev->badblocks.changed)
  2206. any_badblocks_changed++;
  2207. if (test_bit(Faulty, &rdev->flags))
  2208. set_bit(FaultRecorded, &rdev->flags);
  2209. }
  2210. sync_sbs(mddev, nospares);
  2211. spin_unlock_irq(&mddev->write_lock);
  2212. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2213. mdname(mddev), mddev->in_sync);
  2214. bitmap_update_sb(mddev->bitmap);
  2215. rdev_for_each(rdev, mddev) {
  2216. char b[BDEVNAME_SIZE];
  2217. if (rdev->sb_loaded != 1)
  2218. continue; /* no noise on spare devices */
  2219. if (!test_bit(Faulty, &rdev->flags) &&
  2220. rdev->saved_raid_disk == -1) {
  2221. md_super_write(mddev,rdev,
  2222. rdev->sb_start, rdev->sb_size,
  2223. rdev->sb_page);
  2224. pr_debug("md: (write) %s's sb offset: %llu\n",
  2225. bdevname(rdev->bdev, b),
  2226. (unsigned long long)rdev->sb_start);
  2227. rdev->sb_events = mddev->events;
  2228. if (rdev->badblocks.size) {
  2229. md_super_write(mddev, rdev,
  2230. rdev->badblocks.sector,
  2231. rdev->badblocks.size << 9,
  2232. rdev->bb_page);
  2233. rdev->badblocks.size = 0;
  2234. }
  2235. } else if (test_bit(Faulty, &rdev->flags))
  2236. pr_debug("md: %s (skipping faulty)\n",
  2237. bdevname(rdev->bdev, b));
  2238. else
  2239. pr_debug("(skipping incremental s/r ");
  2240. if (mddev->level == LEVEL_MULTIPATH)
  2241. /* only need to write one superblock... */
  2242. break;
  2243. }
  2244. md_super_wait(mddev);
  2245. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2246. spin_lock_irq(&mddev->write_lock);
  2247. if (mddev->in_sync != sync_req ||
  2248. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2249. /* have to write it out again */
  2250. spin_unlock_irq(&mddev->write_lock);
  2251. goto repeat;
  2252. }
  2253. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2254. spin_unlock_irq(&mddev->write_lock);
  2255. wake_up(&mddev->sb_wait);
  2256. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2257. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2258. rdev_for_each(rdev, mddev) {
  2259. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2260. clear_bit(Blocked, &rdev->flags);
  2261. if (any_badblocks_changed)
  2262. md_ack_all_badblocks(&rdev->badblocks);
  2263. clear_bit(BlockedBadBlocks, &rdev->flags);
  2264. wake_up(&rdev->blocked_wait);
  2265. }
  2266. }
  2267. /* words written to sysfs files may, or may not, be \n terminated.
  2268. * We want to accept with case. For this we use cmd_match.
  2269. */
  2270. static int cmd_match(const char *cmd, const char *str)
  2271. {
  2272. /* See if cmd, written into a sysfs file, matches
  2273. * str. They must either be the same, or cmd can
  2274. * have a trailing newline
  2275. */
  2276. while (*cmd && *str && *cmd == *str) {
  2277. cmd++;
  2278. str++;
  2279. }
  2280. if (*cmd == '\n')
  2281. cmd++;
  2282. if (*str || *cmd)
  2283. return 0;
  2284. return 1;
  2285. }
  2286. struct rdev_sysfs_entry {
  2287. struct attribute attr;
  2288. ssize_t (*show)(struct md_rdev *, char *);
  2289. ssize_t (*store)(struct md_rdev *, const char *, size_t);
  2290. };
  2291. static ssize_t
  2292. state_show(struct md_rdev *rdev, char *page)
  2293. {
  2294. char *sep = "";
  2295. size_t len = 0;
  2296. if (test_bit(Faulty, &rdev->flags) ||
  2297. rdev->badblocks.unacked_exist) {
  2298. len+= sprintf(page+len, "%sfaulty",sep);
  2299. sep = ",";
  2300. }
  2301. if (test_bit(In_sync, &rdev->flags)) {
  2302. len += sprintf(page+len, "%sin_sync",sep);
  2303. sep = ",";
  2304. }
  2305. if (test_bit(WriteMostly, &rdev->flags)) {
  2306. len += sprintf(page+len, "%swrite_mostly",sep);
  2307. sep = ",";
  2308. }
  2309. if (test_bit(Blocked, &rdev->flags) ||
  2310. (rdev->badblocks.unacked_exist
  2311. && !test_bit(Faulty, &rdev->flags))) {
  2312. len += sprintf(page+len, "%sblocked", sep);
  2313. sep = ",";
  2314. }
  2315. if (!test_bit(Faulty, &rdev->flags) &&
  2316. !test_bit(In_sync, &rdev->flags)) {
  2317. len += sprintf(page+len, "%sspare", sep);
  2318. sep = ",";
  2319. }
  2320. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2321. len += sprintf(page+len, "%swrite_error", sep);
  2322. sep = ",";
  2323. }
  2324. if (test_bit(WantReplacement, &rdev->flags)) {
  2325. len += sprintf(page+len, "%swant_replacement", sep);
  2326. sep = ",";
  2327. }
  2328. if (test_bit(Replacement, &rdev->flags)) {
  2329. len += sprintf(page+len, "%sreplacement", sep);
  2330. sep = ",";
  2331. }
  2332. return len+sprintf(page+len, "\n");
  2333. }
  2334. static ssize_t
  2335. state_store(struct md_rdev *rdev, const char *buf, size_t len)
  2336. {
  2337. /* can write
  2338. * faulty - simulates an error
  2339. * remove - disconnects the device
  2340. * writemostly - sets write_mostly
  2341. * -writemostly - clears write_mostly
  2342. * blocked - sets the Blocked flags
  2343. * -blocked - clears the Blocked and possibly simulates an error
  2344. * insync - sets Insync providing device isn't active
  2345. * write_error - sets WriteErrorSeen
  2346. * -write_error - clears WriteErrorSeen
  2347. */
  2348. int err = -EINVAL;
  2349. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2350. md_error(rdev->mddev, rdev);
  2351. if (test_bit(Faulty, &rdev->flags))
  2352. err = 0;
  2353. else
  2354. err = -EBUSY;
  2355. } else if (cmd_match(buf, "remove")) {
  2356. if (rdev->raid_disk >= 0)
  2357. err = -EBUSY;
  2358. else {
  2359. struct mddev *mddev = rdev->mddev;
  2360. kick_rdev_from_array(rdev);
  2361. if (mddev->pers)
  2362. md_update_sb(mddev, 1);
  2363. md_new_event(mddev);
  2364. err = 0;
  2365. }
  2366. } else if (cmd_match(buf, "writemostly")) {
  2367. set_bit(WriteMostly, &rdev->flags);
  2368. err = 0;
  2369. } else if (cmd_match(buf, "-writemostly")) {
  2370. clear_bit(WriteMostly, &rdev->flags);
  2371. err = 0;
  2372. } else if (cmd_match(buf, "blocked")) {
  2373. set_bit(Blocked, &rdev->flags);
  2374. err = 0;
  2375. } else if (cmd_match(buf, "-blocked")) {
  2376. if (!test_bit(Faulty, &rdev->flags) &&
  2377. rdev->badblocks.unacked_exist) {
  2378. /* metadata handler doesn't understand badblocks,
  2379. * so we need to fail the device
  2380. */
  2381. md_error(rdev->mddev, rdev);
  2382. }
  2383. clear_bit(Blocked, &rdev->flags);
  2384. clear_bit(BlockedBadBlocks, &rdev->flags);
  2385. wake_up(&rdev->blocked_wait);
  2386. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2387. md_wakeup_thread(rdev->mddev->thread);
  2388. err = 0;
  2389. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2390. set_bit(In_sync, &rdev->flags);
  2391. err = 0;
  2392. } else if (cmd_match(buf, "write_error")) {
  2393. set_bit(WriteErrorSeen, &rdev->flags);
  2394. err = 0;
  2395. } else if (cmd_match(buf, "-write_error")) {
  2396. clear_bit(WriteErrorSeen, &rdev->flags);
  2397. err = 0;
  2398. } else if (cmd_match(buf, "want_replacement")) {
  2399. /* Any non-spare device that is not a replacement can
  2400. * become want_replacement at any time, but we then need to
  2401. * check if recovery is needed.
  2402. */
  2403. if (rdev->raid_disk >= 0 &&
  2404. !test_bit(Replacement, &rdev->flags))
  2405. set_bit(WantReplacement, &rdev->flags);
  2406. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2407. md_wakeup_thread(rdev->mddev->thread);
  2408. err = 0;
  2409. } else if (cmd_match(buf, "-want_replacement")) {
  2410. /* Clearing 'want_replacement' is always allowed.
  2411. * Once replacements starts it is too late though.
  2412. */
  2413. err = 0;
  2414. clear_bit(WantReplacement, &rdev->flags);
  2415. } else if (cmd_match(buf, "replacement")) {
  2416. /* Can only set a device as a replacement when array has not
  2417. * yet been started. Once running, replacement is automatic
  2418. * from spares, or by assigning 'slot'.
  2419. */
  2420. if (rdev->mddev->pers)
  2421. err = -EBUSY;
  2422. else {
  2423. set_bit(Replacement, &rdev->flags);
  2424. err = 0;
  2425. }
  2426. } else if (cmd_match(buf, "-replacement")) {
  2427. /* Similarly, can only clear Replacement before start */
  2428. if (rdev->mddev->pers)
  2429. err = -EBUSY;
  2430. else {
  2431. clear_bit(Replacement, &rdev->flags);
  2432. err = 0;
  2433. }
  2434. }
  2435. if (!err)
  2436. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2437. return err ? err : len;
  2438. }
  2439. static struct rdev_sysfs_entry rdev_state =
  2440. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2441. static ssize_t
  2442. errors_show(struct md_rdev *rdev, char *page)
  2443. {
  2444. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2445. }
  2446. static ssize_t
  2447. errors_store(struct md_rdev *rdev, const char *buf, size_t len)
  2448. {
  2449. char *e;
  2450. unsigned long n = simple_strtoul(buf, &e, 10);
  2451. if (*buf && (*e == 0 || *e == '\n')) {
  2452. atomic_set(&rdev->corrected_errors, n);
  2453. return len;
  2454. }
  2455. return -EINVAL;
  2456. }
  2457. static struct rdev_sysfs_entry rdev_errors =
  2458. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2459. static ssize_t
  2460. slot_show(struct md_rdev *rdev, char *page)
  2461. {
  2462. if (rdev->raid_disk < 0)
  2463. return sprintf(page, "none\n");
  2464. else
  2465. return sprintf(page, "%d\n", rdev->raid_disk);
  2466. }
  2467. static ssize_t
  2468. slot_store(struct md_rdev *rdev, const char *buf, size_t len)
  2469. {
  2470. char *e;
  2471. int err;
  2472. int slot = simple_strtoul(buf, &e, 10);
  2473. if (strncmp(buf, "none", 4)==0)
  2474. slot = -1;
  2475. else if (e==buf || (*e && *e!= '\n'))
  2476. return -EINVAL;
  2477. if (rdev->mddev->pers && slot == -1) {
  2478. /* Setting 'slot' on an active array requires also
  2479. * updating the 'rd%d' link, and communicating
  2480. * with the personality with ->hot_*_disk.
  2481. * For now we only support removing
  2482. * failed/spare devices. This normally happens automatically,
  2483. * but not when the metadata is externally managed.
  2484. */
  2485. if (rdev->raid_disk == -1)
  2486. return -EEXIST;
  2487. /* personality does all needed checks */
  2488. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2489. return -EINVAL;
  2490. err = rdev->mddev->pers->
  2491. hot_remove_disk(rdev->mddev, rdev);
  2492. if (err)
  2493. return err;
  2494. sysfs_unlink_rdev(rdev->mddev, rdev);
  2495. rdev->raid_disk = -1;
  2496. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2497. md_wakeup_thread(rdev->mddev->thread);
  2498. } else if (rdev->mddev->pers) {
  2499. /* Activating a spare .. or possibly reactivating
  2500. * if we ever get bitmaps working here.
  2501. */
  2502. if (rdev->raid_disk != -1)
  2503. return -EBUSY;
  2504. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2505. return -EBUSY;
  2506. if (rdev->mddev->pers->hot_add_disk == NULL)
  2507. return -EINVAL;
  2508. if (slot >= rdev->mddev->raid_disks &&
  2509. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2510. return -ENOSPC;
  2511. rdev->raid_disk = slot;
  2512. if (test_bit(In_sync, &rdev->flags))
  2513. rdev->saved_raid_disk = slot;
  2514. else
  2515. rdev->saved_raid_disk = -1;
  2516. clear_bit(In_sync, &rdev->flags);
  2517. err = rdev->mddev->pers->
  2518. hot_add_disk(rdev->mddev, rdev);
  2519. if (err) {
  2520. rdev->raid_disk = -1;
  2521. return err;
  2522. } else
  2523. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2524. if (sysfs_link_rdev(rdev->mddev, rdev))
  2525. /* failure here is OK */;
  2526. /* don't wakeup anyone, leave that to userspace. */
  2527. } else {
  2528. if (slot >= rdev->mddev->raid_disks &&
  2529. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2530. return -ENOSPC;
  2531. rdev->raid_disk = slot;
  2532. /* assume it is working */
  2533. clear_bit(Faulty, &rdev->flags);
  2534. clear_bit(WriteMostly, &rdev->flags);
  2535. set_bit(In_sync, &rdev->flags);
  2536. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2537. }
  2538. return len;
  2539. }
  2540. static struct rdev_sysfs_entry rdev_slot =
  2541. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2542. static ssize_t
  2543. offset_show(struct md_rdev *rdev, char *page)
  2544. {
  2545. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2546. }
  2547. static ssize_t
  2548. offset_store(struct md_rdev *rdev, const char *buf, size_t len)
  2549. {
  2550. unsigned long long offset;
  2551. if (strict_strtoull(buf, 10, &offset) < 0)
  2552. return -EINVAL;
  2553. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2554. return -EBUSY;
  2555. if (rdev->sectors && rdev->mddev->external)
  2556. /* Must set offset before size, so overlap checks
  2557. * can be sane */
  2558. return -EBUSY;
  2559. rdev->data_offset = offset;
  2560. rdev->new_data_offset = offset;
  2561. return len;
  2562. }
  2563. static struct rdev_sysfs_entry rdev_offset =
  2564. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2565. static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
  2566. {
  2567. return sprintf(page, "%llu\n",
  2568. (unsigned long long)rdev->new_data_offset);
  2569. }
  2570. static ssize_t new_offset_store(struct md_rdev *rdev,
  2571. const char *buf, size_t len)
  2572. {
  2573. unsigned long long new_offset;
  2574. struct mddev *mddev = rdev->mddev;
  2575. if (strict_strtoull(buf, 10, &new_offset) < 0)
  2576. return -EINVAL;
  2577. if (mddev->sync_thread)
  2578. return -EBUSY;
  2579. if (new_offset == rdev->data_offset)
  2580. /* reset is always permitted */
  2581. ;
  2582. else if (new_offset > rdev->data_offset) {
  2583. /* must not push array size beyond rdev_sectors */
  2584. if (new_offset - rdev->data_offset
  2585. + mddev->dev_sectors > rdev->sectors)
  2586. return -E2BIG;
  2587. }
  2588. /* Metadata worries about other space details. */
  2589. /* decreasing the offset is inconsistent with a backwards
  2590. * reshape.
  2591. */
  2592. if (new_offset < rdev->data_offset &&
  2593. mddev->reshape_backwards)
  2594. return -EINVAL;
  2595. /* Increasing offset is inconsistent with forwards
  2596. * reshape. reshape_direction should be set to
  2597. * 'backwards' first.
  2598. */
  2599. if (new_offset > rdev->data_offset &&
  2600. !mddev->reshape_backwards)
  2601. return -EINVAL;
  2602. if (mddev->pers && mddev->persistent &&
  2603. !super_types[mddev->major_version]
  2604. .allow_new_offset(rdev, new_offset))
  2605. return -E2BIG;
  2606. rdev->new_data_offset = new_offset;
  2607. if (new_offset > rdev->data_offset)
  2608. mddev->reshape_backwards = 1;
  2609. else if (new_offset < rdev->data_offset)
  2610. mddev->reshape_backwards = 0;
  2611. return len;
  2612. }
  2613. static struct rdev_sysfs_entry rdev_new_offset =
  2614. __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
  2615. static ssize_t
  2616. rdev_size_show(struct md_rdev *rdev, char *page)
  2617. {
  2618. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2619. }
  2620. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2621. {
  2622. /* check if two start/length pairs overlap */
  2623. if (s1+l1 <= s2)
  2624. return 0;
  2625. if (s2+l2 <= s1)
  2626. return 0;
  2627. return 1;
  2628. }
  2629. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2630. {
  2631. unsigned long long blocks;
  2632. sector_t new;
  2633. if (strict_strtoull(buf, 10, &blocks) < 0)
  2634. return -EINVAL;
  2635. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2636. return -EINVAL; /* sector conversion overflow */
  2637. new = blocks * 2;
  2638. if (new != blocks * 2)
  2639. return -EINVAL; /* unsigned long long to sector_t overflow */
  2640. *sectors = new;
  2641. return 0;
  2642. }
  2643. static ssize_t
  2644. rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
  2645. {
  2646. struct mddev *my_mddev = rdev->mddev;
  2647. sector_t oldsectors = rdev->sectors;
  2648. sector_t sectors;
  2649. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2650. return -EINVAL;
  2651. if (rdev->data_offset != rdev->new_data_offset)
  2652. return -EINVAL; /* too confusing */
  2653. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2654. if (my_mddev->persistent) {
  2655. sectors = super_types[my_mddev->major_version].
  2656. rdev_size_change(rdev, sectors);
  2657. if (!sectors)
  2658. return -EBUSY;
  2659. } else if (!sectors)
  2660. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2661. rdev->data_offset;
  2662. if (!my_mddev->pers->resize)
  2663. /* Cannot change size for RAID0 or Linear etc */
  2664. return -EINVAL;
  2665. }
  2666. if (sectors < my_mddev->dev_sectors)
  2667. return -EINVAL; /* component must fit device */
  2668. rdev->sectors = sectors;
  2669. if (sectors > oldsectors && my_mddev->external) {
  2670. /* need to check that all other rdevs with the same ->bdev
  2671. * do not overlap. We need to unlock the mddev to avoid
  2672. * a deadlock. We have already changed rdev->sectors, and if
  2673. * we have to change it back, we will have the lock again.
  2674. */
  2675. struct mddev *mddev;
  2676. int overlap = 0;
  2677. struct list_head *tmp;
  2678. mddev_unlock(my_mddev);
  2679. for_each_mddev(mddev, tmp) {
  2680. struct md_rdev *rdev2;
  2681. mddev_lock(mddev);
  2682. rdev_for_each(rdev2, mddev)
  2683. if (rdev->bdev == rdev2->bdev &&
  2684. rdev != rdev2 &&
  2685. overlaps(rdev->data_offset, rdev->sectors,
  2686. rdev2->data_offset,
  2687. rdev2->sectors)) {
  2688. overlap = 1;
  2689. break;
  2690. }
  2691. mddev_unlock(mddev);
  2692. if (overlap) {
  2693. mddev_put(mddev);
  2694. break;
  2695. }
  2696. }
  2697. mddev_lock(my_mddev);
  2698. if (overlap) {
  2699. /* Someone else could have slipped in a size
  2700. * change here, but doing so is just silly.
  2701. * We put oldsectors back because we *know* it is
  2702. * safe, and trust userspace not to race with
  2703. * itself
  2704. */
  2705. rdev->sectors = oldsectors;
  2706. return -EBUSY;
  2707. }
  2708. }
  2709. return len;
  2710. }
  2711. static struct rdev_sysfs_entry rdev_size =
  2712. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2713. static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
  2714. {
  2715. unsigned long long recovery_start = rdev->recovery_offset;
  2716. if (test_bit(In_sync, &rdev->flags) ||
  2717. recovery_start == MaxSector)
  2718. return sprintf(page, "none\n");
  2719. return sprintf(page, "%llu\n", recovery_start);
  2720. }
  2721. static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
  2722. {
  2723. unsigned long long recovery_start;
  2724. if (cmd_match(buf, "none"))
  2725. recovery_start = MaxSector;
  2726. else if (strict_strtoull(buf, 10, &recovery_start))
  2727. return -EINVAL;
  2728. if (rdev->mddev->pers &&
  2729. rdev->raid_disk >= 0)
  2730. return -EBUSY;
  2731. rdev->recovery_offset = recovery_start;
  2732. if (recovery_start == MaxSector)
  2733. set_bit(In_sync, &rdev->flags);
  2734. else
  2735. clear_bit(In_sync, &rdev->flags);
  2736. return len;
  2737. }
  2738. static struct rdev_sysfs_entry rdev_recovery_start =
  2739. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2740. static ssize_t
  2741. badblocks_show(struct badblocks *bb, char *page, int unack);
  2742. static ssize_t
  2743. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2744. static ssize_t bb_show(struct md_rdev *rdev, char *page)
  2745. {
  2746. return badblocks_show(&rdev->badblocks, page, 0);
  2747. }
  2748. static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
  2749. {
  2750. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2751. /* Maybe that ack was all we needed */
  2752. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2753. wake_up(&rdev->blocked_wait);
  2754. return rv;
  2755. }
  2756. static struct rdev_sysfs_entry rdev_bad_blocks =
  2757. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2758. static ssize_t ubb_show(struct md_rdev *rdev, char *page)
  2759. {
  2760. return badblocks_show(&rdev->badblocks, page, 1);
  2761. }
  2762. static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
  2763. {
  2764. return badblocks_store(&rdev->badblocks, page, len, 1);
  2765. }
  2766. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2767. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2768. static struct attribute *rdev_default_attrs[] = {
  2769. &rdev_state.attr,
  2770. &rdev_errors.attr,
  2771. &rdev_slot.attr,
  2772. &rdev_offset.attr,
  2773. &rdev_new_offset.attr,
  2774. &rdev_size.attr,
  2775. &rdev_recovery_start.attr,
  2776. &rdev_bad_blocks.attr,
  2777. &rdev_unack_bad_blocks.attr,
  2778. NULL,
  2779. };
  2780. static ssize_t
  2781. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2782. {
  2783. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2784. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2785. struct mddev *mddev = rdev->mddev;
  2786. ssize_t rv;
  2787. if (!entry->show)
  2788. return -EIO;
  2789. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2790. if (!rv) {
  2791. if (rdev->mddev == NULL)
  2792. rv = -EBUSY;
  2793. else
  2794. rv = entry->show(rdev, page);
  2795. mddev_unlock(mddev);
  2796. }
  2797. return rv;
  2798. }
  2799. static ssize_t
  2800. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2801. const char *page, size_t length)
  2802. {
  2803. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2804. struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
  2805. ssize_t rv;
  2806. struct mddev *mddev = rdev->mddev;
  2807. if (!entry->store)
  2808. return -EIO;
  2809. if (!capable(CAP_SYS_ADMIN))
  2810. return -EACCES;
  2811. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2812. if (!rv) {
  2813. if (rdev->mddev == NULL)
  2814. rv = -EBUSY;
  2815. else
  2816. rv = entry->store(rdev, page, length);
  2817. mddev_unlock(mddev);
  2818. }
  2819. return rv;
  2820. }
  2821. static void rdev_free(struct kobject *ko)
  2822. {
  2823. struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
  2824. kfree(rdev);
  2825. }
  2826. static const struct sysfs_ops rdev_sysfs_ops = {
  2827. .show = rdev_attr_show,
  2828. .store = rdev_attr_store,
  2829. };
  2830. static struct kobj_type rdev_ktype = {
  2831. .release = rdev_free,
  2832. .sysfs_ops = &rdev_sysfs_ops,
  2833. .default_attrs = rdev_default_attrs,
  2834. };
  2835. int md_rdev_init(struct md_rdev *rdev)
  2836. {
  2837. rdev->desc_nr = -1;
  2838. rdev->saved_raid_disk = -1;
  2839. rdev->raid_disk = -1;
  2840. rdev->flags = 0;
  2841. rdev->data_offset = 0;
  2842. rdev->new_data_offset = 0;
  2843. rdev->sb_events = 0;
  2844. rdev->last_read_error.tv_sec = 0;
  2845. rdev->last_read_error.tv_nsec = 0;
  2846. rdev->sb_loaded = 0;
  2847. rdev->bb_page = NULL;
  2848. atomic_set(&rdev->nr_pending, 0);
  2849. atomic_set(&rdev->read_errors, 0);
  2850. atomic_set(&rdev->corrected_errors, 0);
  2851. INIT_LIST_HEAD(&rdev->same_set);
  2852. init_waitqueue_head(&rdev->blocked_wait);
  2853. /* Add space to store bad block list.
