cdv_intel_dp.c 52 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/module.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include "psb_drv.h"
  34. #include "psb_intel_drv.h"
  35. #include "psb_intel_reg.h"
  36. #include <drm/drm_dp_helper.h>
  37. #define _wait_for(COND, MS, W) ({ \
  38. unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
  39. int ret__ = 0; \
  40. while (! (COND)) { \
  41. if (time_after(jiffies, timeout__)) { \
  42. ret__ = -ETIMEDOUT; \
  43. break; \
  44. } \
  45. if (W && !in_dbg_master()) msleep(W); \
  46. } \
  47. ret__; \
  48. })
  49. #define wait_for(COND, MS) _wait_for(COND, MS, 1)
  50. #define DP_LINK_STATUS_SIZE 6
  51. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  52. #define DP_LINK_CONFIGURATION_SIZE 9
  53. #define CDV_FAST_LINK_TRAIN 1
  54. struct cdv_intel_dp {
  55. uint32_t output_reg;
  56. uint32_t DP;
  57. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  58. bool has_audio;
  59. int force_audio;
  60. uint32_t color_range;
  61. uint8_t link_bw;
  62. uint8_t lane_count;
  63. uint8_t dpcd[4];
  64. struct psb_intel_encoder *encoder;
  65. struct i2c_adapter adapter;
  66. struct i2c_algo_dp_aux_data algo;
  67. uint8_t train_set[4];
  68. uint8_t link_status[DP_LINK_STATUS_SIZE];
  69. int panel_power_up_delay;
  70. int panel_power_down_delay;
  71. int panel_power_cycle_delay;
  72. int backlight_on_delay;
  73. int backlight_off_delay;
  74. struct drm_display_mode *panel_fixed_mode; /* for eDP */
  75. bool panel_on;
  76. };
  77. struct ddi_regoff {
  78. uint32_t PreEmph1;
  79. uint32_t PreEmph2;
  80. uint32_t VSwing1;
  81. uint32_t VSwing2;
  82. uint32_t VSwing3;
  83. uint32_t VSwing4;
  84. uint32_t VSwing5;
  85. };
  86. static struct ddi_regoff ddi_DP_train_table[] = {
  87. {.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
  88. .VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
  89. .VSwing5 = 0x8158,},
  90. {.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
  91. .VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
  92. .VSwing5 = 0x8258,},
  93. };
  94. static uint32_t dp_vswing_premph_table[] = {
  95. 0x55338954, 0x4000,
  96. 0x554d8954, 0x2000,
  97. 0x55668954, 0,
  98. 0x559ac0d4, 0x6000,
  99. };
  100. /**
  101. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  102. * @intel_dp: DP struct
  103. *
  104. * If a CPU or PCH DP output is attached to an eDP panel, this function
  105. * will return true, and false otherwise.
  106. */
  107. static bool is_edp(struct psb_intel_encoder *encoder)
  108. {
  109. return encoder->type == INTEL_OUTPUT_EDP;
  110. }
  111. static void cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder);
  112. static void cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder);
  113. static void cdv_intel_dp_link_down(struct psb_intel_encoder *encoder);
  114. static int
  115. cdv_intel_dp_max_lane_count(struct psb_intel_encoder *encoder)
  116. {
  117. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  118. int max_lane_count = 4;
  119. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  120. max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
  121. switch (max_lane_count) {
  122. case 1: case 2: case 4:
  123. break;
  124. default:
  125. max_lane_count = 4;
  126. }
  127. }
  128. return max_lane_count;
  129. }
  130. static int
  131. cdv_intel_dp_max_link_bw(struct psb_intel_encoder *encoder)
  132. {
  133. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  134. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  135. switch (max_link_bw) {
  136. case DP_LINK_BW_1_62:
  137. case DP_LINK_BW_2_7:
  138. break;
  139. default:
  140. max_link_bw = DP_LINK_BW_1_62;
  141. break;
  142. }
  143. return max_link_bw;
  144. }
  145. static int
  146. cdv_intel_dp_link_clock(uint8_t link_bw)
  147. {
  148. if (link_bw == DP_LINK_BW_2_7)
  149. return 270000;
  150. else
  151. return 162000;
  152. }
  153. static int
  154. cdv_intel_dp_link_required(int pixel_clock, int bpp)
  155. {
  156. return (pixel_clock * bpp + 7) / 8;
  157. }
  158. static int
  159. cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  160. {
  161. return (max_link_clock * max_lanes * 19) / 20;
  162. }
  163. static void cdv_intel_edp_panel_vdd_on(struct psb_intel_encoder *intel_encoder)
  164. {
  165. struct drm_device *dev = intel_encoder->base.dev;
  166. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  167. u32 pp;
  168. if (intel_dp->panel_on) {
  169. DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
  170. return;
  171. }
  172. DRM_DEBUG_KMS("\n");
  173. pp = REG_READ(PP_CONTROL);
  174. pp |= EDP_FORCE_VDD;
  175. REG_WRITE(PP_CONTROL, pp);
  176. REG_READ(PP_CONTROL);
  177. msleep(intel_dp->panel_power_up_delay);
  178. }
  179. static void cdv_intel_edp_panel_vdd_off(struct psb_intel_encoder *intel_encoder)
  180. {
  181. struct drm_device *dev = intel_encoder->base.dev;
  182. u32 pp;
  183. DRM_DEBUG_KMS("\n");
  184. pp = REG_READ(PP_CONTROL);
  185. pp &= ~EDP_FORCE_VDD;
  186. REG_WRITE(PP_CONTROL, pp);
  187. REG_READ(PP_CONTROL);
  188. }
  189. /* Returns true if the panel was already on when called */
  190. static bool cdv_intel_edp_panel_on(struct psb_intel_encoder *intel_encoder)
  191. {
  192. struct drm_device *dev = intel_encoder->base.dev;
  193. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  194. u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
  195. if (intel_dp->panel_on)
  196. return true;
  197. DRM_DEBUG_KMS("\n");
  198. pp = REG_READ(PP_CONTROL);
  199. pp &= ~PANEL_UNLOCK_MASK;
  200. pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
  201. REG_WRITE(PP_CONTROL, pp);
  202. REG_READ(PP_CONTROL);
  203. if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
  204. DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
  205. intel_dp->panel_on = false;
  206. } else
  207. intel_dp->panel_on = true;
  208. msleep(intel_dp->panel_power_up_delay);
  209. return false;
  210. }
  211. static void cdv_intel_edp_panel_off (struct psb_intel_encoder *intel_encoder)
  212. {
  213. struct drm_device *dev = intel_encoder->base.dev;
  214. u32 pp, idle_off_mask = PP_ON ;
  215. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  216. DRM_DEBUG_KMS("\n");
  217. pp = REG_READ(PP_CONTROL);
  218. if ((pp & POWER_TARGET_ON) == 0)
  219. return;
  220. intel_dp->panel_on = false;
  221. pp &= ~PANEL_UNLOCK_MASK;
  222. /* ILK workaround: disable reset around power sequence */
  223. pp &= ~POWER_TARGET_ON;
  224. pp &= ~EDP_FORCE_VDD;
  225. pp &= ~EDP_BLC_ENABLE;
  226. REG_WRITE(PP_CONTROL, pp);
  227. REG_READ(PP_CONTROL);
  228. DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
  229. if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
  230. DRM_DEBUG_KMS("Error in turning off Panel\n");
  231. }
  232. msleep(intel_dp->panel_power_cycle_delay);
  233. DRM_DEBUG_KMS("Over\n");
  234. }
  235. static void cdv_intel_edp_backlight_on (struct psb_intel_encoder *intel_encoder)
  236. {
  237. struct drm_device *dev = intel_encoder->base.dev;
  238. u32 pp;
  239. DRM_DEBUG_KMS("\n");
  240. /*
  241. * If we enable the backlight right away following a panel power
  242. * on, we may see slight flicker as the panel syncs with the eDP
  243. * link. So delay a bit to make sure the image is solid before
  244. * allowing it to appear.
