nv04_dac.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556
  1. /*
  2. * Copyright 2003 NVIDIA, Corporation
  3. * Copyright 2006 Dave Airlie
  4. * Copyright 2007 Maarten Maathuis
  5. * Copyright 2007-2009 Stuart Bennett
  6. *
  7. * Permission is hereby granted, free of charge, to any person obtaining a
  8. * copy of this software and associated documentation files (the "Software"),
  9. * to deal in the Software without restriction, including without limitation
  10. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  11. * and/or sell copies of the Software, and to permit persons to whom the
  12. * Software is furnished to do so, subject to the following conditions:
  13. *
  14. * The above copyright notice and this permission notice (including the next
  15. * paragraph) shall be included in all copies or substantial portions of the
  16. * Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  23. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  24. * DEALINGS IN THE SOFTWARE.
  25. */
  26. #include <drm/drmP.h>
  27. #include <drm/drm_crtc_helper.h>
  28. #include "nouveau_drm.h"
  29. #include "nouveau_encoder.h"
  30. #include "nouveau_connector.h"
  31. #include "nouveau_crtc.h"
  32. #include "nouveau_hw.h"
  33. #include "nvreg.h"
  34. #include <subdev/bios/gpio.h>
  35. #include <subdev/gpio.h>
  36. #include <subdev/timer.h>
  37. int nv04_dac_output_offset(struct drm_encoder *encoder)
  38. {
  39. struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
  40. int offset = 0;
  41. if (dcb->or & (8 | DCB_OUTPUT_C))
  42. offset += 0x68;
  43. if (dcb->or & (8 | DCB_OUTPUT_B))
  44. offset += 0x2000;
  45. return offset;
  46. }
  47. /*
  48. * arbitrary limit to number of sense oscillations tolerated in one sample
  49. * period (observed to be at least 13 in "nvidia")
  50. */
  51. #define MAX_HBLANK_OSC 20
  52. /*
  53. * arbitrary limit to number of conflicting sample pairs to tolerate at a
  54. * voltage step (observed to be at least 5 in "nvidia")
  55. */
  56. #define MAX_SAMPLE_PAIRS 10
  57. static int sample_load_twice(struct drm_device *dev, bool sense[2])
  58. {
  59. struct nouveau_device *device = nouveau_dev(dev);
  60. struct nouveau_timer *ptimer = nouveau_timer(device);
  61. int i;
  62. for (i = 0; i < 2; i++) {
  63. bool sense_a, sense_b, sense_b_prime;
  64. int j = 0;
  65. /*
  66. * wait for bit 0 clear -- out of hblank -- (say reg value 0x4),
  67. * then wait for transition 0x4->0x5->0x4: enter hblank, leave
  68. * hblank again
  69. * use a 10ms timeout (guards against crtc being inactive, in
  70. * which case blank state would never change)
  71. */
  72. if (!nouveau_timer_wait_eq(ptimer, 10000000,
  73. NV_PRMCIO_INP0__COLOR,
  74. 0x00000001, 0x00000000))
  75. return -EBUSY;
  76. if (!nouveau_timer_wait_eq(ptimer, 10000000,
  77. NV_PRMCIO_INP0__COLOR,
  78. 0x00000001, 0x00000001))
  79. return -EBUSY;
  80. if (!nouveau_timer_wait_eq(ptimer, 10000000,
  81. NV_PRMCIO_INP0__COLOR,
  82. 0x00000001, 0x00000000))
  83. return -EBUSY;
  84. udelay(100);
  85. /* when level triggers, sense is _LO_ */
  86. sense_a = nv_rd08(device, NV_PRMCIO_INP0) & 0x10;
  87. /* take another reading until it agrees with sense_a... */
  88. do {
  89. udelay(100);
  90. sense_b = nv_rd08(device, NV_PRMCIO_INP0) & 0x10;
  91. if (sense_a != sense_b) {
  92. sense_b_prime =
  93. nv_rd08(device, NV_PRMCIO_INP0) & 0x10;
  94. if (sense_b == sense_b_prime) {
  95. /* ... unless two consecutive subsequent
