windfarm_pm91.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738
  1. /*
  2. * Windfarm PowerMac thermal control. SMU based 1 CPU desktop control loops
  3. *
  4. * (c) Copyright 2005 Benjamin Herrenschmidt, IBM Corp.
  5. * <benh@kernel.crashing.org>
  6. *
  7. * Released under the term of the GNU GPL v2.
  8. *
  9. * The algorithm used is the PID control algorithm, used the same
  10. * way the published Darwin code does, using the same values that
  11. * are present in the Darwin 8.2 snapshot property lists (note however
  12. * that none of the code has been re-used, it's a complete re-implementation
  13. *
  14. * The various control loops found in Darwin config file are:
  15. *
  16. * PowerMac9,1
  17. * ===========
  18. *
  19. * Has 3 control loops: CPU fans is similar to PowerMac8,1 (though it doesn't
  20. * try to play with other control loops fans). Drive bay is rather basic PID
  21. * with one sensor and one fan. Slots area is a bit different as the Darwin
  22. * driver is supposed to be capable of working in a special "AGP" mode which
  23. * involves the presence of an AGP sensor and an AGP fan (possibly on the
  24. * AGP card itself). I can't deal with that special mode as I don't have
  25. * access to those additional sensor/fans for now (though ultimately, it would
  26. * be possible to add sensor objects for them) so I'm only implementing the
  27. * basic PCI slot control loop
  28. */
  29. #include <linux/types.h>
  30. #include <linux/errno.h>
  31. #include <linux/kernel.h>
  32. #include <linux/delay.h>
  33. #include <linux/slab.h>
  34. #include <linux/init.h>
  35. #include <linux/spinlock.h>
  36. #include <linux/wait.h>
  37. #include <linux/kmod.h>
  38. #include <linux/device.h>
  39. #include <linux/platform_device.h>
  40. #include <asm/prom.h>
  41. #include <asm/machdep.h>
  42. #include <asm/io.h>
  43. #include <asm/sections.h>
  44. #include <asm/smu.h>
  45. #include "windfarm.h"
  46. #include "windfarm_pid.h"
  47. #define VERSION "0.4"
  48. #undef DEBUG
  49. #ifdef DEBUG
  50. #define DBG(args...) printk(args)
  51. #else
  52. #define DBG(args...) do { } while(0)
  53. #endif
  54. /* define this to force CPU overtemp to 74 degree, useful for testing
  55. * the overtemp code
  56. */
  57. #undef HACKED_OVERTEMP
  58. /* Controls & sensors */
  59. static struct wf_sensor *sensor_cpu_power;
  60. static struct wf_sensor *sensor_cpu_temp;
  61. static struct wf_sensor *sensor_hd_temp;
  62. static struct wf_sensor *sensor_slots_power;
  63. static struct wf_control *fan_cpu_main;
  64. static struct wf_control *fan_cpu_second;
  65. static struct wf_control *fan_cpu_third;
  66. static struct wf_control *fan_hd;
  67. static struct wf_control *fan_slots;
  68. static struct wf_control *cpufreq_clamp;
  69. /* Set to kick the control loop into life */
  70. static int wf_smu_all_controls_ok, wf_smu_all_sensors_ok, wf_smu_started;
  71. /* Failure handling.. could be nicer */
  72. #define FAILURE_FAN 0x01
  73. #define FAILURE_SENSOR 0x02
  74. #define FAILURE_OVERTEMP 0x04
  75. static unsigned int wf_smu_failure_state;
  76. static int wf_smu_readjust, wf_smu_skipping;
  77. /*
  78. * ****** CPU Fans Control Loop ******
  79. *
  80. */
  81. #define WF_SMU_CPU_FANS_INTERVAL 1
  82. #define WF_SMU_CPU_FANS_MAX_HISTORY 16
  83. /* State data used by the cpu fans control loop
  84. */
  85. struct wf_smu_cpu_fans_state {
  86. int ticks;
  87. s32 cpu_setpoint;
  88. struct wf_cpu_pid_state pid;
  89. };
  90. static struct wf_smu_cpu_fans_state *wf_smu_cpu_fans;
  91. /*
  92. * ****** Drive Fan Control Loop ******