  245. */
  246. msleep(300);
  247. pp = REG_READ(PP_CONTROL);
  248. pp |= EDP_BLC_ENABLE;
  249. REG_WRITE(PP_CONTROL, pp);
  250. gma_backlight_enable(dev);
  251. }
  252. static void cdv_intel_edp_backlight_off (struct psb_intel_encoder *intel_encoder)
  253. {
  254. struct drm_device *dev = intel_encoder->base.dev;
  255. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  256. u32 pp;
  257. DRM_DEBUG_KMS("\n");
  258. gma_backlight_disable(dev);
  259. msleep(10);
  260. pp = REG_READ(PP_CONTROL);
  261. pp &= ~EDP_BLC_ENABLE;
  262. REG_WRITE(PP_CONTROL, pp);
  263. msleep(intel_dp->backlight_off_delay);
  264. }
  265. static int
  266. cdv_intel_dp_mode_valid(struct drm_connector *connector,
  267. struct drm_display_mode *mode)
  268. {
  269. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  270. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  271. int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
  272. int max_lanes = cdv_intel_dp_max_lane_count(encoder);
  273. struct drm_psb_private *dev_priv = connector->dev->dev_private;
  274. if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
  275. if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
  276. return MODE_PANEL;
  277. if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
  278. return MODE_PANEL;
  279. }
  280. /* only refuse the mode on non eDP since we have seen some weird eDP panels
  281. which are outside spec tolerances but somehow work by magic */
  282. if (!is_edp(encoder) &&
  283. (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
  284. > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
  285. return MODE_CLOCK_HIGH;
  286. if (is_edp(encoder)) {
  287. if (cdv_intel_dp_link_required(mode->clock, 24)
  288. > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
  289. return MODE_CLOCK_HIGH;
  290. }
  291. if (mode->clock < 10000)
  292. return MODE_CLOCK_LOW;
  293. return MODE_OK;
  294. }
  295. static uint32_t
  296. pack_aux(uint8_t *src, int src_bytes)
  297. {
  298. int i;
  299. uint32_t v = 0;
  300. if (src_bytes > 4)
  301. src_bytes = 4;
  302. for (i = 0; i < src_bytes; i++)
  303. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  304. return v;
  305. }
  306. static void
  307. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  308. {
  309. int i;
  310. if (dst_bytes > 4)
  311. dst_bytes = 4;
  312. for (i = 0; i < dst_bytes; i++)
  313. dst[i] = src >> ((3-i) * 8);
  314. }
  315. static int
  316. cdv_intel_dp_aux_ch(struct psb_intel_encoder *encoder,
  317. uint8_t *send, int send_bytes,
  318. uint8_t *recv, int recv_size)
  319. {
  320. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  321. uint32_t output_reg = intel_dp->output_reg;
  322. struct drm_device *dev = encoder->base.dev;
  323. uint32_t ch_ctl = output_reg + 0x10;
  324. uint32_t ch_data = ch_ctl + 4;
  325. int i;
  326. int recv_bytes;
  327. uint32_t status;
  328. uint32_t aux_clock_divider;
  329. int try, precharge;
  330. /* The clock divider is based off the hrawclk,
  331. * and would like to run at 2MHz. So, take the
  332. * hrawclk value and divide by 2 and use that
  333. * On CDV platform it uses 200MHz as hrawclk.
  334. *
  335. */
  336. aux_clock_divider = 200 / 2;
  337. precharge = 4;
  338. if (is_edp(encoder))
  339. precharge = 10;
  340. if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
  341. DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
  342. REG_READ(ch_ctl));
  343. return -EBUSY;
  344. }
  345. /* Must try at least 3 times according to DP spec */
  346. for (try = 0; try < 5; try++) {
  347. /* Load the send data into the aux channel data registers */
  348. for (i = 0; i < send_bytes; i += 4)
  349. REG_WRITE(ch_data + i,
  350. pack_aux(send + i, send_bytes - i));
  351. /* Send the command and wait for it to complete */
  352. REG_WRITE(ch_ctl,
  353. DP_AUX_CH_CTL_SEND_BUSY |
  354. DP_AUX_CH_CTL_TIME_OUT_400us |
  355. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  356. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  357. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  358. DP_AUX_CH_CTL_DONE |
  359. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  360. DP_AUX_CH_CTL_RECEIVE_ERROR);
  361. for (;;) {
  362. status = REG_READ(ch_ctl);
  363. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  364. break;
  365. udelay(100);
  366. }
  367. /* Clear done status and any errors */
  368. REG_WRITE(ch_ctl,
  369. status |
  370. DP_AUX_CH_CTL_DONE |
  371. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  372. DP_AUX_CH_CTL_RECEIVE_ERROR);
  373. if (status & DP_AUX_CH_CTL_DONE)
  374. break;
  375. }
  376. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  377. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  378. return -EBUSY;
  379. }
  380. /* Check for timeout or receive error.
