adf4350.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * ADF4350/ADF4351 SPI Wideband Synthesizer driver
  3. *
  4. * Copyright 2012 Analog Devices Inc.
  5. *
  6. * Licensed under the GPL-2.
  7. */
  8. #include <linux/device.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/sysfs.h>
  12. #include <linux/spi/spi.h>
  13. #include <linux/regulator/consumer.h>
  14. #include <linux/err.h>
  15. #include <linux/module.h>
  16. #include <linux/gcd.h>
  17. #include <linux/gpio.h>
  18. #include <asm/div64.h>
  19. #include <linux/iio/iio.h>
  20. #include <linux/iio/sysfs.h>
  21. #include <linux/iio/frequency/adf4350.h>
  22. enum {
  23. ADF4350_FREQ,
  24. ADF4350_FREQ_REFIN,
  25. ADF4350_FREQ_RESOLUTION,
  26. ADF4350_PWRDOWN,
  27. };
  28. struct adf4350_state {
  29. struct spi_device *spi;
  30. struct regulator *reg;
  31. struct adf4350_platform_data *pdata;
  32. unsigned long clkin;
  33. unsigned long chspc; /* Channel Spacing */
  34. unsigned long fpfd; /* Phase Frequency Detector */
  35. unsigned long min_out_freq;
  36. unsigned r0_fract;
  37. unsigned r0_int;
  38. unsigned r1_mod;
  39. unsigned r4_rf_div_sel;
  40. unsigned long regs[6];
  41. unsigned long regs_hw[6];
  42. /*
  43. * DMA (thus cache coherency maintenance) requires the
  44. * transfer buffers to live in their own cache lines.
  45. */
  46. __be32 val ____cacheline_aligned;
  47. };
  48. static struct adf4350_platform_data default_pdata = {
  49. .clkin = 122880000,
  50. .channel_spacing = 10000,
  51. .r2_user_settings = ADF4350_REG2_PD_POLARITY_POS |
  52. ADF4350_REG2_CHARGE_PUMP_CURR_uA(2500),
  53. .r3_user_settings = ADF4350_REG3_12BIT_CLKDIV_MODE(0),
  54. .r4_user_settings = ADF4350_REG4_OUTPUT_PWR(3) |
  55. ADF4350_REG4_MUTE_TILL_LOCK_EN,
  56. .gpio_lock_detect = -1,
  57. };
  58. static int adf4350_sync_config(struct adf4350_state *st)
  59. {
  60. int ret, i, doublebuf = 0;
  61. for (i = ADF4350_REG5; i >= ADF4350_REG0; i--) {
  62. if ((st->regs_hw[i] != st->regs[i]) ||
  63. ((i == ADF4350_REG0) && doublebuf)) {
  64. switch (i) {
  65. case ADF4350_REG1:
  66. case ADF4350_REG4:
  67. doublebuf = 1;
  68. break;
  69. }
  70. st->val = cpu_to_be32(st->regs[i] | i);
  71. ret = spi_write(st->spi, &st->val, 4);
  72. if (ret < 0)
  73. return ret;
  74. st->regs_hw[i] = st->regs[i];
  75. dev_dbg(&st->spi->dev, "[%d] 0x%X\n",
  76. i, (u32)st->regs[i] | i);
  77. }
  78. }
  79. return 0;
  80. }
  81. static int adf4350_reg_access(struct iio_dev *indio_dev,
  82. unsigned reg, unsigned writeval,
  83. unsigned *readval)
  84. {
  85. struct adf4350_state *st = iio_priv(indio_dev);
  86. int ret;
  87. if (reg > ADF4350_REG5)
  88. return -EINVAL;
  89. mutex_lock(&indio_dev->mlock);
  90. if (readval == NULL) {
  91. st->regs[reg] = writeval & ~(BIT(0) | BIT(1) | BIT(2));
  92. ret = adf4350_sync_config(st);
  93. } else {
  94. *readval = st->regs_hw[reg];
  95. ret = 0;
  96. }
  97. mutex_unlock(&indio_dev->mlock);
  98. return ret;
  99. }
  100. static int adf4350_tune_r_cnt(struct adf4350_state *st, unsigned short r_cnt)
  101. {
  102. struct adf4350_platform_data *pdata = st->pdata;
  103. do {
  104. r_cnt++;
  105. st->fpfd = (st->clkin * (pdata->ref_doubler_en ? 2 : 1)) /