  93. *
  94. */
  95. struct wf_smu_drive_fans_state {
  96. int ticks;
  97. s32 setpoint;
  98. struct wf_pid_state pid;
  99. };
  100. static struct wf_smu_drive_fans_state *wf_smu_drive_fans;
  101. /*
  102. * ****** Slots Fan Control Loop ******
  103. *
  104. */
  105. struct wf_smu_slots_fans_state {
  106. int ticks;
  107. s32 setpoint;
  108. struct wf_pid_state pid;
  109. };
  110. static struct wf_smu_slots_fans_state *wf_smu_slots_fans;
  111. /*
  112. * ***** Implementation *****
  113. *
  114. */
  115. static void wf_smu_create_cpu_fans(void)
  116. {
  117. struct wf_cpu_pid_param pid_param;
  118. const struct smu_sdbp_header *hdr;
  119. struct smu_sdbp_cpupiddata *piddata;
  120. struct smu_sdbp_fvt *fvt;
  121. s32 tmax, tdelta, maxpow, powadj;
  122. /* First, locate the PID params in SMU SBD */
  123. hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
  124. if (hdr == 0) {
  125. printk(KERN_WARNING "windfarm: CPU PID fan config not found "
  126. "max fan speed\n");
  127. goto fail;
  128. }
  129. piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
  130. /* Get the FVT params for operating point 0 (the only supported one
  131. * for now) in order to get tmax
  132. */
  133. hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
  134. if (hdr) {
  135. fvt = (struct smu_sdbp_fvt *)&hdr[1];
  136. tmax = ((s32)fvt->maxtemp) << 16;
  137. } else
  138. tmax = 0x5e0000; /* 94 degree default */
  139. /* Alloc & initialize state */
  140. wf_smu_cpu_fans = kmalloc(sizeof(struct wf_smu_cpu_fans_state),
  141. GFP_KERNEL);
  142. if (wf_smu_cpu_fans == NULL)
  143. goto fail;
  144. wf_smu_cpu_fans->ticks = 1;
  145. /* Fill PID params */
  146. pid_param.interval = WF_SMU_CPU_FANS_INTERVAL;
  147. pid_param.history_len = piddata->history_len;
  148. if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
  149. printk(KERN_WARNING "windfarm: History size overflow on "
  150. "CPU control loop (%d)\n", piddata->history_len);
  151. pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
  152. }
  153. pid_param.gd = piddata->gd;
  154. pid_param.gp = piddata->gp;
  155. pid_param.gr = piddata->gr / pid_param.history_len;
  156. tdelta = ((s32)piddata->target_temp_delta) << 16;
  157. maxpow = ((s32)piddata->max_power) << 16;
  158. powadj = ((s32)piddata->power_adj) << 16;
  159. pid_param.tmax = tmax;
  160. pid_param.ttarget = tmax - tdelta;
  161. pid_param.pmaxadj = maxpow - powadj;
  162. pid_param.min = wf_control_get_min(fan_cpu_main);
  163. pid_param.max = wf_control_get_max(fan_cpu_main);
  164. wf_cpu_pid_init(&wf_smu_cpu_fans->pid, &pid_param);
  165. DBG("wf: CPU Fan control initialized.\n");
  166. DBG(" ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM\n",
  167. FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
  168. pid_param.min, pid_param.max);
  169. return;
  170. fail:
  171. printk(KERN_WARNING "windfarm: CPU fan config not found\n"
  172. "for this machine model, max fan speed\n");
  173. if (cpufreq_clamp)
  174. wf_control_set_max(cpufreq_clamp);
  175. if (fan_cpu_main)
  176. wf_control_set_max(fan_cpu_main);
  177. }
  178. static void wf_smu_cpu_fans_tick(struct wf_smu_cpu_fans_state *st)
  179. {
  180. s32 new_setpoint, temp, power;
  181. int rc;
  182. if (--st->ticks != 0) {
  183. if (wf_smu_readjust)
  184. goto readjust;
  185. return;
  186. }
  187. st->ticks = WF_SMU_CPU_FANS_INTERVAL;
  188. rc = wf_sensor_get(sensor_cpu_temp, &temp);
  189. if (rc) {
  190. printk(KERN_WARNING "windfarm: CPU temp sensor error %d\n",
  191. rc);
  192. wf_smu_failure_state |= FAILURE_SENSOR;