  381. * Timeouts occur when the sink is not connected
  382. */
  383. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  384. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  385. return -EIO;
  386. }
  387. /* Timeouts occur when the device isn't connected, so they're
  388. * "normal" -- don't fill the kernel log with these */
  389. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  390. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  391. return -ETIMEDOUT;
  392. }
  393. /* Unload any bytes sent back from the other side */
  394. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  395. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  396. if (recv_bytes > recv_size)
  397. recv_bytes = recv_size;
  398. for (i = 0; i < recv_bytes; i += 4)
  399. unpack_aux(REG_READ(ch_data + i),
  400. recv + i, recv_bytes - i);
  401. return recv_bytes;
  402. }
  403. /* Write data to the aux channel in native mode */
  404. static int
  405. cdv_intel_dp_aux_native_write(struct psb_intel_encoder *encoder,
  406. uint16_t address, uint8_t *send, int send_bytes)
  407. {
  408. int ret;
  409. uint8_t msg[20];
  410. int msg_bytes;
  411. uint8_t ack;
  412. if (send_bytes > 16)
  413. return -1;
  414. msg[0] = AUX_NATIVE_WRITE << 4;
  415. msg[1] = address >> 8;
  416. msg[2] = address & 0xff;
  417. msg[3] = send_bytes - 1;
  418. memcpy(&msg[4], send, send_bytes);
  419. msg_bytes = send_bytes + 4;
  420. for (;;) {
  421. ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
  422. if (ret < 0)
  423. return ret;
  424. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  425. break;
  426. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  427. udelay(100);
  428. else
  429. return -EIO;
  430. }
  431. return send_bytes;
  432. }
  433. /* Write a single byte to the aux channel in native mode */
  434. static int
  435. cdv_intel_dp_aux_native_write_1(struct psb_intel_encoder *encoder,
  436. uint16_t address, uint8_t byte)
  437. {
  438. return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
  439. }
  440. /* read bytes from a native aux channel */
  441. static int
  442. cdv_intel_dp_aux_native_read(struct psb_intel_encoder *encoder,
  443. uint16_t address, uint8_t *recv, int recv_bytes)
  444. {
  445. uint8_t msg[4];
  446. int msg_bytes;
  447. uint8_t reply[20];
  448. int reply_bytes;
  449. uint8_t ack;
  450. int ret;
  451. msg[0] = AUX_NATIVE_READ << 4;
  452. msg[1] = address >> 8;
  453. msg[2] = address & 0xff;
  454. msg[3] = recv_bytes - 1;
  455. msg_bytes = 4;
  456. reply_bytes = recv_bytes + 1;
  457. for (;;) {
  458. ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
  459. reply, reply_bytes);
  460. if (ret == 0)
  461. return -EPROTO;
  462. if (ret < 0)
  463. return ret;
  464. ack = reply[0];
  465. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  466. memcpy(recv, reply + 1, ret - 1);
  467. return ret - 1;
  468. }
  469. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  470. udelay(100);
  471. else
  472. return -EIO;
  473. }
  474. }
  475. static int
  476. cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  477. uint8_t write_byte, uint8_t *read_byte)
  478. {
  479. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  480. struct cdv_intel_dp *intel_dp = container_of(adapter,
  481. struct cdv_intel_dp,
  482. adapter);
  483. struct psb_intel_encoder *encoder = intel_dp->encoder;
  484. uint16_t address = algo_data->address;
  485. uint8_t msg[5];
  486. uint8_t reply[2];
  487. unsigned retry;
  488. int msg_bytes;
  489. int reply_bytes;
  490. int ret;
  491. /* Set up the command byte */
  492. if (mode & MODE_I2C_READ)
  493. msg[0] = AUX_I2C_READ << 4;
  494. else
  495. msg[0] = AUX_I2C_WRITE << 4;
  496. if (!(mode & MODE_I2C_STOP))
  497. msg[0] |= AUX_I2C_MOT << 4;
  498. msg[1] = address >> 8;
  499. msg[2] = address;
  500. switch (mode) {
  501. case MODE_I2C_WRITE:
  502. msg[3] = 0;
  503. msg[4] = write_byte;
  504. msg_bytes = 5;
  505. reply_bytes = 1;
  506. break;
  507. case MODE_I2C_READ:
  508. msg[3] = 0;
  509. msg_bytes = 4;
  510. reply_bytes = 2;
  511. break;
  512. default:
  513. msg_bytes = 3;
  514. reply_bytes = 1;
  515. break;
  516. }
  517. for (retry = 0; retry < 5; retry++) {
  518. ret = cdv_intel_dp_aux_ch(encoder,
  519. msg, msg_bytes,
  520. reply, reply_bytes);
  521. if (ret < 0) {
  522. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  523. return ret;
  524. }
  525. switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
  526. case AUX_NATIVE_REPLY_ACK:
  527. /* I2C-over-AUX Reply field is only valid
  528. * when paired with AUX ACK.
  529. */
  530. break;
  531. case AUX_NATIVE_REPLY_NACK:
  532. DRM_DEBUG_KMS("aux_ch native nack\n");
  533. return -EREMOTEIO;
  534. case AUX_NATIVE_REPLY_DEFER:
  535. udelay(100);
  536. continue;
  537. default:
  538. DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
  539. reply[0]);
  540. return -EREMOTEIO;
  541. }
  542. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  543. case AUX_I2C_REPLY_ACK:
  544. if (mode == MODE_I2C_READ) {
  545. *read_byte = reply[1];
  546. }
  547. return reply_bytes - 1;
  548. case AUX_I2C_REPLY_NACK:
  549. DRM_DEBUG_KMS("aux_i2c nack\n");
  550. return -EREMOTEIO;
  551. case AUX_I2C_REPLY_DEFER:
  552. DRM_DEBUG_KMS("aux_i2c defer\n");
  553. udelay(100);
  554. break;
  555. default:
  556. DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
  557. return -EREMOTEIO;
  558. }
  559. }
  560. DRM_ERROR("too many retries, giving up\n");
  561. return -EREMOTEIO;
  562. }
  563. static int
  564. cdv_intel_dp_i2c_init(struct psb_intel_connector *connector, struct psb_intel_encoder *encoder, const char *name)
  565. {
  566. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  567. int ret;
  568. DRM_DEBUG_KMS("i2c_init %s\n", name);
  569. intel_dp->algo.running = false;
  570. intel_dp->algo.address = 0;
  571. intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
  572. memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
  573. intel_dp->adapter.owner = THIS_MODULE;
  574. intel_dp->adapter.class = I2C_CLASS_DDC;
  575. strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
  576. intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
  577. intel_dp->adapter.algo_data = &intel_dp->algo;
  578. intel_dp->adapter.dev.parent = &connector->base.kdev;
  579. if (is_edp(encoder))
  580. cdv_intel_edp_panel_vdd_on(encoder);
  581. ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
  582. if (is_edp(encoder))
  583. cdv_intel_edp_panel_vdd_off(encoder);
  584. return ret;
  585. }
  586. void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
  587. struct drm_display_mode *adjusted_mode)
  588. {
  589. adjusted_mode->hdisplay = fixed_mode->hdisplay;
  590. adjusted_mode->hsync_start = fixed_mode->hsync_start;
  591. adjusted_mode->hsync_end = fixed_mode->hsync_end;
  592. adjusted_mode->htotal = fixed_mode->htotal;
  593. adjusted_mode->vdisplay = fixed_mode->vdisplay;
  594. adjusted_mode->vsync_start = fixed_mode->vsync_start;
  595. adjusted_mode->vsync_end = fixed_mode->vsync_end;
  596. adjusted_mode->vtotal = fixed_mode->vtotal;
  597. adjusted_mode->clock = fixed_mode->clock;
  598. drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
  599. }
  600. static bool
  601. cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
  602. struct drm_display_mode *adjusted_mode)
  603. {