  106. (r_cnt * (pdata->ref_div2_en ? 2 : 1));
  107. } while (st->fpfd > ADF4350_MAX_FREQ_PFD);
  108. return r_cnt;
  109. }
  110. static int adf4350_set_freq(struct adf4350_state *st, unsigned long long freq)
  111. {
  112. struct adf4350_platform_data *pdata = st->pdata;
  113. u64 tmp;
  114. u32 div_gcd, prescaler, chspc;
  115. u16 mdiv, r_cnt = 0;
  116. u8 band_sel_div;
  117. if (freq > ADF4350_MAX_OUT_FREQ || freq < st->min_out_freq)
  118. return -EINVAL;
  119. if (freq > ADF4350_MAX_FREQ_45_PRESC) {
  120. prescaler = ADF4350_REG1_PRESCALER;
  121. mdiv = 75;
  122. } else {
  123. prescaler = 0;
  124. mdiv = 23;
  125. }
  126. st->r4_rf_div_sel = 0;
  127. while (freq < ADF4350_MIN_VCO_FREQ) {
  128. freq <<= 1;
  129. st->r4_rf_div_sel++;
  130. }
  131. /*
  132. * Allow a predefined reference division factor
  133. * if not set, compute our own
  134. */
  135. if (pdata->ref_div_factor)
  136. r_cnt = pdata->ref_div_factor - 1;
  137. chspc = st->chspc;
  138. do {
  139. do {
  140. do {
  141. r_cnt = adf4350_tune_r_cnt(st, r_cnt);
  142. st->r1_mod = st->fpfd / chspc;
  143. if (r_cnt > ADF4350_MAX_R_CNT) {
  144. /* try higher spacing values */
  145. chspc++;
  146. r_cnt = 0;
  147. }
  148. } while ((st->r1_mod > ADF4350_MAX_MODULUS) && r_cnt);
  149. } while (r_cnt == 0);
  150. tmp = freq * (u64)st->r1_mod + (st->fpfd >> 1);
  151. do_div(tmp, st->fpfd); /* Div round closest (n + d/2)/d */
  152. st->r0_fract = do_div(tmp, st->r1_mod);
  153. st->r0_int = tmp;
  154. } while (mdiv > st->r0_int);
  155. band_sel_div = DIV_ROUND_UP(st->fpfd, ADF4350_MAX_BANDSEL_CLK);
  156. if (st->r0_fract && st->r1_mod) {
  157. div_gcd = gcd(st->r1_mod, st->r0_fract);
  158. st->r1_mod /= div_gcd;
  159. st->r0_fract /= div_gcd;
  160. } else {
  161. st->r0_fract = 0;
  162. st->r1_mod = 1;
  163. }
  164. dev_dbg(&st->spi->dev, "VCO: %llu Hz, PFD %lu Hz\n"
  165. "REF_DIV %d, R0_INT %d, R0_FRACT %d\n"
  166. "R1_MOD %d, RF_DIV %d\nPRESCALER %s, BAND_SEL_DIV %d\n",
  167. freq, st->fpfd, r_cnt, st->r0_int, st->r0_fract, st->r1_mod,
  168. 1 << st->r4_rf_div_sel, prescaler ? "8/9" : "4/5",
  169. band_sel_div);
  170. st->regs[ADF4350_REG0] = ADF4350_REG0_INT(st->r0_int) |
  171. ADF4350_REG0_FRACT(st->r0_fract);
  172. st->regs[ADF4350_REG1] = ADF4350_REG1_PHASE(1) |
  173. ADF4350_REG1_MOD(st->r1_mod) |
  174. prescaler;
  175. st->regs[ADF4350_REG2] =
  176. ADF4350_REG2_10BIT_R_CNT(r_cnt) |
  177. ADF4350_REG2_DOUBLE_BUFF_EN |
  178. (pdata->ref_doubler_en ? ADF4350_REG2_RMULT2_EN : 0) |
  179. (pdata->ref_div2_en ? ADF4350_REG2_RDIV2_EN : 0) |
  180. (pdata->r2_user_settings & (ADF4350_REG2_PD_POLARITY_POS |
  181. ADF4350_REG2_LDP_6ns | ADF4350_REG2_LDF_INT_N |
  182. ADF4350_REG2_CHARGE_PUMP_CURR_uA(5000) |
  183. ADF4350_REG2_MUXOUT(0x7) | ADF4350_REG2_NOISE_MODE(0x9)));
  184. st->regs[ADF4350_REG3] = pdata->r3_user_settings &
  185. (ADF4350_REG3_12BIT_CLKDIV(0xFFF) |
  186. ADF4350_REG3_12BIT_CLKDIV_MODE(0x3) |
  187. ADF4350_REG3_12BIT_CSR_EN |
  188. ADF4351_REG3_CHARGE_CANCELLATION_EN |
  189. ADF4351_REG3_ANTI_BACKLASH_3ns_EN |
  190. ADF4351_REG3_BAND_SEL_CLOCK_MODE_HIGH);
  191. st->regs[ADF4350_REG4] =
  192. ADF4350_REG4_FEEDBACK_FUND |
