lineage-pem.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /*
  2. * Driver for Lineage Compact Power Line series of power entry modules.
  3. *
  4. * Copyright (C) 2010, 2011 Ericsson AB.
  5. *
  6. * Documentation:
  7. * http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/err.h>
  27. #include <linux/slab.h>
  28. #include <linux/i2c.h>
  29. #include <linux/hwmon.h>
  30. #include <linux/hwmon-sysfs.h>
  31. #include <linux/jiffies.h>
  32. /*
  33. * This driver supports various Lineage Compact Power Line DC/DC and AC/DC
  34. * converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
  35. *
  36. * The devices are nominally PMBus compliant. However, most standard PMBus
  37. * commands are not supported. Specifically, all hardware monitoring and
  38. * status reporting commands are non-standard. For this reason, a standard
  39. * PMBus driver can not be used.
  40. *
  41. * All Lineage CPL devices have a built-in I2C bus master selector (PCA9541).
  42. * To ensure device access, this driver should only be used as client driver
  43. * to the pca9541 I2C master selector driver.
  44. */
  45. /* Command codes */
  46. #define PEM_OPERATION 0x01
  47. #define PEM_CLEAR_INFO_FLAGS 0x03
  48. #define PEM_VOUT_COMMAND 0x21
  49. #define PEM_VOUT_OV_FAULT_LIMIT 0x40
  50. #define PEM_READ_DATA_STRING 0xd0
  51. #define PEM_READ_INPUT_STRING 0xdc
  52. #define PEM_READ_FIRMWARE_REV 0xdd
  53. #define PEM_READ_RUN_TIMER 0xde
  54. #define PEM_FAN_HI_SPEED 0xdf
  55. #define PEM_FAN_NORMAL_SPEED 0xe0
  56. #define PEM_READ_FAN_SPEED 0xe1
  57. /* offsets in data string */
  58. #define PEM_DATA_STATUS_2 0
  59. #define PEM_DATA_STATUS_1 1
  60. #define PEM_DATA_ALARM_2 2
  61. #define PEM_DATA_ALARM_1 3
  62. #define PEM_DATA_VOUT_LSB 4
  63. #define PEM_DATA_VOUT_MSB 5
  64. #define PEM_DATA_CURRENT 6
  65. #define PEM_DATA_TEMP 7
  66. /* Virtual entries, to report constants */
  67. #define PEM_DATA_TEMP_MAX 10
  68. #define PEM_DATA_TEMP_CRIT 11
  69. /* offsets in input string */
  70. #define PEM_INPUT_VOLTAGE 0
  71. #define PEM_INPUT_POWER_LSB 1
  72. #define PEM_INPUT_POWER_MSB 2
  73. /* offsets in fan data */
  74. #define PEM_FAN_ADJUSTMENT 0
  75. #define PEM_FAN_FAN1 1
  76. #define PEM_FAN_FAN2 2
  77. #define PEM_FAN_FAN3 3
  78. /* Status register bits */
  79. #define STS1_OUTPUT_ON (1 << 0)
  80. #define STS1_LEDS_FLASHING (1 << 1)
  81. #define STS1_EXT_FAULT (1 << 2)
  82. #define STS1_SERVICE_LED_ON (1 << 3)
  83. #define STS1_SHUTDOWN_OCCURRED (1 << 4)
  84. #define STS1_INT_FAULT (1 << 5)
  85. #define STS1_ISOLATION_TEST_OK (1 << 6)
  86. #define STS2_ENABLE_PIN_HI (1 << 0)
  87. #define STS2_DATA_OUT_RANGE (1 << 1)
  88. #define STS2_RESTARTED_OK (1 << 1)
  89. #define STS2_ISOLATION_TEST_FAIL (1 << 3)
  90. #define STS2_HIGH_POWER_CAP (1 << 4)
  91. #define STS2_INVALID_INSTR (1 << 5)
  92. #define STS2_WILL_RESTART (1 << 6)
  93. #define STS2_PEC_ERR (1 << 7)
  94. /* Alarm register bits */
  95. #define ALRM1_VIN_OUT_LIMIT (1 << 0)
  96. #define ALRM1_VOUT_OUT_LIMIT (1 << 1)
  97. #define ALRM1_OV_VOLT_SHUTDOWN (1 << 2)
  98. #define ALRM1_VIN_OVERCURRENT (1 << 3)
  99. #define ALRM1_TEMP_WARNING (1 << 4)
  100. #define ALRM1_TEMP_SHUTDOWN (1 << 5)
  101. #define ALRM1_PRIMARY_FAULT (1 << 6)
  102. #define ALRM1_POWER_LIMIT (1 << 7)
  103. #define ALRM2_5V_OUT_LIMIT (1 << 1)
  104. #define ALRM2_TEMP_FAULT (1 << 2)
  105. #define ALRM2_OV_LOW (1 << 3)
  106. #define ALRM2_DCDC_TEMP_HIGH (1 << 4)
  107. #define ALRM2_PRI_TEMP_HIGH (1 << 5)