  604. struct drm_psb_private *dev_priv = encoder->dev->dev_private;
  605. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  606. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  607. int lane_count, clock;
  608. int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
  609. int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  610. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  611. int refclock = mode->clock;
  612. int bpp = 24;
  613. if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
  614. cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
  615. refclock = intel_dp->panel_fixed_mode->clock;
  616. bpp = dev_priv->edp.bpp;
  617. }
  618. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  619. for (clock = max_clock; clock >= 0; clock--) {
  620. int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
  621. if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
  622. intel_dp->link_bw = bws[clock];
  623. intel_dp->lane_count = lane_count;
  624. adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
  625. DRM_DEBUG_KMS("Display port link bw %02x lane "
  626. "count %d clock %d\n",
  627. intel_dp->link_bw, intel_dp->lane_count,
  628. adjusted_mode->clock);
  629. return true;
  630. }
  631. }
  632. }
  633. if (is_edp(intel_encoder)) {
  634. /* okay we failed just pick the highest */
  635. intel_dp->lane_count = max_lane_count;
  636. intel_dp->link_bw = bws[max_clock];
  637. adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
  638. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  639. "count %d clock %d\n",
  640. intel_dp->link_bw, intel_dp->lane_count,
  641. adjusted_mode->clock);
  642. return true;
  643. }
  644. return false;
  645. }
  646. struct cdv_intel_dp_m_n {
  647. uint32_t tu;
  648. uint32_t gmch_m;
  649. uint32_t gmch_n;
  650. uint32_t link_m;
  651. uint32_t link_n;
  652. };
  653. static void
  654. cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
  655. {
  656. /*
  657. while (*num > 0xffffff || *den > 0xffffff) {
  658. *num >>= 1;
  659. *den >>= 1;
  660. }*/
  661. uint64_t value, m;
  662. m = *num;
  663. value = m * (0x800000);
  664. m = do_div(value, *den);
  665. *num = value;
  666. *den = 0x800000;
  667. }
  668. static void
  669. cdv_intel_dp_compute_m_n(int bpp,
  670. int nlanes,
  671. int pixel_clock,
  672. int link_clock,
  673. struct cdv_intel_dp_m_n *m_n)
  674. {
  675. m_n->tu = 64;
  676. m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
  677. m_n->gmch_n = link_clock * nlanes;
  678. cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  679. m_n->link_m = pixel_clock;
  680. m_n->link_n = link_clock;
  681. cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  682. }
  683. void
  684. cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  685. struct drm_display_mode *adjusted_mode)
  686. {
  687. struct drm_device *dev = crtc->dev;
  688. struct drm_psb_private *dev_priv = dev->dev_private;
  689. struct drm_mode_config *mode_config = &dev->mode_config;
  690. struct drm_encoder *encoder;
  691. struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
  692. int lane_count = 4, bpp = 24;
  693. struct cdv_intel_dp_m_n m_n;
  694. int pipe = intel_crtc->pipe;
  695. /*
  696. * Find the lane count in the intel_encoder private
  697. */
  698. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  699. struct psb_intel_encoder *intel_encoder;
  700. struct cdv_intel_dp *intel_dp;
  701. if (encoder->crtc != crtc)
  702. continue;
  703. intel_encoder = to_psb_intel_encoder(encoder);
  704. intel_dp = intel_encoder->dev_priv;
  705. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  706. lane_count = intel_dp->lane_count;
  707. break;
  708. } else if (is_edp(intel_encoder)) {
  709. lane_count = intel_dp->lane_count;
  710. bpp = dev_priv->edp.bpp;
  711. break;
  712. }
  713. }
  714. /*
  715. * Compute the GMCH and Link ratios. The '3' here is
  716. * the number of bytes_per_pixel post-LUT, which we always
  717. * set up for 8-bits of R/G/B, or 3 bytes total.
  718. */
  719. cdv_intel_dp_compute_m_n(bpp, lane_count,
  720. mode->clock, adjusted_mode->clock, &m_n);
  721. {
  722. REG_WRITE(PIPE_GMCH_DATA_M(pipe),
  723. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  724. m_n.gmch_m);
  725. REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
  726. REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
  727. REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
  728. }
  729. }
  730. static void
  731. cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  732. struct drm_display_mode *adjusted_mode)
  733. {
  734. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  735. struct drm_crtc *crtc = encoder->crtc;
  736. struct psb_intel_crtc *intel_crtc = to_psb_intel_crtc(crtc);
  737. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  738. struct drm_device *dev = encoder->dev;
  739. intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  740. intel_dp->DP |= intel_dp->color_range;
  741. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  742. intel_dp->DP |= DP_SYNC_HS_HIGH;
  743. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  744. intel_dp->DP |= DP_SYNC_VS_HIGH;
  745. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  746. switch (intel_dp->lane_count) {
  747. case 1:
  748. intel_dp->DP |= DP_PORT_WIDTH_1;
  749. break;
  750. case 2:
  751. intel_dp->DP |= DP_PORT_WIDTH_2;
  752. break;
  753. case 4:
  754. intel_dp->DP |= DP_PORT_WIDTH_4;
  755. break;
  756. }
  757. if (intel_dp->has_audio)
  758. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  759. memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  760. intel_dp->link_configuration[0] = intel_dp->link_bw;
  761. intel_dp->link_configuration[1] = intel_dp->lane_count;
  762. /*
  763. * Check for DPCD version > 1.1 and enhanced framing support
  764. */
  765. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  766. (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
  767. intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  768. intel_dp->DP |= DP_ENHANCED_FRAMING;
  769. }
  770. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  771. if (intel_crtc->pipe == 1)
  772. intel_dp->DP |= DP_PIPEB_SELECT;
  773. REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
  774. DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
  775. if (is_edp(intel_encoder)) {
  776. uint32_t pfit_control;
  777. cdv_intel_edp_panel_on(intel_encoder);
  778. if (mode->hdisplay != adjusted_mode->hdisplay ||
  779. mode->vdisplay != adjusted_mode->vdisplay)
  780. pfit_control = PFIT_ENABLE;
  781. else
  782. pfit_control = 0;
  783. pfit_control |= intel_crtc->pipe << PFIT_PIPE_SHIFT;
  784. REG_WRITE(PFIT_CONTROL, pfit_control);
  785. }
  786. }
  787. /* If the sink supports it, try to set the power state appropriately */
  788. static void cdv_intel_dp_sink_dpms(struct psb_intel_encoder *encoder, int mode)
  789. {
  790. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  791. int ret, i;
  792. /* Should have a valid DPCD by this point */
  793. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  794. return;
  795. if (mode != DRM_MODE_DPMS_ON) {
  796. ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
  797. DP_SET_POWER_D3);
  798. if (ret != 1)
  799. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  800. } else {
  801. /*
  802. * When turning on, we need to retry for 1ms to give the sink
  803. * time to wake up.