  193. return;
  194. }
  195. rc = wf_sensor_get(sensor_cpu_power, &power);
  196. if (rc) {
  197. printk(KERN_WARNING "windfarm: CPU power sensor error %d\n",
  198. rc);
  199. wf_smu_failure_state |= FAILURE_SENSOR;
  200. return;
  201. }
  202. DBG("wf_smu: CPU Fans tick ! CPU temp: %d.%03d, power: %d.%03d\n",
  203. FIX32TOPRINT(temp), FIX32TOPRINT(power));
  204. #ifdef HACKED_OVERTEMP
  205. if (temp > 0x4a0000)
  206. wf_smu_failure_state |= FAILURE_OVERTEMP;
  207. #else
  208. if (temp > st->pid.param.tmax)
  209. wf_smu_failure_state |= FAILURE_OVERTEMP;
  210. #endif
  211. new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
  212. DBG("wf_smu: new_setpoint: %d RPM\n", (int)new_setpoint);
  213. if (st->cpu_setpoint == new_setpoint)
  214. return;
  215. st->cpu_setpoint = new_setpoint;
  216. readjust:
  217. if (fan_cpu_main && wf_smu_failure_state == 0) {
  218. rc = wf_control_set(fan_cpu_main, st->cpu_setpoint);
  219. if (rc) {
  220. printk(KERN_WARNING "windfarm: CPU main fan"
  221. " error %d\n", rc);
  222. wf_smu_failure_state |= FAILURE_FAN;
  223. }
  224. }
  225. if (fan_cpu_second && wf_smu_failure_state == 0) {
  226. rc = wf_control_set(fan_cpu_second, st->cpu_setpoint);
  227. if (rc) {
  228. printk(KERN_WARNING "windfarm: CPU second fan"
  229. " error %d\n", rc);
  230. wf_smu_failure_state |= FAILURE_FAN;
  231. }
  232. }
  233. if (fan_cpu_third && wf_smu_failure_state == 0) {
  234. rc = wf_control_set(fan_cpu_third, st->cpu_setpoint);
  235. if (rc) {
  236. printk(KERN_WARNING "windfarm: CPU third fan"
  237. " error %d\n", rc);
  238. wf_smu_failure_state |= FAILURE_FAN;
  239. }
  240. }
  241. }
  242. static void wf_smu_create_drive_fans(void)
  243. {
  244. struct wf_pid_param param = {
  245. .interval = 5,
  246. .history_len = 2,
  247. .gd = 0x01e00000,
  248. .gp = 0x00500000,
  249. .gr = 0x00000000,
  250. .itarget = 0x00200000,
  251. };
  252. /* Alloc & initialize state */
  253. wf_smu_drive_fans = kmalloc(sizeof(struct wf_smu_drive_fans_state),
  254. GFP_KERNEL);
  255. if (wf_smu_drive_fans == NULL) {
  256. printk(KERN_WARNING "windfarm: Memory allocation error"
  257. " max fan speed\n");
  258. goto fail;
  259. }
  260. wf_smu_drive_fans->ticks = 1;
  261. /* Fill PID params */
  262. param.additive = (fan_hd->type == WF_CONTROL_RPM_FAN);
  263. param.min = wf_control_get_min(fan_hd);
  264. param.max = wf_control_get_max(fan_hd);
  265. wf_pid_init(&wf_smu_drive_fans->pid, &param);
  266. DBG("wf: Drive Fan control initialized.\n");
  267. DBG(" itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
  268. FIX32TOPRINT(param.itarget), param.min, param.max);
  269. return;
  270. fail:
  271. if (fan_hd)
  272. wf_control_set_max(fan_hd);
  273. }
  274. static void wf_smu_drive_fans_tick(struct wf_smu_drive_fans_state *st)
  275. {
  276. s32 new_setpoint, temp;
  277. int rc;
  278. if (--st->ticks != 0) {
  279. if (wf_smu_readjust)
  280. goto readjust;
  281. return;
  282. }
  283. st->ticks = st->pid.param.interval;
  284. rc = wf_sensor_get(sensor_hd_temp, &temp);
  285. if (rc) {
  286. printk(KERN_WARNING "windfarm: HD temp sensor error %d\n",
  287. rc);
  288. wf_smu_failure_state |= FAILURE_SENSOR;
  289. return;
  290. }
  291. DBG("wf_smu: Drive Fans tick ! HD temp: %d.%03d\n",
  292. FIX32TOPRINT(temp));
  293. if (temp > (st->pid.param.itarget + 0x50000))
  294. wf_smu_failure_state |= FAILURE_OVERTEMP;
  295. new_setpoint = wf_pid_run(&st->pid, temp);
  296. DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
  297. if (st->setpoint == new_setpoint)
  298. return;