  108. #define ALRM2_NO_PRIMARY (1 << 6)
  109. #define ALRM2_FAN_FAULT (1 << 7)
  110. #define FIRMWARE_REV_LEN 4
  111. #define DATA_STRING_LEN 9
  112. #define INPUT_STRING_LEN 5 /* 4 for most devices */
  113. #define FAN_SPEED_LEN 5
  114. struct pem_data {
  115. struct device *hwmon_dev;
  116. struct mutex update_lock;
  117. bool valid;
  118. bool fans_supported;
  119. int input_length;
  120. unsigned long last_updated; /* in jiffies */
  121. u8 firmware_rev[FIRMWARE_REV_LEN];
  122. u8 data_string[DATA_STRING_LEN];
  123. u8 input_string[INPUT_STRING_LEN];
  124. u8 fan_speed[FAN_SPEED_LEN];
  125. };
  126. static int pem_read_block(struct i2c_client *client, u8 command, u8 *data,
  127. int data_len)
  128. {
  129. u8 block_buffer[I2C_SMBUS_BLOCK_MAX];
  130. int result;
  131. result = i2c_smbus_read_block_data(client, command, block_buffer);
  132. if (unlikely(result < 0))
  133. goto abort;
  134. if (unlikely(result == 0xff || result != data_len)) {
  135. result = -EIO;
  136. goto abort;
  137. }
  138. memcpy(data, block_buffer, data_len);
  139. result = 0;
  140. abort:
  141. return result;
  142. }
  143. static struct pem_data *pem_update_device(struct device *dev)
  144. {
  145. struct i2c_client *client = to_i2c_client(dev);
  146. struct pem_data *data = i2c_get_clientdata(client);
  147. struct pem_data *ret = data;
  148. mutex_lock(&data->update_lock);
  149. if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
  150. int result;
  151. /* Read data string */
  152. result = pem_read_block(client, PEM_READ_DATA_STRING,
  153. data->data_string,
  154. sizeof(data->data_string));
  155. if (unlikely(result < 0)) {
  156. ret = ERR_PTR(result);
  157. goto abort;
  158. }
  159. /* Read input string */
  160. if (data->input_length) {
  161. result = pem_read_block(client, PEM_READ_INPUT_STRING,
  162. data->input_string,
  163. data->input_length);
  164. if (unlikely(result < 0)) {
  165. ret = ERR_PTR(result);
  166. goto abort;
  167. }
  168. }
  169. /* Read fan speeds */
  170. if (data->fans_supported) {
  171. result = pem_read_block(client, PEM_READ_FAN_SPEED,
  172. data->fan_speed,
  173. sizeof(data->fan_speed));
  174. if (unlikely(result < 0)) {
  175. ret = ERR_PTR(result);
  176. goto abort;
  177. }
  178. }
  179. i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  180. data->last_updated = jiffies;
  181. data->valid = 1;
  182. }
  183. abort:
  184. mutex_unlock(&data->update_lock);
  185. return ret;
  186. }
  187. static long pem_get_data(u8 *data, int len, int index)
  188. {
  189. long val;
  190. switch (index) {
  191. case PEM_DATA_VOUT_LSB:
  192. val = (data[index] + (data[index+1] << 8)) * 5 / 2;
  193. break;
  194. case PEM_DATA_CURRENT:
  195. val = data[index] * 200;
  196. break;
  197. case PEM_DATA_TEMP:
  198. val = data[index] * 1000;
  199. break;
  200. case PEM_DATA_TEMP_MAX:
  201. val = 97 * 1000; /* 97 degrees C per datasheet */
  202. break;
  203. case PEM_DATA_TEMP_CRIT:
  204. val = 107 * 1000; /* 107 degrees C per datasheet */
  205. break;
  206. default:
  207. WARN_ON_ONCE(1);
  208. val = 0;
  209. }
  210. return val;
  211. }
  212. static long pem_get_input(u8 *data, int len, int index)
  213. {
  214. long val;
  215. switch (index) {
  216. case PEM_INPUT_VOLTAGE:
  217. if (len == INPUT_STRING_LEN)
  218. val = (data[index] + (data[index+1] << 8) - 75) * 1000;
  219. else
  220. val = (data[index] - 75) * 1000;
  221. break;
  222. case PEM_INPUT_POWER_LSB:
  223. if (len == INPUT_STRING_LEN)
  224. index++;
  225. val = (data[index] + (data[index+1] << 8)) * 1000000L;
  226. break;
  227. default:
  228. WARN_ON_ONCE(1);
  229. val = 0;
  230. }
  231. return val;
  232. }
  233. static long pem_get_fan(u8 *data, int len, int index)
  234. {
  235. long val;
  236. switch (index) {
  237. case PEM_FAN_FAN1:
  238. case PEM_FAN_FAN2:
  239. case PEM_FAN_FAN3:
  240. val = data[index] * 100;
  241. break;
  242. default:
  243. WARN_ON_ONCE(1);
  244. val = 0;
  245. }
  246. return val;
  247. }
  248. /*
  249. * Show boolean, either a fault or an alarm.
  250. * .nr points to the register, .index is the bit mask to check
  251. */
  252. static ssize_t pem_show_bool(struct device *dev,
  253. struct device_attribute *da, char *buf)
  254. {
  255. struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(da);
  256. struct pem_data *data = pem_update_device(dev);
  257. u8 status;
  258. if (IS_ERR(data))
  259. return PTR_ERR(data);
  260. status = data->data_string[attr->nr] & attr->index;
  261. return snprintf(buf, PAGE_SIZE, "%d\n", !!status);
  262. }
  263. static ssize_t pem_show_data(struct device *dev, struct device_attribute *da,
  264. char *buf)
  265. {
  266. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  267. struct pem_data *data = pem_update_device(dev);
  268. long value;
  269. if (IS_ERR(data))
  270. return PTR_ERR(data);
  271. value = pem_get_data(data->data_string, sizeof(data->data_string),
  272. attr->index);
  273. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  274. }
  275. static ssize_t pem_show_input(struct device *dev, struct device_attribute *da,
  276. char *buf)
  277. {
  278. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  279. struct pem_data *data = pem_update_device(dev);
  280. long value;
  281. if (IS_ERR(data))
  282. return PTR_ERR(data);
  283. value = pem_get_input(data->input_string, sizeof(data->input_string),
  284. attr->index);
  285. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  286. }
  287. static ssize_t pem_show_fan(struct device *dev, struct device_attribute *da,
  288. char *buf)
  289. {
  290. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  291. struct pem_data *data = pem_update_device(dev);
  292. long value;
  293. if (IS_ERR(data))
  294. return PTR_ERR(data);
  295. value = pem_get_fan(data->fan_speed, sizeof(data->fan_speed),
  296. attr->index);
  297. return snprintf(buf, PAGE_SIZE, "%ld\n", value);
  298. }
  299. /* Voltages */
  300. static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, pem_show_data, NULL,
  301. PEM_DATA_VOUT_LSB);
  302. static SENSOR_DEVICE_ATTR_2(in1_alarm, S_IRUGO, pem_show_bool, NULL,
  303. PEM_DATA_ALARM_1, ALRM1_VOUT_OUT_LIMIT);
  304. static SENSOR_DEVICE_ATTR_2(in1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
  305. PEM_DATA_ALARM_1, ALRM1_OV_VOLT_SHUTDOWN);
  306. static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, pem_show_input, NULL,
  307. PEM_INPUT_VOLTAGE);
  308. static SENSOR_DEVICE_ATTR_2(in2_alarm, S_IRUGO, pem_show_bool, NULL,
  309. PEM_DATA_ALARM_1,
  310. ALRM1_VIN_OUT_LIMIT | ALRM1_PRIMARY_FAULT);
  311. /* Currents */
  312. static SENSOR_DEVICE_ATTR(curr1_input, S_IRUGO, pem_show_data, NULL,
  313. PEM_DATA_CURRENT);
  314. static SENSOR_DEVICE_ATTR_2(curr1_alarm, S_IRUGO, pem_show_bool, NULL,
  315. PEM_DATA_ALARM_1, ALRM1_VIN_OVERCURRENT);
  316. /* Power */
  317. static SENSOR_DEVICE_ATTR(power1_input, S_IRUGO, pem_show_input, NULL,