  804. */
  805. for (i = 0; i < 3; i++) {
  806. ret = cdv_intel_dp_aux_native_write_1(encoder,
  807. DP_SET_POWER,
  808. DP_SET_POWER_D0);
  809. if (ret == 1)
  810. break;
  811. udelay(1000);
  812. }
  813. }
  814. }
  815. static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
  816. {
  817. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  818. int edp = is_edp(intel_encoder);
  819. if (edp) {
  820. cdv_intel_edp_backlight_off(intel_encoder);
  821. cdv_intel_edp_panel_off(intel_encoder);
  822. cdv_intel_edp_panel_vdd_on(intel_encoder);
  823. }
  824. /* Wake up the sink first */
  825. cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
  826. cdv_intel_dp_link_down(intel_encoder);
  827. if (edp)
  828. cdv_intel_edp_panel_vdd_off(intel_encoder);
  829. }
  830. static void cdv_intel_dp_commit(struct drm_encoder *encoder)
  831. {
  832. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  833. int edp = is_edp(intel_encoder);
  834. if (edp)
  835. cdv_intel_edp_panel_on(intel_encoder);
  836. cdv_intel_dp_start_link_train(intel_encoder);
  837. cdv_intel_dp_complete_link_train(intel_encoder);
  838. if (edp)
  839. cdv_intel_edp_backlight_on(intel_encoder);
  840. }
  841. static void
  842. cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
  843. {
  844. struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
  845. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  846. struct drm_device *dev = encoder->dev;
  847. uint32_t dp_reg = REG_READ(intel_dp->output_reg);
  848. int edp = is_edp(intel_encoder);
  849. if (mode != DRM_MODE_DPMS_ON) {
  850. if (edp) {
  851. cdv_intel_edp_backlight_off(intel_encoder);
  852. cdv_intel_edp_panel_vdd_on(intel_encoder);
  853. }
  854. cdv_intel_dp_sink_dpms(intel_encoder, mode);
  855. cdv_intel_dp_link_down(intel_encoder);
  856. if (edp) {
  857. cdv_intel_edp_panel_vdd_off(intel_encoder);
  858. cdv_intel_edp_panel_off(intel_encoder);
  859. }
  860. } else {
  861. if (edp)
  862. cdv_intel_edp_panel_on(intel_encoder);
  863. cdv_intel_dp_sink_dpms(intel_encoder, mode);
  864. if (!(dp_reg & DP_PORT_EN)) {
  865. cdv_intel_dp_start_link_train(intel_encoder);
  866. cdv_intel_dp_complete_link_train(intel_encoder);
  867. }
  868. if (edp)
  869. cdv_intel_edp_backlight_on(intel_encoder);
  870. }
  871. }
  872. /*
  873. * Native read with retry for link status and receiver capability reads for
  874. * cases where the sink may still be asleep.
  875. */
  876. static bool
  877. cdv_intel_dp_aux_native_read_retry(struct psb_intel_encoder *encoder, uint16_t address,
  878. uint8_t *recv, int recv_bytes)
  879. {
  880. int ret, i;
  881. /*
  882. * Sinks are *supposed* to come up within 1ms from an off state,
  883. * but we're also supposed to retry 3 times per the spec.
  884. */
  885. for (i = 0; i < 3; i++) {
  886. ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
  887. recv_bytes);
  888. if (ret == recv_bytes)
  889. return true;
  890. udelay(1000);
  891. }
  892. return false;
  893. }
  894. /*
  895. * Fetch AUX CH registers 0x202 - 0x207 which contain
  896. * link status information
  897. */
  898. static bool
  899. cdv_intel_dp_get_link_status(struct psb_intel_encoder *encoder)
  900. {
  901. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  902. return cdv_intel_dp_aux_native_read_retry(encoder,
  903. DP_LANE0_1_STATUS,
  904. intel_dp->link_status,
  905. DP_LINK_STATUS_SIZE);
  906. }
  907. static uint8_t
  908. cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  909. int r)
  910. {
  911. return link_status[r - DP_LANE0_1_STATUS];
  912. }
  913. static uint8_t
  914. cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  915. int lane)
  916. {
  917. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  918. int s = ((lane & 1) ?
  919. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  920. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  921. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  922. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  923. }
  924. static uint8_t
  925. cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  926. int lane)
  927. {
  928. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  929. int s = ((lane & 1) ?
  930. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  931. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  932. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  933. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  934. }
  935. #if 0
  936. static char *voltage_names[] = {
  937. "0.4V", "0.6V", "0.8V", "1.2V"
  938. };
  939. static char *pre_emph_names[] = {
  940. "0dB", "3.5dB", "6dB", "9.5dB"
  941. };
  942. static char *link_train_names[] = {
  943. "pattern 1", "pattern 2", "idle", "off"
  944. };
  945. #endif
  946. #define CDV_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_1200
  947. /*
  948. static uint8_t
  949. cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  950. {
  951. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  952. case DP_TRAIN_VOLTAGE_SWING_400:
  953. return DP_TRAIN_PRE_EMPHASIS_6;
  954. case DP_TRAIN_VOLTAGE_SWING_600:
  955. return DP_TRAIN_PRE_EMPHASIS_6;
  956. case DP_TRAIN_VOLTAGE_SWING_800:
  957. return DP_TRAIN_PRE_EMPHASIS_3_5;
  958. case DP_TRAIN_VOLTAGE_SWING_1200:
  959. default:
  960. return DP_TRAIN_PRE_EMPHASIS_0;
  961. }
  962. }
  963. */
  964. static void
  965. cdv_intel_get_adjust_train(struct psb_intel_encoder *encoder)
  966. {
  967. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  968. uint8_t v = 0;
  969. uint8_t p = 0;
  970. int lane;
  971. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  972. uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
  973. uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
  974. if (this_v > v)
  975. v = this_v;
  976. if (this_p > p)
  977. p = this_p;
  978. }
  979. if (v >= CDV_DP_VOLTAGE_MAX)
  980. v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  981. if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
  982. p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  983. for (lane = 0; lane < 4; lane++)
  984. intel_dp->train_set[lane] = v | p;
  985. }
  986. static uint8_t
  987. cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  988. int lane)
  989. {
  990. int i = DP_LANE0_1_STATUS + (lane >> 1);
  991. int s = (lane & 1) * 4;
  992. uint8_t l = cdv_intel_dp_link_status(link_status, i);
  993. return (l >> s) & 0xf;
  994. }
  995. /* Check for clock recovery is done on all channels */
  996. static bool
  997. cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  998. {
  999. int lane;
  1000. uint8_t lane_status;
  1001. for (lane = 0; lane < lane_count; lane++) {
  1002. lane_status = cdv_intel_get_lane_status(link_status, lane);
  1003. if ((lane_status & DP_LANE_CR_DONE) == 0)
  1004. return false;
  1005. }
  1006. return true;
  1007. }
