i2c-mpc.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. /*
  2. * (C) Copyright 2003-2004
  3. * Humboldt Solutions Ltd, adrian@humboldt.co.uk.
  4. * This is a combined i2c adapter and algorithm driver for the
  5. * MPC107/Tsi107 PowerPC northbridge and processors that include
  6. * the same I2C unit (8240, 8245, 85xx).
  7. *
  8. * Release 0.8
  9. *
  10. * This file is licensed under the terms of the GNU General Public
  11. * License version 2. This program is licensed "as is" without any
  12. * warranty of any kind, whether express or implied.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/sched.h>
  17. #include <linux/init.h>
  18. #include <linux/of_platform.h>
  19. #include <linux/of_i2c.h>
  20. #include <linux/slab.h>
  21. #include <linux/io.h>
  22. #include <linux/fsl_devices.h>
  23. #include <linux/i2c.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/delay.h>
  26. #include <asm/mpc52xx.h>
  27. #include <sysdev/fsl_soc.h>
  28. #define DRV_NAME "mpc-i2c"
  29. #define MPC_I2C_CLOCK_LEGACY 0
  30. #define MPC_I2C_CLOCK_PRESERVE (~0U)
  31. #define MPC_I2C_FDR 0x04
  32. #define MPC_I2C_CR 0x08
  33. #define MPC_I2C_SR 0x0c
  34. #define MPC_I2C_DR 0x10
  35. #define MPC_I2C_DFSRR 0x14
  36. #define CCR_MEN 0x80
  37. #define CCR_MIEN 0x40
  38. #define CCR_MSTA 0x20
  39. #define CCR_MTX 0x10
  40. #define CCR_TXAK 0x08
  41. #define CCR_RSTA 0x04
  42. #define CSR_MCF 0x80
  43. #define CSR_MAAS 0x40
  44. #define CSR_MBB 0x20
  45. #define CSR_MAL 0x10
  46. #define CSR_SRW 0x04
  47. #define CSR_MIF 0x02
  48. #define CSR_RXAK 0x01
  49. struct mpc_i2c {
  50. struct device *dev;
  51. void __iomem *base;
  52. u32 interrupt;
  53. wait_queue_head_t queue;
  54. struct i2c_adapter adap;
  55. int irq;
  56. u32 real_clk;
  57. #ifdef CONFIG_PM
  58. u8 fdr, dfsrr;
  59. #endif
  60. };
  61. struct mpc_i2c_divider {
  62. u16 divider;
  63. u16 fdr; /* including dfsrr */
  64. };
  65. struct mpc_i2c_data {
  66. void (*setup)(struct device_node *node, struct mpc_i2c *i2c,
  67. u32 clock, u32 prescaler);
  68. u32 prescaler;
  69. };
  70. static inline void writeccr(struct mpc_i2c *i2c, u32 x)
  71. {
  72. writeb(x, i2c->base + MPC_I2C_CR);
  73. }
  74. static irqreturn_t mpc_i2c_isr(int irq, void *dev_id)
  75. {
  76. struct mpc_i2c *i2c = dev_id;
  77. if (readb(i2c->base + MPC_I2C_SR) & CSR_MIF) {
  78. /* Read again to allow register to stabilise */
  79. i2c->interrupt = readb(i2c->base + MPC_I2C_SR);
  80. writeb(0, i2c->base + MPC_I2C_SR);
  81. wake_up(&i2c->queue);
  82. }
  83. return IRQ_HANDLED;
  84. }
  85. /* Sometimes 9th clock pulse isn't generated, and slave doesn't release
  86. * the bus, because it wants to send ACK.
  87. * Following sequence of enabling/disabling and sending start/stop generates
  88. * the 9 pulses, so it's all OK.