  318. PEM_INPUT_POWER_LSB);
  319. static SENSOR_DEVICE_ATTR_2(power1_alarm, S_IRUGO, pem_show_bool, NULL,
  320. PEM_DATA_ALARM_1, ALRM1_POWER_LIMIT);
  321. /* Fans */
  322. static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, pem_show_fan, NULL,
  323. PEM_FAN_FAN1);
  324. static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, pem_show_fan, NULL,
  325. PEM_FAN_FAN2);
  326. static SENSOR_DEVICE_ATTR(fan3_input, S_IRUGO, pem_show_fan, NULL,
  327. PEM_FAN_FAN3);
  328. static SENSOR_DEVICE_ATTR_2(fan1_alarm, S_IRUGO, pem_show_bool, NULL,
  329. PEM_DATA_ALARM_2, ALRM2_FAN_FAULT);
  330. /* Temperatures */
  331. static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, pem_show_data, NULL,
  332. PEM_DATA_TEMP);
  333. static SENSOR_DEVICE_ATTR(temp1_max, S_IRUGO, pem_show_data, NULL,
  334. PEM_DATA_TEMP_MAX);
  335. static SENSOR_DEVICE_ATTR(temp1_crit, S_IRUGO, pem_show_data, NULL,
  336. PEM_DATA_TEMP_CRIT);
  337. static SENSOR_DEVICE_ATTR_2(temp1_alarm, S_IRUGO, pem_show_bool, NULL,
  338. PEM_DATA_ALARM_1, ALRM1_TEMP_WARNING);
  339. static SENSOR_DEVICE_ATTR_2(temp1_crit_alarm, S_IRUGO, pem_show_bool, NULL,
  340. PEM_DATA_ALARM_1, ALRM1_TEMP_SHUTDOWN);
  341. static SENSOR_DEVICE_ATTR_2(temp1_fault, S_IRUGO, pem_show_bool, NULL,
  342. PEM_DATA_ALARM_2, ALRM2_TEMP_FAULT);
  343. static struct attribute *pem_attributes[] = {
  344. &sensor_dev_attr_in1_input.dev_attr.attr,
  345. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  346. &sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
  347. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  348. &sensor_dev_attr_curr1_alarm.dev_attr.attr,
  349. &sensor_dev_attr_power1_alarm.dev_attr.attr,
  350. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  351. &sensor_dev_attr_temp1_input.dev_attr.attr,
  352. &sensor_dev_attr_temp1_max.dev_attr.attr,
  353. &sensor_dev_attr_temp1_crit.dev_attr.attr,
  354. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  355. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  356. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  357. NULL,
  358. };
  359. static const struct attribute_group pem_group = {
  360. .attrs = pem_attributes,
  361. };
  362. static struct attribute *pem_input_attributes[] = {
  363. &sensor_dev_attr_in2_input.dev_attr.attr,
  364. &sensor_dev_attr_curr1_input.dev_attr.attr,
  365. &sensor_dev_attr_power1_input.dev_attr.attr,
  366. NULL
  367. };
  368. static const struct attribute_group pem_input_group = {
  369. .attrs = pem_input_attributes,
  370. };
  371. static struct attribute *pem_fan_attributes[] = {
  372. &sensor_dev_attr_fan1_input.dev_attr.attr,
  373. &sensor_dev_attr_fan2_input.dev_attr.attr,
  374. &sensor_dev_attr_fan3_input.dev_attr.attr,
  375. NULL
  376. };
  377. static const struct attribute_group pem_fan_group = {
  378. .attrs = pem_fan_attributes,
  379. };
  380. static int pem_probe(struct i2c_client *client,
  381. const struct i2c_device_id *id)
  382. {
  383. struct i2c_adapter *adapter = client->adapter;
  384. struct pem_data *data;
  385. int ret;
  386. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BLOCK_DATA
  387. | I2C_FUNC_SMBUS_WRITE_BYTE))
  388. return -ENODEV;
  389. data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
  390. if (!data)
  391. return -ENOMEM;
  392. i2c_set_clientdata(client, data);
  393. mutex_init(&data->update_lock);
  394. /*
  395. * We use the next two commands to determine if the device is really
  396. * there.