  2854. * This reserves the space even on arrays where it cannot
  2855. * be used - I wonder if that matters
  2856. */
  2857. rdev->badblocks.count = 0;
  2858. rdev->badblocks.shift = 0;
  2859. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2860. seqlock_init(&rdev->badblocks.lock);
  2861. if (rdev->badblocks.page == NULL)
  2862. return -ENOMEM;
  2863. return 0;
  2864. }
  2865. EXPORT_SYMBOL_GPL(md_rdev_init);
  2866. /*
  2867. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2868. *
  2869. * mark the device faulty if:
  2870. *
  2871. * - the device is nonexistent (zero size)
  2872. * - the device has no valid superblock
  2873. *
  2874. * a faulty rdev _never_ has rdev->sb set.
  2875. */
  2876. static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
  2877. {
  2878. char b[BDEVNAME_SIZE];
  2879. int err;
  2880. struct md_rdev *rdev;
  2881. sector_t size;
  2882. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2883. if (!rdev) {
  2884. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2885. return ERR_PTR(-ENOMEM);
  2886. }
  2887. err = md_rdev_init(rdev);
  2888. if (err)
  2889. goto abort_free;
  2890. err = alloc_disk_sb(rdev);
  2891. if (err)
  2892. goto abort_free;
  2893. err = lock_rdev(rdev, newdev, super_format == -2);
  2894. if (err)
  2895. goto abort_free;
  2896. kobject_init(&rdev->kobj, &rdev_ktype);
  2897. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2898. if (!size) {
  2899. printk(KERN_WARNING
  2900. "md: %s has zero or unknown size, marking faulty!\n",
  2901. bdevname(rdev->bdev,b));
  2902. err = -EINVAL;
  2903. goto abort_free;
  2904. }
  2905. if (super_format >= 0) {
  2906. err = super_types[super_format].
  2907. load_super(rdev, NULL, super_minor);
  2908. if (err == -EINVAL) {
  2909. printk(KERN_WARNING
  2910. "md: %s does not have a valid v%d.%d "
  2911. "superblock, not importing!\n",
  2912. bdevname(rdev->bdev,b),
  2913. super_format, super_minor);
  2914. goto abort_free;
  2915. }
  2916. if (err < 0) {
  2917. printk(KERN_WARNING
  2918. "md: could not read %s's sb, not importing!\n",
  2919. bdevname(rdev->bdev,b));
  2920. goto abort_free;
  2921. }
  2922. }
  2923. if (super_format == -1)
  2924. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2925. rdev->badblocks.shift = -1;
  2926. return rdev;
  2927. abort_free:
  2928. if (rdev->bdev)
  2929. unlock_rdev(rdev);
  2930. md_rdev_clear(rdev);
  2931. kfree(rdev);
  2932. return ERR_PTR(err);
  2933. }
  2934. /*
  2935. * Check a full RAID array for plausibility
  2936. */
  2937. static void analyze_sbs(struct mddev * mddev)
  2938. {
  2939. int i;
  2940. struct md_rdev *rdev, *freshest, *tmp;
  2941. char b[BDEVNAME_SIZE];
  2942. freshest = NULL;
  2943. rdev_for_each_safe(rdev, tmp, mddev)
  2944. switch (super_types[mddev->major_version].
  2945. load_super(rdev, freshest, mddev->minor_version)) {
  2946. case 1:
  2947. freshest = rdev;
  2948. break;
  2949. case 0:
  2950. break;
  2951. default:
  2952. printk( KERN_ERR \
  2953. "md: fatal superblock inconsistency in %s"
  2954. " -- removing from array\n",
  2955. bdevname(rdev->bdev,b));
  2956. kick_rdev_from_array(rdev);
  2957. }
  2958. super_types[mddev->major_version].
  2959. validate_super(mddev, freshest);
  2960. i = 0;
  2961. rdev_for_each_safe(rdev, tmp, mddev) {
  2962. if (mddev->max_disks &&
  2963. (rdev->desc_nr >= mddev->max_disks ||
  2964. i > mddev->max_disks)) {
  2965. printk(KERN_WARNING
  2966. "md: %s: %s: only %d devices permitted\n",
  2967. mdname(mddev), bdevname(rdev->bdev, b),
  2968. mddev->max_disks);
  2969. kick_rdev_from_array(rdev);
  2970. continue;
  2971. }
  2972. if (rdev != freshest)
  2973. if (super_types[mddev->major_version].
  2974. validate_super(mddev, rdev)) {
  2975. printk(KERN_WARNING "md: kicking non-fresh %s"
  2976. " from array!\n",
  2977. bdevname(rdev->bdev,b));
  2978. kick_rdev_from_array(rdev);
  2979. continue;
  2980. }
  2981. if (mddev->level == LEVEL_MULTIPATH) {
  2982. rdev->desc_nr = i++;
  2983. rdev->raid_disk = rdev->desc_nr;
  2984. set_bit(In_sync, &rdev->flags);
  2985. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2986. rdev->raid_disk = -1;
  2987. clear_bit(In_sync, &rdev->flags);
  2988. }
  2989. }
  2990. }
  2991. /* Read a fixed-point number.
  2992. * Numbers in sysfs attributes should be in "standard" units where
  2993. * possible, so time should be in seconds.
  2994. * However we internally use a a much smaller unit such as
  2995. * milliseconds or jiffies.
  2996. * This function takes a decimal number with a possible fractional
  2997. * component, and produces an integer which is the result of
  2998. * multiplying that number by 10^'scale'.
  2999. * all without any floating-point arithmetic.
  3000. */
  3001. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  3002. {
  3003. unsigned long result = 0;
  3004. long decimals = -1;
  3005. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  3006. if (*cp == '.')
  3007. decimals = 0;
  3008. else if (decimals < scale) {
  3009. unsigned int value;
  3010. value = *cp - '0';
  3011. result = result * 10 + value;
  3012. if (decimals >= 0)
  3013. decimals++;
  3014. }
  3015. cp++;
  3016. }
  3017. if (*cp == '\n')
  3018. cp++;
  3019. if (*cp)
  3020. return -EINVAL;
  3021. if (decimals < 0)
  3022. decimals = 0;
  3023. while (decimals < scale) {
  3024. result *= 10;
  3025. decimals ++;
  3026. }
  3027. *res = result;
  3028. return 0;
  3029. }
  3030. static void md_safemode_timeout(unsigned long data);
  3031. static ssize_t
  3032. safe_delay_show(struct mddev *mddev, char *page)
  3033. {
  3034. int msec = (mddev->safemode_delay*1000)/HZ;
  3035. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  3036. }
  3037. static ssize_t
  3038. safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
  3039. {
  3040. unsigned long msec;
  3041. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  3042. return -EINVAL;
  3043. if (msec == 0)
  3044. mddev->safemode_delay = 0;
  3045. else {
  3046. unsigned long old_delay = mddev->safemode_delay;
  3047. mddev->safemode_delay = (msec*HZ)/1000;
  3048. if (mddev->safemode_delay == 0)
  3049. mddev->safemode_delay = 1;
  3050. if (mddev->safemode_delay < old_delay)
  3051. md_safemode_timeout((unsigned long)mddev);
  3052. }
  3053. return len;
  3054. }
  3055. static struct md_sysfs_entry md_safe_delay =
  3056. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  3057. static ssize_t
  3058. level_show(struct mddev *mddev, char *page)
  3059. {
  3060. struct md_personality *p = mddev->pers;
  3061. if (p)
  3062. return sprintf(page, "%s\n", p->name);
  3063. else if (mddev->clevel[0])
  3064. return sprintf(page, "%s\n", mddev->clevel);
  3065. else if (mddev->level != LEVEL_NONE)
  3066. return sprintf(page, "%d\n", mddev->level);
  3067. else
  3068. return 0;
  3069. }
  3070. static ssize_t
  3071. level_store(struct mddev *mddev, const char *buf, size_t len)
  3072. {
  3073. char clevel[16];
  3074. ssize_t rv = len;
  3075. struct md_personality *pers;
  3076. long level;
  3077. void *priv;
  3078. struct md_rdev *rdev;
  3079. if (mddev->pers == NULL) {
  3080. if (len == 0)
  3081. return 0;
  3082. if (len >= sizeof(mddev->clevel))
  3083. return -ENOSPC;
  3084. strncpy(mddev->clevel, buf, len);
  3085. if (mddev->clevel[len-1] == '\n')
  3086. len--;
  3087. mddev->clevel[len] = 0;
  3088. mddev->level = LEVEL_NONE;
  3089. return rv;
  3090. }
  3091. /* request to change the personality. Need to ensure:
  3092. * - array is not engaged in resync/recovery/reshape
  3093. * - old personality can be suspended
  3094. * - new personality will access other array.
  3095. */
  3096. if (mddev->sync_thread ||
  3097. mddev->reshape_position != MaxSector ||
  3098. mddev->sysfs_active)
  3099. return -EBUSY;
  3100. if (!mddev->pers->quiesce) {
  3101. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  3102. mdname(mddev), mddev->pers->name);
  3103. return -EINVAL;
  3104. }
  3105. /* Now find the new personality */
  3106. if (len == 0 || len >= sizeof(clevel))
  3107. return -EINVAL;
  3108. strncpy(clevel, buf, len);
  3109. if (clevel[len-1] == '\n')
  3110. len--;
  3111. clevel[len] = 0;
  3112. if (strict_strtol(clevel, 10, &level))
  3113. level = LEVEL_NONE;
  3114. if (request_module("md-%s", clevel) != 0)
  3115. request_module("md-level-%s", clevel);
  3116. spin_lock(&pers_lock);
  3117. pers = find_pers(level, clevel);
  3118. if (!pers || !try_module_get(pers->owner)) {
  3119. spin_unlock(&pers_lock);
  3120. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  3121. return -EINVAL;
  3122. }
  3123. spin_unlock(&pers_lock);
  3124. if (pers == mddev->pers) {
  3125. /* Nothing to do! */
  3126. module_put(pers->owner);
  3127. return rv;
  3128. }
  3129. if (!pers->takeover) {
  3130. module_put(pers->owner);
  3131. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  3132. mdname(mddev), clevel);
  3133. return -EINVAL;
  3134. }
  3135. rdev_for_each(rdev, mddev)
  3136. rdev->new_raid_disk = rdev->raid_disk;
  3137. /* ->takeover must set new_* and/or delta_disks
  3138. * if it succeeds, and may set them when it fails.
  3139. */
  3140. priv = pers->takeover(mddev);
  3141. if (IS_ERR(priv)) {
  3142. mddev->new_level = mddev->level;
  3143. mddev->new_layout = mddev->layout;
  3144. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3145. mddev->raid_disks -= mddev->delta_disks;
  3146. mddev->delta_disks = 0;
  3147. mddev->reshape_backwards = 0;
  3148. module_put(pers->owner);
  3149. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  3150. mdname(mddev), clevel);
  3151. return PTR_ERR(priv);
  3152. }
  3153. /* Looks like we have a winner */
  3154. mddev_suspend(mddev);
  3155. mddev->pers->stop(mddev);
  3156. if (mddev->pers->sync_request == NULL &&
  3157. pers->sync_request != NULL) {
  3158. /* need to add the md_redundancy_group */
  3159. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3160. printk(KERN_WARNING
  3161. "md: cannot register extra attributes for %s\n",
  3162. mdname(mddev));
  3163. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  3164. }
  3165. if (mddev->pers->sync_request != NULL &&
  3166. pers->sync_request == NULL) {
  3167. /* need to remove the md_redundancy_group */
  3168. if (mddev->to_remove == NULL)
  3169. mddev->to_remove = &md_redundancy_group;
  3170. }
  3171. if (mddev->pers->sync_request == NULL &&
  3172. mddev->external) {
  3173. /* We are converting from a no-redundancy array
  3174. * to a redundancy array and metadata is managed
  3175. * externally so we need to be sure that writes
  3176. * won't block due to a need to transition
  3177. * clean->dirty
  3178. * until external management is started.
  3179. */
  3180. mddev->in_sync = 0;
  3181. mddev->safemode_delay = 0;
  3182. mddev->safemode = 0;
  3183. }
  3184. rdev_for_each(rdev, mddev) {
  3185. if (rdev->raid_disk < 0)
  3186. continue;
  3187. if (rdev->new_raid_disk >= mddev->raid_disks)
  3188. rdev->new_raid_disk = -1;
  3189. if (rdev->new_raid_disk == rdev->raid_disk)
  3190. continue;
  3191. sysfs_unlink_rdev(mddev, rdev);
  3192. }
  3193. rdev_for_each(rdev, mddev) {
  3194. if (rdev->raid_disk < 0)
  3195. continue;
  3196. if (rdev->new_raid_disk == rdev->raid_disk)
  3197. continue;
  3198. rdev->raid_disk = rdev->new_raid_disk;
  3199. if (rdev->raid_disk < 0)
  3200. clear_bit(In_sync, &rdev->flags);
  3201. else {
  3202. if (sysfs_link_rdev(mddev, rdev))
  3203. printk(KERN_WARNING "md: cannot register rd%d"
  3204. " for %s after level change\n",
  3205. rdev->raid_disk, mdname(mddev));
  3206. }
  3207. }
  3208. module_put(mddev->pers->owner);
  3209. mddev->pers = pers;
  3210. mddev->private = priv;
  3211. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3212. mddev->level = mddev->new_level;
  3213. mddev->layout = mddev->new_layout;
  3214. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3215. mddev->delta_disks = 0;
  3216. mddev->reshape_backwards = 0;
  3217. mddev->degraded = 0;
  3218. if (mddev->pers->sync_request == NULL) {
  3219. /* this is now an array without redundancy, so
  3220. * it must always be in_sync
  3221. */
  3222. mddev->in_sync = 1;
  3223. del_timer_sync(&mddev->safemode_timer);
  3224. }
  3225. pers->run(mddev);
  3226. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3227. mddev_resume(mddev);
  3228. sysfs_notify(&mddev->kobj, NULL, "level");
  3229. md_new_event(mddev);
  3230. return rv;
  3231. }
  3232. static struct md_sysfs_entry md_level =
  3233. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3234. static ssize_t
  3235. layout_show(struct mddev *mddev, char *page)
  3236. {
  3237. /* just a number, not meaningful for all levels */
  3238. if (mddev->reshape_position != MaxSector &&
  3239. mddev->layout != mddev->new_layout)
  3240. return sprintf(page, "%d (%d)\n",
  3241. mddev->new_layout, mddev->layout);
  3242. return sprintf(page, "%d\n", mddev->layout);
  3243. }
  3244. static ssize_t
  3245. layout_store(struct mddev *mddev, const char *buf, size_t len)
  3246. {
  3247. char *e;
  3248. unsigned long n = simple_strtoul(buf, &e, 10);
  3249. if (!*buf || (*e && *e != '\n'))
  3250. return -EINVAL;
  3251. if (mddev->pers) {
  3252. int err;
  3253. if (mddev->pers->check_reshape == NULL)
  3254. return -EBUSY;
  3255. mddev->new_layout = n;
  3256. err = mddev->pers->check_reshape(mddev);
  3257. if (err) {
  3258. mddev->new_layout = mddev->layout;
  3259. return err;
  3260. }
  3261. } else {
  3262. mddev->new_layout = n;
  3263. if (mddev->reshape_position == MaxSector)
  3264. mddev->layout = n;
  3265. }
  3266. return len;
  3267. }
  3268. static struct md_sysfs_entry md_layout =
  3269. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3270. static ssize_t
  3271. raid_disks_show(struct mddev *mddev, char *page)
  3272. {
  3273. if (mddev->raid_disks == 0)
  3274. return 0;
  3275. if (mddev->reshape_position != MaxSector &&
  3276. mddev->delta_disks != 0)
  3277. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3278. mddev->raid_disks - mddev->delta_disks);
  3279. return sprintf(page, "%d\n", mddev->raid_disks);
  3280. }
  3281. static int update_raid_disks(struct mddev *mddev, int raid_disks);
  3282. static ssize_t
  3283. raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
  3284. {
  3285. char *e;
  3286. int rv = 0;
  3287. unsigned long n = simple_strtoul(buf, &e, 10);
  3288. if (!*buf || (*e && *e != '\n'))
  3289. return -EINVAL;
  3290. if (mddev->pers)
  3291. rv = update_raid_disks(mddev, n);
  3292. else if (mddev->reshape_position != MaxSector) {
  3293. struct md_rdev *rdev;
  3294. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3295. rdev_for_each(rdev, mddev) {
  3296. if (olddisks < n &&
  3297. rdev->data_offset < rdev->new_data_offset)
  3298. return -EINVAL;
  3299. if (olddisks > n &&
  3300. rdev->data_offset > rdev->new_data_offset)
  3301. return -EINVAL;
  3302. }
  3303. mddev->delta_disks = n - olddisks;
  3304. mddev->raid_disks = n;
  3305. mddev->reshape_backwards = (mddev->delta_disks < 0);
  3306. } else
  3307. mddev->raid_disks = n;
  3308. return rv ? rv : len;
  3309. }
  3310. static struct md_sysfs_entry md_raid_disks =
  3311. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3312. static ssize_t
  3313. chunk_size_show(struct mddev *mddev, char *page)
  3314. {
  3315. if (mddev->reshape_position != MaxSector &&
  3316. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3317. return sprintf(page, "%d (%d)\n",
  3318. mddev->new_chunk_sectors << 9,
  3319. mddev->chunk_sectors << 9);
  3320. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3321. }
  3322. static ssize_t
  3323. chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
  3324. {
  3325. char *e;
  3326. unsigned long n = simple_strtoul(buf, &e, 10);
  3327. if (!*buf || (*e && *e != '\n'))
  3328. return -EINVAL;
  3329. if (mddev->pers) {
  3330. int err;
  3331. if (mddev->pers->check_reshape == NULL)
  3332. return -EBUSY;
  3333. mddev->new_chunk_sectors = n >> 9;
  3334. err = mddev->pers->check_reshape(mddev);
  3335. if (err) {
  3336. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3337. return err;
  3338. }
  3339. } else {
  3340. mddev->new_chunk_sectors = n >> 9;
  3341. if (mddev->reshape_position == MaxSector)
  3342. mddev->chunk_sectors = n >> 9;
  3343. }
  3344. return len;
  3345. }
  3346. static struct md_sysfs_entry md_chunk_size =
  3347. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3348. static ssize_t
  3349. resync_start_show(struct mddev *mddev, char *page)
  3350. {
  3351. if (mddev->recovery_cp == MaxSector)
  3352. return sprintf(page, "none\n");
  3353. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3354. }
  3355. static ssize_t
  3356. resync_start_store(struct mddev *mddev, const char *buf, size_t len)
  3357. {
  3358. char *e;
  3359. unsigned long long n = simple_strtoull(buf, &e, 10);
  3360. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3361. return -EBUSY;
  3362. if (cmd_match(buf, "none"))
  3363. n = MaxSector;
  3364. else if (!*buf || (*e && *e != '\n'))
  3365. return -EINVAL;
  3366. mddev->recovery_cp = n;
  3367. if (mddev->pers)
  3368. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3369. return len;
  3370. }
  3371. static struct md_sysfs_entry md_resync_start =
  3372. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3373. /*
  3374. * The array state can be:
  3375. *
  3376. * clear
  3377. * No devices, no size, no level
  3378. * Equivalent to STOP_ARRAY ioctl
  3379. * inactive
  3380. * May have some settings, but array is not active
  3381. * all IO results in error
  3382. * When written, doesn't tear down array, but just stops it
  3383. * suspended (not supported yet)
  3384. * All IO requests will block. The array can be reconfigured.
  3385. * Writing this, if accepted, will block until array is quiescent
  3386. * readonly
  3387. * no resync can happen. no superblocks get written.
  3388. * write requests fail
  3389. * read-auto
  3390. * like readonly, but behaves like 'clean' on a write request.
  3391. *
  3392. * clean - no pending writes, but otherwise active.
  3393. * When written to inactive array, starts without resync
  3394. * If a write request arrives then
  3395. * if metadata is known, mark 'dirty' and switch to 'active'.
  3396. * if not known, block and switch to write-pending
  3397. * If written to an active array that has pending writes, then fails.
  3398. * active
  3399. * fully active: IO and resync can be happening.
  3400. * When written to inactive array, starts with resync
  3401. *
  3402. * write-pending
  3403. * clean, but writes are blocked waiting for 'active' to be written.
  3404. *
  3405. * active-idle
  3406. * like active, but no writes have been seen for a while (100msec).
  3407. *
  3408. */
  3409. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3410. write_pending, active_idle, bad_word};
  3411. static char *array_states[] = {
  3412. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3413. "write-pending", "active-idle", NULL };
  3414. static int match_word(const char *word, char **list)
  3415. {
  3416. int n;
  3417. for (n=0; list[n]; n++)
  3418. if (cmd_match(word, list[n]))
  3419. break;
  3420. return n;
  3421. }
  3422. static ssize_t
  3423. array_state_show(struct mddev *mddev, char *page)
  3424. {
  3425. enum array_state st = inactive;
  3426. if (mddev->pers)
  3427. switch(mddev->ro) {
  3428. case 1:
  3429. st = readonly;
  3430. break;
  3431. case 2:
  3432. st = read_auto;
  3433. break;
  3434. case 0:
  3435. if (mddev->in_sync)
  3436. st = clean;
  3437. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3438. st = write_pending;
  3439. else if (mddev->safemode)
  3440. st = active_idle;
  3441. else
  3442. st = active;
  3443. }
  3444. else {
  3445. if (list_empty(&mddev->disks) &&
  3446. mddev->raid_disks == 0 &&
  3447. mddev->dev_sectors == 0)
  3448. st = clear;
  3449. else
  3450. st = inactive;
  3451. }
  3452. return sprintf(page, "%s\n", array_states[st]);
  3453. }
  3454. static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
  3455. static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
  3456. static int do_md_run(struct mddev * mddev);
  3457. static int restart_array(struct mddev *mddev);
  3458. static ssize_t
  3459. array_state_store(struct mddev *mddev, const char *buf, size_t len)
  3460. {
  3461. int err = -EINVAL;
  3462. enum array_state st = match_word(buf, array_states);
  3463. switch(st) {
  3464. case bad_word:
  3465. break;
  3466. case clear:
  3467. /* stopping an active array */
  3468. err = do_md_stop(mddev, 0, NULL);
  3469. break;
  3470. case inactive:
  3471. /* stopping an active array */
  3472. if (mddev->pers)
  3473. err = do_md_stop(mddev, 2, NULL);
  3474. else
  3475. err = 0; /* already inactive */
  3476. break;
  3477. case suspended:
  3478. break; /* not supported yet */
  3479. case readonly:
  3480. if (mddev->pers)
  3481. err = md_set_readonly(mddev, NULL);
  3482. else {
  3483. mddev->ro = 1;
  3484. set_disk_ro(mddev->gendisk, 1);
  3485. err = do_md_run(mddev);
  3486. }
  3487. break;
  3488. case read_auto:
  3489. if (mddev->pers) {
  3490. if (mddev->ro == 0)
  3491. err = md_set_readonly(mddev, NULL);
  3492. else if (mddev->ro == 1)
  3493. err = restart_array(mddev);
  3494. if (err == 0) {
  3495. mddev->ro = 2;
  3496. set_disk_ro(mddev->gendisk, 0);
  3497. }
  3498. } else {
  3499. mddev->ro = 2;
  3500. err = do_md_run(mddev);
  3501. }
  3502. break;
  3503. case clean:
  3504. if (mddev->pers) {
  3505. restart_array(mddev);
  3506. spin_lock_irq(&mddev->write_lock);
  3507. if (atomic_read(&mddev->writes_pending) == 0) {
  3508. if (mddev->in_sync == 0) {
  3509. mddev->in_sync = 1;
  3510. if (mddev->safemode == 1)
  3511. mddev->safemode = 0;
  3512. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3513. }
  3514. err = 0;
  3515. } else
  3516. err = -EBUSY;
  3517. spin_unlock_irq(&mddev->write_lock);
  3518. } else
  3519. err = -EINVAL;
  3520. break;
  3521. case active:
  3522. if (mddev->pers) {
  3523. restart_array(mddev);
  3524. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3525. wake_up(&mddev->sb_wait);
  3526. err = 0;
  3527. } else {
  3528. mddev->ro = 0;
  3529. set_disk_ro(mddev->gendisk, 0);
  3530. err = do_md_run(mddev);
  3531. }
  3532. break;
  3533. case write_pending:
  3534. case active_idle:
  3535. /* these cannot be set */
  3536. break;
  3537. }
  3538. if (err)
  3539. return err;
  3540. else {
  3541. if (mddev->hold_active == UNTIL_IOCTL)
  3542. mddev->hold_active = 0;
  3543. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3544. return len;
  3545. }
  3546. }
  3547. static struct md_sysfs_entry md_array_state =
  3548. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3549. static ssize_t
  3550. max_corrected_read_errors_show(struct mddev *mddev, char *page) {
  3551. return sprintf(page, "%d\n",
  3552. atomic_read(&mddev->max_corr_read_errors));
  3553. }
  3554. static ssize_t
  3555. max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
  3556. {
  3557. char *e;
  3558. unsigned long n = simple_strtoul(buf, &e, 10);
  3559. if (*buf && (*e == 0 || *e == '\n')) {
  3560. atomic_set(&mddev->max_corr_read_errors, n);
  3561. return len;
  3562. }
  3563. return -EINVAL;
  3564. }
  3565. static struct md_sysfs_entry max_corr_read_errors =
  3566. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3567. max_corrected_read_errors_store);
  3568. static ssize_t
  3569. null_show(struct mddev *mddev, char *page)
  3570. {
  3571. return -EINVAL;
  3572. }
  3573. static ssize_t
  3574. new_dev_store(struct mddev *mddev, const char *buf, size_t len)
  3575. {
  3576. /* buf must be %d:%d\n? giving major and minor numbers */
  3577. /* The new device is added to the array.