  89. */
  90. static void mpc_i2c_fixup(struct mpc_i2c *i2c)
  91. {
  92. int k;
  93. u32 delay_val = 1000000 / i2c->real_clk + 1;
  94. if (delay_val < 2)
  95. delay_val = 2;
  96. for (k = 9; k; k--) {
  97. writeccr(i2c, 0);
  98. writeccr(i2c, CCR_MSTA | CCR_MTX | CCR_MEN);
  99. udelay(delay_val);
  100. writeccr(i2c, CCR_MEN);
  101. udelay(delay_val << 1);
  102. }
  103. }
  104. static int i2c_wait(struct mpc_i2c *i2c, unsigned timeout, int writing)
  105. {
  106. unsigned long orig_jiffies = jiffies;
  107. u32 x;
  108. int result = 0;
  109. if (!i2c->irq) {
  110. while (!(readb(i2c->base + MPC_I2C_SR) & CSR_MIF)) {
  111. schedule();
  112. if (time_after(jiffies, orig_jiffies + timeout)) {
  113. dev_dbg(i2c->dev, "timeout\n");
  114. writeccr(i2c, 0);
  115. result = -EIO;
  116. break;
  117. }
  118. }
  119. x = readb(i2c->base + MPC_I2C_SR);
  120. writeb(0, i2c->base + MPC_I2C_SR);
  121. } else {
  122. /* Interrupt mode */
  123. result = wait_event_timeout(i2c->queue,
  124. (i2c->interrupt & CSR_MIF), timeout);
  125. if (unlikely(!(i2c->interrupt & CSR_MIF))) {
  126. dev_dbg(i2c->dev, "wait timeout\n");
  127. writeccr(i2c, 0);
  128. result = -ETIMEDOUT;
  129. }
  130. x = i2c->interrupt;
  131. i2c->interrupt = 0;
  132. }
  133. if (result < 0)
  134. return result;
  135. if (!(x & CSR_MCF)) {
  136. dev_dbg(i2c->dev, "unfinished\n");
  137. return -EIO;
  138. }
  139. if (x & CSR_MAL) {
  140. dev_dbg(i2c->dev, "MAL\n");
  141. return -EIO;
  142. }
  143. if (writing && (x & CSR_RXAK)) {
  144. dev_dbg(i2c->dev, "No RXAK\n");
  145. /* generate stop */
  146. writeccr(i2c, CCR_MEN);
  147. return -EIO;
  148. }
  149. return 0;
  150. }
  151. #if defined(CONFIG_PPC_MPC52xx) || defined(CONFIG_PPC_MPC512x)
  152. static const struct mpc_i2c_divider mpc_i2c_dividers_52xx[] = {
  153. {20, 0x20}, {22, 0x21}, {24, 0x22}, {26, 0x23},
  154. {28, 0x24}, {30, 0x01}, {32, 0x25}, {34, 0x02},
  155. {36, 0x26}, {40, 0x27}, {44, 0x04}, {48, 0x28},
  156. {52, 0x63}, {56, 0x29}, {60, 0x41}, {64, 0x2a},
  157. {68, 0x07}, {72, 0x2b}, {80, 0x2c}, {88, 0x09},
  158. {96, 0x2d}, {104, 0x0a}, {112, 0x2e}, {120, 0x81},
  159. {128, 0x2f}, {136, 0x47}, {144, 0x0c}, {160, 0x30},
  160. {176, 0x49}, {192, 0x31}, {208, 0x4a}, {224, 0x32},
  161. {240, 0x0f}, {256, 0x33}, {272, 0x87}, {288, 0x10},
  162. {320, 0x34}, {352, 0x89}, {384, 0x35}, {416, 0x8a},
  163. {448, 0x36}, {480, 0x13}, {512, 0x37}, {576, 0x14},
  164. {640, 0x38}, {768, 0x39}, {896, 0x3a}, {960, 0x17},
  165. {1024, 0x3b}, {1152, 0x18}, {1280, 0x3c}, {1536, 0x3d},
  166. {1792, 0x3e}, {1920, 0x1b}, {2048, 0x3f}, {2304, 0x1c},
  167. {2560, 0x1d}, {3072, 0x1e}, {3584, 0x7e}, {3840, 0x1f},
  168. {4096, 0x7f}, {4608, 0x5c}, {5120, 0x5d}, {6144, 0x5e},
  169. {7168, 0xbe}, {7680, 0x5f}, {8192, 0xbf}, {9216, 0x9c},
  170. {10240, 0x9d}, {12288, 0x9e}, {15360, 0x9f}
  171. };
  172. static int mpc_i2c_get_fdr_52xx(struct device_node *node, u32 clock,
  173. int prescaler, u32 *real_clk)
  174. {
  175. const struct mpc_i2c_divider *div = NULL;
  176. unsigned int pvr = mfspr(SPRN_PVR);
  177. u32 divider;
  178. int i;
  179. if (clock == MPC_I2C_CLOCK_LEGACY) {
  180. /* see below - default fdr = 0x3f -> div = 2048 */
  181. *real_clk = mpc5xxx_get_bus_frequency(node) / 2048;
  182. return -EINVAL;
  183. }
  184. /* Determine divider value */
  185. divider = mpc5xxx_get_bus_frequency(node) / clock;
  186. /*
  187. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  188. * is equal to or lower than the requested speed.