  193. ADF4350_REG4_RF_DIV_SEL(st->r4_rf_div_sel) |
  194. ADF4350_REG4_8BIT_BAND_SEL_CLKDIV(band_sel_div) |
  195. ADF4350_REG4_RF_OUT_EN |
  196. (pdata->r4_user_settings &
  197. (ADF4350_REG4_OUTPUT_PWR(0x3) |
  198. ADF4350_REG4_AUX_OUTPUT_PWR(0x3) |
  199. ADF4350_REG4_AUX_OUTPUT_EN |
  200. ADF4350_REG4_AUX_OUTPUT_FUND |
  201. ADF4350_REG4_MUTE_TILL_LOCK_EN));
  202. st->regs[ADF4350_REG5] = ADF4350_REG5_LD_PIN_MODE_DIGITAL;
  203. return adf4350_sync_config(st);
  204. }
  205. static ssize_t adf4350_write(struct iio_dev *indio_dev,
  206. uintptr_t private,
  207. const struct iio_chan_spec *chan,
  208. const char *buf, size_t len)
  209. {
  210. struct adf4350_state *st = iio_priv(indio_dev);
  211. unsigned long long readin;
  212. int ret;
  213. ret = kstrtoull(buf, 10, &readin);
  214. if (ret)
  215. return ret;
  216. mutex_lock(&indio_dev->mlock);
  217. switch ((u32)private) {
  218. case ADF4350_FREQ:
  219. ret = adf4350_set_freq(st, readin);
  220. break;
  221. case ADF4350_FREQ_REFIN:
  222. if (readin > ADF4350_MAX_FREQ_REFIN)
  223. ret = -EINVAL;
  224. else
  225. st->clkin = readin;
  226. break;
  227. case ADF4350_FREQ_RESOLUTION:
  228. if (readin == 0)
  229. ret = -EINVAL;
  230. else
  231. st->chspc = readin;
  232. break;
  233. case ADF4350_PWRDOWN:
  234. if (readin)
  235. st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
  236. else
  237. st->regs[ADF4350_REG2] &= ~ADF4350_REG2_POWER_DOWN_EN;
  238. adf4350_sync_config(st);
  239. break;
  240. default:
  241. ret = -EINVAL;
  242. }
  243. mutex_unlock(&indio_dev->mlock);
  244. return ret ? ret : len;
  245. }
  246. static ssize_t adf4350_read(struct iio_dev *indio_dev,
  247. uintptr_t private,
  248. const struct iio_chan_spec *chan,
  249. char *buf)
  250. {
  251. struct adf4350_state *st = iio_priv(indio_dev);
  252. unsigned long long val;
  253. int ret = 0;
  254. mutex_lock(&indio_dev->mlock);
  255. switch ((u32)private) {
  256. case ADF4350_FREQ:
  257. val = (u64)((st->r0_int * st->r1_mod) + st->r0_fract) *
  258. (u64)st->fpfd;
  259. do_div(val, st->r1_mod * (1 << st->r4_rf_div_sel));
  260. /* PLL unlocked? return error */
  261. if (gpio_is_valid(st->pdata->gpio_lock_detect))
  262. if (!gpio_get_value(st->pdata->gpio_lock_detect)) {
  263. dev_dbg(&st->spi->dev, "PLL un-locked\n");
  264. ret = -EBUSY;
  265. }
  266. break;
  267. case ADF4350_FREQ_REFIN:
  268. val = st->clkin;
  269. break;
  270. case ADF4350_FREQ_RESOLUTION:
  271. val = st->chspc;
  272. break;
  273. case ADF4350_PWRDOWN:
  274. val = !!(st->regs[ADF4350_REG2] & ADF4350_REG2_POWER_DOWN_EN);
  275. break;
  276. default:
  277. ret = -EINVAL;
  278. }
  279. mutex_unlock(&indio_dev->mlock);
  280. return ret < 0 ? ret : sprintf(buf, "%llu\n", val);
  281. }
  282. #define _ADF4350_EXT_INFO(_name, _ident) { \
  283. .name = _name, \
  284. .read = adf4350_read, \
  285. .write = adf4350_write, \
  286. .private = _ident, \
  287. }
  288. static const struct iio_chan_spec_ext_info adf4350_ext_info[] = {
  289. /* Ideally we use IIO_CHAN_INFO_FREQUENCY, but there are
  290. * values > 2^32 in order to support the entire frequency range
  291. * in Hz. Using scale is a bit ugly.