  299. st->setpoint = new_setpoint;
  300. readjust:
  301. if (fan_hd && wf_smu_failure_state == 0) {
  302. rc = wf_control_set(fan_hd, st->setpoint);
  303. if (rc) {
  304. printk(KERN_WARNING "windfarm: HD fan error %d\n",
  305. rc);
  306. wf_smu_failure_state |= FAILURE_FAN;
  307. }
  308. }
  309. }
  310. static void wf_smu_create_slots_fans(void)
  311. {
  312. struct wf_pid_param param = {
  313. .interval = 1,
  314. .history_len = 8,
  315. .gd = 0x00000000,
  316. .gp = 0x00000000,
  317. .gr = 0x00020000,
  318. .itarget = 0x00000000
  319. };
  320. /* Alloc & initialize state */
  321. wf_smu_slots_fans = kmalloc(sizeof(struct wf_smu_slots_fans_state),
  322. GFP_KERNEL);
  323. if (wf_smu_slots_fans == NULL) {
  324. printk(KERN_WARNING "windfarm: Memory allocation error"
  325. " max fan speed\n");
  326. goto fail;
  327. }
  328. wf_smu_slots_fans->ticks = 1;
  329. /* Fill PID params */
  330. param.additive = (fan_slots->type == WF_CONTROL_RPM_FAN);
  331. param.min = wf_control_get_min(fan_slots);
  332. param.max = wf_control_get_max(fan_slots);
  333. wf_pid_init(&wf_smu_slots_fans->pid, &param);
  334. DBG("wf: Slots Fan control initialized.\n");
  335. DBG(" itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
  336. FIX32TOPRINT(param.itarget), param.min, param.max);
  337. return;
  338. fail:
  339. if (fan_slots)
  340. wf_control_set_max(fan_slots);
  341. }
  342. static void wf_smu_slots_fans_tick(struct wf_smu_slots_fans_state *st)
  343. {
  344. s32 new_setpoint, power;
  345. int rc;
  346. if (--st->ticks != 0) {
  347. if (wf_smu_readjust)
  348. goto readjust;
  349. return;
  350. }
  351. st->ticks = st->pid.param.interval;
  352. rc = wf_sensor_get(sensor_slots_power, &power);
  353. if (rc) {
  354. printk(KERN_WARNING "windfarm: Slots power sensor error %d\n",
  355. rc);
  356. wf_smu_failure_state |= FAILURE_SENSOR;
  357. return;
  358. }
  359. DBG("wf_smu: Slots Fans tick ! Slots power: %d.%03d\n",
  360. FIX32TOPRINT(power));
  361. #if 0 /* Check what makes a good overtemp condition */
  362. if (power > (st->pid.param.itarget + 0x50000))
  363. wf_smu_failure_state |= FAILURE_OVERTEMP;
  364. #endif
  365. new_setpoint = wf_pid_run(&st->pid, power);
  366. DBG("wf_smu: new_setpoint: %d\n", (int)new_setpoint);
  367. if (st->setpoint == new_setpoint)
  368. return;
  369. st->setpoint = new_setpoint;
  370. readjust:
  371. if (fan_slots && wf_smu_failure_state == 0) {
  372. rc = wf_control_set(fan_slots, st->setpoint);
  373. if (rc) {
  374. printk(KERN_WARNING "windfarm: Slots fan error %d\n",
  375. rc);
  376. wf_smu_failure_state |= FAILURE_FAN;
  377. }
  378. }
  379. }
  380. /*
  381. * ****** Setup / Init / Misc ... ******
  382. *
  383. */
  384. static void wf_smu_tick(void)
  385. {
  386. unsigned int last_failure = wf_smu_failure_state;
  387. unsigned int new_failure;
  388. if (!wf_smu_started) {
  389. DBG("wf: creating control loops !\n");
  390. wf_smu_create_drive_fans();
  391. wf_smu_create_slots_fans();
  392. wf_smu_create_cpu_fans();
  393. wf_smu_started = 1;
  394. }
  395. /* Skipping ticks */
  396. if (wf_smu_skipping && --wf_smu_skipping)
  397. return;
  398. wf_smu_failure_state = 0;
  399. if (wf_smu_drive_fans)
  400. wf_smu_drive_fans_tick(wf_smu_drive_fans);
  401. if (wf_smu_slots_fans)
  402. wf_smu_slots_fans_tick(wf_smu_slots_fans);
  403. if (wf_smu_cpu_fans)
  404. wf_smu_cpu_fans_tick(wf_smu_cpu_fans);
  405. wf_smu_readjust = 0;
  406. new_failure = wf_smu_failure_state & ~last_failure;
  407. /* If entering failure mode, clamp cpufreq and ramp all
  408. * fans to full speed.