  189. */
  190. for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_52xx); i++) {
  191. div = &mpc_i2c_dividers_52xx[i];
  192. /* Old MPC5200 rev A CPUs do not support the high bits */
  193. if (div->fdr & 0xc0 && pvr == 0x80822011)
  194. continue;
  195. if (div->divider >= divider)
  196. break;
  197. }
  198. *real_clk = mpc5xxx_get_bus_frequency(node) / div->divider;
  199. return (int)div->fdr;
  200. }
  201. static void mpc_i2c_setup_52xx(struct device_node *node,
  202. struct mpc_i2c *i2c,
  203. u32 clock, u32 prescaler)
  204. {
  205. int ret, fdr;
  206. if (clock == MPC_I2C_CLOCK_PRESERVE) {
  207. dev_dbg(i2c->dev, "using fdr %d\n",
  208. readb(i2c->base + MPC_I2C_FDR));
  209. return;
  210. }
  211. ret = mpc_i2c_get_fdr_52xx(node, clock, prescaler, &i2c->real_clk);
  212. fdr = (ret >= 0) ? ret : 0x3f; /* backward compatibility */
  213. writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
  214. if (ret >= 0)
  215. dev_info(i2c->dev, "clock %u Hz (fdr=%d)\n", i2c->real_clk,
  216. fdr);
  217. }
  218. #else /* !(CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x) */
  219. static void mpc_i2c_setup_52xx(struct device_node *node,
  220. struct mpc_i2c *i2c,
  221. u32 clock, u32 prescaler)
  222. {
  223. }
  224. #endif /* CONFIG_PPC_MPC52xx || CONFIG_PPC_MPC512x */
  225. #ifdef CONFIG_PPC_MPC512x
  226. static void mpc_i2c_setup_512x(struct device_node *node,
  227. struct mpc_i2c *i2c,
  228. u32 clock, u32 prescaler)
  229. {
  230. struct device_node *node_ctrl;
  231. void __iomem *ctrl;
  232. const u32 *pval;
  233. u32 idx;
  234. /* Enable I2C interrupts for mpc5121 */
  235. node_ctrl = of_find_compatible_node(NULL, NULL,
  236. "fsl,mpc5121-i2c-ctrl");
  237. if (node_ctrl) {
  238. ctrl = of_iomap(node_ctrl, 0);
  239. if (ctrl) {
  240. /* Interrupt enable bits for i2c-0/1/2: bit 24/26/28 */
  241. pval = of_get_property(node, "reg", NULL);
  242. idx = (*pval & 0xff) / 0x20;
  243. setbits32(ctrl, 1 << (24 + idx * 2));
  244. iounmap(ctrl);
  245. }
  246. of_node_put(node_ctrl);
  247. }
  248. /* The clock setup for the 52xx works also fine for the 512x */
  249. mpc_i2c_setup_52xx(node, i2c, clock, prescaler);
  250. }
  251. #else /* CONFIG_PPC_MPC512x */
  252. static void mpc_i2c_setup_512x(struct device_node *node,
  253. struct mpc_i2c *i2c,
  254. u32 clock, u32 prescaler)
  255. {
  256. }
  257. #endif /* CONFIG_PPC_MPC512x */
  258. #ifdef CONFIG_FSL_SOC
  259. static const struct mpc_i2c_divider mpc_i2c_dividers_8xxx[] = {
  260. {160, 0x0120}, {192, 0x0121}, {224, 0x0122}, {256, 0x0123},
  261. {288, 0x0100}, {320, 0x0101}, {352, 0x0601}, {384, 0x0102},