  96. * samples agree; sense_a is replaced */
  97. sense_a = sense_b;
  98. /* force mis-match so we loop */
  99. sense_b = !sense_a;
  100. }
  101. }
  102. } while ((sense_a != sense_b) && ++j < MAX_HBLANK_OSC);
  103. if (j == MAX_HBLANK_OSC)
  104. /* with so much oscillation, default to sense:LO */
  105. sense[i] = false;
  106. else
  107. sense[i] = sense_a;
  108. }
  109. return 0;
  110. }
  111. static enum drm_connector_status nv04_dac_detect(struct drm_encoder *encoder,
  112. struct drm_connector *connector)
  113. {
  114. struct drm_device *dev = encoder->dev;
  115. struct nouveau_device *device = nouveau_dev(dev);
  116. struct nouveau_drm *drm = nouveau_drm(dev);
  117. uint8_t saved_seq1, saved_pi, saved_rpc1, saved_cr_mode;
  118. uint8_t saved_palette0[3], saved_palette_mask;
  119. uint32_t saved_rtest_ctrl, saved_rgen_ctrl;
  120. int i;
  121. uint8_t blue;
  122. bool sense = true;
  123. /*
  124. * for this detection to work, there needs to be a mode set up on the
  125. * CRTC. this is presumed to be the case
  126. */
  127. if (nv_two_heads(dev))
  128. /* only implemented for head A for now */
  129. NVSetOwner(dev, 0);
  130. saved_cr_mode = NVReadVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX);
  131. NVWriteVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX, saved_cr_mode | 0x80);
  132. saved_seq1 = NVReadVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX);
  133. NVWriteVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX, saved_seq1 & ~0x20);
  134. saved_rtest_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL);
  135. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL,
  136. saved_rtest_ctrl & ~NV_PRAMDAC_TEST_CONTROL_PWRDWN_DAC_OFF);
  137. msleep(10);
  138. saved_pi = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX);
  139. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX,
  140. saved_pi & ~(0x80 | MASK(NV_CIO_CRE_PIXEL_FORMAT)));
  141. saved_rpc1 = NVReadVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX);
  142. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX, saved_rpc1 & ~0xc0);
  143. nv_wr08(device, NV_PRMDIO_READ_MODE_ADDRESS, 0x0);
  144. for (i = 0; i < 3; i++)
  145. saved_palette0[i] = nv_rd08(device, NV_PRMDIO_PALETTE_DATA);
  146. saved_palette_mask = nv_rd08(device, NV_PRMDIO_PIXEL_MASK);
  147. nv_wr08(device, NV_PRMDIO_PIXEL_MASK, 0);
  148. saved_rgen_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL);
  149. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL,
  150. (saved_rgen_ctrl & ~(NV_PRAMDAC_GENERAL_CONTROL_BPC_8BITS |
  151. NV_PRAMDAC_GENERAL_CONTROL_TERMINATION_75OHM)) |
  152. NV_PRAMDAC_GENERAL_CONTROL_PIXMIX_ON);
  153. blue = 8; /* start of test range */
  154. do {
  155. bool sense_pair[2];
  156. nv_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS, 0);
  157. nv_wr08(device, NV_PRMDIO_PALETTE_DATA, 0);
  158. nv_wr08(device, NV_PRMDIO_PALETTE_DATA, 0);
  159. /* testing blue won't find monochrome monitors. I don't care */
  160. nv_wr08(device, NV_PRMDIO_PALETTE_DATA, blue);
  161. i = 0;
  162. /* take sample pairs until both samples in the pair agree */
  163. do {
  164. if (sample_load_twice(dev, sense_pair))
  165. goto out;
  166. } while ((sense_pair[0] != sense_pair[1]) &&
  167. ++i < MAX_SAMPLE_PAIRS);
  168. if (i == MAX_SAMPLE_PAIRS)
  169. /* too much oscillation defaults to LO */
  170. sense = false;
  171. else
  172. sense = sense_pair[0];
  173. /*
  174. * if sense goes LO before blue ramps to 0x18, monitor is not connected.