  1008. /* Check to see if channel eq is done on all channels */
  1009. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  1010. DP_LANE_CHANNEL_EQ_DONE|\
  1011. DP_LANE_SYMBOL_LOCKED)
  1012. static bool
  1013. cdv_intel_channel_eq_ok(struct psb_intel_encoder *encoder)
  1014. {
  1015. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1016. uint8_t lane_align;
  1017. uint8_t lane_status;
  1018. int lane;
  1019. lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
  1020. DP_LANE_ALIGN_STATUS_UPDATED);
  1021. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  1022. return false;
  1023. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1024. lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
  1025. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  1026. return false;
  1027. }
  1028. return true;
  1029. }
  1030. static bool
  1031. cdv_intel_dp_set_link_train(struct psb_intel_encoder *encoder,
  1032. uint32_t dp_reg_value,
  1033. uint8_t dp_train_pat)
  1034. {
  1035. struct drm_device *dev = encoder->base.dev;
  1036. int ret;
  1037. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1038. REG_WRITE(intel_dp->output_reg, dp_reg_value);
  1039. REG_READ(intel_dp->output_reg);
  1040. ret = cdv_intel_dp_aux_native_write_1(encoder,
  1041. DP_TRAINING_PATTERN_SET,
  1042. dp_train_pat);
  1043. if (ret != 1) {
  1044. DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
  1045. dp_train_pat);
  1046. return false;
  1047. }
  1048. return true;
  1049. }
  1050. static bool
  1051. cdv_intel_dplink_set_level(struct psb_intel_encoder *encoder,
  1052. uint8_t dp_train_pat)
  1053. {
  1054. int ret;
  1055. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1056. ret = cdv_intel_dp_aux_native_write(encoder,
  1057. DP_TRAINING_LANE0_SET,
  1058. intel_dp->train_set,
  1059. intel_dp->lane_count);
  1060. if (ret != intel_dp->lane_count) {
  1061. DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
  1062. intel_dp->train_set[0], intel_dp->lane_count);
  1063. return false;
  1064. }
  1065. return true;
  1066. }
  1067. static void
  1068. cdv_intel_dp_set_vswing_premph(struct psb_intel_encoder *encoder, uint8_t signal_level)
  1069. {
  1070. struct drm_device *dev = encoder->base.dev;
  1071. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1072. struct ddi_regoff *ddi_reg;
  1073. int vswing, premph, index;
  1074. if (intel_dp->output_reg == DP_B)
  1075. ddi_reg = &ddi_DP_train_table[0];
  1076. else
  1077. ddi_reg = &ddi_DP_train_table[1];
  1078. vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
  1079. premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
  1080. DP_TRAIN_PRE_EMPHASIS_SHIFT;
  1081. if (vswing + premph > 3)
  1082. return;
  1083. #ifdef CDV_FAST_LINK_TRAIN
  1084. return;
  1085. #endif
  1086. DRM_DEBUG_KMS("Test2\n");
  1087. //return ;
  1088. cdv_sb_reset(dev);
  1089. /* ;Swing voltage programming
  1090. ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
  1091. cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
  1092. /* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
  1093. cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
  1094. /* ;gfx_dpio_set_reg(0x8148, 0x55338954)
  1095. * The VSwing_PreEmph table is also considered based on the vswing/premp
  1096. */
  1097. index = (vswing + premph) * 2;
  1098. if (premph == 1 && vswing == 1) {
  1099. cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
  1100. } else
  1101. cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
  1102. /* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
  1103. if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_1200)
  1104. cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
  1105. else
  1106. cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
  1107. /* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
  1108. /* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
  1109. /* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
  1110. cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
  1111. /* ;Pre emphasis programming
  1112. * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
  1113. */
  1114. cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
  1115. /* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
  1116. index = 2 * premph + 1;
  1117. cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
  1118. return;
  1119. }
  1120. /* Enable corresponding port and start training pattern 1 */
  1121. static void
  1122. cdv_intel_dp_start_link_train(struct psb_intel_encoder *encoder)
  1123. {
  1124. struct drm_device *dev = encoder->base.dev;
  1125. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1126. int i;
  1127. uint8_t voltage;
  1128. bool clock_recovery = false;
  1129. int tries;
  1130. u32 reg;
  1131. uint32_t DP = intel_dp->DP;
  1132. DP |= DP_PORT_EN;
  1133. DP &= ~DP_LINK_TRAIN_MASK;
  1134. reg = DP;
  1135. reg |= DP_LINK_TRAIN_PAT_1;
  1136. /* Enable output, wait for it to become active */
  1137. REG_WRITE(intel_dp->output_reg, reg);
  1138. REG_READ(intel_dp->output_reg);
  1139. psb_intel_wait_for_vblank(dev);
  1140. DRM_DEBUG_KMS("Link config\n");
  1141. /* Write the link configuration data */
  1142. cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
  1143. intel_dp->link_configuration,
  1144. 2);
  1145. memset(intel_dp->train_set, 0, 4);
  1146. voltage = 0;
  1147. tries = 0;
  1148. clock_recovery = false;
  1149. DRM_DEBUG_KMS("Start train\n");
  1150. reg = DP | DP_LINK_TRAIN_PAT_1;
  1151. for (;;) {
  1152. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1153. DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
  1154. intel_dp->train_set[0],
  1155. intel_dp->link_configuration[0],
  1156. intel_dp->link_configuration[1]);
  1157. if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
  1158. DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
  1159. }
  1160. cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
  1161. /* Set training pattern 1 */
  1162. cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
  1163. udelay(200);
  1164. if (!cdv_intel_dp_get_link_status(encoder))
  1165. break;
  1166. DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
  1167. intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
  1168. intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
  1169. if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1170. DRM_DEBUG_KMS("PT1 train is done\n");
  1171. clock_recovery = true;
  1172. break;
  1173. }
  1174. /* Check to see if we've tried the max voltage */
  1175. for (i = 0; i < intel_dp->lane_count; i++)
  1176. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1177. break;
  1178. if (i == intel_dp->lane_count)
  1179. break;
  1180. /* Check to see if we've tried the same voltage 5 times */
  1181. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1182. ++tries;
  1183. if (tries == 5)