  262. {416, 0x0602}, {448, 0x0126}, {480, 0x0103}, {512, 0x0127},
  263. {544, 0x0b03}, {576, 0x0104}, {608, 0x1603}, {640, 0x0105},
  264. {672, 0x2003}, {704, 0x0b05}, {736, 0x2b03}, {768, 0x0106},
  265. {800, 0x3603}, {832, 0x0b06}, {896, 0x012a}, {960, 0x0107},
  266. {1024, 0x012b}, {1088, 0x1607}, {1152, 0x0108}, {1216, 0x2b07},
  267. {1280, 0x0109}, {1408, 0x1609}, {1536, 0x010a}, {1664, 0x160a},
  268. {1792, 0x012e}, {1920, 0x010b}, {2048, 0x012f}, {2176, 0x2b0b},
  269. {2304, 0x010c}, {2560, 0x010d}, {2816, 0x2b0d}, {3072, 0x010e},
  270. {3328, 0x2b0e}, {3584, 0x0132}, {3840, 0x010f}, {4096, 0x0133},
  271. {4608, 0x0110}, {5120, 0x0111}, {6144, 0x0112}, {7168, 0x0136},
  272. {7680, 0x0113}, {8192, 0x0137}, {9216, 0x0114}, {10240, 0x0115},
  273. {12288, 0x0116}, {14336, 0x013a}, {15360, 0x0117}, {16384, 0x013b},
  274. {18432, 0x0118}, {20480, 0x0119}, {24576, 0x011a}, {28672, 0x013e},
  275. {30720, 0x011b}, {32768, 0x013f}, {36864, 0x011c}, {40960, 0x011d},
  276. {49152, 0x011e}, {61440, 0x011f}
  277. };
  278. static u32 mpc_i2c_get_sec_cfg_8xxx(void)
  279. {
  280. struct device_node *node = NULL;
  281. u32 __iomem *reg;
  282. u32 val = 0;
  283. node = of_find_node_by_name(NULL, "global-utilities");
  284. if (node) {
  285. const u32 *prop = of_get_property(node, "reg", NULL);
  286. if (prop) {
  287. /*
  288. * Map and check POR Device Status Register 2
  289. * (PORDEVSR2) at 0xE0014
  290. */
  291. reg = ioremap(get_immrbase() + *prop + 0x14, 0x4);
  292. if (!reg)
  293. printk(KERN_ERR
  294. "Error: couldn't map PORDEVSR2\n");
  295. else
  296. val = in_be32(reg) & 0x00000080; /* sec-cfg */
  297. iounmap(reg);
  298. }
  299. }
  300. if (node)
  301. of_node_put(node);
  302. return val;
  303. }
  304. static int mpc_i2c_get_fdr_8xxx(struct device_node *node, u32 clock,
  305. u32 prescaler, u32 *real_clk)
  306. {
  307. const struct mpc_i2c_divider *div = NULL;
  308. u32 divider;
  309. int i;
  310. if (clock == MPC_I2C_CLOCK_LEGACY) {
  311. /* see below - default fdr = 0x1031 -> div = 16 * 3072 */
  312. *real_clk = fsl_get_sys_freq() / prescaler / (16 * 3072);
  313. return -EINVAL;
  314. }
  315. /* Determine proper divider value */
  316. if (of_device_is_compatible(node, "fsl,mpc8544-i2c"))
  317. prescaler = mpc_i2c_get_sec_cfg_8xxx() ? 3 : 2;
  318. if (!prescaler)
  319. prescaler = 1;
  320. divider = fsl_get_sys_freq() / clock / prescaler;
  321. pr_debug("I2C: src_clock=%d clock=%d divider=%d\n",
  322. fsl_get_sys_freq(), clock, divider);
  323. /*
  324. * We want to choose an FDR/DFSR that generates an I2C bus speed that
  325. * is equal to or lower than the requested speed.