  409. */
  410. if (wf_smu_failure_state && !last_failure) {
  411. if (cpufreq_clamp)
  412. wf_control_set_max(cpufreq_clamp);
  413. if (fan_cpu_main)
  414. wf_control_set_max(fan_cpu_main);
  415. if (fan_cpu_second)
  416. wf_control_set_max(fan_cpu_second);
  417. if (fan_cpu_third)
  418. wf_control_set_max(fan_cpu_third);
  419. if (fan_hd)
  420. wf_control_set_max(fan_hd);
  421. if (fan_slots)
  422. wf_control_set_max(fan_slots);
  423. }
  424. /* If leaving failure mode, unclamp cpufreq and readjust
  425. * all fans on next iteration
  426. */
  427. if (!wf_smu_failure_state && last_failure) {
  428. if (cpufreq_clamp)
  429. wf_control_set_min(cpufreq_clamp);
  430. wf_smu_readjust = 1;
  431. }
  432. /* Overtemp condition detected, notify and start skipping a couple
  433. * ticks to let the temperature go down
  434. */
  435. if (new_failure & FAILURE_OVERTEMP) {
  436. wf_set_overtemp();
  437. wf_smu_skipping = 2;
  438. }
  439. /* We only clear the overtemp condition if overtemp is cleared
  440. * _and_ no other failure is present. Since a sensor error will
  441. * clear the overtemp condition (can't measure temperature) at
  442. * the control loop levels, but we don't want to keep it clear
  443. * here in this case
  444. */
  445. if (new_failure == 0 && last_failure & FAILURE_OVERTEMP)
  446. wf_clear_overtemp();
  447. }
  448. static void wf_smu_new_control(struct wf_control *ct)
  449. {
  450. if (wf_smu_all_controls_ok)
  451. return;
  452. if (fan_cpu_main == NULL && !strcmp(ct->name, "cpu-rear-fan-0")) {
  453. if (wf_get_control(ct) == 0)
  454. fan_cpu_main = ct;
  455. }
  456. if (fan_cpu_second == NULL && !strcmp(ct->name, "cpu-rear-fan-1")) {
  457. if (wf_get_control(ct) == 0)
  458. fan_cpu_second = ct;
  459. }
  460. if (fan_cpu_third == NULL && !strcmp(ct->name, "cpu-front-fan-0")) {
  461. if (wf_get_control(ct) == 0)
  462. fan_cpu_third = ct;
  463. }
  464. if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
  465. if (wf_get_control(ct) == 0)
  466. cpufreq_clamp = ct;
  467. }
  468. if (fan_hd == NULL && !strcmp(ct->name, "drive-bay-fan")) {
  469. if (wf_get_control(ct) == 0)
  470. fan_hd = ct;
  471. }
  472. if (fan_slots == NULL && !strcmp(ct->name, "slots-fan")) {
  473. if (wf_get_control(ct) == 0)
  474. fan_slots = ct;
  475. }
  476. if (fan_cpu_main && (fan_cpu_second || fan_cpu_third) && fan_hd &&
  477. fan_slots && cpufreq_clamp)
  478. wf_smu_all_controls_ok = 1;
  479. }
  480. static void wf_smu_new_sensor(struct wf_sensor *sr)
  481. {
  482. if (wf_smu_all_sensors_ok)
  483. return;
  484. if (sensor_cpu_power == NULL && !strcmp(sr->name, "cpu-power")) {
  485. if (wf_get_sensor(sr) == 0)
  486. sensor_cpu_power = sr;
  487. }
  488. if (sensor_cpu_temp == NULL && !strcmp(sr->name, "cpu-temp")) {
  489. if (wf_get_sensor(sr) == 0)
  490. sensor_cpu_temp = sr;
  491. }
  492. if (sensor_hd_temp == NULL && !strcmp(sr->name, "hd-temp")) {
  493. if (wf_get_sensor(sr) == 0)
  494. sensor_hd_temp = sr;
  495. }
  496. if (sensor_slots_power == NULL && !strcmp(sr->name, "slots-power")) {
  497. if (wf_get_sensor(sr) == 0)
  498. sensor_slots_power = sr;
  499. }
  500. if (sensor_cpu_power && sensor_cpu_temp &&
  501. sensor_hd_temp && sensor_slots_power)
  502. wf_smu_all_sensors_ok = 1;
  503. }
  504. static int wf_smu_notify(struct notifier_block *self,
  505. unsigned long event, void *data)
  506. {
  507. switch(event) {
  508. case WF_EVENT_NEW_CONTROL:
  509. DBG("wf: new control %s detected\n",
  510. ((struct wf_control *)data)->name);
  511. wf_smu_new_control(data);
  512. wf_smu_readjust = 1;
  513. break;
  514. case WF_EVENT_NEW_SENSOR:
  515. DBG("wf: new sensor %s detected\n",
  516. ((struct wf_sensor *)data)->name);
  517. wf_smu_new_sensor(data);
  518. break;
  519. case WF_EVENT_TICK:
  520. if (wf_smu_all_controls_ok && wf_smu_all_sensors_ok)
  521. wf_smu_tick();
  522. }
  523. return 0;
  524. }
  525. static struct notifier_block wf_smu_events = {
  526. .notifier_call = wf_smu_notify,
  527. };
  528. static int wf_init_pm(void)
  529. {
  530. printk(KERN_INFO "windfarm: Initializing for Desktop G5 model\n");
  531. return 0;
  532. }
  533. static int wf_smu_probe(struct platform_device *ddev)
  534. {
  535. wf_register_client(&wf_smu_events);
  536. return 0;
  537. }
  538. static int wf_smu_remove(struct platform_device *ddev)
  539. {
  540. wf_unregister_client(&wf_smu_events);
  541. /* XXX We don't have yet a guarantee that our callback isn't
  542. * in progress when returning from wf_unregister_client, so
  543. * we add an arbitrary delay. I'll have to fix that in the core
  544. */
  545. msleep(1000);
  546. /* Release all sensors */
  547. /* One more crappy race: I don't think we have any guarantee here
  548. * that the attribute callback won't race with the sensor beeing
  549. * disposed of, and I'm not 100% certain what best way to deal
  550. * with that except by adding locks all over... I'll do that
  551. * eventually but heh, who ever rmmod this module anyway ?
  552. */
  553. if (sensor_cpu_power)
  554. wf_put_sensor(sensor_cpu_power);
  555. if (sensor_cpu_temp)
  556. wf_put_sensor(sensor_cpu_temp);
  557. if (sensor_hd_temp)
  558. wf_put_sensor(sensor_hd_temp);
  559. if (sensor_slots_power)
  560. wf_put_sensor(sensor_slots_power);
  561. /* Release all controls */
  562. if (fan_cpu_main)
  563. wf_put_control(fan_cpu_main);
  564. if (fan_cpu_second)
  565. wf_put_control(fan_cpu_second);
  566. if (fan_cpu_third)
  567. wf_put_control(fan_cpu_third);
  568. if (fan_hd)
  569. wf_put_control(fan_hd);
  570. if (fan_slots)
  571. wf_put_control(fan_slots);
  572. if (cpufreq_clamp)
  573. wf_put_control(cpufreq_clamp);
  574. /* Destroy control loops state structures */
  575. kfree(wf_smu_slots_fans);
  576. kfree(wf_smu_drive_fans);
  577. kfree(wf_smu_cpu_fans);
  578. return 0;
  579. }
  580. static struct platform_driver wf_smu_driver = {
  581. .probe = wf_smu_probe,
  582. .remove = wf_smu_remove,
  583. .driver = {
  584. .name = "windfarm",
  585. .owner = THIS_MODULE,
  586. },
  587. };
  588. static int __init wf_smu_init(void)
  589. {
  590. int rc = -ENODEV;
  591. if (of_machine_is_compatible("PowerMac9,1"))
  592. rc = wf_init_pm();
  593. if (rc == 0) {
  594. #ifdef MODULE
  595. request_module("windfarm_smu_controls");
  596. request_module("windfarm_smu_sensors");
  597. request_module("windfarm_lm75_sensor");
  598. request_module("windfarm_cpufreq_clamp");
  599. #endif /* MODULE */
  600. platform_driver_register(&wf_smu_driver);
  601. }
  602. return rc;
  603. }
  604. static void __exit wf_smu_exit(void)
  605. {
  606. platform_driver_unregister(&wf_smu_driver);
  607. }
  608. module_init(wf_smu_init);
  609. module_exit(wf_smu_exit);
  610. MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
  611. MODULE_DESCRIPTION("Thermal control logic for PowerMac9,1");
  612. MODULE_LICENSE("GPL");
  613. MODULE_ALIAS("platform:windfarm");