  3578. * If the array has a persistent superblock, we read the
  3579. * superblock to initialise info and check validity.
  3580. * Otherwise, only checking done is that in bind_rdev_to_array,
  3581. * which mainly checks size.
  3582. */
  3583. char *e;
  3584. int major = simple_strtoul(buf, &e, 10);
  3585. int minor;
  3586. dev_t dev;
  3587. struct md_rdev *rdev;
  3588. int err;
  3589. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3590. return -EINVAL;
  3591. minor = simple_strtoul(e+1, &e, 10);
  3592. if (*e && *e != '\n')
  3593. return -EINVAL;
  3594. dev = MKDEV(major, minor);
  3595. if (major != MAJOR(dev) ||
  3596. minor != MINOR(dev))
  3597. return -EOVERFLOW;
  3598. if (mddev->persistent) {
  3599. rdev = md_import_device(dev, mddev->major_version,
  3600. mddev->minor_version);
  3601. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3602. struct md_rdev *rdev0
  3603. = list_entry(mddev->disks.next,
  3604. struct md_rdev, same_set);
  3605. err = super_types[mddev->major_version]
  3606. .load_super(rdev, rdev0, mddev->minor_version);
  3607. if (err < 0)
  3608. goto out;
  3609. }
  3610. } else if (mddev->external)
  3611. rdev = md_import_device(dev, -2, -1);
  3612. else
  3613. rdev = md_import_device(dev, -1, -1);
  3614. if (IS_ERR(rdev))
  3615. return PTR_ERR(rdev);
  3616. err = bind_rdev_to_array(rdev, mddev);
  3617. out:
  3618. if (err)
  3619. export_rdev(rdev);
  3620. return err ? err : len;
  3621. }
  3622. static struct md_sysfs_entry md_new_device =
  3623. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3624. static ssize_t
  3625. bitmap_store(struct mddev *mddev, const char *buf, size_t len)
  3626. {
  3627. char *end;
  3628. unsigned long chunk, end_chunk;
  3629. if (!mddev->bitmap)
  3630. goto out;
  3631. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3632. while (*buf) {
  3633. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3634. if (buf == end) break;
  3635. if (*end == '-') { /* range */
  3636. buf = end + 1;
  3637. end_chunk = simple_strtoul(buf, &end, 0);
  3638. if (buf == end) break;
  3639. }
  3640. if (*end && !isspace(*end)) break;
  3641. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3642. buf = skip_spaces(end);
  3643. }
  3644. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3645. out:
  3646. return len;
  3647. }
  3648. static struct md_sysfs_entry md_bitmap =
  3649. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3650. static ssize_t
  3651. size_show(struct mddev *mddev, char *page)
  3652. {
  3653. return sprintf(page, "%llu\n",
  3654. (unsigned long long)mddev->dev_sectors / 2);
  3655. }
  3656. static int update_size(struct mddev *mddev, sector_t num_sectors);
  3657. static ssize_t
  3658. size_store(struct mddev *mddev, const char *buf, size_t len)
  3659. {
  3660. /* If array is inactive, we can reduce the component size, but
  3661. * not increase it (except from 0).
  3662. * If array is active, we can try an on-line resize
  3663. */
  3664. sector_t sectors;
  3665. int err = strict_blocks_to_sectors(buf, &sectors);
  3666. if (err < 0)
  3667. return err;
  3668. if (mddev->pers) {
  3669. err = update_size(mddev, sectors);
  3670. md_update_sb(mddev, 1);
  3671. } else {
  3672. if (mddev->dev_sectors == 0 ||
  3673. mddev->dev_sectors > sectors)
  3674. mddev->dev_sectors = sectors;
  3675. else
  3676. err = -ENOSPC;
  3677. }
  3678. return err ? err : len;
  3679. }
  3680. static struct md_sysfs_entry md_size =
  3681. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3682. /* Metadata version.
  3683. * This is one of
  3684. * 'none' for arrays with no metadata (good luck...)
  3685. * 'external' for arrays with externally managed metadata,
  3686. * or N.M for internally known formats
  3687. */
  3688. static ssize_t
  3689. metadata_show(struct mddev *mddev, char *page)
  3690. {
  3691. if (mddev->persistent)
  3692. return sprintf(page, "%d.%d\n",
  3693. mddev->major_version, mddev->minor_version);
  3694. else if (mddev->external)
  3695. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3696. else
  3697. return sprintf(page, "none\n");
  3698. }
  3699. static ssize_t
  3700. metadata_store(struct mddev *mddev, const char *buf, size_t len)
  3701. {
  3702. int major, minor;
  3703. char *e;
  3704. /* Changing the details of 'external' metadata is
  3705. * always permitted. Otherwise there must be
  3706. * no devices attached to the array.
  3707. */
  3708. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3709. ;
  3710. else if (!list_empty(&mddev->disks))
  3711. return -EBUSY;
  3712. if (cmd_match(buf, "none")) {
  3713. mddev->persistent = 0;
  3714. mddev->external = 0;
  3715. mddev->major_version = 0;
  3716. mddev->minor_version = 90;
  3717. return len;
  3718. }
  3719. if (strncmp(buf, "external:", 9) == 0) {
  3720. size_t namelen = len-9;
  3721. if (namelen >= sizeof(mddev->metadata_type))
  3722. namelen = sizeof(mddev->metadata_type)-1;
  3723. strncpy(mddev->metadata_type, buf+9, namelen);
  3724. mddev->metadata_type[namelen] = 0;
  3725. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3726. mddev->metadata_type[--namelen] = 0;
  3727. mddev->persistent = 0;
  3728. mddev->external = 1;
  3729. mddev->major_version = 0;
  3730. mddev->minor_version = 90;
  3731. return len;
  3732. }
  3733. major = simple_strtoul(buf, &e, 10);
  3734. if (e==buf || *e != '.')
  3735. return -EINVAL;
  3736. buf = e+1;
  3737. minor = simple_strtoul(buf, &e, 10);
  3738. if (e==buf || (*e && *e != '\n') )
  3739. return -EINVAL;
  3740. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3741. return -ENOENT;
  3742. mddev->major_version = major;
  3743. mddev->minor_version = minor;
  3744. mddev->persistent = 1;
  3745. mddev->external = 0;
  3746. return len;
  3747. }
  3748. static struct md_sysfs_entry md_metadata =
  3749. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3750. static ssize_t
  3751. action_show(struct mddev *mddev, char *page)
  3752. {
  3753. char *type = "idle";
  3754. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3755. type = "frozen";
  3756. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3757. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3758. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3759. type = "reshape";
  3760. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3761. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3762. type = "resync";
  3763. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3764. type = "check";
  3765. else
  3766. type = "repair";
  3767. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3768. type = "recover";
  3769. }
  3770. return sprintf(page, "%s\n", type);
  3771. }
  3772. static void reap_sync_thread(struct mddev *mddev);
  3773. static ssize_t
  3774. action_store(struct mddev *mddev, const char *page, size_t len)
  3775. {
  3776. if (!mddev->pers || !mddev->pers->sync_request)
  3777. return -EINVAL;
  3778. if (cmd_match(page, "frozen"))
  3779. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3780. else
  3781. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3782. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3783. if (mddev->sync_thread) {
  3784. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3785. reap_sync_thread(mddev);
  3786. }
  3787. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3788. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3789. return -EBUSY;
  3790. else if (cmd_match(page, "resync"))
  3791. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3792. else if (cmd_match(page, "recover")) {
  3793. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3794. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3795. } else if (cmd_match(page, "reshape")) {
  3796. int err;
  3797. if (mddev->pers->start_reshape == NULL)
  3798. return -EINVAL;
  3799. err = mddev->pers->start_reshape(mddev);
  3800. if (err)
  3801. return err;
  3802. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3803. } else {
  3804. if (cmd_match(page, "check"))
  3805. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3806. else if (!cmd_match(page, "repair"))
  3807. return -EINVAL;
  3808. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3809. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3810. }
  3811. if (mddev->ro == 2) {
  3812. /* A write to sync_action is enough to justify
  3813. * canceling read-auto mode
  3814. */
  3815. mddev->ro = 0;
  3816. md_wakeup_thread(mddev->sync_thread);
  3817. }
  3818. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3819. md_wakeup_thread(mddev->thread);
  3820. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3821. return len;
  3822. }
  3823. static ssize_t
  3824. mismatch_cnt_show(struct mddev *mddev, char *page)
  3825. {
  3826. return sprintf(page, "%llu\n",
  3827. (unsigned long long)
  3828. atomic64_read(&mddev->resync_mismatches));
  3829. }
  3830. static struct md_sysfs_entry md_scan_mode =
  3831. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3832. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3833. static ssize_t
  3834. sync_min_show(struct mddev *mddev, char *page)
  3835. {
  3836. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3837. mddev->sync_speed_min ? "local": "system");
  3838. }
  3839. static ssize_t
  3840. sync_min_store(struct mddev *mddev, const char *buf, size_t len)
  3841. {
  3842. int min;
  3843. char *e;
  3844. if (strncmp(buf, "system", 6)==0) {
  3845. mddev->sync_speed_min = 0;
  3846. return len;
  3847. }
  3848. min = simple_strtoul(buf, &e, 10);
  3849. if (buf == e || (*e && *e != '\n') || min <= 0)
  3850. return -EINVAL;
  3851. mddev->sync_speed_min = min;
  3852. return len;
  3853. }
  3854. static struct md_sysfs_entry md_sync_min =
  3855. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3856. static ssize_t
  3857. sync_max_show(struct mddev *mddev, char *page)
  3858. {
  3859. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3860. mddev->sync_speed_max ? "local": "system");
  3861. }
  3862. static ssize_t
  3863. sync_max_store(struct mddev *mddev, const char *buf, size_t len)
  3864. {
  3865. int max;
  3866. char *e;
  3867. if (strncmp(buf, "system", 6)==0) {
  3868. mddev->sync_speed_max = 0;
  3869. return len;
  3870. }
  3871. max = simple_strtoul(buf, &e, 10);
  3872. if (buf == e || (*e && *e != '\n') || max <= 0)
  3873. return -EINVAL;
  3874. mddev->sync_speed_max = max;
  3875. return len;
  3876. }
  3877. static struct md_sysfs_entry md_sync_max =
  3878. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3879. static ssize_t
  3880. degraded_show(struct mddev *mddev, char *page)
  3881. {
  3882. return sprintf(page, "%d\n", mddev->degraded);
  3883. }
  3884. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3885. static ssize_t
  3886. sync_force_parallel_show(struct mddev *mddev, char *page)
  3887. {
  3888. return sprintf(page, "%d\n", mddev->parallel_resync);
  3889. }
  3890. static ssize_t
  3891. sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
  3892. {
  3893. long n;
  3894. if (strict_strtol(buf, 10, &n))
  3895. return -EINVAL;
  3896. if (n != 0 && n != 1)
  3897. return -EINVAL;
  3898. mddev->parallel_resync = n;
  3899. if (mddev->sync_thread)
  3900. wake_up(&resync_wait);
  3901. return len;
  3902. }
  3903. /* force parallel resync, even with shared block devices */
  3904. static struct md_sysfs_entry md_sync_force_parallel =
  3905. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3906. sync_force_parallel_show, sync_force_parallel_store);
  3907. static ssize_t
  3908. sync_speed_show(struct mddev *mddev, char *page)
  3909. {
  3910. unsigned long resync, dt, db;
  3911. if (mddev->curr_resync == 0)
  3912. return sprintf(page, "none\n");
  3913. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3914. dt = (jiffies - mddev->resync_mark) / HZ;
  3915. if (!dt) dt++;
  3916. db = resync - mddev->resync_mark_cnt;
  3917. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3918. }
  3919. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3920. static ssize_t
  3921. sync_completed_show(struct mddev *mddev, char *page)
  3922. {
  3923. unsigned long long max_sectors, resync;
  3924. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3925. return sprintf(page, "none\n");
  3926. if (mddev->curr_resync == 1 ||
  3927. mddev->curr_resync == 2)
  3928. return sprintf(page, "delayed\n");
  3929. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  3930. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3931. max_sectors = mddev->resync_max_sectors;
  3932. else
  3933. max_sectors = mddev->dev_sectors;
  3934. resync = mddev->curr_resync_completed;
  3935. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3936. }
  3937. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3938. static ssize_t
  3939. min_sync_show(struct mddev *mddev, char *page)
  3940. {
  3941. return sprintf(page, "%llu\n",
  3942. (unsigned long long)mddev->resync_min);
  3943. }
  3944. static ssize_t
  3945. min_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3946. {
  3947. unsigned long long min;
  3948. if (strict_strtoull(buf, 10, &min))
  3949. return -EINVAL;
  3950. if (min > mddev->resync_max)
  3951. return -EINVAL;
  3952. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3953. return -EBUSY;
  3954. /* Must be a multiple of chunk_size */
  3955. if (mddev->chunk_sectors) {
  3956. sector_t temp = min;
  3957. if (sector_div(temp, mddev->chunk_sectors))
  3958. return -EINVAL;
  3959. }
  3960. mddev->resync_min = min;
  3961. return len;
  3962. }
  3963. static struct md_sysfs_entry md_min_sync =
  3964. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3965. static ssize_t
  3966. max_sync_show(struct mddev *mddev, char *page)
  3967. {
  3968. if (mddev->resync_max == MaxSector)
  3969. return sprintf(page, "max\n");
  3970. else
  3971. return sprintf(page, "%llu\n",
  3972. (unsigned long long)mddev->resync_max);
  3973. }
  3974. static ssize_t
  3975. max_sync_store(struct mddev *mddev, const char *buf, size_t len)
  3976. {
  3977. if (strncmp(buf, "max", 3) == 0)
  3978. mddev->resync_max = MaxSector;
  3979. else {
  3980. unsigned long long max;
  3981. if (strict_strtoull(buf, 10, &max))
  3982. return -EINVAL;
  3983. if (max < mddev->resync_min)
  3984. return -EINVAL;
  3985. if (max < mddev->resync_max &&
  3986. mddev->ro == 0 &&
  3987. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3988. return -EBUSY;
  3989. /* Must be a multiple of chunk_size */
  3990. if (mddev->chunk_sectors) {
  3991. sector_t temp = max;
  3992. if (sector_div(temp, mddev->chunk_sectors))
  3993. return -EINVAL;
  3994. }
  3995. mddev->resync_max = max;
  3996. }
  3997. wake_up(&mddev->recovery_wait);
  3998. return len;
  3999. }
  4000. static struct md_sysfs_entry md_max_sync =
  4001. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  4002. static ssize_t
  4003. suspend_lo_show(struct mddev *mddev, char *page)
  4004. {
  4005. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  4006. }
  4007. static ssize_t
  4008. suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
  4009. {
  4010. char *e;
  4011. unsigned long long new = simple_strtoull(buf, &e, 10);
  4012. unsigned long long old = mddev->suspend_lo;
  4013. if (mddev->pers == NULL ||
  4014. mddev->pers->quiesce == NULL)
  4015. return -EINVAL;
  4016. if (buf == e || (*e && *e != '\n'))
  4017. return -EINVAL;
  4018. mddev->suspend_lo = new;
  4019. if (new >= old)
  4020. /* Shrinking suspended region */
  4021. mddev->pers->quiesce(mddev, 2);
  4022. else {
  4023. /* Expanding suspended region - need to wait */
  4024. mddev->pers->quiesce(mddev, 1);
  4025. mddev->pers->quiesce(mddev, 0);
  4026. }
  4027. return len;
  4028. }
  4029. static struct md_sysfs_entry md_suspend_lo =
  4030. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  4031. static ssize_t
  4032. suspend_hi_show(struct mddev *mddev, char *page)
  4033. {
  4034. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  4035. }
  4036. static ssize_t
  4037. suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
  4038. {
  4039. char *e;
  4040. unsigned long long new = simple_strtoull(buf, &e, 10);
  4041. unsigned long long old = mddev->suspend_hi;
  4042. if (mddev->pers == NULL ||
  4043. mddev->pers->quiesce == NULL)
  4044. return -EINVAL;
  4045. if (buf == e || (*e && *e != '\n'))
  4046. return -EINVAL;
  4047. mddev->suspend_hi = new;
  4048. if (new <= old)
  4049. /* Shrinking suspended region */
  4050. mddev->pers->quiesce(mddev, 2);
  4051. else {
  4052. /* Expanding suspended region - need to wait */
  4053. mddev->pers->quiesce(mddev, 1);
  4054. mddev->pers->quiesce(mddev, 0);
  4055. }
  4056. return len;
  4057. }
  4058. static struct md_sysfs_entry md_suspend_hi =
  4059. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  4060. static ssize_t
  4061. reshape_position_show(struct mddev *mddev, char *page)
  4062. {
  4063. if (mddev->reshape_position != MaxSector)
  4064. return sprintf(page, "%llu\n",
  4065. (unsigned long long)mddev->reshape_position);
  4066. strcpy(page, "none\n");
  4067. return 5;
  4068. }
  4069. static ssize_t
  4070. reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
  4071. {
  4072. struct md_rdev *rdev;
  4073. char *e;
  4074. unsigned long long new = simple_strtoull(buf, &e, 10);
  4075. if (mddev->pers)
  4076. return -EBUSY;
  4077. if (buf == e || (*e && *e != '\n'))
  4078. return -EINVAL;
  4079. mddev->reshape_position = new;
  4080. mddev->delta_disks = 0;
  4081. mddev->reshape_backwards = 0;
  4082. mddev->new_level = mddev->level;
  4083. mddev->new_layout = mddev->layout;
  4084. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4085. rdev_for_each(rdev, mddev)
  4086. rdev->new_data_offset = rdev->data_offset;
  4087. return len;
  4088. }
  4089. static struct md_sysfs_entry md_reshape_position =
  4090. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  4091. reshape_position_store);
  4092. static ssize_t
  4093. reshape_direction_show(struct mddev *mddev, char *page)
  4094. {
  4095. return sprintf(page, "%s\n",
  4096. mddev->reshape_backwards ? "backwards" : "forwards");
  4097. }
  4098. static ssize_t
  4099. reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
  4100. {
  4101. int backwards = 0;
  4102. if (cmd_match(buf, "forwards"))
  4103. backwards = 0;
  4104. else if (cmd_match(buf, "backwards"))
  4105. backwards = 1;
  4106. else
  4107. return -EINVAL;
  4108. if (mddev->reshape_backwards == backwards)
  4109. return len;
  4110. /* check if we are allowed to change */
  4111. if (mddev->delta_disks)
  4112. return -EBUSY;
  4113. if (mddev->persistent &&
  4114. mddev->major_version == 0)
  4115. return -EINVAL;
  4116. mddev->reshape_backwards = backwards;
  4117. return len;
  4118. }
  4119. static struct md_sysfs_entry md_reshape_direction =
  4120. __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
  4121. reshape_direction_store);
  4122. static ssize_t
  4123. array_size_show(struct mddev *mddev, char *page)
  4124. {
  4125. if (mddev->external_size)
  4126. return sprintf(page, "%llu\n",
  4127. (unsigned long long)mddev->array_sectors/2);
  4128. else
  4129. return sprintf(page, "default\n");
  4130. }
  4131. static ssize_t
  4132. array_size_store(struct mddev *mddev, const char *buf, size_t len)
  4133. {
  4134. sector_t sectors;
  4135. if (strncmp(buf, "default", 7) == 0) {
  4136. if (mddev->pers)
  4137. sectors = mddev->pers->size(mddev, 0, 0);
  4138. else
  4139. sectors = mddev->array_sectors;
  4140. mddev->external_size = 0;
  4141. } else {
  4142. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  4143. return -EINVAL;
  4144. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  4145. return -E2BIG;
  4146. mddev->external_size = 1;
  4147. }
  4148. mddev->array_sectors = sectors;
  4149. if (mddev->pers) {
  4150. set_capacity(mddev->gendisk, mddev->array_sectors);
  4151. revalidate_disk(mddev->gendisk);
  4152. }
  4153. return len;
  4154. }
  4155. static struct md_sysfs_entry md_array_size =
  4156. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  4157. array_size_store);
  4158. static struct attribute *md_default_attrs[] = {
  4159. &md_level.attr,
  4160. &md_layout.attr,
  4161. &md_raid_disks.attr,
  4162. &md_chunk_size.attr,
  4163. &md_size.attr,
  4164. &md_resync_start.attr,
  4165. &md_metadata.attr,
  4166. &md_new_device.attr,
  4167. &md_safe_delay.attr,
  4168. &md_array_state.attr,
  4169. &md_reshape_position.attr,
  4170. &md_reshape_direction.attr,
  4171. &md_array_size.attr,
  4172. &max_corr_read_errors.attr,
  4173. NULL,
  4174. };
  4175. static struct attribute *md_redundancy_attrs[] = {
  4176. &md_scan_mode.attr,
  4177. &md_mismatches.attr,
  4178. &md_sync_min.attr,
  4179. &md_sync_max.attr,
  4180. &md_sync_speed.attr,
  4181. &md_sync_force_parallel.attr,
  4182. &md_sync_completed.attr,
  4183. &md_min_sync.attr,
  4184. &md_max_sync.attr,
  4185. &md_suspend_lo.attr,
  4186. &md_suspend_hi.attr,
  4187. &md_bitmap.attr,
  4188. &md_degraded.attr,
  4189. NULL,
  4190. };
  4191. static struct attribute_group md_redundancy_group = {
  4192. .name = NULL,
  4193. .attrs = md_redundancy_attrs,
  4194. };
  4195. static ssize_t
  4196. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  4197. {
  4198. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4199. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4200. ssize_t rv;
  4201. if (!entry->show)
  4202. return -EIO;
  4203. spin_lock(&all_mddevs_lock);
  4204. if (list_empty(&mddev->all_mddevs)) {
  4205. spin_unlock(&all_mddevs_lock);
  4206. return -EBUSY;
  4207. }
  4208. mddev_get(mddev);
  4209. spin_unlock(&all_mddevs_lock);
  4210. rv = mddev_lock(mddev);
  4211. if (!rv) {
  4212. rv = entry->show(mddev, page);
  4213. mddev_unlock(mddev);
  4214. }
  4215. mddev_put(mddev);
  4216. return rv;
  4217. }
  4218. static ssize_t
  4219. md_attr_store(struct kobject *kobj, struct attribute *attr,
  4220. const char *page, size_t length)
  4221. {
  4222. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  4223. struct mddev *mddev = container_of(kobj, struct mddev, kobj);
  4224. ssize_t rv;
  4225. if (!entry->store)
  4226. return -EIO;
  4227. if (!capable(CAP_SYS_ADMIN))
  4228. return -EACCES;
  4229. spin_lock(&all_mddevs_lock);
  4230. if (list_empty(&mddev->all_mddevs)) {
  4231. spin_unlock(&all_mddevs_lock);
  4232. return -EBUSY;
  4233. }
  4234. mddev_get(mddev);
  4235. spin_unlock(&all_mddevs_lock);
  4236. if (entry->store == new_dev_store)
  4237. flush_workqueue(md_misc_wq);
  4238. rv = mddev_lock(mddev);
  4239. if (!rv) {
  4240. rv = entry->store(mddev, page, length);
  4241. mddev_unlock(mddev);
  4242. }
  4243. mddev_put(mddev);
  4244. return rv;
  4245. }
  4246. static void md_free(struct kobject *ko)
  4247. {
  4248. struct mddev *mddev = container_of(ko, struct mddev, kobj);
  4249. if (mddev->sysfs_state)
  4250. sysfs_put(mddev->sysfs_state);
  4251. if (mddev->gendisk) {
  4252. del_gendisk(mddev->gendisk);
  4253. put_disk(mddev->gendisk);
  4254. }
  4255. if (mddev->queue)
  4256. blk_cleanup_queue(mddev->queue);
  4257. kfree(mddev);
  4258. }
  4259. static const struct sysfs_ops md_sysfs_ops = {
  4260. .show = md_attr_show,
  4261. .store = md_attr_store,
  4262. };
  4263. static struct kobj_type md_ktype = {
  4264. .release = md_free,
  4265. .sysfs_ops = &md_sysfs_ops,
  4266. .default_attrs = md_default_attrs,
  4267. };
  4268. int mdp_major = 0;
  4269. static void mddev_delayed_delete(struct work_struct *ws)
  4270. {
  4271. struct mddev *mddev = container_of(ws, struct mddev, del_work);
  4272. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4273. kobject_del(&mddev->kobj);
  4274. kobject_put(&mddev->kobj);
  4275. }
  4276. static int md_alloc(dev_t dev, char *name)
  4277. {
  4278. static DEFINE_MUTEX(disks_mutex);
  4279. struct mddev *mddev = mddev_find(dev);
  4280. struct gendisk *disk;
  4281. int partitioned;
  4282. int shift;
  4283. int unit;
  4284. int error;
  4285. if (!mddev)
  4286. return -ENODEV;
  4287. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4288. shift = partitioned ? MdpMinorShift : 0;
  4289. unit = MINOR(mddev->unit) >> shift;
  4290. /* wait for any previous instance of this device to be
  4291. * completely removed (mddev_delayed_delete).