  326. */
  327. for (i = 0; i < ARRAY_SIZE(mpc_i2c_dividers_8xxx); i++) {
  328. div = &mpc_i2c_dividers_8xxx[i];
  329. if (div->divider >= divider)
  330. break;
  331. }
  332. *real_clk = fsl_get_sys_freq() / prescaler / div->divider;
  333. return div ? (int)div->fdr : -EINVAL;
  334. }
  335. static void mpc_i2c_setup_8xxx(struct device_node *node,
  336. struct mpc_i2c *i2c,
  337. u32 clock, u32 prescaler)
  338. {
  339. int ret, fdr;
  340. if (clock == MPC_I2C_CLOCK_PRESERVE) {
  341. dev_dbg(i2c->dev, "using dfsrr %d, fdr %d\n",
  342. readb(i2c->base + MPC_I2C_DFSRR),
  343. readb(i2c->base + MPC_I2C_FDR));
  344. return;
  345. }
  346. ret = mpc_i2c_get_fdr_8xxx(node, clock, prescaler, &i2c->real_clk);
  347. fdr = (ret >= 0) ? ret : 0x1031; /* backward compatibility */
  348. writeb(fdr & 0xff, i2c->base + MPC_I2C_FDR);
  349. writeb((fdr >> 8) & 0xff, i2c->base + MPC_I2C_DFSRR);
  350. if (ret >= 0)
  351. dev_info(i2c->dev, "clock %d Hz (dfsrr=%d fdr=%d)\n",
  352. i2c->real_clk, fdr >> 8, fdr & 0xff);
  353. }
  354. #else /* !CONFIG_FSL_SOC */
  355. static void mpc_i2c_setup_8xxx(struct device_node *node,
  356. struct mpc_i2c *i2c,
  357. u32 clock, u32 prescaler)
  358. {
  359. }
  360. #endif /* CONFIG_FSL_SOC */
  361. static void mpc_i2c_start(struct mpc_i2c *i2c)
  362. {
  363. /* Clear arbitration */
  364. writeb(0, i2c->base + MPC_I2C_SR);
  365. /* Start with MEN */
  366. writeccr(i2c, CCR_MEN);
  367. }
  368. static void mpc_i2c_stop(struct mpc_i2c *i2c)
  369. {
  370. writeccr(i2c, CCR_MEN);
  371. }
  372. static int mpc_write(struct mpc_i2c *i2c, int target,
  373. const u8 *data, int length, int restart)
  374. {
  375. int i, result;
  376. unsigned timeout = i2c->adap.timeout;
  377. u32 flags = restart ? CCR_RSTA : 0;
  378. /* Start as master */
  379. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  380. /* Write target byte */
  381. writeb((target << 1), i2c->base + MPC_I2C_DR);
  382. result = i2c_wait(i2c, timeout, 1);
  383. if (result < 0)
  384. return result;
  385. for (i = 0; i < length; i++) {
  386. /* Write data byte */
  387. writeb(data[i], i2c->base + MPC_I2C_DR);
  388. result = i2c_wait(i2c, timeout, 1);
  389. if (result < 0)
  390. return result;
  391. }
  392. return 0;
  393. }
  394. static int mpc_read(struct mpc_i2c *i2c, int target,
  395. u8 *data, int length, int restart, bool recv_len)
  396. {
  397. unsigned timeout = i2c->adap.timeout;
  398. int i, result;
  399. u32 flags = restart ? CCR_RSTA : 0;
  400. /* Switch to read - restart */
  401. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_MTX | flags);
  402. /* Write target address byte - this time with the read flag set */
  403. writeb((target << 1) | 1, i2c->base + MPC_I2C_DR);
  404. result = i2c_wait(i2c, timeout, 1);
  405. if (result < 0)
  406. return result;
  407. if (length) {
  408. if (length == 1 && !recv_len)
  409. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA | CCR_TXAK);
  410. else
  411. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA);
  412. /* Dummy read */
  413. readb(i2c->base + MPC_I2C_DR);
  414. }
  415. for (i = 0; i < length; i++) {
  416. u8 byte;
  417. result = i2c_wait(i2c, timeout, 0);
  418. if (result < 0)
  419. return result;
  420. /*
  421. * For block reads, we have to know the total length (1st byte)
  422. * before we can determine if we are done.