  175. * ergo, if blue gets to 0x18, monitor must be connected
  176. */
  177. } while (++blue < 0x18 && sense);
  178. out:
  179. nv_wr08(device, NV_PRMDIO_PIXEL_MASK, saved_palette_mask);
  180. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_GENERAL_CONTROL, saved_rgen_ctrl);
  181. nv_wr08(device, NV_PRMDIO_WRITE_MODE_ADDRESS, 0);
  182. for (i = 0; i < 3; i++)
  183. nv_wr08(device, NV_PRMDIO_PALETTE_DATA, saved_palette0[i]);
  184. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL, saved_rtest_ctrl);
  185. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_PIXEL_INDEX, saved_pi);
  186. NVWriteVgaCrtc(dev, 0, NV_CIO_CRE_RPC1_INDEX, saved_rpc1);
  187. NVWriteVgaSeq(dev, 0, NV_VIO_SR_CLOCK_INDEX, saved_seq1);
  188. NVWriteVgaCrtc(dev, 0, NV_CIO_CR_MODE_INDEX, saved_cr_mode);
  189. if (blue == 0x18) {
  190. NV_DEBUG(drm, "Load detected on head A\n");
  191. return connector_status_connected;
  192. }
  193. return connector_status_disconnected;
  194. }
  195. uint32_t nv17_dac_sample_load(struct drm_encoder *encoder)
  196. {
  197. struct drm_device *dev = encoder->dev;
  198. struct nouveau_drm *drm = nouveau_drm(dev);
  199. struct nouveau_device *device = nouveau_dev(dev);
  200. struct nouveau_gpio *gpio = nouveau_gpio(device);
  201. struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
  202. uint32_t sample, testval, regoffset = nv04_dac_output_offset(encoder);
  203. uint32_t saved_powerctrl_2 = 0, saved_powerctrl_4 = 0, saved_routput,
  204. saved_rtest_ctrl, saved_gpio0 = 0, saved_gpio1 = 0, temp, routput;
  205. int head;
  206. #define RGB_TEST_DATA(r, g, b) (r << 0 | g << 10 | b << 20)
  207. if (dcb->type == DCB_OUTPUT_TV) {
  208. testval = RGB_TEST_DATA(0xa0, 0xa0, 0xa0);
  209. if (drm->vbios.tvdactestval)
  210. testval = drm->vbios.tvdactestval;
  211. } else {
  212. testval = RGB_TEST_DATA(0x140, 0x140, 0x140); /* 0x94050140 */
  213. if (drm->vbios.dactestval)
  214. testval = drm->vbios.dactestval;
  215. }
  216. saved_rtest_ctrl = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset);
  217. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset,
  218. saved_rtest_ctrl & ~NV_PRAMDAC_TEST_CONTROL_PWRDWN_DAC_OFF);
  219. saved_powerctrl_2 = nv_rd32(device, NV_PBUS_POWERCTRL_2);
  220. nv_wr32(device, NV_PBUS_POWERCTRL_2, saved_powerctrl_2 & 0xd7ffffff);
  221. if (regoffset == 0x68) {
  222. saved_powerctrl_4 = nv_rd32(device, NV_PBUS_POWERCTRL_4);
  223. nv_wr32(device, NV_PBUS_POWERCTRL_4, saved_powerctrl_4 & 0xffffffcf);
  224. }
  225. if (gpio) {
  226. saved_gpio1 = gpio->get(gpio, 0, DCB_GPIO_TVDAC1, 0xff);
  227. saved_gpio0 = gpio->get(gpio, 0, DCB_GPIO_TVDAC0, 0xff);
  228. gpio->set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, dcb->type == DCB_OUTPUT_TV);
  229. gpio->set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, dcb->type == DCB_OUTPUT_TV);
  230. }
  231. msleep(4);
  232. saved_routput = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset);
  233. head = (saved_routput & 0x100) >> 8;
  234. /* if there's a spare crtc, using it will minimise flicker */
  235. if (!(NVReadVgaCrtc(dev, head, NV_CIO_CRE_RPC1_INDEX) & 0xC0))
  236. head ^= 1;
  237. /* nv driver and nv31 use 0xfffffeee, nv34 and 6600 use 0xfffffece */
  238. routput = (saved_routput & 0xfffffece) | head << 8;
  239. if (nv_device(drm->device)->card_type >= NV_40) {
  240. if (dcb->type == DCB_OUTPUT_TV)
  241. routput |= 0x1a << 16;
  242. else
  243. routput &= ~(0x1a << 16);
  244. }
  245. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, routput);
  246. msleep(1);
  247. temp = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset);
  248. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, temp | 1);
  249. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TESTPOINT_DATA,
  250. NV_PRAMDAC_TESTPOINT_DATA_NOTBLANK | testval);
  251. temp = NVReadRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL);
  252. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL,
  253. temp | NV_PRAMDAC_TEST_CONTROL_TP_INS_EN_ASSERTED);
  254. msleep(5);
  255. sample = NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset);
  256. /* do it again just in case it's a residual current */
  257. sample &= NVReadRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset);