  1184. break;
  1185. } else
  1186. tries = 0;
  1187. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1188. /* Compute new intel_dp->train_set as requested by target */
  1189. cdv_intel_get_adjust_train(encoder);
  1190. }
  1191. if (!clock_recovery) {
  1192. DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
  1193. }
  1194. intel_dp->DP = DP;
  1195. }
  1196. static void
  1197. cdv_intel_dp_complete_link_train(struct psb_intel_encoder *encoder)
  1198. {
  1199. struct drm_device *dev = encoder->base.dev;
  1200. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1201. bool channel_eq = false;
  1202. int tries, cr_tries;
  1203. u32 reg;
  1204. uint32_t DP = intel_dp->DP;
  1205. /* channel equalization */
  1206. tries = 0;
  1207. cr_tries = 0;
  1208. channel_eq = false;
  1209. DRM_DEBUG_KMS("\n");
  1210. reg = DP | DP_LINK_TRAIN_PAT_2;
  1211. for (;;) {
  1212. DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
  1213. intel_dp->train_set[0],
  1214. intel_dp->link_configuration[0],
  1215. intel_dp->link_configuration[1]);
  1216. /* channel eq pattern */
  1217. if (!cdv_intel_dp_set_link_train(encoder, reg,
  1218. DP_TRAINING_PATTERN_2)) {
  1219. DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
  1220. }
  1221. /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
  1222. if (cr_tries > 5) {
  1223. DRM_ERROR("failed to train DP, aborting\n");
  1224. cdv_intel_dp_link_down(encoder);
  1225. break;
  1226. }
  1227. cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
  1228. cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
  1229. udelay(1000);
  1230. if (!cdv_intel_dp_get_link_status(encoder))
  1231. break;
  1232. DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
  1233. intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
  1234. intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
  1235. /* Make sure clock is still ok */
  1236. if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
  1237. cdv_intel_dp_start_link_train(encoder);
  1238. cr_tries++;
  1239. continue;
  1240. }
  1241. if (cdv_intel_channel_eq_ok(encoder)) {
  1242. DRM_DEBUG_KMS("PT2 train is done\n");
  1243. channel_eq = true;
  1244. break;
  1245. }
  1246. /* Try 5 times, then try clock recovery if that fails */
  1247. if (tries > 5) {
  1248. cdv_intel_dp_link_down(encoder);
  1249. cdv_intel_dp_start_link_train(encoder);
  1250. tries = 0;
  1251. cr_tries++;
  1252. continue;
  1253. }
  1254. /* Compute new intel_dp->train_set as requested by target */
  1255. cdv_intel_get_adjust_train(encoder);
  1256. ++tries;
  1257. }
  1258. reg = DP | DP_LINK_TRAIN_OFF;
  1259. REG_WRITE(intel_dp->output_reg, reg);
  1260. REG_READ(intel_dp->output_reg);
  1261. cdv_intel_dp_aux_native_write_1(encoder,
  1262. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1263. }
  1264. static void
  1265. cdv_intel_dp_link_down(struct psb_intel_encoder *encoder)
  1266. {
  1267. struct drm_device *dev = encoder->base.dev;
  1268. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1269. uint32_t DP = intel_dp->DP;
  1270. if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
  1271. return;
  1272. DRM_DEBUG_KMS("\n");
  1273. {
  1274. DP &= ~DP_LINK_TRAIN_MASK;
  1275. REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1276. }
  1277. REG_READ(intel_dp->output_reg);
  1278. msleep(17);
  1279. REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  1280. REG_READ(intel_dp->output_reg);
  1281. }
  1282. static enum drm_connector_status
  1283. cdv_dp_detect(struct psb_intel_encoder *encoder)
  1284. {
  1285. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1286. enum drm_connector_status status;
  1287. status = connector_status_disconnected;
  1288. if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
  1289. sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
  1290. {
  1291. if (intel_dp->dpcd[DP_DPCD_REV] != 0)
  1292. status = connector_status_connected;
  1293. }
  1294. if (status == connector_status_connected)
  1295. DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
  1296. intel_dp->dpcd[0], intel_dp->dpcd[1],
  1297. intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1298. return status;
  1299. }
  1300. /**
  1301. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1302. *
  1303. * \return true if DP port is connected.
  1304. * \return false if DP port is disconnected.
  1305. */
  1306. static enum drm_connector_status
  1307. cdv_intel_dp_detect(struct drm_connector *connector, bool force)
  1308. {
  1309. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1310. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1311. enum drm_connector_status status;
  1312. struct edid *edid = NULL;
  1313. int edp = is_edp(encoder);
  1314. intel_dp->has_audio = false;
  1315. if (edp)
  1316. cdv_intel_edp_panel_vdd_on(encoder);
  1317. status = cdv_dp_detect(encoder);
  1318. if (status != connector_status_connected) {
  1319. if (edp)
  1320. cdv_intel_edp_panel_vdd_off(encoder);
  1321. return status;
  1322. }
  1323. if (intel_dp->force_audio) {
  1324. intel_dp->has_audio = intel_dp->force_audio > 0;
  1325. } else {
  1326. edid = drm_get_edid(connector, &intel_dp->adapter);
  1327. if (edid) {
  1328. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  1329. kfree(edid);
  1330. }
  1331. }
  1332. if (edp)
  1333. cdv_intel_edp_panel_vdd_off(encoder);
  1334. return connector_status_connected;
  1335. }
  1336. static int cdv_intel_dp_get_modes(struct drm_connector *connector)
  1337. {
  1338. struct psb_intel_encoder *intel_encoder = psb_intel_attached_encoder(connector);
  1339. struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
  1340. struct edid *edid = NULL;
  1341. int ret = 0;
  1342. int edp = is_edp(intel_encoder);
  1343. edid = drm_get_edid(connector, &intel_dp->adapter);
  1344. if (edid) {
  1345. drm_mode_connector_update_edid_property(connector, edid);
  1346. ret = drm_add_edid_modes(connector, edid);
  1347. kfree(edid);
  1348. }
  1349. if (is_edp(intel_encoder)) {
  1350. struct drm_device *dev = connector->dev;
  1351. struct drm_psb_private *dev_priv = dev->dev_private;
  1352. cdv_intel_edp_panel_vdd_off(intel_encoder);
  1353. if (ret) {
  1354. if (edp && !intel_dp->panel_fixed_mode) {
  1355. struct drm_display_mode *newmode;
  1356. list_for_each_entry(newmode, &connector->probed_modes,
  1357. head) {
  1358. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1359. intel_dp->panel_fixed_mode =
  1360. drm_mode_duplicate(dev, newmode);
  1361. break;
  1362. }
  1363. }
  1364. }
  1365. return ret;
  1366. }
  1367. if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
  1368. intel_dp->panel_fixed_mode =
  1369. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1370. if (intel_dp->panel_fixed_mode) {
  1371. intel_dp->panel_fixed_mode->type |=
  1372. DRM_MODE_TYPE_PREFERRED;
  1373. }