  423. */
  424. if (i || !recv_len) {
  425. /* Generate txack on next to last byte */
  426. if (i == length - 2)
  427. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  428. | CCR_TXAK);
  429. /* Do not generate stop on last byte */
  430. if (i == length - 1)
  431. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  432. | CCR_MTX);
  433. }
  434. byte = readb(i2c->base + MPC_I2C_DR);
  435. /*
  436. * Adjust length if first received byte is length.
  437. * The length is 1 length byte plus actually data length
  438. */
  439. if (i == 0 && recv_len) {
  440. if (byte == 0 || byte > I2C_SMBUS_BLOCK_MAX)
  441. return -EPROTO;
  442. length += byte;
  443. /*
  444. * For block reads, generate txack here if data length
  445. * is 1 byte (total length is 2 bytes).
  446. */
  447. if (length == 2)
  448. writeccr(i2c, CCR_MIEN | CCR_MEN | CCR_MSTA
  449. | CCR_TXAK);
  450. }
  451. data[i] = byte;
  452. }
  453. return length;
  454. }
  455. static int mpc_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
  456. {
  457. struct i2c_msg *pmsg;
  458. int i;
  459. int ret = 0;
  460. unsigned long orig_jiffies = jiffies;
  461. struct mpc_i2c *i2c = i2c_get_adapdata(adap);
  462. mpc_i2c_start(i2c);
  463. /* Allow bus up to 1s to become not busy */
  464. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  465. if (signal_pending(current)) {
  466. dev_dbg(i2c->dev, "Interrupted\n");
  467. writeccr(i2c, 0);
  468. return -EINTR;
  469. }
  470. if (time_after(jiffies, orig_jiffies + HZ)) {
  471. u8 status = readb(i2c->base + MPC_I2C_SR);
  472. dev_dbg(i2c->dev, "timeout\n");
  473. if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
  474. writeb(status & ~CSR_MAL,
  475. i2c->base + MPC_I2C_SR);
  476. mpc_i2c_fixup(i2c);
  477. }
  478. return -EIO;
  479. }
  480. schedule();
  481. }
  482. for (i = 0; ret >= 0 && i < num; i++) {
  483. pmsg = &msgs[i];
  484. dev_dbg(i2c->dev,
  485. "Doing %s %d bytes to 0x%02x - %d of %d messages\n",
  486. pmsg->flags & I2C_M_RD ? "read" : "write",
  487. pmsg->len, pmsg->addr, i + 1, num);
  488. if (pmsg->flags & I2C_M_RD) {
  489. bool recv_len = pmsg->flags & I2C_M_RECV_LEN;
  490. ret = mpc_read(i2c, pmsg->addr, pmsg->buf, pmsg->len, i,
  491. recv_len);
  492. if (recv_len && ret > 0)
  493. pmsg->len = ret;
  494. } else {
  495. ret =
  496. mpc_write(i2c, pmsg->addr, pmsg->buf, pmsg->len, i);
  497. }
  498. }
  499. mpc_i2c_stop(i2c); /* Initiate STOP */
  500. orig_jiffies = jiffies;
  501. /* Wait until STOP is seen, allow up to 1 s */
  502. while (readb(i2c->base + MPC_I2C_SR) & CSR_MBB) {
  503. if (time_after(jiffies, orig_jiffies + HZ)) {
  504. u8 status = readb(i2c->base + MPC_I2C_SR);
  505. dev_dbg(i2c->dev, "timeout\n");
  506. if ((status & (CSR_MCF | CSR_MBB | CSR_RXAK)) != 0) {
  507. writeb(status & ~CSR_MAL,
  508. i2c->base + MPC_I2C_SR);
  509. mpc_i2c_fixup(i2c);
  510. }
  511. return -EIO;
  512. }
  513. cond_resched();
  514. }
  515. return (ret < 0) ? ret : num;