  258. temp = NVReadRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL);
  259. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TEST_CONTROL,
  260. temp & ~NV_PRAMDAC_TEST_CONTROL_TP_INS_EN_ASSERTED);
  261. NVWriteRAMDAC(dev, head, NV_PRAMDAC_TESTPOINT_DATA, 0);
  262. /* bios does something more complex for restoring, but I think this is good enough */
  263. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + regoffset, saved_routput);
  264. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + regoffset, saved_rtest_ctrl);
  265. if (regoffset == 0x68)
  266. nv_wr32(device, NV_PBUS_POWERCTRL_4, saved_powerctrl_4);
  267. nv_wr32(device, NV_PBUS_POWERCTRL_2, saved_powerctrl_2);
  268. if (gpio) {
  269. gpio->set(gpio, 0, DCB_GPIO_TVDAC1, 0xff, saved_gpio1);
  270. gpio->set(gpio, 0, DCB_GPIO_TVDAC0, 0xff, saved_gpio0);
  271. }
  272. return sample;
  273. }
  274. static enum drm_connector_status
  275. nv17_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
  276. {
  277. struct nouveau_drm *drm = nouveau_drm(encoder->dev);
  278. struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
  279. if (nv04_dac_in_use(encoder))
  280. return connector_status_disconnected;
  281. if (nv17_dac_sample_load(encoder) &
  282. NV_PRAMDAC_TEST_CONTROL_SENSEB_ALLHI) {
  283. NV_DEBUG(drm, "Load detected on output %c\n",
  284. '@' + ffs(dcb->or));
  285. return connector_status_connected;
  286. } else {
  287. return connector_status_disconnected;
  288. }
  289. }
  290. static bool nv04_dac_mode_fixup(struct drm_encoder *encoder,
  291. const struct drm_display_mode *mode,
  292. struct drm_display_mode *adjusted_mode)
  293. {
  294. if (nv04_dac_in_use(encoder))
  295. return false;
  296. return true;
  297. }
  298. static void nv04_dac_prepare(struct drm_encoder *encoder)
  299. {
  300. struct drm_encoder_helper_funcs *helper = encoder->helper_private;
  301. struct drm_device *dev = encoder->dev;
  302. int head = nouveau_crtc(encoder->crtc)->index;
  303. helper->dpms(encoder, DRM_MODE_DPMS_OFF);
  304. nv04_dfp_disable(dev, head);
  305. }
  306. static void nv04_dac_mode_set(struct drm_encoder *encoder,
  307. struct drm_display_mode *mode,
  308. struct drm_display_mode *adjusted_mode)
  309. {
  310. struct drm_device *dev = encoder->dev;
  311. struct nouveau_drm *drm = nouveau_drm(dev);
  312. int head = nouveau_crtc(encoder->crtc)->index;
  313. if (nv_gf4_disp_arch(dev)) {
  314. struct drm_encoder *rebind;
  315. uint32_t dac_offset = nv04_dac_output_offset(encoder);
  316. uint32_t otherdac;
  317. /* bit 16-19 are bits that are set on some G70 cards,
  318. * but don't seem to have much effect */
  319. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset,
  320. head << 8 | NV_PRAMDAC_DACCLK_SEL_DACCLK);
  321. /* force any other vga encoders to bind to the other crtc */
  322. list_for_each_entry(rebind, &dev->mode_config.encoder_list, head) {
  323. if (rebind == encoder
  324. || nouveau_encoder(rebind)->dcb->type != DCB_OUTPUT_ANALOG)
  325. continue;
  326. dac_offset = nv04_dac_output_offset(rebind);
  327. otherdac = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset);
  328. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + dac_offset,
  329. (otherdac & ~0x0100) | (head ^ 1) << 8);
  330. }
  331. }
  332. /* This could use refinement for flatpanels, but it should work this way */
  333. if (nv_device(drm->device)->chipset < 0x44)
  334. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
  335. else
  336. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
  337. }
  338. static void nv04_dac_commit(struct drm_encoder *encoder)
  339. {
  340. struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
  341. struct nouveau_drm *drm = nouveau_drm(encoder->dev);
  342. struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
  343. struct drm_encoder_helper_funcs *helper = encoder->helper_private;
  344. helper->dpms(encoder, DRM_MODE_DPMS_ON);
  345. NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
  346. drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base),
  347. nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
  348. }
  349. void nv04_dac_update_dacclk(struct drm_encoder *encoder, bool enable)
  350. {
  351. struct drm_device *dev = encoder->dev;