  4292. */
  4293. flush_workqueue(md_misc_wq);
  4294. mutex_lock(&disks_mutex);
  4295. error = -EEXIST;
  4296. if (mddev->gendisk)
  4297. goto abort;
  4298. if (name) {
  4299. /* Need to ensure that 'name' is not a duplicate.
  4300. */
  4301. struct mddev *mddev2;
  4302. spin_lock(&all_mddevs_lock);
  4303. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4304. if (mddev2->gendisk &&
  4305. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4306. spin_unlock(&all_mddevs_lock);
  4307. goto abort;
  4308. }
  4309. spin_unlock(&all_mddevs_lock);
  4310. }
  4311. error = -ENOMEM;
  4312. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4313. if (!mddev->queue)
  4314. goto abort;
  4315. mddev->queue->queuedata = mddev;
  4316. blk_queue_make_request(mddev->queue, md_make_request);
  4317. blk_set_stacking_limits(&mddev->queue->limits);
  4318. disk = alloc_disk(1 << shift);
  4319. if (!disk) {
  4320. blk_cleanup_queue(mddev->queue);
  4321. mddev->queue = NULL;
  4322. goto abort;
  4323. }
  4324. disk->major = MAJOR(mddev->unit);
  4325. disk->first_minor = unit << shift;
  4326. if (name)
  4327. strcpy(disk->disk_name, name);
  4328. else if (partitioned)
  4329. sprintf(disk->disk_name, "md_d%d", unit);
  4330. else
  4331. sprintf(disk->disk_name, "md%d", unit);
  4332. disk->fops = &md_fops;
  4333. disk->private_data = mddev;
  4334. disk->queue = mddev->queue;
  4335. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4336. /* Allow extended partitions. This makes the
  4337. * 'mdp' device redundant, but we can't really
  4338. * remove it now.
  4339. */
  4340. disk->flags |= GENHD_FL_EXT_DEVT;
  4341. mddev->gendisk = disk;
  4342. /* As soon as we call add_disk(), another thread could get
  4343. * through to md_open, so make sure it doesn't get too far
  4344. */
  4345. mutex_lock(&mddev->open_mutex);
  4346. add_disk(disk);
  4347. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4348. &disk_to_dev(disk)->kobj, "%s", "md");
  4349. if (error) {
  4350. /* This isn't possible, but as kobject_init_and_add is marked
  4351. * __must_check, we must do something with the result
  4352. */
  4353. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4354. disk->disk_name);
  4355. error = 0;
  4356. }
  4357. if (mddev->kobj.sd &&
  4358. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4359. printk(KERN_DEBUG "pointless warning\n");
  4360. mutex_unlock(&mddev->open_mutex);
  4361. abort:
  4362. mutex_unlock(&disks_mutex);
  4363. if (!error && mddev->kobj.sd) {
  4364. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4365. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4366. }
  4367. mddev_put(mddev);
  4368. return error;
  4369. }
  4370. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4371. {
  4372. md_alloc(dev, NULL);
  4373. return NULL;
  4374. }
  4375. static int add_named_array(const char *val, struct kernel_param *kp)
  4376. {
  4377. /* val must be "md_*" where * is not all digits.
  4378. * We allocate an array with a large free minor number, and
  4379. * set the name to val. val must not already be an active name.
  4380. */
  4381. int len = strlen(val);
  4382. char buf[DISK_NAME_LEN];
  4383. while (len && val[len-1] == '\n')
  4384. len--;
  4385. if (len >= DISK_NAME_LEN)
  4386. return -E2BIG;
  4387. strlcpy(buf, val, len+1);
  4388. if (strncmp(buf, "md_", 3) != 0)
  4389. return -EINVAL;
  4390. return md_alloc(0, buf);
  4391. }
  4392. static void md_safemode_timeout(unsigned long data)
  4393. {
  4394. struct mddev *mddev = (struct mddev *) data;
  4395. if (!atomic_read(&mddev->writes_pending)) {
  4396. mddev->safemode = 1;
  4397. if (mddev->external)
  4398. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4399. }
  4400. md_wakeup_thread(mddev->thread);
  4401. }
  4402. static int start_dirty_degraded;
  4403. int md_run(struct mddev *mddev)
  4404. {
  4405. int err;
  4406. struct md_rdev *rdev;
  4407. struct md_personality *pers;
  4408. if (list_empty(&mddev->disks))
  4409. /* cannot run an array with no devices.. */
  4410. return -EINVAL;
  4411. if (mddev->pers)
  4412. return -EBUSY;
  4413. /* Cannot run until previous stop completes properly */
  4414. if (mddev->sysfs_active)
  4415. return -EBUSY;
  4416. /*
  4417. * Analyze all RAID superblock(s)
  4418. */
  4419. if (!mddev->raid_disks) {
  4420. if (!mddev->persistent)
  4421. return -EINVAL;
  4422. analyze_sbs(mddev);
  4423. }
  4424. if (mddev->level != LEVEL_NONE)
  4425. request_module("md-level-%d", mddev->level);
  4426. else if (mddev->clevel[0])
  4427. request_module("md-%s", mddev->clevel);
  4428. /*
  4429. * Drop all container device buffers, from now on
  4430. * the only valid external interface is through the md
  4431. * device.
  4432. */
  4433. rdev_for_each(rdev, mddev) {
  4434. if (test_bit(Faulty, &rdev->flags))
  4435. continue;
  4436. sync_blockdev(rdev->bdev);
  4437. invalidate_bdev(rdev->bdev);
  4438. /* perform some consistency tests on the device.
  4439. * We don't want the data to overlap the metadata,
  4440. * Internal Bitmap issues have been handled elsewhere.
  4441. */
  4442. if (rdev->meta_bdev) {
  4443. /* Nothing to check */;
  4444. } else if (rdev->data_offset < rdev->sb_start) {
  4445. if (mddev->dev_sectors &&
  4446. rdev->data_offset + mddev->dev_sectors
  4447. > rdev->sb_start) {
  4448. printk("md: %s: data overlaps metadata\n",
  4449. mdname(mddev));
  4450. return -EINVAL;
  4451. }
  4452. } else {
  4453. if (rdev->sb_start + rdev->sb_size/512
  4454. > rdev->data_offset) {
  4455. printk("md: %s: metadata overlaps data\n",
  4456. mdname(mddev));
  4457. return -EINVAL;
  4458. }
  4459. }
  4460. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4461. }
  4462. if (mddev->bio_set == NULL)
  4463. mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
  4464. spin_lock(&pers_lock);
  4465. pers = find_pers(mddev->level, mddev->clevel);
  4466. if (!pers || !try_module_get(pers->owner)) {
  4467. spin_unlock(&pers_lock);
  4468. if (mddev->level != LEVEL_NONE)
  4469. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4470. mddev->level);
  4471. else
  4472. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4473. mddev->clevel);
  4474. return -EINVAL;
  4475. }
  4476. mddev->pers = pers;
  4477. spin_unlock(&pers_lock);
  4478. if (mddev->level != pers->level) {
  4479. mddev->level = pers->level;
  4480. mddev->new_level = pers->level;
  4481. }
  4482. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4483. if (mddev->reshape_position != MaxSector &&
  4484. pers->start_reshape == NULL) {
  4485. /* This personality cannot handle reshaping... */
  4486. mddev->pers = NULL;
  4487. module_put(pers->owner);
  4488. return -EINVAL;
  4489. }
  4490. if (pers->sync_request) {
  4491. /* Warn if this is a potentially silly
  4492. * configuration.
  4493. */
  4494. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4495. struct md_rdev *rdev2;
  4496. int warned = 0;
  4497. rdev_for_each(rdev, mddev)
  4498. rdev_for_each(rdev2, mddev) {
  4499. if (rdev < rdev2 &&
  4500. rdev->bdev->bd_contains ==
  4501. rdev2->bdev->bd_contains) {
  4502. printk(KERN_WARNING
  4503. "%s: WARNING: %s appears to be"
  4504. " on the same physical disk as"
  4505. " %s.\n",
  4506. mdname(mddev),
  4507. bdevname(rdev->bdev,b),
  4508. bdevname(rdev2->bdev,b2));
  4509. warned = 1;
  4510. }
  4511. }
  4512. if (warned)
  4513. printk(KERN_WARNING
  4514. "True protection against single-disk"
  4515. " failure might be compromised.\n");
  4516. }
  4517. mddev->recovery = 0;
  4518. /* may be over-ridden by personality */
  4519. mddev->resync_max_sectors = mddev->dev_sectors;
  4520. mddev->ok_start_degraded = start_dirty_degraded;
  4521. if (start_readonly && mddev->ro == 0)
  4522. mddev->ro = 2; /* read-only, but switch on first write */
  4523. err = mddev->pers->run(mddev);
  4524. if (err)
  4525. printk(KERN_ERR "md: pers->run() failed ...\n");
  4526. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4527. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4528. " but 'external_size' not in effect?\n", __func__);
  4529. printk(KERN_ERR
  4530. "md: invalid array_size %llu > default size %llu\n",
  4531. (unsigned long long)mddev->array_sectors / 2,
  4532. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4533. err = -EINVAL;
  4534. mddev->pers->stop(mddev);
  4535. }
  4536. if (err == 0 && mddev->pers->sync_request &&
  4537. (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
  4538. err = bitmap_create(mddev);
  4539. if (err) {
  4540. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4541. mdname(mddev), err);
  4542. mddev->pers->stop(mddev);
  4543. }
  4544. }
  4545. if (err) {
  4546. module_put(mddev->pers->owner);
  4547. mddev->pers = NULL;
  4548. bitmap_destroy(mddev);
  4549. return err;
  4550. }
  4551. if (mddev->pers->sync_request) {
  4552. if (mddev->kobj.sd &&
  4553. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4554. printk(KERN_WARNING
  4555. "md: cannot register extra attributes for %s\n",
  4556. mdname(mddev));
  4557. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4558. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4559. mddev->ro = 0;
  4560. atomic_set(&mddev->writes_pending,0);
  4561. atomic_set(&mddev->max_corr_read_errors,
  4562. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4563. mddev->safemode = 0;
  4564. mddev->safemode_timer.function = md_safemode_timeout;
  4565. mddev->safemode_timer.data = (unsigned long) mddev;
  4566. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4567. mddev->in_sync = 1;
  4568. smp_wmb();
  4569. mddev->ready = 1;
  4570. rdev_for_each(rdev, mddev)
  4571. if (rdev->raid_disk >= 0)
  4572. if (sysfs_link_rdev(mddev, rdev))
  4573. /* failure here is OK */;
  4574. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4575. if (mddev->flags)
  4576. md_update_sb(mddev, 0);
  4577. md_new_event(mddev);
  4578. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4579. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4580. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4581. return 0;
  4582. }
  4583. EXPORT_SYMBOL_GPL(md_run);
  4584. static int do_md_run(struct mddev *mddev)
  4585. {
  4586. int err;
  4587. err = md_run(mddev);
  4588. if (err)
  4589. goto out;
  4590. err = bitmap_load(mddev);
  4591. if (err) {
  4592. bitmap_destroy(mddev);
  4593. goto out;
  4594. }
  4595. md_wakeup_thread(mddev->thread);
  4596. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4597. set_capacity(mddev->gendisk, mddev->array_sectors);
  4598. revalidate_disk(mddev->gendisk);
  4599. mddev->changed = 1;
  4600. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4601. out:
  4602. return err;
  4603. }
  4604. static int restart_array(struct mddev *mddev)
  4605. {
  4606. struct gendisk *disk = mddev->gendisk;
  4607. /* Complain if it has no devices */
  4608. if (list_empty(&mddev->disks))
  4609. return -ENXIO;
  4610. if (!mddev->pers)
  4611. return -EINVAL;
  4612. if (!mddev->ro)
  4613. return -EBUSY;
  4614. mddev->safemode = 0;
  4615. mddev->ro = 0;
  4616. set_disk_ro(disk, 0);
  4617. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4618. mdname(mddev));
  4619. /* Kick recovery or resync if necessary */
  4620. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4621. md_wakeup_thread(mddev->thread);
  4622. md_wakeup_thread(mddev->sync_thread);
  4623. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4624. return 0;
  4625. }
  4626. /* similar to deny_write_access, but accounts for our holding a reference
  4627. * to the file ourselves */
  4628. static int deny_bitmap_write_access(struct file * file)
  4629. {
  4630. struct inode *inode = file->f_mapping->host;
  4631. spin_lock(&inode->i_lock);
  4632. if (atomic_read(&inode->i_writecount) > 1) {
  4633. spin_unlock(&inode->i_lock);
  4634. return -ETXTBSY;
  4635. }
  4636. atomic_set(&inode->i_writecount, -1);
  4637. spin_unlock(&inode->i_lock);
  4638. return 0;
  4639. }
  4640. void restore_bitmap_write_access(struct file *file)
  4641. {
  4642. struct inode *inode = file->f_mapping->host;
  4643. spin_lock(&inode->i_lock);
  4644. atomic_set(&inode->i_writecount, 1);
  4645. spin_unlock(&inode->i_lock);
  4646. }
  4647. static void md_clean(struct mddev *mddev)
  4648. {
  4649. mddev->array_sectors = 0;
  4650. mddev->external_size = 0;
  4651. mddev->dev_sectors = 0;
  4652. mddev->raid_disks = 0;
  4653. mddev->recovery_cp = 0;
  4654. mddev->resync_min = 0;
  4655. mddev->resync_max = MaxSector;
  4656. mddev->reshape_position = MaxSector;
  4657. mddev->external = 0;
  4658. mddev->persistent = 0;
  4659. mddev->level = LEVEL_NONE;
  4660. mddev->clevel[0] = 0;
  4661. mddev->flags = 0;
  4662. mddev->ro = 0;
  4663. mddev->metadata_type[0] = 0;
  4664. mddev->chunk_sectors = 0;
  4665. mddev->ctime = mddev->utime = 0;
  4666. mddev->layout = 0;
  4667. mddev->max_disks = 0;
  4668. mddev->events = 0;
  4669. mddev->can_decrease_events = 0;
  4670. mddev->delta_disks = 0;
  4671. mddev->reshape_backwards = 0;
  4672. mddev->new_level = LEVEL_NONE;
  4673. mddev->new_layout = 0;
  4674. mddev->new_chunk_sectors = 0;
  4675. mddev->curr_resync = 0;
  4676. atomic64_set(&mddev->resync_mismatches, 0);
  4677. mddev->suspend_lo = mddev->suspend_hi = 0;
  4678. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4679. mddev->recovery = 0;
  4680. mddev->in_sync = 0;
  4681. mddev->changed = 0;
  4682. mddev->degraded = 0;
  4683. mddev->safemode = 0;
  4684. mddev->merge_check_needed = 0;
  4685. mddev->bitmap_info.offset = 0;
  4686. mddev->bitmap_info.default_offset = 0;
  4687. mddev->bitmap_info.default_space = 0;
  4688. mddev->bitmap_info.chunksize = 0;
  4689. mddev->bitmap_info.daemon_sleep = 0;
  4690. mddev->bitmap_info.max_write_behind = 0;
  4691. }
  4692. static void __md_stop_writes(struct mddev *mddev)
  4693. {
  4694. if (mddev->sync_thread) {
  4695. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4696. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4697. reap_sync_thread(mddev);
  4698. }
  4699. del_timer_sync(&mddev->safemode_timer);
  4700. bitmap_flush(mddev);
  4701. md_super_wait(mddev);
  4702. if (!mddev->in_sync || mddev->flags) {
  4703. /* mark array as shutdown cleanly */
  4704. mddev->in_sync = 1;
  4705. md_update_sb(mddev, 1);
  4706. }
  4707. }
  4708. void md_stop_writes(struct mddev *mddev)
  4709. {
  4710. mddev_lock(mddev);
  4711. __md_stop_writes(mddev);
  4712. mddev_unlock(mddev);
  4713. }
  4714. EXPORT_SYMBOL_GPL(md_stop_writes);
  4715. static void __md_stop(struct mddev *mddev)
  4716. {
  4717. mddev->ready = 0;
  4718. mddev->pers->stop(mddev);
  4719. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4720. mddev->to_remove = &md_redundancy_group;
  4721. module_put(mddev->pers->owner);
  4722. mddev->pers = NULL;
  4723. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4724. }
  4725. void md_stop(struct mddev *mddev)
  4726. {
  4727. /* stop the array and free an attached data structures.
  4728. * This is called from dm-raid
  4729. */
  4730. __md_stop(mddev);
  4731. bitmap_destroy(mddev);
  4732. if (mddev->bio_set)
  4733. bioset_free(mddev->bio_set);
  4734. }
  4735. EXPORT_SYMBOL_GPL(md_stop);
  4736. static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
  4737. {
  4738. int err = 0;
  4739. mutex_lock(&mddev->open_mutex);
  4740. if (atomic_read(&mddev->openers) > !!bdev) {
  4741. printk("md: %s still in use.\n",mdname(mddev));
  4742. err = -EBUSY;
  4743. goto out;
  4744. }
  4745. if (bdev)
  4746. sync_blockdev(bdev);
  4747. if (mddev->pers) {
  4748. __md_stop_writes(mddev);
  4749. err = -ENXIO;
  4750. if (mddev->ro==1)
  4751. goto out;
  4752. mddev->ro = 1;
  4753. set_disk_ro(mddev->gendisk, 1);
  4754. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4755. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4756. err = 0;
  4757. }
  4758. out:
  4759. mutex_unlock(&mddev->open_mutex);
  4760. return err;
  4761. }
  4762. /* mode:
  4763. * 0 - completely stop and dis-assemble array
  4764. * 2 - stop but do not disassemble array
  4765. */
  4766. static int do_md_stop(struct mddev * mddev, int mode,
  4767. struct block_device *bdev)
  4768. {
  4769. struct gendisk *disk = mddev->gendisk;
  4770. struct md_rdev *rdev;
  4771. mutex_lock(&mddev->open_mutex);
  4772. if (atomic_read(&mddev->openers) > !!bdev ||
  4773. mddev->sysfs_active) {
  4774. printk("md: %s still in use.\n",mdname(mddev));
  4775. mutex_unlock(&mddev->open_mutex);
  4776. return -EBUSY;
  4777. }
  4778. if (bdev)
  4779. /* It is possible IO was issued on some other
  4780. * open file which was closed before we took ->open_mutex.
  4781. * As that was not the last close __blkdev_put will not
  4782. * have called sync_blockdev, so we must.
  4783. */
  4784. sync_blockdev(bdev);
  4785. if (mddev->pers) {
  4786. if (mddev->ro)
  4787. set_disk_ro(disk, 0);
  4788. __md_stop_writes(mddev);
  4789. __md_stop(mddev);
  4790. mddev->queue->merge_bvec_fn = NULL;
  4791. mddev->queue->backing_dev_info.congested_fn = NULL;
  4792. /* tell userspace to handle 'inactive' */
  4793. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4794. rdev_for_each(rdev, mddev)
  4795. if (rdev->raid_disk >= 0)
  4796. sysfs_unlink_rdev(mddev, rdev);
  4797. set_capacity(disk, 0);
  4798. mutex_unlock(&mddev->open_mutex);
  4799. mddev->changed = 1;
  4800. revalidate_disk(disk);
  4801. if (mddev->ro)
  4802. mddev->ro = 0;
  4803. } else
  4804. mutex_unlock(&mddev->open_mutex);
  4805. /*
  4806. * Free resources if final stop
  4807. */
  4808. if (mode == 0) {
  4809. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4810. bitmap_destroy(mddev);
  4811. if (mddev->bitmap_info.file) {
  4812. restore_bitmap_write_access(mddev->bitmap_info.file);
  4813. fput(mddev->bitmap_info.file);
  4814. mddev->bitmap_info.file = NULL;
  4815. }
  4816. mddev->bitmap_info.offset = 0;
  4817. export_array(mddev);
  4818. md_clean(mddev);
  4819. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4820. if (mddev->hold_active == UNTIL_STOP)
  4821. mddev->hold_active = 0;
  4822. }
  4823. blk_integrity_unregister(disk);
  4824. md_new_event(mddev);
  4825. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4826. return 0;
  4827. }
  4828. #ifndef MODULE
  4829. static void autorun_array(struct mddev *mddev)
  4830. {
  4831. struct md_rdev *rdev;
  4832. int err;
  4833. if (list_empty(&mddev->disks))
  4834. return;
  4835. printk(KERN_INFO "md: running: ");
  4836. rdev_for_each(rdev, mddev) {
  4837. char b[BDEVNAME_SIZE];
  4838. printk("<%s>", bdevname(rdev->bdev,b));
  4839. }
  4840. printk("\n");
  4841. err = do_md_run(mddev);
  4842. if (err) {
  4843. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4844. do_md_stop(mddev, 0, NULL);
  4845. }
  4846. }
  4847. /*
  4848. * lets try to run arrays based on all disks that have arrived
  4849. * until now. (those are in pending_raid_disks)
  4850. *
  4851. * the method: pick the first pending disk, collect all disks with
  4852. * the same UUID, remove all from the pending list and put them into
  4853. * the 'same_array' list. Then order this list based on superblock
  4854. * update time (freshest comes first), kick out 'old' disks and
  4855. * compare superblocks. If everything's fine then run it.
  4856. *
  4857. * If "unit" is allocated, then bump its reference count
  4858. */
  4859. static void autorun_devices(int part)
  4860. {
  4861. struct md_rdev *rdev0, *rdev, *tmp;
  4862. struct mddev *mddev;
  4863. char b[BDEVNAME_SIZE];
  4864. printk(KERN_INFO "md: autorun ...\n");
  4865. while (!list_empty(&pending_raid_disks)) {
  4866. int unit;
  4867. dev_t dev;
  4868. LIST_HEAD(candidates);
  4869. rdev0 = list_entry(pending_raid_disks.next,
  4870. struct md_rdev, same_set);
  4871. printk(KERN_INFO "md: considering %s ...\n",
  4872. bdevname(rdev0->bdev,b));
  4873. INIT_LIST_HEAD(&candidates);
  4874. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4875. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4876. printk(KERN_INFO "md: adding %s ...\n",
  4877. bdevname(rdev->bdev,b));
  4878. list_move(&rdev->same_set, &candidates);
  4879. }
  4880. /*
  4881. * now we have a set of devices, with all of them having
  4882. * mostly sane superblocks. It's time to allocate the
  4883. * mddev.
  4884. */
  4885. if (part) {
  4886. dev = MKDEV(mdp_major,
  4887. rdev0->preferred_minor << MdpMinorShift);
  4888. unit = MINOR(dev) >> MdpMinorShift;
  4889. } else {
  4890. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4891. unit = MINOR(dev);
  4892. }
  4893. if (rdev0->preferred_minor != unit) {
  4894. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4895. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4896. break;
  4897. }
  4898. md_probe(dev, NULL, NULL);
  4899. mddev = mddev_find(dev);
  4900. if (!mddev || !mddev->gendisk) {
  4901. if (mddev)
  4902. mddev_put(mddev);
  4903. printk(KERN_ERR
  4904. "md: cannot allocate memory for md drive.\n");
  4905. break;
  4906. }
  4907. if (mddev_lock(mddev))
  4908. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4909. mdname(mddev));
  4910. else if (mddev->raid_disks || mddev->major_version
  4911. || !list_empty(&mddev->disks)) {
  4912. printk(KERN_WARNING
  4913. "md: %s already running, cannot run %s\n",
  4914. mdname(mddev), bdevname(rdev0->bdev,b));
  4915. mddev_unlock(mddev);
  4916. } else {
  4917. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4918. mddev->persistent = 1;
  4919. rdev_for_each_list(rdev, tmp, &candidates) {
  4920. list_del_init(&rdev->same_set);
  4921. if (bind_rdev_to_array(rdev, mddev))
  4922. export_rdev(rdev);
  4923. }
  4924. autorun_array(mddev);
  4925. mddev_unlock(mddev);
  4926. }
  4927. /* on success, candidates will be empty, on error
  4928. * it won't...