  516. }
  517. static u32 mpc_functionality(struct i2c_adapter *adap)
  518. {
  519. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
  520. | I2C_FUNC_SMBUS_READ_BLOCK_DATA | I2C_FUNC_SMBUS_BLOCK_PROC_CALL;
  521. }
  522. static const struct i2c_algorithm mpc_algo = {
  523. .master_xfer = mpc_xfer,
  524. .functionality = mpc_functionality,
  525. };
  526. static struct i2c_adapter mpc_ops = {
  527. .owner = THIS_MODULE,
  528. .name = "MPC adapter",
  529. .algo = &mpc_algo,
  530. .timeout = HZ,
  531. };
  532. static const struct of_device_id mpc_i2c_of_match[];
  533. static int fsl_i2c_probe(struct platform_device *op)
  534. {
  535. const struct of_device_id *match;
  536. struct mpc_i2c *i2c;
  537. const u32 *prop;
  538. u32 clock = MPC_I2C_CLOCK_LEGACY;
  539. int result = 0;
  540. int plen;
  541. match = of_match_device(mpc_i2c_of_match, &op->dev);
  542. if (!match)
  543. return -EINVAL;
  544. i2c = kzalloc(sizeof(*i2c), GFP_KERNEL);
  545. if (!i2c)
  546. return -ENOMEM;
  547. i2c->dev = &op->dev; /* for debug and error output */
  548. init_waitqueue_head(&i2c->queue);
  549. i2c->base = of_iomap(op->dev.of_node, 0);
  550. if (!i2c->base) {
  551. dev_err(i2c->dev, "failed to map controller\n");
  552. result = -ENOMEM;
  553. goto fail_map;
  554. }
  555. i2c->irq = irq_of_parse_and_map(op->dev.of_node, 0);
  556. if (i2c->irq) { /* no i2c->irq implies polling */
  557. result = request_irq(i2c->irq, mpc_i2c_isr,
  558. IRQF_SHARED, "i2c-mpc", i2c);
  559. if (result < 0) {
  560. dev_err(i2c->dev, "failed to attach interrupt\n");
  561. goto fail_request;
  562. }
  563. }
  564. if (of_get_property(op->dev.of_node, "fsl,preserve-clocking", NULL)) {
  565. clock = MPC_I2C_CLOCK_PRESERVE;
  566. } else {
  567. prop = of_get_property(op->dev.of_node, "clock-frequency",
  568. &plen);
  569. if (prop && plen == sizeof(u32))
  570. clock = *prop;
  571. }
  572. if (match->data) {
  573. const struct mpc_i2c_data *data = match->data;
  574. data->setup(op->dev.of_node, i2c, clock, data->prescaler);
  575. } else {
  576. /* Backwards compatibility */
  577. if (of_get_property(op->dev.of_node, "dfsrr", NULL))
  578. mpc_i2c_setup_8xxx(op->dev.of_node, i2c, clock, 0);
  579. }
  580. prop = of_get_property(op->dev.of_node, "fsl,timeout", &plen);
  581. if (prop && plen == sizeof(u32)) {
  582. mpc_ops.timeout = *prop * HZ / 1000000;
  583. if (mpc_ops.timeout < 5)
  584. mpc_ops.timeout = 5;
  585. }
  586. dev_info(i2c->dev, "timeout %u us\n", mpc_ops.timeout * 1000000 / HZ);
  587. dev_set_drvdata(&op->dev, i2c);
  588. i2c->adap = mpc_ops;
  589. i2c_set_adapdata(&i2c->adap, i2c);
  590. i2c->adap.dev.parent = &op->dev;
  591. i2c->adap.dev.of_node = of_node_get(op->dev.of_node);
  592. result = i2c_add_adapter(&i2c->adap);
  593. if (result < 0) {
  594. dev_err(i2c->dev, "failed to add adapter\n");
  595. goto fail_add;
  596. }
  597. of_i2c_register_devices(&i2c->adap);
  598. return result;
  599. fail_add:
  600. free_irq(i2c->irq, i2c);