  352. struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
  353. if (nv_gf4_disp_arch(dev)) {
  354. uint32_t *dac_users = &nv04_display(dev)->dac_users[ffs(dcb->or) - 1];
  355. int dacclk_off = NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder);
  356. uint32_t dacclk = NVReadRAMDAC(dev, 0, dacclk_off);
  357. if (enable) {
  358. *dac_users |= 1 << dcb->index;
  359. NVWriteRAMDAC(dev, 0, dacclk_off, dacclk | NV_PRAMDAC_DACCLK_SEL_DACCLK);
  360. } else {
  361. *dac_users &= ~(1 << dcb->index);
  362. if (!*dac_users)
  363. NVWriteRAMDAC(dev, 0, dacclk_off,
  364. dacclk & ~NV_PRAMDAC_DACCLK_SEL_DACCLK);
  365. }
  366. }
  367. }
  368. /* Check if the DAC corresponding to 'encoder' is being used by
  369. * someone else. */
  370. bool nv04_dac_in_use(struct drm_encoder *encoder)
  371. {
  372. struct drm_device *dev = encoder->dev;
  373. struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
  374. return nv_gf4_disp_arch(encoder->dev) &&
  375. (nv04_display(dev)->dac_users[ffs(dcb->or) - 1] & ~(1 << dcb->index));
  376. }
  377. static void nv04_dac_dpms(struct drm_encoder *encoder, int mode)
  378. {
  379. struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
  380. struct nouveau_drm *drm = nouveau_drm(encoder->dev);
  381. if (nv_encoder->last_dpms == mode)
  382. return;
  383. nv_encoder->last_dpms = mode;
  384. NV_DEBUG(drm, "Setting dpms mode %d on vga encoder (output %d)\n",
  385. mode, nv_encoder->dcb->index);
  386. nv04_dac_update_dacclk(encoder, mode == DRM_MODE_DPMS_ON);
  387. }
  388. static void nv04_dac_save(struct drm_encoder *encoder)
  389. {
  390. struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
  391. struct drm_device *dev = encoder->dev;
  392. if (nv_gf4_disp_arch(dev))
  393. nv_encoder->restore.output = NVReadRAMDAC(dev, 0, NV_PRAMDAC_DACCLK +
  394. nv04_dac_output_offset(encoder));
  395. }
  396. static void nv04_dac_restore(struct drm_encoder *encoder)
  397. {
  398. struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
  399. struct drm_device *dev = encoder->dev;
  400. if (nv_gf4_disp_arch(dev))
  401. NVWriteRAMDAC(dev, 0, NV_PRAMDAC_DACCLK + nv04_dac_output_offset(encoder),
  402. nv_encoder->restore.output);
  403. nv_encoder->last_dpms = NV_DPMS_CLEARED;
  404. }
  405. static void nv04_dac_destroy(struct drm_encoder *encoder)
  406. {
  407. struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
  408. drm_encoder_cleanup(encoder);
  409. kfree(nv_encoder);
  410. }
  411. static const struct drm_encoder_helper_funcs nv04_dac_helper_funcs = {
  412. .dpms = nv04_dac_dpms,
  413. .save = nv04_dac_save,
  414. .restore = nv04_dac_restore,
  415. .mode_fixup = nv04_dac_mode_fixup,
  416. .prepare = nv04_dac_prepare,
  417. .commit = nv04_dac_commit,
  418. .mode_set = nv04_dac_mode_set,
  419. .detect = nv04_dac_detect
  420. };
  421. static const struct drm_encoder_helper_funcs nv17_dac_helper_funcs = {
  422. .dpms = nv04_dac_dpms,
  423. .save = nv04_dac_save,
  424. .restore = nv04_dac_restore,
  425. .mode_fixup = nv04_dac_mode_fixup,
  426. .prepare = nv04_dac_prepare,
  427. .commit = nv04_dac_commit,
  428. .mode_set = nv04_dac_mode_set,
  429. .detect = nv17_dac_detect
  430. };
  431. static const struct drm_encoder_funcs nv04_dac_funcs = {
  432. .destroy = nv04_dac_destroy,
  433. };
  434. int
  435. nv04_dac_create(struct drm_connector *connector, struct dcb_output *entry)
  436. {
  437. const struct drm_encoder_helper_funcs *helper;
  438. struct nouveau_encoder *nv_encoder = NULL;
  439. struct drm_device *dev = connector->dev;
  440. struct drm_encoder *encoder;
  441. nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
  442. if (!nv_encoder)
  443. return -ENOMEM;
  444. encoder = to_drm_encoder(nv_encoder);
  445. nv_encoder->dcb = entry;
  446. nv_encoder->or = ffs(entry->or) - 1;
  447. if (nv_gf4_disp_arch(dev))
  448. helper = &nv17_dac_helper_funcs;
  449. else
  450. helper = &nv04_dac_helper_funcs;
  451. drm_encoder_init(dev, encoder, &nv04_dac_funcs, DRM_MODE_ENCODER_DAC);
  452. drm_encoder_helper_add(encoder, helper);
  453. encoder->possible_crtcs = entry->heads;
  454. encoder->possible_clones = 0;
  455. drm_mode_connector_attach_encoder(connector, encoder);
  456. return 0;
  457. }