  4929. */
  4930. rdev_for_each_list(rdev, tmp, &candidates) {
  4931. list_del_init(&rdev->same_set);
  4932. export_rdev(rdev);
  4933. }
  4934. mddev_put(mddev);
  4935. }
  4936. printk(KERN_INFO "md: ... autorun DONE.\n");
  4937. }
  4938. #endif /* !MODULE */
  4939. static int get_version(void __user * arg)
  4940. {
  4941. mdu_version_t ver;
  4942. ver.major = MD_MAJOR_VERSION;
  4943. ver.minor = MD_MINOR_VERSION;
  4944. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4945. if (copy_to_user(arg, &ver, sizeof(ver)))
  4946. return -EFAULT;
  4947. return 0;
  4948. }
  4949. static int get_array_info(struct mddev * mddev, void __user * arg)
  4950. {
  4951. mdu_array_info_t info;
  4952. int nr,working,insync,failed,spare;
  4953. struct md_rdev *rdev;
  4954. nr = working = insync = failed = spare = 0;
  4955. rcu_read_lock();
  4956. rdev_for_each_rcu(rdev, mddev) {
  4957. nr++;
  4958. if (test_bit(Faulty, &rdev->flags))
  4959. failed++;
  4960. else {
  4961. working++;
  4962. if (test_bit(In_sync, &rdev->flags))
  4963. insync++;
  4964. else
  4965. spare++;
  4966. }
  4967. }
  4968. rcu_read_unlock();
  4969. info.major_version = mddev->major_version;
  4970. info.minor_version = mddev->minor_version;
  4971. info.patch_version = MD_PATCHLEVEL_VERSION;
  4972. info.ctime = mddev->ctime;
  4973. info.level = mddev->level;
  4974. info.size = mddev->dev_sectors / 2;
  4975. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4976. info.size = -1;
  4977. info.nr_disks = nr;
  4978. info.raid_disks = mddev->raid_disks;
  4979. info.md_minor = mddev->md_minor;
  4980. info.not_persistent= !mddev->persistent;
  4981. info.utime = mddev->utime;
  4982. info.state = 0;
  4983. if (mddev->in_sync)
  4984. info.state = (1<<MD_SB_CLEAN);
  4985. if (mddev->bitmap && mddev->bitmap_info.offset)
  4986. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4987. info.active_disks = insync;
  4988. info.working_disks = working;
  4989. info.failed_disks = failed;
  4990. info.spare_disks = spare;
  4991. info.layout = mddev->layout;
  4992. info.chunk_size = mddev->chunk_sectors << 9;
  4993. if (copy_to_user(arg, &info, sizeof(info)))
  4994. return -EFAULT;
  4995. return 0;
  4996. }
  4997. static int get_bitmap_file(struct mddev * mddev, void __user * arg)
  4998. {
  4999. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  5000. char *ptr, *buf = NULL;
  5001. int err = -ENOMEM;
  5002. if (md_allow_write(mddev))
  5003. file = kmalloc(sizeof(*file), GFP_NOIO);
  5004. else
  5005. file = kmalloc(sizeof(*file), GFP_KERNEL);
  5006. if (!file)
  5007. goto out;
  5008. /* bitmap disabled, zero the first byte and copy out */
  5009. if (!mddev->bitmap || !mddev->bitmap->storage.file) {
  5010. file->pathname[0] = '\0';
  5011. goto copy_out;
  5012. }
  5013. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  5014. if (!buf)
  5015. goto out;
  5016. ptr = d_path(&mddev->bitmap->storage.file->f_path,
  5017. buf, sizeof(file->pathname));
  5018. if (IS_ERR(ptr))
  5019. goto out;
  5020. strcpy(file->pathname, ptr);
  5021. copy_out:
  5022. err = 0;
  5023. if (copy_to_user(arg, file, sizeof(*file)))
  5024. err = -EFAULT;
  5025. out:
  5026. kfree(buf);
  5027. kfree(file);
  5028. return err;
  5029. }
  5030. static int get_disk_info(struct mddev * mddev, void __user * arg)
  5031. {
  5032. mdu_disk_info_t info;
  5033. struct md_rdev *rdev;
  5034. if (copy_from_user(&info, arg, sizeof(info)))
  5035. return -EFAULT;
  5036. rcu_read_lock();
  5037. rdev = find_rdev_nr_rcu(mddev, info.number);
  5038. if (rdev) {
  5039. info.major = MAJOR(rdev->bdev->bd_dev);
  5040. info.minor = MINOR(rdev->bdev->bd_dev);
  5041. info.raid_disk = rdev->raid_disk;
  5042. info.state = 0;
  5043. if (test_bit(Faulty, &rdev->flags))
  5044. info.state |= (1<<MD_DISK_FAULTY);
  5045. else if (test_bit(In_sync, &rdev->flags)) {
  5046. info.state |= (1<<MD_DISK_ACTIVE);
  5047. info.state |= (1<<MD_DISK_SYNC);
  5048. }
  5049. if (test_bit(WriteMostly, &rdev->flags))
  5050. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  5051. } else {
  5052. info.major = info.minor = 0;
  5053. info.raid_disk = -1;
  5054. info.state = (1<<MD_DISK_REMOVED);
  5055. }
  5056. rcu_read_unlock();
  5057. if (copy_to_user(arg, &info, sizeof(info)))
  5058. return -EFAULT;
  5059. return 0;
  5060. }
  5061. static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
  5062. {
  5063. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  5064. struct md_rdev *rdev;
  5065. dev_t dev = MKDEV(info->major,info->minor);
  5066. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  5067. return -EOVERFLOW;
  5068. if (!mddev->raid_disks) {
  5069. int err;
  5070. /* expecting a device which has a superblock */
  5071. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  5072. if (IS_ERR(rdev)) {
  5073. printk(KERN_WARNING
  5074. "md: md_import_device returned %ld\n",
  5075. PTR_ERR(rdev));
  5076. return PTR_ERR(rdev);
  5077. }
  5078. if (!list_empty(&mddev->disks)) {
  5079. struct md_rdev *rdev0
  5080. = list_entry(mddev->disks.next,
  5081. struct md_rdev, same_set);
  5082. err = super_types[mddev->major_version]
  5083. .load_super(rdev, rdev0, mddev->minor_version);
  5084. if (err < 0) {
  5085. printk(KERN_WARNING
  5086. "md: %s has different UUID to %s\n",
  5087. bdevname(rdev->bdev,b),
  5088. bdevname(rdev0->bdev,b2));
  5089. export_rdev(rdev);
  5090. return -EINVAL;
  5091. }
  5092. }
  5093. err = bind_rdev_to_array(rdev, mddev);
  5094. if (err)
  5095. export_rdev(rdev);
  5096. return err;
  5097. }
  5098. /*
  5099. * add_new_disk can be used once the array is assembled
  5100. * to add "hot spares". They must already have a superblock
  5101. * written
  5102. */
  5103. if (mddev->pers) {
  5104. int err;
  5105. if (!mddev->pers->hot_add_disk) {
  5106. printk(KERN_WARNING
  5107. "%s: personality does not support diskops!\n",
  5108. mdname(mddev));
  5109. return -EINVAL;
  5110. }
  5111. if (mddev->persistent)
  5112. rdev = md_import_device(dev, mddev->major_version,
  5113. mddev->minor_version);
  5114. else
  5115. rdev = md_import_device(dev, -1, -1);
  5116. if (IS_ERR(rdev)) {
  5117. printk(KERN_WARNING
  5118. "md: md_import_device returned %ld\n",
  5119. PTR_ERR(rdev));
  5120. return PTR_ERR(rdev);
  5121. }
  5122. /* set saved_raid_disk if appropriate */
  5123. if (!mddev->persistent) {
  5124. if (info->state & (1<<MD_DISK_SYNC) &&
  5125. info->raid_disk < mddev->raid_disks) {
  5126. rdev->raid_disk = info->raid_disk;
  5127. set_bit(In_sync, &rdev->flags);
  5128. } else
  5129. rdev->raid_disk = -1;
  5130. } else
  5131. super_types[mddev->major_version].
  5132. validate_super(mddev, rdev);
  5133. if ((info->state & (1<<MD_DISK_SYNC)) &&
  5134. rdev->raid_disk != info->raid_disk) {
  5135. /* This was a hot-add request, but events doesn't
  5136. * match, so reject it.
  5137. */
  5138. export_rdev(rdev);
  5139. return -EINVAL;
  5140. }
  5141. if (test_bit(In_sync, &rdev->flags))
  5142. rdev->saved_raid_disk = rdev->raid_disk;
  5143. else
  5144. rdev->saved_raid_disk = -1;
  5145. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  5146. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5147. set_bit(WriteMostly, &rdev->flags);
  5148. else
  5149. clear_bit(WriteMostly, &rdev->flags);
  5150. rdev->raid_disk = -1;
  5151. err = bind_rdev_to_array(rdev, mddev);
  5152. if (!err && !mddev->pers->hot_remove_disk) {
  5153. /* If there is hot_add_disk but no hot_remove_disk
  5154. * then added disks for geometry changes,
  5155. * and should be added immediately.
  5156. */
  5157. super_types[mddev->major_version].
  5158. validate_super(mddev, rdev);
  5159. err = mddev->pers->hot_add_disk(mddev, rdev);
  5160. if (err)
  5161. unbind_rdev_from_array(rdev);
  5162. }
  5163. if (err)
  5164. export_rdev(rdev);
  5165. else
  5166. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5167. md_update_sb(mddev, 1);
  5168. if (mddev->degraded)
  5169. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5170. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5171. if (!err)
  5172. md_new_event(mddev);
  5173. md_wakeup_thread(mddev->thread);
  5174. return err;
  5175. }
  5176. /* otherwise, add_new_disk is only allowed
  5177. * for major_version==0 superblocks
  5178. */
  5179. if (mddev->major_version != 0) {
  5180. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  5181. mdname(mddev));
  5182. return -EINVAL;
  5183. }
  5184. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  5185. int err;
  5186. rdev = md_import_device(dev, -1, 0);
  5187. if (IS_ERR(rdev)) {
  5188. printk(KERN_WARNING
  5189. "md: error, md_import_device() returned %ld\n",
  5190. PTR_ERR(rdev));
  5191. return PTR_ERR(rdev);
  5192. }
  5193. rdev->desc_nr = info->number;
  5194. if (info->raid_disk < mddev->raid_disks)
  5195. rdev->raid_disk = info->raid_disk;
  5196. else
  5197. rdev->raid_disk = -1;
  5198. if (rdev->raid_disk < mddev->raid_disks)
  5199. if (info->state & (1<<MD_DISK_SYNC))
  5200. set_bit(In_sync, &rdev->flags);
  5201. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  5202. set_bit(WriteMostly, &rdev->flags);
  5203. if (!mddev->persistent) {
  5204. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  5205. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5206. } else
  5207. rdev->sb_start = calc_dev_sboffset(rdev);
  5208. rdev->sectors = rdev->sb_start;
  5209. err = bind_rdev_to_array(rdev, mddev);
  5210. if (err) {
  5211. export_rdev(rdev);
  5212. return err;
  5213. }
  5214. }
  5215. return 0;
  5216. }
  5217. static int hot_remove_disk(struct mddev * mddev, dev_t dev)
  5218. {
  5219. char b[BDEVNAME_SIZE];
  5220. struct md_rdev *rdev;
  5221. rdev = find_rdev(mddev, dev);
  5222. if (!rdev)
  5223. return -ENXIO;
  5224. if (rdev->raid_disk >= 0)
  5225. goto busy;
  5226. kick_rdev_from_array(rdev);
  5227. md_update_sb(mddev, 1);
  5228. md_new_event(mddev);
  5229. return 0;
  5230. busy:
  5231. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  5232. bdevname(rdev->bdev,b), mdname(mddev));
  5233. return -EBUSY;
  5234. }
  5235. static int hot_add_disk(struct mddev * mddev, dev_t dev)
  5236. {
  5237. char b[BDEVNAME_SIZE];
  5238. int err;
  5239. struct md_rdev *rdev;
  5240. if (!mddev->pers)
  5241. return -ENODEV;
  5242. if (mddev->major_version != 0) {
  5243. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  5244. " version-0 superblocks.\n",
  5245. mdname(mddev));
  5246. return -EINVAL;
  5247. }
  5248. if (!mddev->pers->hot_add_disk) {
  5249. printk(KERN_WARNING
  5250. "%s: personality does not support diskops!\n",
  5251. mdname(mddev));
  5252. return -EINVAL;
  5253. }
  5254. rdev = md_import_device(dev, -1, 0);
  5255. if (IS_ERR(rdev)) {
  5256. printk(KERN_WARNING
  5257. "md: error, md_import_device() returned %ld\n",
  5258. PTR_ERR(rdev));
  5259. return -EINVAL;
  5260. }
  5261. if (mddev->persistent)
  5262. rdev->sb_start = calc_dev_sboffset(rdev);
  5263. else
  5264. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  5265. rdev->sectors = rdev->sb_start;
  5266. if (test_bit(Faulty, &rdev->flags)) {
  5267. printk(KERN_WARNING
  5268. "md: can not hot-add faulty %s disk to %s!\n",
  5269. bdevname(rdev->bdev,b), mdname(mddev));
  5270. err = -EINVAL;
  5271. goto abort_export;
  5272. }
  5273. clear_bit(In_sync, &rdev->flags);
  5274. rdev->desc_nr = -1;
  5275. rdev->saved_raid_disk = -1;
  5276. err = bind_rdev_to_array(rdev, mddev);
  5277. if (err)
  5278. goto abort_export;
  5279. /*
  5280. * The rest should better be atomic, we can have disk failures
  5281. * noticed in interrupt contexts ...
  5282. */
  5283. rdev->raid_disk = -1;
  5284. md_update_sb(mddev, 1);
  5285. /*
  5286. * Kick recovery, maybe this spare has to be added to the
  5287. * array immediately.
  5288. */
  5289. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5290. md_wakeup_thread(mddev->thread);
  5291. md_new_event(mddev);
  5292. return 0;
  5293. abort_export:
  5294. export_rdev(rdev);
  5295. return err;
  5296. }
  5297. static int set_bitmap_file(struct mddev *mddev, int fd)
  5298. {
  5299. int err;
  5300. if (mddev->pers) {
  5301. if (!mddev->pers->quiesce)
  5302. return -EBUSY;
  5303. if (mddev->recovery || mddev->sync_thread)
  5304. return -EBUSY;
  5305. /* we should be able to change the bitmap.. */
  5306. }
  5307. if (fd >= 0) {
  5308. if (mddev->bitmap)
  5309. return -EEXIST; /* cannot add when bitmap is present */
  5310. mddev->bitmap_info.file = fget(fd);
  5311. if (mddev->bitmap_info.file == NULL) {
  5312. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5313. mdname(mddev));
  5314. return -EBADF;
  5315. }
  5316. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5317. if (err) {
  5318. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5319. mdname(mddev));
  5320. fput(mddev->bitmap_info.file);
  5321. mddev->bitmap_info.file = NULL;
  5322. return err;
  5323. }
  5324. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5325. } else if (mddev->bitmap == NULL)
  5326. return -ENOENT; /* cannot remove what isn't there */
  5327. err = 0;
  5328. if (mddev->pers) {
  5329. mddev->pers->quiesce(mddev, 1);
  5330. if (fd >= 0) {
  5331. err = bitmap_create(mddev);
  5332. if (!err)
  5333. err = bitmap_load(mddev);
  5334. }
  5335. if (fd < 0 || err) {
  5336. bitmap_destroy(mddev);
  5337. fd = -1; /* make sure to put the file */
  5338. }
  5339. mddev->pers->quiesce(mddev, 0);
  5340. }
  5341. if (fd < 0) {
  5342. if (mddev->bitmap_info.file) {
  5343. restore_bitmap_write_access(mddev->bitmap_info.file);
  5344. fput(mddev->bitmap_info.file);
  5345. }
  5346. mddev->bitmap_info.file = NULL;
  5347. }
  5348. return err;
  5349. }
  5350. /*
  5351. * set_array_info is used two different ways
  5352. * The original usage is when creating a new array.
  5353. * In this usage, raid_disks is > 0 and it together with
  5354. * level, size, not_persistent,layout,chunksize determine the
  5355. * shape of the array.
  5356. * This will always create an array with a type-0.90.0 superblock.
  5357. * The newer usage is when assembling an array.
  5358. * In this case raid_disks will be 0, and the major_version field is
  5359. * use to determine which style super-blocks are to be found on the devices.
  5360. * The minor and patch _version numbers are also kept incase the
  5361. * super_block handler wishes to interpret them.
  5362. */
  5363. static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
  5364. {
  5365. if (info->raid_disks == 0) {
  5366. /* just setting version number for superblock loading */
  5367. if (info->major_version < 0 ||
  5368. info->major_version >= ARRAY_SIZE(super_types) ||
  5369. super_types[info->major_version].name == NULL) {
  5370. /* maybe try to auto-load a module? */
  5371. printk(KERN_INFO
  5372. "md: superblock version %d not known\n",
  5373. info->major_version);
  5374. return -EINVAL;
  5375. }
  5376. mddev->major_version = info->major_version;
  5377. mddev->minor_version = info->minor_version;
  5378. mddev->patch_version = info->patch_version;
  5379. mddev->persistent = !info->not_persistent;
  5380. /* ensure mddev_put doesn't delete this now that there
  5381. * is some minimal configuration.
  5382. */
  5383. mddev->ctime = get_seconds();
  5384. return 0;
  5385. }
  5386. mddev->major_version = MD_MAJOR_VERSION;
  5387. mddev->minor_version = MD_MINOR_VERSION;
  5388. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5389. mddev->ctime = get_seconds();
  5390. mddev->level = info->level;
  5391. mddev->clevel[0] = 0;
  5392. mddev->dev_sectors = 2 * (sector_t)info->size;
  5393. mddev->raid_disks = info->raid_disks;
  5394. /* don't set md_minor, it is determined by which /dev/md* was
  5395. * openned
  5396. */
  5397. if (info->state & (1<<MD_SB_CLEAN))
  5398. mddev->recovery_cp = MaxSector;
  5399. else
  5400. mddev->recovery_cp = 0;
  5401. mddev->persistent = ! info->not_persistent;
  5402. mddev->external = 0;
  5403. mddev->layout = info->layout;
  5404. mddev->chunk_sectors = info->chunk_size >> 9;
  5405. mddev->max_disks = MD_SB_DISKS;
  5406. if (mddev->persistent)
  5407. mddev->flags = 0;
  5408. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5409. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5410. mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
  5411. mddev->bitmap_info.offset = 0;
  5412. mddev->reshape_position = MaxSector;
  5413. /*
  5414. * Generate a 128 bit UUID
  5415. */
  5416. get_random_bytes(mddev->uuid, 16);
  5417. mddev->new_level = mddev->level;
  5418. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5419. mddev->new_layout = mddev->layout;
  5420. mddev->delta_disks = 0;
  5421. mddev->reshape_backwards = 0;
  5422. return 0;
  5423. }
  5424. void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
  5425. {
  5426. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5427. if (mddev->external_size)
  5428. return;
  5429. mddev->array_sectors = array_sectors;
  5430. }
  5431. EXPORT_SYMBOL(md_set_array_sectors);
  5432. static int update_size(struct mddev *mddev, sector_t num_sectors)
  5433. {
  5434. struct md_rdev *rdev;
  5435. int rv;
  5436. int fit = (num_sectors == 0);
  5437. if (mddev->pers->resize == NULL)
  5438. return -EINVAL;
  5439. /* The "num_sectors" is the number of sectors of each device that
  5440. * is used. This can only make sense for arrays with redundancy.
  5441. * linear and raid0 always use whatever space is available. We can only
  5442. * consider changing this number if no resync or reconstruction is
  5443. * happening, and if the new size is acceptable. It must fit before the
  5444. * sb_start or, if that is <data_offset, it must fit before the size
  5445. * of each device. If num_sectors is zero, we find the largest size
  5446. * that fits.
  5447. */
  5448. if (mddev->sync_thread)
  5449. return -EBUSY;
  5450. rdev_for_each(rdev, mddev) {
  5451. sector_t avail = rdev->sectors;
  5452. if (fit && (num_sectors == 0 || num_sectors > avail))
  5453. num_sectors = avail;
  5454. if (avail < num_sectors)
  5455. return -ENOSPC;
  5456. }
  5457. rv = mddev->pers->resize(mddev, num_sectors);
  5458. if (!rv)
  5459. revalidate_disk(mddev->gendisk);
  5460. return rv;
  5461. }
  5462. static int update_raid_disks(struct mddev *mddev, int raid_disks)
  5463. {
  5464. int rv;
  5465. struct md_rdev *rdev;
  5466. /* change the number of raid disks */
  5467. if (mddev->pers->check_reshape == NULL)
  5468. return -EINVAL;
  5469. if (raid_disks <= 0 ||
  5470. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5471. return -EINVAL;
  5472. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5473. return -EBUSY;
  5474. rdev_for_each(rdev, mddev) {
  5475. if (mddev->raid_disks < raid_disks &&
  5476. rdev->data_offset < rdev->new_data_offset)
  5477. return -EINVAL;
  5478. if (mddev->raid_disks > raid_disks &&
  5479. rdev->data_offset > rdev->new_data_offset)
  5480. return -EINVAL;
  5481. }
  5482. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5483. if (mddev->delta_disks < 0)
  5484. mddev->reshape_backwards = 1;
  5485. else if (mddev->delta_disks > 0)
  5486. mddev->reshape_backwards = 0;
  5487. rv = mddev->pers->check_reshape(mddev);
  5488. if (rv < 0) {
  5489. mddev->delta_disks = 0;
  5490. mddev->reshape_backwards = 0;
  5491. }
  5492. return rv;
  5493. }
  5494. /*
  5495. * update_array_info is used to change the configuration of an
  5496. * on-line array.
  5497. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5498. * fields in the info are checked against the array.
  5499. * Any differences that cannot be handled will cause an error.
  5500. * Normally, only one change can be managed at a time.
  5501. */
  5502. static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
  5503. {
  5504. int rv = 0;
  5505. int cnt = 0;
  5506. int state = 0;
  5507. /* calculate expected state,ignoring low bits */
  5508. if (mddev->bitmap && mddev->bitmap_info.offset)
  5509. state |= (1 << MD_SB_BITMAP_PRESENT);
  5510. if (mddev->major_version != info->major_version ||
  5511. mddev->minor_version != info->minor_version ||
  5512. /* mddev->patch_version != info->patch_version || */
  5513. mddev->ctime != info->ctime ||
  5514. mddev->level != info->level ||
  5515. /* mddev->layout != info->layout || */
  5516. !mddev->persistent != info->not_persistent||
  5517. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5518. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5519. ((state^info->state) & 0xfffffe00)
  5520. )
  5521. return -EINVAL;
  5522. /* Check there is only one change */
  5523. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5524. cnt++;
  5525. if (mddev->raid_disks != info->raid_disks)
  5526. cnt++;
  5527. if (mddev->layout != info->layout)
  5528. cnt++;
  5529. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5530. cnt++;
  5531. if (cnt == 0)
  5532. return 0;
  5533. if (cnt > 1)
  5534. return -EINVAL;
  5535. if (mddev->layout != info->layout) {
  5536. /* Change layout
  5537. * we don't need to do anything at the md level, the
  5538. * personality will take care of it all.