  397. */
  398. ret = pem_read_block(client, PEM_READ_FIRMWARE_REV,
  399. data->firmware_rev, sizeof(data->firmware_rev));
  400. if (ret < 0)
  401. return ret;
  402. ret = i2c_smbus_write_byte(client, PEM_CLEAR_INFO_FLAGS);
  403. if (ret < 0)
  404. return ret;
  405. dev_info(&client->dev, "Firmware revision %d.%d.%d\n",
  406. data->firmware_rev[0], data->firmware_rev[1],
  407. data->firmware_rev[2]);
  408. /* Register sysfs hooks */
  409. ret = sysfs_create_group(&client->dev.kobj, &pem_group);
  410. if (ret)
  411. return ret;
  412. /*
  413. * Check if input readings are supported.
  414. * This is the case if we can read input data,
  415. * and if the returned data is not all zeros.
  416. * Note that input alarms are always supported.
  417. */
  418. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  419. data->input_string,
  420. sizeof(data->input_string) - 1);
  421. if (!ret && (data->input_string[0] || data->input_string[1] ||
  422. data->input_string[2]))
  423. data->input_length = sizeof(data->input_string) - 1;
  424. else if (ret < 0) {
  425. /* Input string is one byte longer for some devices */
  426. ret = pem_read_block(client, PEM_READ_INPUT_STRING,
  427. data->input_string,
  428. sizeof(data->input_string));
  429. if (!ret && (data->input_string[0] || data->input_string[1] ||
  430. data->input_string[2] || data->input_string[3]))
  431. data->input_length = sizeof(data->input_string);
  432. }
  433. ret = 0;
  434. if (data->input_length) {
  435. ret = sysfs_create_group(&client->dev.kobj, &pem_input_group);
  436. if (ret)
  437. goto out_remove_groups;
  438. }
  439. /*
  440. * Check if fan speed readings are supported.
  441. * This is the case if we can read fan speed data,
  442. * and if the returned data is not all zeros.
  443. * Note that the fan alarm is always supported.
  444. */
  445. ret = pem_read_block(client, PEM_READ_FAN_SPEED,
  446. data->fan_speed,
  447. sizeof(data->fan_speed));
  448. if (!ret && (data->fan_speed[0] || data->fan_speed[1] ||
  449. data->fan_speed[2] || data->fan_speed[3])) {
  450. data->fans_supported = true;
  451. ret = sysfs_create_group(&client->dev.kobj, &pem_fan_group);
  452. if (ret)
  453. goto out_remove_groups;
  454. }
  455. data->hwmon_dev = hwmon_device_register(&client->dev);
  456. if (IS_ERR(data->hwmon_dev)) {
  457. ret = PTR_ERR(data->hwmon_dev);
  458. goto out_remove_groups;
  459. }
  460. return 0;
  461. out_remove_groups:
  462. sysfs_remove_group(&client->dev.kobj, &pem_input_group);
  463. sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
  464. sysfs_remove_group(&client->dev.kobj, &pem_group);
  465. return ret;
  466. }
  467. static int pem_remove(struct i2c_client *client)
  468. {
  469. struct pem_data *data = i2c_get_clientdata(client);
  470. hwmon_device_unregister(data->hwmon_dev);
  471. sysfs_remove_group(&client->dev.kobj, &pem_input_group);
  472. sysfs_remove_group(&client->dev.kobj, &pem_fan_group);
  473. sysfs_remove_group(&client->dev.kobj, &pem_group);
  474. return 0;
  475. }
  476. static const struct i2c_device_id pem_id[] = {
  477. {"lineage_pem", 0},
  478. {}
  479. };
  480. MODULE_DEVICE_TABLE(i2c, pem_id);
  481. static struct i2c_driver pem_driver = {
  482. .driver = {
  483. .name = "lineage_pem",
  484. },
  485. .probe = pem_probe,
  486. .remove = pem_remove,
  487. .id_table = pem_id,
  488. };
  489. module_i2c_driver(pem_driver);
  490. MODULE_AUTHOR("Guenter Roeck <linux@roeck-us.net>");
  491. MODULE_DESCRIPTION("Lineage CPL PEM hardware monitoring driver");
  492. MODULE_LICENSE("GPL");