  601. fail_request:
  602. irq_dispose_mapping(i2c->irq);
  603. iounmap(i2c->base);
  604. fail_map:
  605. kfree(i2c);
  606. return result;
  607. };
  608. static int fsl_i2c_remove(struct platform_device *op)
  609. {
  610. struct mpc_i2c *i2c = dev_get_drvdata(&op->dev);
  611. i2c_del_adapter(&i2c->adap);
  612. if (i2c->irq)
  613. free_irq(i2c->irq, i2c);
  614. irq_dispose_mapping(i2c->irq);
  615. iounmap(i2c->base);
  616. kfree(i2c);
  617. return 0;
  618. };
  619. #ifdef CONFIG_PM
  620. static int mpc_i2c_suspend(struct device *dev)
  621. {
  622. struct mpc_i2c *i2c = dev_get_drvdata(dev);
  623. i2c->fdr = readb(i2c->base + MPC_I2C_FDR);
  624. i2c->dfsrr = readb(i2c->base + MPC_I2C_DFSRR);
  625. return 0;
  626. }
  627. static int mpc_i2c_resume(struct device *dev)
  628. {
  629. struct mpc_i2c *i2c = dev_get_drvdata(dev);
  630. writeb(i2c->fdr, i2c->base + MPC_I2C_FDR);
  631. writeb(i2c->dfsrr, i2c->base + MPC_I2C_DFSRR);
  632. return 0;
  633. }
  634. SIMPLE_DEV_PM_OPS(mpc_i2c_pm_ops, mpc_i2c_suspend, mpc_i2c_resume);
  635. #endif
  636. static const struct mpc_i2c_data mpc_i2c_data_512x = {
  637. .setup = mpc_i2c_setup_512x,
  638. };
  639. static const struct mpc_i2c_data mpc_i2c_data_52xx = {
  640. .setup = mpc_i2c_setup_52xx,
  641. };
  642. static const struct mpc_i2c_data mpc_i2c_data_8313 = {
  643. .setup = mpc_i2c_setup_8xxx,
  644. };
  645. static const struct mpc_i2c_data mpc_i2c_data_8543 = {
  646. .setup = mpc_i2c_setup_8xxx,
  647. .prescaler = 2,
  648. };
  649. static const struct mpc_i2c_data mpc_i2c_data_8544 = {
  650. .setup = mpc_i2c_setup_8xxx,
  651. .prescaler = 3,
  652. };
  653. static const struct of_device_id mpc_i2c_of_match[] = {
  654. {.compatible = "mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
  655. {.compatible = "fsl,mpc5200b-i2c", .data = &mpc_i2c_data_52xx, },
  656. {.compatible = "fsl,mpc5200-i2c", .data = &mpc_i2c_data_52xx, },
  657. {.compatible = "fsl,mpc5121-i2c", .data = &mpc_i2c_data_512x, },
  658. {.compatible = "fsl,mpc8313-i2c", .data = &mpc_i2c_data_8313, },
  659. {.compatible = "fsl,mpc8543-i2c", .data = &mpc_i2c_data_8543, },
  660. {.compatible = "fsl,mpc8544-i2c", .data = &mpc_i2c_data_8544, },
  661. /* Backward compatibility */
  662. {.compatible = "fsl-i2c", },
  663. {},
  664. };
  665. MODULE_DEVICE_TABLE(of, mpc_i2c_of_match);
  666. /* Structure for a device driver */
  667. static struct platform_driver mpc_i2c_driver = {
  668. .probe = fsl_i2c_probe,
  669. .remove = fsl_i2c_remove,
  670. .driver = {
  671. .owner = THIS_MODULE,
  672. .name = DRV_NAME,
  673. .of_match_table = mpc_i2c_of_match,
  674. #ifdef CONFIG_PM
  675. .pm = &mpc_i2c_pm_ops,
  676. #endif
  677. },
  678. };
  679. module_platform_driver(mpc_i2c_driver);
  680. MODULE_AUTHOR("Adrian Cox <adrian@humboldt.co.uk>");
  681. MODULE_DESCRIPTION("I2C-Bus adapter for MPC107 bridge and "
  682. "MPC824x/83xx/85xx/86xx/512x/52xx processors");
  683. MODULE_LICENSE("GPL");