  5539. */
  5540. if (mddev->pers->check_reshape == NULL)
  5541. return -EINVAL;
  5542. else {
  5543. mddev->new_layout = info->layout;
  5544. rv = mddev->pers->check_reshape(mddev);
  5545. if (rv)
  5546. mddev->new_layout = mddev->layout;
  5547. return rv;
  5548. }
  5549. }
  5550. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5551. rv = update_size(mddev, (sector_t)info->size * 2);
  5552. if (mddev->raid_disks != info->raid_disks)
  5553. rv = update_raid_disks(mddev, info->raid_disks);
  5554. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5555. if (mddev->pers->quiesce == NULL)
  5556. return -EINVAL;
  5557. if (mddev->recovery || mddev->sync_thread)
  5558. return -EBUSY;
  5559. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5560. /* add the bitmap */
  5561. if (mddev->bitmap)
  5562. return -EEXIST;
  5563. if (mddev->bitmap_info.default_offset == 0)
  5564. return -EINVAL;
  5565. mddev->bitmap_info.offset =
  5566. mddev->bitmap_info.default_offset;
  5567. mddev->bitmap_info.space =
  5568. mddev->bitmap_info.default_space;
  5569. mddev->pers->quiesce(mddev, 1);
  5570. rv = bitmap_create(mddev);
  5571. if (!rv)
  5572. rv = bitmap_load(mddev);
  5573. if (rv)
  5574. bitmap_destroy(mddev);
  5575. mddev->pers->quiesce(mddev, 0);
  5576. } else {
  5577. /* remove the bitmap */
  5578. if (!mddev->bitmap)
  5579. return -ENOENT;
  5580. if (mddev->bitmap->storage.file)
  5581. return -EINVAL;
  5582. mddev->pers->quiesce(mddev, 1);
  5583. bitmap_destroy(mddev);
  5584. mddev->pers->quiesce(mddev, 0);
  5585. mddev->bitmap_info.offset = 0;
  5586. }
  5587. }
  5588. md_update_sb(mddev, 1);
  5589. return rv;
  5590. }
  5591. static int set_disk_faulty(struct mddev *mddev, dev_t dev)
  5592. {
  5593. struct md_rdev *rdev;
  5594. int err = 0;
  5595. if (mddev->pers == NULL)
  5596. return -ENODEV;
  5597. rcu_read_lock();
  5598. rdev = find_rdev_rcu(mddev, dev);
  5599. if (!rdev)
  5600. err = -ENODEV;
  5601. else {
  5602. md_error(mddev, rdev);
  5603. if (!test_bit(Faulty, &rdev->flags))
  5604. err = -EBUSY;
  5605. }
  5606. rcu_read_unlock();
  5607. return err;
  5608. }
  5609. /*
  5610. * We have a problem here : there is no easy way to give a CHS
  5611. * virtual geometry. We currently pretend that we have a 2 heads
  5612. * 4 sectors (with a BIG number of cylinders...). This drives
  5613. * dosfs just mad... ;-)
  5614. */
  5615. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5616. {
  5617. struct mddev *mddev = bdev->bd_disk->private_data;
  5618. geo->heads = 2;
  5619. geo->sectors = 4;
  5620. geo->cylinders = mddev->array_sectors / 8;
  5621. return 0;
  5622. }
  5623. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5624. unsigned int cmd, unsigned long arg)
  5625. {
  5626. int err = 0;
  5627. void __user *argp = (void __user *)arg;
  5628. struct mddev *mddev = NULL;
  5629. int ro;
  5630. switch (cmd) {
  5631. case RAID_VERSION:
  5632. case GET_ARRAY_INFO:
  5633. case GET_DISK_INFO:
  5634. break;
  5635. default:
  5636. if (!capable(CAP_SYS_ADMIN))
  5637. return -EACCES;
  5638. }
  5639. /*
  5640. * Commands dealing with the RAID driver but not any
  5641. * particular array:
  5642. */
  5643. switch (cmd) {
  5644. case RAID_VERSION:
  5645. err = get_version(argp);
  5646. goto done;
  5647. case PRINT_RAID_DEBUG:
  5648. err = 0;
  5649. md_print_devices();
  5650. goto done;
  5651. #ifndef MODULE
  5652. case RAID_AUTORUN:
  5653. err = 0;
  5654. autostart_arrays(arg);
  5655. goto done;
  5656. #endif
  5657. default:;
  5658. }
  5659. /*
  5660. * Commands creating/starting a new array:
  5661. */
  5662. mddev = bdev->bd_disk->private_data;
  5663. if (!mddev) {
  5664. BUG();
  5665. goto abort;
  5666. }
  5667. /* Some actions do not requires the mutex */
  5668. switch (cmd) {
  5669. case GET_ARRAY_INFO:
  5670. if (!mddev->raid_disks && !mddev->external)
  5671. err = -ENODEV;
  5672. else
  5673. err = get_array_info(mddev, argp);
  5674. goto abort;
  5675. case GET_DISK_INFO:
  5676. if (!mddev->raid_disks && !mddev->external)
  5677. err = -ENODEV;
  5678. else
  5679. err = get_disk_info(mddev, argp);
  5680. goto abort;
  5681. case SET_DISK_FAULTY:
  5682. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5683. goto abort;
  5684. }
  5685. if (cmd == ADD_NEW_DISK)
  5686. /* need to ensure md_delayed_delete() has completed */
  5687. flush_workqueue(md_misc_wq);
  5688. err = mddev_lock(mddev);
  5689. if (err) {
  5690. printk(KERN_INFO
  5691. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5692. err, cmd);
  5693. goto abort;
  5694. }
  5695. if (cmd == SET_ARRAY_INFO) {
  5696. mdu_array_info_t info;
  5697. if (!arg)
  5698. memset(&info, 0, sizeof(info));
  5699. else if (copy_from_user(&info, argp, sizeof(info))) {
  5700. err = -EFAULT;
  5701. goto abort_unlock;
  5702. }
  5703. if (mddev->pers) {
  5704. err = update_array_info(mddev, &info);
  5705. if (err) {
  5706. printk(KERN_WARNING "md: couldn't update"
  5707. " array info. %d\n", err);
  5708. goto abort_unlock;
  5709. }
  5710. goto done_unlock;
  5711. }
  5712. if (!list_empty(&mddev->disks)) {
  5713. printk(KERN_WARNING
  5714. "md: array %s already has disks!\n",
  5715. mdname(mddev));
  5716. err = -EBUSY;
  5717. goto abort_unlock;
  5718. }
  5719. if (mddev->raid_disks) {
  5720. printk(KERN_WARNING
  5721. "md: array %s already initialised!\n",
  5722. mdname(mddev));
  5723. err = -EBUSY;
  5724. goto abort_unlock;
  5725. }
  5726. err = set_array_info(mddev, &info);
  5727. if (err) {
  5728. printk(KERN_WARNING "md: couldn't set"
  5729. " array info. %d\n", err);
  5730. goto abort_unlock;
  5731. }
  5732. goto done_unlock;
  5733. }
  5734. /*
  5735. * Commands querying/configuring an existing array:
  5736. */
  5737. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5738. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5739. if ((!mddev->raid_disks && !mddev->external)
  5740. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5741. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5742. && cmd != GET_BITMAP_FILE) {
  5743. err = -ENODEV;
  5744. goto abort_unlock;
  5745. }
  5746. /*
  5747. * Commands even a read-only array can execute:
  5748. */
  5749. switch (cmd) {
  5750. case GET_BITMAP_FILE:
  5751. err = get_bitmap_file(mddev, argp);
  5752. goto done_unlock;
  5753. case RESTART_ARRAY_RW:
  5754. err = restart_array(mddev);
  5755. goto done_unlock;
  5756. case STOP_ARRAY:
  5757. err = do_md_stop(mddev, 0, bdev);
  5758. goto done_unlock;
  5759. case STOP_ARRAY_RO:
  5760. err = md_set_readonly(mddev, bdev);
  5761. goto done_unlock;
  5762. case BLKROSET:
  5763. if (get_user(ro, (int __user *)(arg))) {
  5764. err = -EFAULT;
  5765. goto done_unlock;
  5766. }
  5767. err = -EINVAL;
  5768. /* if the bdev is going readonly the value of mddev->ro
  5769. * does not matter, no writes are coming
  5770. */
  5771. if (ro)
  5772. goto done_unlock;
  5773. /* are we are already prepared for writes? */
  5774. if (mddev->ro != 1)
  5775. goto done_unlock;
  5776. /* transitioning to readauto need only happen for
  5777. * arrays that call md_write_start
  5778. */
  5779. if (mddev->pers) {
  5780. err = restart_array(mddev);
  5781. if (err == 0) {
  5782. mddev->ro = 2;
  5783. set_disk_ro(mddev->gendisk, 0);
  5784. }
  5785. }
  5786. goto done_unlock;
  5787. }
  5788. /*
  5789. * The remaining ioctls are changing the state of the
  5790. * superblock, so we do not allow them on read-only arrays.
  5791. * However non-MD ioctls (e.g. get-size) will still come through
  5792. * here and hit the 'default' below, so only disallow
  5793. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5794. */
  5795. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5796. if (mddev->ro == 2) {
  5797. mddev->ro = 0;
  5798. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5799. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5800. /* mddev_unlock will wake thread */
  5801. /* If a device failed while we were read-only, we
  5802. * need to make sure the metadata is updated now.
  5803. */
  5804. if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  5805. mddev_unlock(mddev);
  5806. wait_event(mddev->sb_wait,
  5807. !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
  5808. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5809. mddev_lock(mddev);
  5810. }
  5811. } else {
  5812. err = -EROFS;
  5813. goto abort_unlock;
  5814. }
  5815. }
  5816. switch (cmd) {
  5817. case ADD_NEW_DISK:
  5818. {
  5819. mdu_disk_info_t info;
  5820. if (copy_from_user(&info, argp, sizeof(info)))
  5821. err = -EFAULT;
  5822. else
  5823. err = add_new_disk(mddev, &info);
  5824. goto done_unlock;
  5825. }
  5826. case HOT_REMOVE_DISK:
  5827. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5828. goto done_unlock;
  5829. case HOT_ADD_DISK:
  5830. err = hot_add_disk(mddev, new_decode_dev(arg));
  5831. goto done_unlock;
  5832. case RUN_ARRAY:
  5833. err = do_md_run(mddev);
  5834. goto done_unlock;
  5835. case SET_BITMAP_FILE:
  5836. err = set_bitmap_file(mddev, (int)arg);
  5837. goto done_unlock;
  5838. default:
  5839. err = -EINVAL;
  5840. goto abort_unlock;
  5841. }
  5842. done_unlock:
  5843. abort_unlock:
  5844. if (mddev->hold_active == UNTIL_IOCTL &&
  5845. err != -EINVAL)
  5846. mddev->hold_active = 0;
  5847. mddev_unlock(mddev);
  5848. return err;
  5849. done:
  5850. if (err)
  5851. MD_BUG();
  5852. abort:
  5853. return err;
  5854. }
  5855. #ifdef CONFIG_COMPAT
  5856. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5857. unsigned int cmd, unsigned long arg)
  5858. {
  5859. switch (cmd) {
  5860. case HOT_REMOVE_DISK:
  5861. case HOT_ADD_DISK:
  5862. case SET_DISK_FAULTY:
  5863. case SET_BITMAP_FILE:
  5864. /* These take in integer arg, do not convert */
  5865. break;
  5866. default:
  5867. arg = (unsigned long)compat_ptr(arg);
  5868. break;
  5869. }
  5870. return md_ioctl(bdev, mode, cmd, arg);
  5871. }
  5872. #endif /* CONFIG_COMPAT */
  5873. static int md_open(struct block_device *bdev, fmode_t mode)
  5874. {
  5875. /*
  5876. * Succeed if we can lock the mddev, which confirms that
  5877. * it isn't being stopped right now.
  5878. */
  5879. struct mddev *mddev = mddev_find(bdev->bd_dev);
  5880. int err;
  5881. if (!mddev)
  5882. return -ENODEV;
  5883. if (mddev->gendisk != bdev->bd_disk) {
  5884. /* we are racing with mddev_put which is discarding this
  5885. * bd_disk.
  5886. */
  5887. mddev_put(mddev);
  5888. /* Wait until bdev->bd_disk is definitely gone */
  5889. flush_workqueue(md_misc_wq);
  5890. /* Then retry the open from the top */
  5891. return -ERESTARTSYS;
  5892. }
  5893. BUG_ON(mddev != bdev->bd_disk->private_data);
  5894. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5895. goto out;
  5896. err = 0;
  5897. atomic_inc(&mddev->openers);
  5898. mutex_unlock(&mddev->open_mutex);
  5899. check_disk_change(bdev);
  5900. out:
  5901. return err;
  5902. }
  5903. static int md_release(struct gendisk *disk, fmode_t mode)
  5904. {
  5905. struct mddev *mddev = disk->private_data;
  5906. BUG_ON(!mddev);
  5907. atomic_dec(&mddev->openers);
  5908. mddev_put(mddev);
  5909. return 0;
  5910. }
  5911. static int md_media_changed(struct gendisk *disk)
  5912. {
  5913. struct mddev *mddev = disk->private_data;
  5914. return mddev->changed;
  5915. }
  5916. static int md_revalidate(struct gendisk *disk)
  5917. {
  5918. struct mddev *mddev = disk->private_data;
  5919. mddev->changed = 0;
  5920. return 0;
  5921. }
  5922. static const struct block_device_operations md_fops =
  5923. {
  5924. .owner = THIS_MODULE,
  5925. .open = md_open,
  5926. .release = md_release,
  5927. .ioctl = md_ioctl,
  5928. #ifdef CONFIG_COMPAT
  5929. .compat_ioctl = md_compat_ioctl,
  5930. #endif
  5931. .getgeo = md_getgeo,
  5932. .media_changed = md_media_changed,
  5933. .revalidate_disk= md_revalidate,
  5934. };
  5935. static int md_thread(void * arg)
  5936. {
  5937. struct md_thread *thread = arg;
  5938. /*
  5939. * md_thread is a 'system-thread', it's priority should be very
  5940. * high. We avoid resource deadlocks individually in each
  5941. * raid personality. (RAID5 does preallocation) We also use RR and
  5942. * the very same RT priority as kswapd, thus we will never get
  5943. * into a priority inversion deadlock.
  5944. *
  5945. * we definitely have to have equal or higher priority than
  5946. * bdflush, otherwise bdflush will deadlock if there are too
  5947. * many dirty RAID5 blocks.
  5948. */
  5949. allow_signal(SIGKILL);
  5950. while (!kthread_should_stop()) {
  5951. /* We need to wait INTERRUPTIBLE so that
  5952. * we don't add to the load-average.
  5953. * That means we need to be sure no signals are
  5954. * pending
  5955. */
  5956. if (signal_pending(current))
  5957. flush_signals(current);
  5958. wait_event_interruptible_timeout
  5959. (thread->wqueue,
  5960. test_bit(THREAD_WAKEUP, &thread->flags)
  5961. || kthread_should_stop(),
  5962. thread->timeout);
  5963. clear_bit(THREAD_WAKEUP, &thread->flags);
  5964. if (!kthread_should_stop())
  5965. thread->run(thread);
  5966. }
  5967. return 0;
  5968. }
  5969. void md_wakeup_thread(struct md_thread *thread)
  5970. {
  5971. if (thread) {
  5972. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5973. set_bit(THREAD_WAKEUP, &thread->flags);
  5974. wake_up(&thread->wqueue);
  5975. }
  5976. }
  5977. struct md_thread *md_register_thread(void (*run) (struct md_thread *),
  5978. struct mddev *mddev, const char *name)
  5979. {
  5980. struct md_thread *thread;
  5981. thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
  5982. if (!thread)
  5983. return NULL;
  5984. init_waitqueue_head(&thread->wqueue);
  5985. thread->run = run;
  5986. thread->mddev = mddev;
  5987. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5988. thread->tsk = kthread_run(md_thread, thread,
  5989. "%s_%s",
  5990. mdname(thread->mddev),
  5991. name);
  5992. if (IS_ERR(thread->tsk)) {
  5993. kfree(thread);
  5994. return NULL;
  5995. }
  5996. return thread;
  5997. }
  5998. void md_unregister_thread(struct md_thread **threadp)
  5999. {
  6000. struct md_thread *thread = *threadp;
  6001. if (!thread)
  6002. return;
  6003. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  6004. /* Locking ensures that mddev_unlock does not wake_up a
  6005. * non-existent thread
  6006. */
  6007. spin_lock(&pers_lock);
  6008. *threadp = NULL;
  6009. spin_unlock(&pers_lock);
  6010. kthread_stop(thread->tsk);
  6011. kfree(thread);
  6012. }
  6013. void md_error(struct mddev *mddev, struct md_rdev *rdev)
  6014. {
  6015. if (!mddev) {
  6016. MD_BUG();
  6017. return;
  6018. }
  6019. if (!rdev || test_bit(Faulty, &rdev->flags))
  6020. return;
  6021. if (!mddev->pers || !mddev->pers->error_handler)
  6022. return;
  6023. mddev->pers->error_handler(mddev,rdev);
  6024. if (mddev->degraded)
  6025. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6026. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6027. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6028. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6029. md_wakeup_thread(mddev->thread);
  6030. if (mddev->event_work.func)
  6031. queue_work(md_misc_wq, &mddev->event_work);
  6032. md_new_event_inintr(mddev);
  6033. }
  6034. /* seq_file implementation /proc/mdstat */
  6035. static void status_unused(struct seq_file *seq)
  6036. {
  6037. int i = 0;
  6038. struct md_rdev *rdev;
  6039. seq_printf(seq, "unused devices: ");
  6040. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  6041. char b[BDEVNAME_SIZE];
  6042. i++;
  6043. seq_printf(seq, "%s ",
  6044. bdevname(rdev->bdev,b));
  6045. }
  6046. if (!i)
  6047. seq_printf(seq, "<none>");
  6048. seq_printf(seq, "\n");
  6049. }
  6050. static void status_resync(struct seq_file *seq, struct mddev * mddev)
  6051. {
  6052. sector_t max_sectors, resync, res;
  6053. unsigned long dt, db;
  6054. sector_t rt;
  6055. int scale;
  6056. unsigned int per_milli;
  6057. if (mddev->curr_resync <= 3)
  6058. resync = 0;
  6059. else
  6060. resync = mddev->curr_resync
  6061. - atomic_read(&mddev->recovery_active);
  6062. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
  6063. test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6064. max_sectors = mddev->resync_max_sectors;
  6065. else
  6066. max_sectors = mddev->dev_sectors;
  6067. /*
  6068. * Should not happen.
  6069. */
  6070. if (!max_sectors) {
  6071. MD_BUG();
  6072. return;
  6073. }
  6074. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  6075. * in a sector_t, and (max_sectors>>scale) will fit in a
  6076. * u32, as those are the requirements for sector_div.
  6077. * Thus 'scale' must be at least 10
  6078. */
  6079. scale = 10;
  6080. if (sizeof(sector_t) > sizeof(unsigned long)) {
  6081. while ( max_sectors/2 > (1ULL<<(scale+32)))
  6082. scale++;
  6083. }
  6084. res = (resync>>scale)*1000;
  6085. sector_div(res, (u32)((max_sectors>>scale)+1));
  6086. per_milli = res;
  6087. {
  6088. int i, x = per_milli/50, y = 20-x;
  6089. seq_printf(seq, "[");
  6090. for (i = 0; i < x; i++)
  6091. seq_printf(seq, "=");
  6092. seq_printf(seq, ">");
  6093. for (i = 0; i < y; i++)
  6094. seq_printf(seq, ".");
  6095. seq_printf(seq, "] ");
  6096. }
  6097. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  6098. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  6099. "reshape" :
  6100. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  6101. "check" :
  6102. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  6103. "resync" : "recovery"))),
  6104. per_milli/10, per_milli % 10,
  6105. (unsigned long long) resync/2,
  6106. (unsigned long long) max_sectors/2);
  6107. /*
  6108. * dt: time from mark until now
  6109. * db: blocks written from mark until now
  6110. * rt: remaining time
  6111. *
  6112. * rt is a sector_t, so could be 32bit or 64bit.
  6113. * So we divide before multiply in case it is 32bit and close
  6114. * to the limit.
  6115. * We scale the divisor (db) by 32 to avoid losing precision
  6116. * near the end of resync when the number of remaining sectors
  6117. * is close to 'db'.
  6118. * We then divide rt by 32 after multiplying by db to compensate.
  6119. * The '+1' avoids division by zero if db is very small.
  6120. */
  6121. dt = ((jiffies - mddev->resync_mark) / HZ);
  6122. if (!dt) dt++;
  6123. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  6124. - mddev->resync_mark_cnt;
  6125. rt = max_sectors - resync; /* number of remaining sectors */
  6126. sector_div(rt, db/32+1);
  6127. rt *= dt;
  6128. rt >>= 5;
  6129. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  6130. ((unsigned long)rt % 60)/6);
  6131. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  6132. }
  6133. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  6134. {
  6135. struct list_head *tmp;
  6136. loff_t l = *pos;
  6137. struct mddev *mddev;
  6138. if (l >= 0x10000)
  6139. return NULL;
  6140. if (!l--)
  6141. /* header */
  6142. return (void*)1;
  6143. spin_lock(&all_mddevs_lock);
  6144. list_for_each(tmp,&all_mddevs)
  6145. if (!l--) {
  6146. mddev = list_entry(tmp, struct mddev, all_mddevs);
  6147. mddev_get(mddev);
  6148. spin_unlock(&all_mddevs_lock);
  6149. return mddev;
  6150. }
  6151. spin_unlock(&all_mddevs_lock);
  6152. if (!l--)
  6153. return (void*)2;/* tail */
  6154. return NULL;
  6155. }
  6156. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  6157. {
  6158. struct list_head *tmp;
  6159. struct mddev *next_mddev, *mddev = v;
  6160. ++*pos;
  6161. if (v == (void*)2)
  6162. return NULL;
  6163. spin_lock(&all_mddevs_lock);
  6164. if (v == (void*)1)
  6165. tmp = all_mddevs.next;
  6166. else
  6167. tmp = mddev->all_mddevs.next;
  6168. if (tmp != &all_mddevs)
  6169. next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
  6170. else {
  6171. next_mddev = (void*)2;
  6172. *pos = 0x10000;
  6173. }
  6174. spin_unlock(&all_mddevs_lock);
  6175. if (v != (void*)1)
  6176. mddev_put(mddev);
  6177. return next_mddev;
  6178. }
  6179. static void md_seq_stop(struct seq_file *seq, void *v)
  6180. {
  6181. struct mddev *mddev = v;
  6182. if (mddev && v != (void*)1 && v != (void*)2)
  6183. mddev_put(mddev);
  6184. }
  6185. static int md_seq_show(struct seq_file *seq, void *v)
  6186. {
  6187. struct mddev *mddev = v;
  6188. sector_t sectors;
  6189. struct md_rdev *rdev;
  6190. if (v == (void*)1) {
  6191. struct md_personality *pers;
  6192. seq_printf(seq, "Personalities : ");
  6193. spin_lock(&pers_lock);
  6194. list_for_each_entry(pers, &pers_list, list)
  6195. seq_printf(seq, "[%s] ", pers->name);
  6196. spin_unlock(&pers_lock);
  6197. seq_printf(seq, "\n");
  6198. seq->poll_event = atomic_read(&md_event_count);
  6199. return 0;
  6200. }
  6201. if (v == (void*)2) {
  6202. status_unused(seq);
  6203. return 0;
  6204. }
  6205. if (mddev_lock(mddev) < 0)
  6206. return -EINTR;
  6207. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  6208. seq_printf(seq, "%s : %sactive", mdname(mddev),
  6209. mddev->pers ? "" : "in");
  6210. if (mddev->pers) {
  6211. if (mddev->ro==1)
  6212. seq_printf(seq, " (read-only)");
  6213. if (mddev->ro==2)
  6214. seq_printf(seq, " (auto-read-only)");
  6215. seq_printf(seq, " %s", mddev->pers->name);
  6216. }
  6217. sectors = 0;
  6218. rdev_for_each(rdev, mddev) {
  6219. char b[BDEVNAME_SIZE];
  6220. seq_printf(seq, " %s[%d]",
  6221. bdevname(rdev->bdev,b), rdev->desc_nr);
  6222. if (test_bit(WriteMostly, &rdev->flags))
  6223. seq_printf(seq, "(W)");
  6224. if (test_bit(Faulty, &rdev->flags)) {
  6225. seq_printf(seq, "(F)");
  6226. continue;
  6227. }
  6228. if (rdev->raid_disk < 0)
  6229. seq_printf(seq, "(S)"); /* spare */
  6230. if (test_bit(Replacement, &rdev->flags))
  6231. seq_printf(seq, "(R)");
  6232. sectors += rdev->sectors;
  6233. }
  6234. if (!list_empty(&mddev->disks)) {
  6235. if (mddev->pers)
  6236. seq_printf(seq, "\n %llu blocks",
  6237. (unsigned long long)
  6238. mddev->array_sectors / 2);
  6239. else
  6240. seq_printf(seq, "\n %llu blocks",
  6241. (unsigned long long)sectors / 2);
  6242. }
  6243. if (mddev->persistent) {
  6244. if (mddev->major_version != 0 ||
  6245. mddev->minor_version != 90) {
  6246. seq_printf(seq," super %d.%d",
  6247. mddev->major_version,
  6248. mddev->minor_version);
  6249. }
  6250. } else if (mddev->external)
  6251. seq_printf(seq, " super external:%s",
  6252. mddev->metadata_type);
  6253. else
  6254. seq_printf(seq, " super non-persistent");
  6255. if (mddev->pers) {
  6256. mddev->pers->status(seq, mddev);
  6257. seq_printf(seq, "\n ");
  6258. if (mddev->pers->sync_request) {
  6259. if (mddev->curr_resync > 2) {
  6260. status_resync(seq, mddev);
  6261. seq_printf(seq, "\n ");
  6262. } else if (mddev->curr_resync >= 1)
  6263. seq_printf(seq, "\tresync=DELAYED\n ");
  6264. else if (mddev->recovery_cp < MaxSector)
  6265. seq_printf(seq, "\tresync=PENDING\n ");
  6266. }
  6267. } else
  6268. seq_printf(seq, "\n ");
  6269. bitmap_status(seq, mddev->bitmap);
  6270. seq_printf(seq, "\n");
  6271. }
  6272. mddev_unlock(mddev);
  6273. return 0;
  6274. }
  6275. static const struct seq_operations md_seq_ops = {
  6276. .start = md_seq_start,
  6277. .next = md_seq_next,
  6278. .stop = md_seq_stop,
  6279. .show = md_seq_show,
  6280. };
  6281. static int md_seq_open(struct inode *inode, struct file *file)
  6282. {
  6283. struct seq_file *seq;
  6284. int error;
  6285. error = seq_open(file, &md_seq_ops);
  6286. if (error)
  6287. return error;
  6288. seq = file->private_data;
  6289. seq->poll_event = atomic_read(&md_event_count);
  6290. return error;
  6291. }
  6292. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  6293. {
  6294. struct seq_file *seq = filp->private_data;
  6295. int mask;
  6296. poll_wait(filp, &md_event_waiters, wait);
  6297. /* always allow read */
  6298. mask = POLLIN | POLLRDNORM;
  6299. if (seq->poll_event != atomic_read(&md_event_count))
  6300. mask |= POLLERR | POLLPRI;
  6301. return mask;
  6302. }
  6303. static const struct file_operations md_seq_fops = {
  6304. .owner = THIS_MODULE,
  6305. .open = md_seq_open,
  6306. .read = seq_read,
  6307. .llseek = seq_lseek,
  6308. .release = seq_release_private,
  6309. .poll = mdstat_poll,
  6310. };
  6311. int register_md_personality(struct md_personality *p)
  6312. {
  6313. spin_lock(&pers_lock);
  6314. list_add_tail(&p->list, &pers_list);
  6315. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6316. spin_unlock(&pers_lock);
  6317. return 0;
  6318. }
  6319. int unregister_md_personality(struct md_personality *p)
  6320. {
  6321. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6322. spin_lock(&pers_lock);
  6323. list_del_init(&p->list);
  6324. spin_unlock(&pers_lock);
  6325. return 0;
  6326. }
  6327. static int is_mddev_idle(struct mddev *mddev, int init)
  6328. {
  6329. struct md_rdev * rdev;
  6330. int idle;
  6331. int curr_events;
  6332. idle = 1;
  6333. rcu_read_lock();
  6334. rdev_for_each_rcu(rdev, mddev) {
  6335. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6336. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6337. (int)part_stat_read(&disk->part0, sectors[1]) -
  6338. atomic_read(&disk->sync_io);
  6339. /* sync IO will cause sync_io to increase before the disk_stats
  6340. * as sync_io is counted when a request starts, and
  6341. * disk_stats is counted when it completes.