  292. */
  293. _ADF4350_EXT_INFO("frequency", ADF4350_FREQ),
  294. _ADF4350_EXT_INFO("frequency_resolution", ADF4350_FREQ_RESOLUTION),
  295. _ADF4350_EXT_INFO("refin_frequency", ADF4350_FREQ_REFIN),
  296. _ADF4350_EXT_INFO("powerdown", ADF4350_PWRDOWN),
  297. { },
  298. };
  299. static const struct iio_chan_spec adf4350_chan = {
  300. .type = IIO_ALTVOLTAGE,
  301. .indexed = 1,
  302. .output = 1,
  303. .ext_info = adf4350_ext_info,
  304. };
  305. static const struct iio_info adf4350_info = {
  306. .debugfs_reg_access = &adf4350_reg_access,
  307. .driver_module = THIS_MODULE,
  308. };
  309. static int adf4350_probe(struct spi_device *spi)
  310. {
  311. struct adf4350_platform_data *pdata = spi->dev.platform_data;
  312. struct iio_dev *indio_dev;
  313. struct adf4350_state *st;
  314. int ret;
  315. if (!pdata) {
  316. dev_warn(&spi->dev, "no platform data? using default\n");
  317. pdata = &default_pdata;
  318. }
  319. indio_dev = iio_device_alloc(sizeof(*st));
  320. if (indio_dev == NULL)
  321. return -ENOMEM;
  322. st = iio_priv(indio_dev);
  323. st->reg = regulator_get(&spi->dev, "vcc");
  324. if (!IS_ERR(st->reg)) {
  325. ret = regulator_enable(st->reg);
  326. if (ret)
  327. goto error_put_reg;
  328. }
  329. spi_set_drvdata(spi, indio_dev);
  330. st->spi = spi;
  331. st->pdata = pdata;
  332. indio_dev->dev.parent = &spi->dev;
  333. indio_dev->name = (pdata->name[0] != 0) ? pdata->name :
  334. spi_get_device_id(spi)->name;
  335. indio_dev->info = &adf4350_info;
  336. indio_dev->modes = INDIO_DIRECT_MODE;
  337. indio_dev->channels = &adf4350_chan;
  338. indio_dev->num_channels = 1;
  339. st->chspc = pdata->channel_spacing;
  340. st->clkin = pdata->clkin;
  341. st->min_out_freq = spi_get_device_id(spi)->driver_data == 4351 ?
  342. ADF4351_MIN_OUT_FREQ : ADF4350_MIN_OUT_FREQ;
  343. memset(st->regs_hw, 0xFF, sizeof(st->regs_hw));
  344. if (gpio_is_valid(pdata->gpio_lock_detect)) {
  345. ret = gpio_request(pdata->gpio_lock_detect, indio_dev->name);
  346. if (ret) {
  347. dev_err(&spi->dev, "fail to request lock detect GPIO-%d",
  348. pdata->gpio_lock_detect);
  349. goto error_disable_reg;
  350. }
  351. gpio_direction_input(pdata->gpio_lock_detect);
  352. }
  353. if (pdata->power_up_frequency) {
  354. ret = adf4350_set_freq(st, pdata->power_up_frequency);
  355. if (ret)
  356. goto error_free_gpio;
  357. }
  358. ret = iio_device_register(indio_dev);
  359. if (ret)
  360. goto error_free_gpio;
  361. return 0;
  362. error_free_gpio:
  363. if (gpio_is_valid(pdata->gpio_lock_detect))
  364. gpio_free(pdata->gpio_lock_detect);
  365. error_disable_reg:
  366. if (!IS_ERR(st->reg))
  367. regulator_disable(st->reg);
  368. error_put_reg:
  369. if (!IS_ERR(st->reg))
  370. regulator_put(st->reg);
  371. iio_device_free(indio_dev);
  372. return ret;
  373. }
  374. static int adf4350_remove(struct spi_device *spi)
  375. {
  376. struct iio_dev *indio_dev = spi_get_drvdata(spi);
  377. struct adf4350_state *st = iio_priv(indio_dev);
  378. struct regulator *reg = st->reg;
  379. st->regs[ADF4350_REG2] |= ADF4350_REG2_POWER_DOWN_EN;
  380. adf4350_sync_config(st);
  381. iio_device_unregister(indio_dev);
  382. if (!IS_ERR(reg)) {
  383. regulator_disable(reg);
  384. regulator_put(reg);
  385. }
  386. if (gpio_is_valid(st->pdata->gpio_lock_detect))
  387. gpio_free(st->pdata->gpio_lock_detect);
  388. iio_device_free(indio_dev);
  389. return 0;
  390. }
  391. static const struct spi_device_id adf4350_id[] = {
  392. {"adf4350", 4350},
  393. {"adf4351", 4351},
  394. {}
  395. };
  396. static struct spi_driver adf4350_driver = {
  397. .driver = {
  398. .name = "adf4350",
  399. .owner = THIS_MODULE,
  400. },
  401. .probe = adf4350_probe,
  402. .remove = adf4350_remove,
  403. .id_table = adf4350_id,
  404. };
  405. module_spi_driver(adf4350_driver);
  406. MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
  407. MODULE_DESCRIPTION("Analog Devices ADF4350/ADF4351 PLL");
  408. MODULE_LICENSE("GPL v2");