  6342. * So resync activity will cause curr_events to be smaller than
  6343. * when there was no such activity.
  6344. * non-sync IO will cause disk_stat to increase without
  6345. * increasing sync_io so curr_events will (eventually)
  6346. * be larger than it was before. Once it becomes
  6347. * substantially larger, the test below will cause
  6348. * the array to appear non-idle, and resync will slow
  6349. * down.
  6350. * If there is a lot of outstanding resync activity when
  6351. * we set last_event to curr_events, then all that activity
  6352. * completing might cause the array to appear non-idle
  6353. * and resync will be slowed down even though there might
  6354. * not have been non-resync activity. This will only
  6355. * happen once though. 'last_events' will soon reflect
  6356. * the state where there is little or no outstanding
  6357. * resync requests, and further resync activity will
  6358. * always make curr_events less than last_events.
  6359. *
  6360. */
  6361. if (init || curr_events - rdev->last_events > 64) {
  6362. rdev->last_events = curr_events;
  6363. idle = 0;
  6364. }
  6365. }
  6366. rcu_read_unlock();
  6367. return idle;
  6368. }
  6369. void md_done_sync(struct mddev *mddev, int blocks, int ok)
  6370. {
  6371. /* another "blocks" (512byte) blocks have been synced */
  6372. atomic_sub(blocks, &mddev->recovery_active);
  6373. wake_up(&mddev->recovery_wait);
  6374. if (!ok) {
  6375. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6376. set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
  6377. md_wakeup_thread(mddev->thread);
  6378. // stop recovery, signal do_sync ....
  6379. }
  6380. }
  6381. /* md_write_start(mddev, bi)
  6382. * If we need to update some array metadata (e.g. 'active' flag
  6383. * in superblock) before writing, schedule a superblock update
  6384. * and wait for it to complete.
  6385. */
  6386. void md_write_start(struct mddev *mddev, struct bio *bi)
  6387. {
  6388. int did_change = 0;
  6389. if (bio_data_dir(bi) != WRITE)
  6390. return;
  6391. BUG_ON(mddev->ro == 1);
  6392. if (mddev->ro == 2) {
  6393. /* need to switch to read/write */
  6394. mddev->ro = 0;
  6395. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6396. md_wakeup_thread(mddev->thread);
  6397. md_wakeup_thread(mddev->sync_thread);
  6398. did_change = 1;
  6399. }
  6400. atomic_inc(&mddev->writes_pending);
  6401. if (mddev->safemode == 1)
  6402. mddev->safemode = 0;
  6403. if (mddev->in_sync) {
  6404. spin_lock_irq(&mddev->write_lock);
  6405. if (mddev->in_sync) {
  6406. mddev->in_sync = 0;
  6407. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6408. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6409. md_wakeup_thread(mddev->thread);
  6410. did_change = 1;
  6411. }
  6412. spin_unlock_irq(&mddev->write_lock);
  6413. }
  6414. if (did_change)
  6415. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6416. wait_event(mddev->sb_wait,
  6417. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6418. }
  6419. void md_write_end(struct mddev *mddev)
  6420. {
  6421. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6422. if (mddev->safemode == 2)
  6423. md_wakeup_thread(mddev->thread);
  6424. else if (mddev->safemode_delay)
  6425. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6426. }
  6427. }
  6428. /* md_allow_write(mddev)
  6429. * Calling this ensures that the array is marked 'active' so that writes
  6430. * may proceed without blocking. It is important to call this before
  6431. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6432. * Must be called with mddev_lock held.
  6433. *
  6434. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6435. * is dropped, so return -EAGAIN after notifying userspace.
  6436. */
  6437. int md_allow_write(struct mddev *mddev)
  6438. {
  6439. if (!mddev->pers)
  6440. return 0;
  6441. if (mddev->ro)
  6442. return 0;
  6443. if (!mddev->pers->sync_request)
  6444. return 0;
  6445. spin_lock_irq(&mddev->write_lock);
  6446. if (mddev->in_sync) {
  6447. mddev->in_sync = 0;
  6448. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6449. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6450. if (mddev->safemode_delay &&
  6451. mddev->safemode == 0)
  6452. mddev->safemode = 1;
  6453. spin_unlock_irq(&mddev->write_lock);
  6454. md_update_sb(mddev, 0);
  6455. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6456. } else
  6457. spin_unlock_irq(&mddev->write_lock);
  6458. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6459. return -EAGAIN;
  6460. else
  6461. return 0;
  6462. }
  6463. EXPORT_SYMBOL_GPL(md_allow_write);
  6464. #define SYNC_MARKS 10
  6465. #define SYNC_MARK_STEP (3*HZ)
  6466. #define UPDATE_FREQUENCY (5*60*HZ)
  6467. void md_do_sync(struct md_thread *thread)
  6468. {
  6469. struct mddev *mddev = thread->mddev;
  6470. struct mddev *mddev2;
  6471. unsigned int currspeed = 0,
  6472. window;
  6473. sector_t max_sectors,j, io_sectors;
  6474. unsigned long mark[SYNC_MARKS];
  6475. unsigned long update_time;
  6476. sector_t mark_cnt[SYNC_MARKS];
  6477. int last_mark,m;
  6478. struct list_head *tmp;
  6479. sector_t last_check;
  6480. int skipped = 0;
  6481. struct md_rdev *rdev;
  6482. char *desc;
  6483. struct blk_plug plug;
  6484. /* just incase thread restarts... */
  6485. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6486. return;
  6487. if (mddev->ro) /* never try to sync a read-only array */
  6488. return;
  6489. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6490. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6491. desc = "data-check";
  6492. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6493. desc = "requested-resync";
  6494. else
  6495. desc = "resync";
  6496. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6497. desc = "reshape";
  6498. else
  6499. desc = "recovery";
  6500. /* we overload curr_resync somewhat here.
  6501. * 0 == not engaged in resync at all
  6502. * 2 == checking that there is no conflict with another sync
  6503. * 1 == like 2, but have yielded to allow conflicting resync to
  6504. * commense
  6505. * other == active in resync - this many blocks
  6506. *
  6507. * Before starting a resync we must have set curr_resync to
  6508. * 2, and then checked that every "conflicting" array has curr_resync
  6509. * less than ours. When we find one that is the same or higher
  6510. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6511. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6512. * This will mean we have to start checking from the beginning again.
  6513. *
  6514. */
  6515. do {
  6516. mddev->curr_resync = 2;
  6517. try_again:
  6518. if (kthread_should_stop())
  6519. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6520. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6521. goto skip;
  6522. for_each_mddev(mddev2, tmp) {
  6523. if (mddev2 == mddev)
  6524. continue;
  6525. if (!mddev->parallel_resync
  6526. && mddev2->curr_resync
  6527. && match_mddev_units(mddev, mddev2)) {
  6528. DEFINE_WAIT(wq);
  6529. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6530. /* arbitrarily yield */
  6531. mddev->curr_resync = 1;
  6532. wake_up(&resync_wait);
  6533. }
  6534. if (mddev > mddev2 && mddev->curr_resync == 1)
  6535. /* no need to wait here, we can wait the next
  6536. * time 'round when curr_resync == 2
  6537. */
  6538. continue;
  6539. /* We need to wait 'interruptible' so as not to
  6540. * contribute to the load average, and not to
  6541. * be caught by 'softlockup'
  6542. */
  6543. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6544. if (!kthread_should_stop() &&
  6545. mddev2->curr_resync >= mddev->curr_resync) {
  6546. printk(KERN_INFO "md: delaying %s of %s"
  6547. " until %s has finished (they"
  6548. " share one or more physical units)\n",
  6549. desc, mdname(mddev), mdname(mddev2));
  6550. mddev_put(mddev2);
  6551. if (signal_pending(current))
  6552. flush_signals(current);
  6553. schedule();
  6554. finish_wait(&resync_wait, &wq);
  6555. goto try_again;
  6556. }
  6557. finish_wait(&resync_wait, &wq);
  6558. }
  6559. }
  6560. } while (mddev->curr_resync < 2);
  6561. j = 0;
  6562. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6563. /* resync follows the size requested by the personality,
  6564. * which defaults to physical size, but can be virtual size
  6565. */
  6566. max_sectors = mddev->resync_max_sectors;
  6567. atomic64_set(&mddev->resync_mismatches, 0);
  6568. /* we don't use the checkpoint if there's a bitmap */
  6569. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6570. j = mddev->resync_min;
  6571. else if (!mddev->bitmap)
  6572. j = mddev->recovery_cp;
  6573. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6574. max_sectors = mddev->resync_max_sectors;
  6575. else {
  6576. /* recovery follows the physical size of devices */
  6577. max_sectors = mddev->dev_sectors;
  6578. j = MaxSector;
  6579. rcu_read_lock();
  6580. rdev_for_each_rcu(rdev, mddev)
  6581. if (rdev->raid_disk >= 0 &&
  6582. !test_bit(Faulty, &rdev->flags) &&
  6583. !test_bit(In_sync, &rdev->flags) &&
  6584. rdev->recovery_offset < j)
  6585. j = rdev->recovery_offset;
  6586. rcu_read_unlock();
  6587. }
  6588. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6589. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6590. " %d KB/sec/disk.\n", speed_min(mddev));
  6591. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6592. "(but not more than %d KB/sec) for %s.\n",
  6593. speed_max(mddev), desc);
  6594. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6595. io_sectors = 0;
  6596. for (m = 0; m < SYNC_MARKS; m++) {
  6597. mark[m] = jiffies;
  6598. mark_cnt[m] = io_sectors;
  6599. }
  6600. last_mark = 0;
  6601. mddev->resync_mark = mark[last_mark];
  6602. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6603. /*
  6604. * Tune reconstruction:
  6605. */
  6606. window = 32*(PAGE_SIZE/512);
  6607. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6608. window/2, (unsigned long long)max_sectors/2);
  6609. atomic_set(&mddev->recovery_active, 0);
  6610. last_check = 0;
  6611. if (j>2) {
  6612. printk(KERN_INFO
  6613. "md: resuming %s of %s from checkpoint.\n",
  6614. desc, mdname(mddev));
  6615. mddev->curr_resync = j;
  6616. } else
  6617. mddev->curr_resync = 3; /* no longer delayed */
  6618. mddev->curr_resync_completed = j;
  6619. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6620. md_new_event(mddev);
  6621. update_time = jiffies;
  6622. blk_start_plug(&plug);
  6623. while (j < max_sectors) {
  6624. sector_t sectors;
  6625. skipped = 0;
  6626. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6627. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6628. (mddev->curr_resync - mddev->curr_resync_completed)
  6629. > (max_sectors >> 4)) ||
  6630. time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
  6631. (j - mddev->curr_resync_completed)*2
  6632. >= mddev->resync_max - mddev->curr_resync_completed
  6633. )) {
  6634. /* time to update curr_resync_completed */
  6635. wait_event(mddev->recovery_wait,
  6636. atomic_read(&mddev->recovery_active) == 0);
  6637. mddev->curr_resync_completed = j;
  6638. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
  6639. j > mddev->recovery_cp)
  6640. mddev->recovery_cp = j;
  6641. update_time = jiffies;
  6642. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6643. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6644. }
  6645. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6646. /* As this condition is controlled by user-space,
  6647. * we can block indefinitely, so use '_interruptible'
  6648. * to avoid triggering warnings.
  6649. */
  6650. flush_signals(current); /* just in case */
  6651. wait_event_interruptible(mddev->recovery_wait,
  6652. mddev->resync_max > j
  6653. || kthread_should_stop());
  6654. }
  6655. if (kthread_should_stop())
  6656. goto interrupted;
  6657. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6658. currspeed < speed_min(mddev));
  6659. if (sectors == 0) {
  6660. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6661. goto out;
  6662. }
  6663. if (!skipped) { /* actual IO requested */
  6664. io_sectors += sectors;
  6665. atomic_add(sectors, &mddev->recovery_active);
  6666. }
  6667. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6668. break;
  6669. j += sectors;
  6670. if (j > 2)
  6671. mddev->curr_resync = j;
  6672. mddev->curr_mark_cnt = io_sectors;
  6673. if (last_check == 0)
  6674. /* this is the earliest that rebuild will be
  6675. * visible in /proc/mdstat
  6676. */
  6677. md_new_event(mddev);
  6678. if (last_check + window > io_sectors || j == max_sectors)
  6679. continue;
  6680. last_check = io_sectors;
  6681. repeat:
  6682. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6683. /* step marks */
  6684. int next = (last_mark+1) % SYNC_MARKS;
  6685. mddev->resync_mark = mark[next];
  6686. mddev->resync_mark_cnt = mark_cnt[next];
  6687. mark[next] = jiffies;
  6688. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6689. last_mark = next;
  6690. }
  6691. if (kthread_should_stop())
  6692. goto interrupted;
  6693. /*
  6694. * this loop exits only if either when we are slower than
  6695. * the 'hard' speed limit, or the system was IO-idle for
  6696. * a jiffy.
  6697. * the system might be non-idle CPU-wise, but we only care
  6698. * about not overloading the IO subsystem. (things like an
  6699. * e2fsck being done on the RAID array should execute fast)
  6700. */
  6701. cond_resched();
  6702. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6703. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6704. if (currspeed > speed_min(mddev)) {
  6705. if ((currspeed > speed_max(mddev)) ||
  6706. !is_mddev_idle(mddev, 0)) {
  6707. msleep(500);
  6708. goto repeat;
  6709. }
  6710. }
  6711. }
  6712. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6713. /*
  6714. * this also signals 'finished resyncing' to md_stop
  6715. */
  6716. out:
  6717. blk_finish_plug(&plug);
  6718. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6719. /* tell personality that we are finished */
  6720. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6721. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6722. mddev->curr_resync > 2) {
  6723. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6724. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6725. if (mddev->curr_resync >= mddev->recovery_cp) {
  6726. printk(KERN_INFO
  6727. "md: checkpointing %s of %s.\n",
  6728. desc, mdname(mddev));
  6729. if (test_bit(MD_RECOVERY_ERROR,
  6730. &mddev->recovery))
  6731. mddev->recovery_cp =
  6732. mddev->curr_resync_completed;
  6733. else
  6734. mddev->recovery_cp =
  6735. mddev->curr_resync;
  6736. }
  6737. } else
  6738. mddev->recovery_cp = MaxSector;
  6739. } else {
  6740. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6741. mddev->curr_resync = MaxSector;
  6742. rcu_read_lock();
  6743. rdev_for_each_rcu(rdev, mddev)
  6744. if (rdev->raid_disk >= 0 &&
  6745. mddev->delta_disks >= 0 &&
  6746. !test_bit(Faulty, &rdev->flags) &&
  6747. !test_bit(In_sync, &rdev->flags) &&
  6748. rdev->recovery_offset < mddev->curr_resync)
  6749. rdev->recovery_offset = mddev->curr_resync;
  6750. rcu_read_unlock();
  6751. }
  6752. }
  6753. skip:
  6754. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6755. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6756. /* We completed so min/max setting can be forgotten if used. */
  6757. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6758. mddev->resync_min = 0;
  6759. mddev->resync_max = MaxSector;
  6760. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6761. mddev->resync_min = mddev->curr_resync_completed;
  6762. mddev->curr_resync = 0;
  6763. wake_up(&resync_wait);
  6764. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6765. md_wakeup_thread(mddev->thread);
  6766. return;
  6767. interrupted:
  6768. /*
  6769. * got a signal, exit.
  6770. */
  6771. printk(KERN_INFO
  6772. "md: md_do_sync() got signal ... exiting\n");
  6773. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6774. goto out;
  6775. }
  6776. EXPORT_SYMBOL_GPL(md_do_sync);
  6777. static int remove_and_add_spares(struct mddev *mddev)
  6778. {
  6779. struct md_rdev *rdev;
  6780. int spares = 0;
  6781. int removed = 0;
  6782. rdev_for_each(rdev, mddev)
  6783. if (rdev->raid_disk >= 0 &&
  6784. !test_bit(Blocked, &rdev->flags) &&
  6785. (test_bit(Faulty, &rdev->flags) ||
  6786. ! test_bit(In_sync, &rdev->flags)) &&
  6787. atomic_read(&rdev->nr_pending)==0) {
  6788. if (mddev->pers->hot_remove_disk(
  6789. mddev, rdev) == 0) {
  6790. sysfs_unlink_rdev(mddev, rdev);
  6791. rdev->raid_disk = -1;
  6792. removed++;
  6793. }
  6794. }
  6795. if (removed && mddev->kobj.sd)
  6796. sysfs_notify(&mddev->kobj, NULL, "degraded");
  6797. rdev_for_each(rdev, mddev) {
  6798. if (rdev->raid_disk >= 0 &&
  6799. !test_bit(In_sync, &rdev->flags) &&
  6800. !test_bit(Faulty, &rdev->flags))
  6801. spares++;
  6802. if (rdev->raid_disk < 0
  6803. && !test_bit(Faulty, &rdev->flags)) {
  6804. rdev->recovery_offset = 0;
  6805. if (mddev->pers->
  6806. hot_add_disk(mddev, rdev) == 0) {
  6807. if (sysfs_link_rdev(mddev, rdev))
  6808. /* failure here is OK */;
  6809. spares++;
  6810. md_new_event(mddev);
  6811. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6812. }
  6813. }
  6814. }
  6815. if (removed)
  6816. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6817. return spares;
  6818. }
  6819. static void reap_sync_thread(struct mddev *mddev)
  6820. {
  6821. struct md_rdev *rdev;
  6822. /* resync has finished, collect result */
  6823. md_unregister_thread(&mddev->sync_thread);
  6824. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6825. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6826. /* success...*/
  6827. /* activate any spares */
  6828. if (mddev->pers->spare_active(mddev)) {
  6829. sysfs_notify(&mddev->kobj, NULL,
  6830. "degraded");
  6831. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6832. }
  6833. }
  6834. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6835. mddev->pers->finish_reshape)
  6836. mddev->pers->finish_reshape(mddev);
  6837. /* If array is no-longer degraded, then any saved_raid_disk
  6838. * information must be scrapped. Also if any device is now
  6839. * In_sync we must scrape the saved_raid_disk for that device
  6840. * do the superblock for an incrementally recovered device
  6841. * written out.
  6842. */
  6843. rdev_for_each(rdev, mddev)
  6844. if (!mddev->degraded ||
  6845. test_bit(In_sync, &rdev->flags))
  6846. rdev->saved_raid_disk = -1;
  6847. md_update_sb(mddev, 1);
  6848. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6849. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6850. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6851. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6852. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6853. /* flag recovery needed just to double check */
  6854. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6855. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6856. md_new_event(mddev);
  6857. if (mddev->event_work.func)
  6858. queue_work(md_misc_wq, &mddev->event_work);
  6859. }
  6860. /*
  6861. * This routine is regularly called by all per-raid-array threads to
  6862. * deal with generic issues like resync and super-block update.
  6863. * Raid personalities that don't have a thread (linear/raid0) do not
  6864. * need this as they never do any recovery or update the superblock.
  6865. *
  6866. * It does not do any resync itself, but rather "forks" off other threads
  6867. * to do that as needed.
  6868. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6869. * "->recovery" and create a thread at ->sync_thread.
  6870. * When the thread finishes it sets MD_RECOVERY_DONE
  6871. * and wakeups up this thread which will reap the thread and finish up.
  6872. * This thread also removes any faulty devices (with nr_pending == 0).
  6873. *
  6874. * The overall approach is:
  6875. * 1/ if the superblock needs updating, update it.
  6876. * 2/ If a recovery thread is running, don't do anything else.
  6877. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6878. * 4/ If there are any faulty devices, remove them.
  6879. * 5/ If array is degraded, try to add spares devices
  6880. * 6/ If array has spares or is not in-sync, start a resync thread.
  6881. */
  6882. void md_check_recovery(struct mddev *mddev)
  6883. {
  6884. if (mddev->suspended)
  6885. return;
  6886. if (mddev->bitmap)
  6887. bitmap_daemon_work(mddev);
  6888. if (signal_pending(current)) {
  6889. if (mddev->pers->sync_request && !mddev->external) {
  6890. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6891. mdname(mddev));
  6892. mddev->safemode = 2;
  6893. }
  6894. flush_signals(current);
  6895. }
  6896. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6897. return;
  6898. if ( ! (
  6899. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6900. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6901. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6902. (mddev->external == 0 && mddev->safemode == 1) ||
  6903. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6904. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6905. ))
  6906. return;
  6907. if (mddev_trylock(mddev)) {
  6908. int spares = 0;
  6909. if (mddev->ro) {
  6910. /* Only thing we do on a ro array is remove
  6911. * failed devices.
  6912. */
  6913. struct md_rdev *rdev;
  6914. rdev_for_each(rdev, mddev)
  6915. if (rdev->raid_disk >= 0 &&
  6916. !test_bit(Blocked, &rdev->flags) &&
  6917. test_bit(Faulty, &rdev->flags) &&
  6918. atomic_read(&rdev->nr_pending)==0) {
  6919. if (mddev->pers->hot_remove_disk(
  6920. mddev, rdev) == 0) {
  6921. sysfs_unlink_rdev(mddev, rdev);
  6922. rdev->raid_disk = -1;
  6923. }
  6924. }
  6925. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6926. goto unlock;
  6927. }
  6928. if (!mddev->external) {
  6929. int did_change = 0;
  6930. spin_lock_irq(&mddev->write_lock);
  6931. if (mddev->safemode &&
  6932. !atomic_read(&mddev->writes_pending) &&
  6933. !mddev->in_sync &&
  6934. mddev->recovery_cp == MaxSector) {
  6935. mddev->in_sync = 1;
  6936. did_change = 1;
  6937. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6938. }
  6939. if (mddev->safemode == 1)
  6940. mddev->safemode = 0;
  6941. spin_unlock_irq(&mddev->write_lock);
  6942. if (did_change)
  6943. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6944. }
  6945. if (mddev->flags)
  6946. md_update_sb(mddev, 0);
  6947. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6948. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6949. /* resync/recovery still happening */
  6950. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6951. goto unlock;
  6952. }
  6953. if (mddev->sync_thread) {
  6954. reap_sync_thread(mddev);
  6955. goto unlock;
  6956. }
  6957. /* Set RUNNING before clearing NEEDED to avoid
  6958. * any transients in the value of "sync_action".
  6959. */
  6960. mddev->curr_resync_completed = 0;
  6961. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6962. /* Clear some bits that don't mean anything, but
  6963. * might be left set
  6964. */
  6965. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6966. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6967. if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6968. test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6969. goto unlock;
  6970. /* no recovery is running.
  6971. * remove any failed drives, then
  6972. * add spares if possible.
  6973. * Spares are also removed and re-added, to allow
  6974. * the personality to fail the re-add.
  6975. */
  6976. if (mddev->reshape_position != MaxSector) {
  6977. if (mddev->pers->check_reshape == NULL ||
  6978. mddev->pers->check_reshape(mddev) != 0)
  6979. /* Cannot proceed */
  6980. goto unlock;
  6981. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6982. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6983. } else if ((spares = remove_and_add_spares(mddev))) {
  6984. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6985. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6986. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6987. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6988. } else if (mddev->recovery_cp < MaxSector) {
  6989. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6990. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6991. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6992. /* nothing to be done ... */
  6993. goto unlock;
  6994. if (mddev->pers->sync_request) {
  6995. if (spares) {
  6996. /* We are adding a device or devices to an array
  6997. * which has the bitmap stored on all devices.
  6998. * So make sure all bitmap pages get written
  6999. */
  7000. bitmap_write_all(mddev->bitmap);
  7001. }
  7002. mddev->sync_thread = md_register_thread(md_do_sync,
  7003. mddev,
  7004. "resync");
  7005. if (!mddev->sync_thread) {
  7006. printk(KERN_ERR "%s: could not start resync"
  7007. " thread...\n",
  7008. mdname(mddev));
  7009. /* leave the spares where they are, it shouldn't hurt */
  7010. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7011. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  7012. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  7013. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  7014. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  7015. } else
  7016. md_wakeup_thread(mddev->sync_thread);
  7017. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7018. md_new_event(mddev);
  7019. }
  7020. unlock:
  7021. if (!mddev->sync_thread) {
  7022. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  7023. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  7024. &mddev->recovery))
  7025. if (mddev->sysfs_action)
  7026. sysfs_notify_dirent_safe(mddev->sysfs_action);
  7027. }
  7028. mddev_unlock(mddev);
  7029. }
  7030. }
  7031. void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
  7032. {
  7033. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7034. wait_event_timeout(rdev->blocked_wait,
  7035. !test_bit(Blocked, &rdev->flags) &&
  7036. !test_bit(BlockedBadBlocks, &rdev->flags),
  7037. msecs_to_jiffies(5000));
  7038. rdev_dec_pending(rdev, mddev);
  7039. }
  7040. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  7041. void md_finish_reshape(struct mddev *mddev)
  7042. {
  7043. /* called be personality module when reshape completes. */
  7044. struct md_rdev *rdev;
  7045. rdev_for_each(rdev, mddev) {
  7046. if (rdev->data_offset > rdev->new_data_offset)
  7047. rdev->sectors += rdev->data_offset - rdev->new_data_offset;
  7048. else
  7049. rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
  7050. rdev->data_offset = rdev->new_data_offset;
  7051. }
  7052. }
  7053. EXPORT_SYMBOL(md_finish_reshape);
  7054. /* Bad block management.
  7055. * We can record which blocks on each device are 'bad' and so just
  7056. * fail those blocks, or that stripe, rather than the whole device.
  7057. * Entries in the bad-block table are 64bits wide. This comprises:
  7058. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  7059. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  7060. * A 'shift' can be set so that larger blocks are tracked and
  7061. * consequently larger devices can be covered.
  7062. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  7063. *
  7064. * Locking of the bad-block table uses a seqlock so md_is_badblock
  7065. * might need to retry if it is very unlucky.
  7066. * We will sometimes want to check for bad blocks in a bi_end_io function,
  7067. * so we use the write_seqlock_irq variant.
  7068. *
  7069. * When looking for a bad block we specify a range and want to
  7070. * know if any block in the range is bad. So we binary-search
  7071. * to the last range that starts at-or-before the given endpoint,
  7072. * (or "before the sector after the target range")
  7073. * then see if it ends after the given start.
  7074. * We return
  7075. * 0 if there are no known bad blocks in the range
  7076. * 1 if there are known bad block which are all acknowledged
  7077. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  7078. * plus the start/length of the first bad section we overlap.
  7079. */
  7080. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  7081. sector_t *first_bad, int *bad_sectors)
  7082. {
  7083. int hi;
  7084. int lo;
  7085. u64 *p = bb->page;
  7086. int rv;
  7087. sector_t target = s + sectors;
  7088. unsigned seq;
  7089. if (bb->shift > 0) {
  7090. /* round the start down, and the end up */
  7091. s >>= bb->shift;
  7092. target += (1<<bb->shift) - 1;
  7093. target >>= bb->shift;
  7094. sectors = target - s;
  7095. }
  7096. /* 'target' is now the first block after the bad range */
  7097. retry:
  7098. seq = read_seqbegin(&bb->lock);
  7099. lo = 0;
  7100. rv = 0;
  7101. hi = bb->count;
  7102. /* Binary search between lo and hi for 'target'
  7103. * i.e. for the last range that starts before 'target'
  7104. */
  7105. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  7106. * are known not to be the last range before target.
  7107. * VARIANT: hi-lo is the number of possible
  7108. * ranges, and decreases until it reaches 1
  7109. */
  7110. while (hi - lo > 1) {
  7111. int mid = (lo + hi) / 2;
  7112. sector_t a = BB_OFFSET(p[mid]);
  7113. if (a < target)
  7114. /* This could still be the one, earlier ranges
  7115. * could not. */
  7116. lo = mid;
  7117. else
  7118. /* This and later ranges are definitely out. */
  7119. hi = mid;
  7120. }
  7121. /* 'lo' might be the last that started before target, but 'hi' isn't */
  7122. if (hi > lo) {
  7123. /* need to check all range that end after 's' to see if
  7124. * any are unacknowledged.
  7125. */
  7126. while (lo >= 0 &&
  7127. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7128. if (BB_OFFSET(p[lo]) < target) {
  7129. /* starts before the end, and finishes after
  7130. * the start, so they must overlap
  7131. */
  7132. if (rv != -1 && BB_ACK(p[lo]))
  7133. rv = 1;
  7134. else
  7135. rv = -1;
  7136. *first_bad = BB_OFFSET(p[lo]);
  7137. *bad_sectors = BB_LEN(p[lo]);
  7138. }
  7139. lo--;
  7140. }
  7141. }
  7142. if (read_seqretry(&bb->lock, seq))
  7143. goto retry;
  7144. return rv;
  7145. }
  7146. EXPORT_SYMBOL_GPL(md_is_badblock);
  7147. /*
  7148. * Add a range of bad blocks to the table.
  7149. * This might extend the table, or might contract it
  7150. * if two adjacent ranges can be merged.
  7151. * We binary-search to find the 'insertion' point, then
  7152. * decide how best to handle it.
  7153. */
  7154. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  7155. int acknowledged)
  7156. {
  7157. u64 *p;
  7158. int lo, hi;
  7159. int rv = 1;
  7160. if (bb->shift < 0)
  7161. /* badblocks are disabled */
  7162. return 0;
  7163. if (bb->shift) {
  7164. /* round the start down, and the end up */
  7165. sector_t next = s + sectors;
  7166. s >>= bb->shift;
  7167. next += (1<<bb->shift) - 1;
  7168. next >>= bb->shift;
  7169. sectors = next - s;
  7170. }
  7171. write_seqlock_irq(&bb->lock);
  7172. p = bb->page;
  7173. lo = 0;
  7174. hi = bb->count;
  7175. /* Find the last range that starts at-or-before 's' */
  7176. while (hi - lo > 1) {
  7177. int mid = (lo + hi) / 2;
  7178. sector_t a = BB_OFFSET(p[mid]);
  7179. if (a <= s)
  7180. lo = mid;
  7181. else
  7182. hi = mid;
  7183. }
  7184. if (hi > lo && BB_OFFSET(p[lo]) > s)
  7185. hi = lo;
  7186. if (hi > lo) {
  7187. /* we found a range that might merge with the start
  7188. * of our new range
  7189. */
  7190. sector_t a = BB_OFFSET(p[lo]);
  7191. sector_t e = a + BB_LEN(p[lo]);
  7192. int ack = BB_ACK(p[lo]);
  7193. if (e >= s) {
  7194. /* Yes, we can merge with a previous range */
  7195. if (s == a && s + sectors >= e)
  7196. /* new range covers old */
  7197. ack = acknowledged;
  7198. else
  7199. ack = ack && acknowledged;
  7200. if (e < s + sectors)
  7201. e = s + sectors;
  7202. if (e - a <= BB_MAX_LEN) {
  7203. p[lo] = BB_MAKE(a, e-a, ack);
  7204. s = e;
  7205. } else {
  7206. /* does not all fit in one range,
  7207. * make p[lo] maximal
  7208. */
  7209. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  7210. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  7211. s = a + BB_MAX_LEN;
  7212. }
  7213. sectors = e - s;
  7214. }
  7215. }
  7216. if (sectors && hi < bb->count) {
  7217. /* 'hi' points to the first range that starts after 's'.
  7218. * Maybe we can merge with the start of that range */
  7219. sector_t a = BB_OFFSET(p[hi]);
  7220. sector_t e = a + BB_LEN(p[hi]);
  7221. int ack = BB_ACK(p[hi]);
  7222. if (a <= s + sectors) {
  7223. /* merging is possible */
  7224. if (e <= s + sectors) {
  7225. /* full overlap */
  7226. e = s + sectors;
  7227. ack = acknowledged;
  7228. } else
  7229. ack = ack && acknowledged;
  7230. a = s;
  7231. if (e - a <= BB_MAX_LEN) {
  7232. p[hi] = BB_MAKE(a, e-a, ack);
  7233. s = e;
  7234. } else {
  7235. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  7236. s = a + BB_MAX_LEN;
  7237. }
  7238. sectors = e - s;
  7239. lo = hi;
  7240. hi++;
  7241. }
  7242. }
  7243. if (sectors == 0 && hi < bb->count) {
  7244. /* we might be able to combine lo and hi */
  7245. /* Note: 's' is at the end of 'lo' */
  7246. sector_t a = BB_OFFSET(p[hi]);
  7247. int lolen = BB_LEN(p[lo]);
  7248. int hilen = BB_LEN(p[hi]);
  7249. int newlen = lolen + hilen - (s - a);
  7250. if (s >= a && newlen < BB_MAX_LEN) {
  7251. /* yes, we can combine them */
  7252. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  7253. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  7254. memmove(p + hi, p + hi + 1,
  7255. (bb->count - hi - 1) * 8);
  7256. bb->count--;
  7257. }
  7258. }
  7259. while (sectors) {
  7260. /* didn't merge (it all).
  7261. * Need to add a range just before 'hi' */
  7262. if (bb->count >= MD_MAX_BADBLOCKS) {
  7263. /* No room for more */
  7264. rv = 0;
  7265. break;
  7266. } else {
  7267. int this_sectors = sectors;
  7268. memmove(p + hi + 1, p + hi,
  7269. (bb->count - hi) * 8);
  7270. bb->count++;
  7271. if (this_sectors > BB_MAX_LEN)
  7272. this_sectors = BB_MAX_LEN;
  7273. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  7274. sectors -= this_sectors;
  7275. s += this_sectors;
  7276. }
  7277. }
  7278. bb->changed = 1;
  7279. if (!acknowledged)
  7280. bb->unacked_exist = 1;
  7281. write_sequnlock_irq(&bb->lock);
  7282. return rv;
  7283. }
  7284. int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7285. int is_new)
  7286. {
  7287. int rv;
  7288. if (is_new)
  7289. s += rdev->new_data_offset;
  7290. else
  7291. s += rdev->data_offset;
  7292. rv = md_set_badblocks(&rdev->badblocks,
  7293. s, sectors, 0);
  7294. if (rv) {
  7295. /* Make sure they get written out promptly */
  7296. sysfs_notify_dirent_safe(rdev->sysfs_state);
  7297. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  7298. md_wakeup_thread(rdev->mddev->thread);
  7299. }
  7300. return rv;
  7301. }
  7302. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  7303. /*
  7304. * Remove a range of bad blocks from the table.
  7305. * This may involve extending the table if we spilt a region,
  7306. * but it must not fail. So if the table becomes full, we just
  7307. * drop the remove request.
  7308. */
  7309. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  7310. {
  7311. u64 *p;
  7312. int lo, hi;
  7313. sector_t target = s + sectors;
  7314. int rv = 0;
  7315. if (bb->shift > 0) {
  7316. /* When clearing we round the start up and the end down.
  7317. * This should not matter as the shift should align with
  7318. * the block size and no rounding should ever be needed.
  7319. * However it is better the think a block is bad when it
  7320. * isn't than to think a block is not bad when it is.
  7321. */
  7322. s += (1<<bb->shift) - 1;
  7323. s >>= bb->shift;
  7324. target >>= bb->shift;
  7325. sectors = target - s;
  7326. }
  7327. write_seqlock_irq(&bb->lock);
  7328. p = bb->page;
  7329. lo = 0;
  7330. hi = bb->count;
  7331. /* Find the last range that starts before 'target' */
  7332. while (hi - lo > 1) {
  7333. int mid = (lo + hi) / 2;
  7334. sector_t a = BB_OFFSET(p[mid]);
  7335. if (a < target)
  7336. lo = mid;
  7337. else
  7338. hi = mid;
  7339. }
  7340. if (hi > lo) {
  7341. /* p[lo] is the last range that could overlap the
  7342. * current range. Earlier ranges could also overlap,
  7343. * but only this one can overlap the end of the range.
  7344. */
  7345. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  7346. /* Partial overlap, leave the tail of this range */
  7347. int ack = BB_ACK(p[lo]);
  7348. sector_t a = BB_OFFSET(p[lo]);
  7349. sector_t end = a + BB_LEN(p[lo]);
  7350. if (a < s) {
  7351. /* we need to split this range */
  7352. if (bb->count >= MD_MAX_BADBLOCKS) {
  7353. rv = 0;
  7354. goto out;
  7355. }
  7356. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7357. bb->count++;
  7358. p[lo] = BB_MAKE(a, s-a, ack);
  7359. lo++;
  7360. }
  7361. p[lo] = BB_MAKE(target, end - target, ack);
  7362. /* there is no longer an overlap */
  7363. hi = lo;
  7364. lo--;
  7365. }
  7366. while (lo >= 0 &&
  7367. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7368. /* This range does overlap */
  7369. if (BB_OFFSET(p[lo]) < s) {
  7370. /* Keep the early parts of this range. */
  7371. int ack = BB_ACK(p[lo]);
  7372. sector_t start = BB_OFFSET(p[lo]);
  7373. p[lo] = BB_MAKE(start, s - start, ack);
  7374. /* now low doesn't overlap, so.. */
  7375. break;
  7376. }
  7377. lo--;
  7378. }
  7379. /* 'lo' is strictly before, 'hi' is strictly after,
  7380. * anything between needs to be discarded
  7381. */
  7382. if (hi - lo > 1) {
  7383. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7384. bb->count -= (hi - lo - 1);
  7385. }
  7386. }
  7387. bb->changed = 1;
  7388. out:
  7389. write_sequnlock_irq(&bb->lock);
  7390. return rv;
  7391. }
  7392. int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
  7393. int is_new)
  7394. {
  7395. if (is_new)
  7396. s += rdev->new_data_offset;
  7397. else
  7398. s += rdev->data_offset;
  7399. return md_clear_badblocks(&rdev->badblocks,
  7400. s, sectors);
  7401. }
  7402. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7403. /*
  7404. * Acknowledge all bad blocks in a list.
  7405. * This only succeeds if ->changed is clear. It is used by
  7406. * in-kernel metadata updates
  7407. */
  7408. void md_ack_all_badblocks(struct badblocks *bb)
  7409. {
  7410. if (bb->page == NULL || bb->changed)
  7411. /* no point even trying */
  7412. return;
  7413. write_seqlock_irq(&bb->lock);
  7414. if (bb->changed == 0 && bb->unacked_exist) {
  7415. u64 *p = bb->page;
  7416. int i;
  7417. for (i = 0; i < bb->count ; i++) {
  7418. if (!BB_ACK(p[i])) {
  7419. sector_t start = BB_OFFSET(p[i]);
  7420. int len = BB_LEN(p[i]);
  7421. p[i] = BB_MAKE(start, len, 1);
  7422. }
  7423. }
  7424. bb->unacked_exist = 0;
  7425. }
  7426. write_sequnlock_irq(&bb->lock);
  7427. }
  7428. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7429. /* sysfs access to bad-blocks list.
  7430. * We present two files.
  7431. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7432. * are recorded as bad. The list is truncated to fit within
  7433. * the one-page limit of sysfs.
  7434. * Writing "sector length" to this file adds an acknowledged
  7435. * bad block list.
  7436. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7437. * been acknowledged. Writing to this file adds bad blocks
  7438. * without acknowledging them. This is largely for testing.
  7439. */
  7440. static ssize_t
  7441. badblocks_show(struct badblocks *bb, char *page, int unack)
  7442. {
  7443. size_t len;
  7444. int i;
  7445. u64 *p = bb->page;
  7446. unsigned seq;
  7447. if (bb->shift < 0)
  7448. return 0;
  7449. retry:
  7450. seq = read_seqbegin(&bb->lock);
  7451. len = 0;
  7452. i = 0;
  7453. while (len < PAGE_SIZE && i < bb->count) {
  7454. sector_t s = BB_OFFSET(p[i]);
  7455. unsigned int length = BB_LEN(p[i]);
  7456. int ack = BB_ACK(p[i]);
  7457. i++;
  7458. if (unack && ack)
  7459. continue;
  7460. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7461. (unsigned long long)s << bb->shift,
  7462. length << bb->shift);
  7463. }
  7464. if (unack && len == 0)
  7465. bb->unacked_exist = 0;
  7466. if (read_seqretry(&bb->lock, seq))
  7467. goto retry;
  7468. return len;
  7469. }
  7470. #define DO_DEBUG 1
  7471. static ssize_t
  7472. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7473. {
  7474. unsigned long long sector;
  7475. int length;
  7476. char newline;
  7477. #ifdef DO_DEBUG
  7478. /* Allow clearing via sysfs *only* for testing/debugging.
  7479. * Normally only a successful write may clear a badblock
  7480. */
  7481. int clear = 0;
  7482. if (page[0] == '-') {
  7483. clear = 1;
  7484. page++;
  7485. }
  7486. #endif /* DO_DEBUG */
  7487. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7488. case 3:
  7489. if (newline != '\n')
  7490. return -EINVAL;
  7491. case 2:
  7492. if (length <= 0)
  7493. return -EINVAL;
  7494. break;
  7495. default:
  7496. return -EINVAL;
  7497. }
  7498. #ifdef DO_DEBUG
  7499. if (clear) {
  7500. md_clear_badblocks(bb, sector, length);
  7501. return len;
  7502. }
  7503. #endif /* DO_DEBUG */
  7504. if (md_set_badblocks(bb, sector, length, !unack))
  7505. return len;
  7506. else
  7507. return -ENOSPC;
  7508. }
  7509. static int md_notify_reboot(struct notifier_block *this,
  7510. unsigned long code, void *x)
  7511. {
  7512. struct list_head *tmp;
  7513. struct mddev *mddev;
  7514. int need_delay = 0;
  7515. for_each_mddev(mddev, tmp) {
  7516. if (mddev_trylock(mddev)) {
  7517. if (mddev->pers)
  7518. __md_stop_writes(mddev);
  7519. mddev->safemode = 2;
  7520. mddev_unlock(mddev);
  7521. }
  7522. need_delay = 1;
  7523. }
  7524. /*
  7525. * certain more exotic SCSI devices are known to be
  7526. * volatile wrt too early system reboots. While the
  7527. * right place to handle this issue is the given
  7528. * driver, we do want to have a safe RAID driver ...
  7529. */
  7530. if (need_delay)
  7531. mdelay(1000*1);
  7532. return NOTIFY_DONE;
  7533. }
  7534. static struct notifier_block md_notifier = {
  7535. .notifier_call = md_notify_reboot,
  7536. .next = NULL,
  7537. .priority = INT_MAX, /* before any real devices */
  7538. };
  7539. static void md_geninit(void)
  7540. {
  7541. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7542. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7543. }
  7544. static int __init md_init(void)
  7545. {
  7546. int ret = -ENOMEM;
  7547. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7548. if (!md_wq)
  7549. goto err_wq;
  7550. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7551. if (!md_misc_wq)
  7552. goto err_misc_wq;
  7553. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7554. goto err_md;
  7555. if ((ret = register_blkdev(0, "mdp")) < 0)
  7556. goto err_mdp;
  7557. mdp_major = ret;
  7558. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7559. md_probe, NULL, NULL);
  7560. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7561. md_probe, NULL, NULL);
  7562. register_reboot_notifier(&md_notifier);
  7563. raid_table_header = register_sysctl_table(raid_root_table);
  7564. md_geninit();
  7565. return 0;
  7566. err_mdp:
  7567. unregister_blkdev(MD_MAJOR, "md");
  7568. err_md:
  7569. destroy_workqueue(md_misc_wq);
  7570. err_misc_wq:
  7571. destroy_workqueue(md_wq);
  7572. err_wq:
  7573. return ret;
  7574. }
  7575. #ifndef MODULE
  7576. /*
  7577. * Searches all registered partitions for autorun RAID arrays
  7578. * at boot time.
  7579. */
  7580. static LIST_HEAD(all_detected_devices);
  7581. struct detected_devices_node {
  7582. struct list_head list;
  7583. dev_t dev;
  7584. };
  7585. void md_autodetect_dev(dev_t dev)
  7586. {
  7587. struct detected_devices_node *node_detected_dev;
  7588. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7589. if (node_detected_dev) {
  7590. node_detected_dev->dev = dev;
  7591. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7592. } else {
  7593. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7594. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7595. }
  7596. }
  7597. static void autostart_arrays(int part)
  7598. {
  7599. struct md_rdev *rdev;
  7600. struct detected_devices_node *node_detected_dev;
  7601. dev_t dev;
  7602. int i_scanned, i_passed;
  7603. i_scanned = 0;
  7604. i_passed = 0;
  7605. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7606. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7607. i_scanned++;
  7608. node_detected_dev = list_entry(all_detected_devices.next,
  7609. struct detected_devices_node, list);
  7610. list_del(&node_detected_dev->list);
  7611. dev = node_detected_dev->dev;
  7612. kfree(node_detected_dev);
  7613. rdev = md_import_device(dev,0, 90);
  7614. if (IS_ERR(rdev))
  7615. continue;
  7616. if (test_bit(Faulty, &rdev->flags)) {
  7617. MD_BUG();
  7618. continue;
  7619. }
  7620. set_bit(AutoDetected, &rdev->flags);
  7621. list_add(&rdev->same_set, &pending_raid_disks);
  7622. i_passed++;
  7623. }
  7624. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7625. i_scanned, i_passed);
  7626. autorun_devices(part);
  7627. }
  7628. #endif /* !MODULE */
  7629. static __exit void md_exit(void)
  7630. {
  7631. struct mddev *mddev;
  7632. struct list_head *tmp;
  7633. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7634. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7635. unregister_blkdev(MD_MAJOR,"md");
  7636. unregister_blkdev(mdp_major, "mdp");
  7637. unregister_reboot_notifier(&md_notifier);
  7638. unregister_sysctl_table(raid_table_header);
  7639. remove_proc_entry("mdstat", NULL);
  7640. for_each_mddev(mddev, tmp) {
  7641. export_array(mddev);
  7642. mddev->hold_active = 0;
  7643. }
  7644. destroy_workqueue(md_misc_wq);
  7645. destroy_workqueue(md_wq);
  7646. }
  7647. subsys_initcall(md_init);
  7648. module_exit(md_exit)
  7649. static int get_ro(char *buffer, struct kernel_param *kp)
  7650. {
  7651. return sprintf(buffer, "%d", start_readonly);
  7652. }
  7653. static int set_ro(const char *val, struct kernel_param *kp)
  7654. {
  7655. char *e;
  7656. int num = simple_strtoul(val, &e, 10);
  7657. if (*val && (*e == '\0' || *e == '\n')) {
  7658. start_readonly = num;
  7659. return 0;
  7660. }
  7661. return -EINVAL;
  7662. }
  7663. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7664. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7665. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7666. EXPORT_SYMBOL(register_md_personality);
  7667. EXPORT_SYMBOL(unregister_md_personality);
  7668. EXPORT_SYMBOL(md_error);
  7669. EXPORT_SYMBOL(md_done_sync);
  7670. EXPORT_SYMBOL(md_write_start);
  7671. EXPORT_SYMBOL(md_write_end);
  7672. EXPORT_SYMBOL(md_register_thread);
  7673. EXPORT_SYMBOL(md_unregister_thread);
  7674. EXPORT_SYMBOL(md_wakeup_thread);
  7675. EXPORT_SYMBOL(md_check_recovery);
  7676. MODULE_LICENSE("GPL");
  7677. MODULE_DESCRIPTION("MD RAID framework");
  7678. MODULE_ALIAS("md");
  7679. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);