  1374. }
  1375. if (intel_dp->panel_fixed_mode != NULL) {
  1376. struct drm_display_mode *mode;
  1377. mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
  1378. drm_mode_probed_add(connector, mode);
  1379. return 1;
  1380. }
  1381. }
  1382. return ret;
  1383. }
  1384. static bool
  1385. cdv_intel_dp_detect_audio(struct drm_connector *connector)
  1386. {
  1387. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1388. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1389. struct edid *edid;
  1390. bool has_audio = false;
  1391. int edp = is_edp(encoder);
  1392. if (edp)
  1393. cdv_intel_edp_panel_vdd_on(encoder);
  1394. edid = drm_get_edid(connector, &intel_dp->adapter);
  1395. if (edid) {
  1396. has_audio = drm_detect_monitor_audio(edid);
  1397. kfree(edid);
  1398. }
  1399. if (edp)
  1400. cdv_intel_edp_panel_vdd_off(encoder);
  1401. return has_audio;
  1402. }
  1403. static int
  1404. cdv_intel_dp_set_property(struct drm_connector *connector,
  1405. struct drm_property *property,
  1406. uint64_t val)
  1407. {
  1408. struct drm_psb_private *dev_priv = connector->dev->dev_private;
  1409. struct psb_intel_encoder *encoder = psb_intel_attached_encoder(connector);
  1410. struct cdv_intel_dp *intel_dp = encoder->dev_priv;
  1411. int ret;
  1412. ret = drm_object_property_set_value(&connector->base, property, val);
  1413. if (ret)
  1414. return ret;
  1415. if (property == dev_priv->force_audio_property) {
  1416. int i = val;
  1417. bool has_audio;
  1418. if (i == intel_dp->force_audio)
  1419. return 0;
  1420. intel_dp->force_audio = i;
  1421. if (i == 0)
  1422. has_audio = cdv_intel_dp_detect_audio(connector);
  1423. else
  1424. has_audio = i > 0;
  1425. if (has_audio == intel_dp->has_audio)
  1426. return 0;
  1427. intel_dp->has_audio = has_audio;
  1428. goto done;
  1429. }
  1430. if (property == dev_priv->broadcast_rgb_property) {
  1431. if (val == !!intel_dp->color_range)
  1432. return 0;
  1433. intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
  1434. goto done;
  1435. }
  1436. return -EINVAL;
  1437. done:
  1438. if (encoder->base.crtc) {
  1439. struct drm_crtc *crtc = encoder->base.crtc;
  1440. drm_crtc_helper_set_mode(crtc, &crtc->mode,
  1441. crtc->x, crtc->y,
  1442. crtc->fb);
  1443. }
  1444. return 0;
  1445. }
  1446. static void
  1447. cdv_intel_dp_destroy(struct drm_connector *connector)
  1448. {
  1449. struct psb_intel_encoder *psb_intel_encoder =
  1450. psb_intel_attached_encoder(connector);
  1451. struct cdv_intel_dp *intel_dp = psb_intel_encoder->dev_priv;
  1452. if (is_edp(psb_intel_encoder)) {
  1453. /* cdv_intel_panel_destroy_backlight(connector->dev); */
  1454. if (intel_dp->panel_fixed_mode) {
  1455. kfree(intel_dp->panel_fixed_mode);
  1456. intel_dp->panel_fixed_mode = NULL;
  1457. }
  1458. }
  1459. i2c_del_adapter(&intel_dp->adapter);
  1460. drm_sysfs_connector_remove(connector);
  1461. drm_connector_cleanup(connector);
  1462. kfree(connector);
  1463. }
  1464. static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
  1465. {
  1466. drm_encoder_cleanup(encoder);
  1467. }
  1468. static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
  1469. .dpms = cdv_intel_dp_dpms,
  1470. .mode_fixup = cdv_intel_dp_mode_fixup,
  1471. .prepare = cdv_intel_dp_prepare,
  1472. .mode_set = cdv_intel_dp_mode_set,
  1473. .commit = cdv_intel_dp_commit,
  1474. };
  1475. static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
  1476. .dpms = drm_helper_connector_dpms,
  1477. .detect = cdv_intel_dp_detect,
  1478. .fill_modes = drm_helper_probe_single_connector_modes,
  1479. .set_property = cdv_intel_dp_set_property,
  1480. .destroy = cdv_intel_dp_destroy,
  1481. };
  1482. static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
  1483. .get_modes = cdv_intel_dp_get_modes,
  1484. .mode_valid = cdv_intel_dp_mode_valid,
  1485. .best_encoder = psb_intel_best_encoder,
  1486. };
  1487. static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
  1488. .destroy = cdv_intel_dp_encoder_destroy,
  1489. };
  1490. static void cdv_intel_dp_add_properties(struct drm_connector *connector)
  1491. {
  1492. cdv_intel_attach_force_audio_property(connector);
  1493. cdv_intel_attach_broadcast_rgb_property(connector);
  1494. }
  1495. /* check the VBT to see whether the eDP is on DP-D port */
  1496. static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
  1497. {
  1498. struct drm_psb_private *dev_priv = dev->dev_private;
  1499. struct child_device_config *p_child;
  1500. int i;
  1501. if (!dev_priv->child_dev_num)
  1502. return false;
  1503. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1504. p_child = dev_priv->child_dev + i;
  1505. if (p_child->dvo_port == PORT_IDPC &&
  1506. p_child->device_type == DEVICE_TYPE_eDP)
  1507. return true;
  1508. }
  1509. return false;
  1510. }
  1511. /* Cedarview display clock gating
  1512. We need this disable dot get correct behaviour while enabling
  1513. DP/eDP. TODO - investigate if we can turn it back to normality
  1514. after enabling */
  1515. static void cdv_disable_intel_clock_gating(struct drm_device *dev)
  1516. {
  1517. u32 reg_value;
  1518. reg_value = REG_READ(DSPCLK_GATE_D);
  1519. reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
  1520. DPUNIT_PIPEA_GATE_DISABLE |
  1521. DPCUNIT_CLOCK_GATE_DISABLE |
  1522. DPLSUNIT_CLOCK_GATE_DISABLE |
  1523. DPOUNIT_CLOCK_GATE_DISABLE |
  1524. DPIOUNIT_CLOCK_GATE_DISABLE);
  1525. REG_WRITE(DSPCLK_GATE_D, reg_value);
  1526. udelay(500);
  1527. }
  1528. void
  1529. cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
  1530. {
  1531. struct psb_intel_encoder *psb_intel_encoder;
  1532. struct psb_intel_connector *psb_intel_connector;
  1533. struct drm_connector *connector;
  1534. struct drm_encoder *encoder;
  1535. struct cdv_intel_dp *intel_dp;
  1536. const char *name = NULL;
  1537. int type = DRM_MODE_CONNECTOR_DisplayPort;
  1538. psb_intel_encoder = kzalloc(sizeof(struct psb_intel_encoder), GFP_KERNEL);
  1539. if (!psb_intel_encoder)
  1540. return;
  1541. psb_intel_connector = kzalloc(sizeof(struct psb_intel_connector), GFP_KERNEL);
  1542. if (!psb_intel_connector)
  1543. goto err_connector;
  1544. intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
  1545. if (!intel_dp)
  1546. goto err_priv;
  1547. if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
  1548. type = DRM_MODE_CONNECTOR_eDP;
  1549. connector = &psb_intel_connector->base;
  1550. encoder = &psb_intel_encoder->base;
  1551. drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
  1552. drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
  1553. psb_intel_connector_attach_encoder(psb_intel_connector, psb_intel_encoder);
  1554. if (type == DRM_MODE_CONNECTOR_DisplayPort)
  1555. psb_intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1556. else
  1557. psb_intel_encoder->type = INTEL_OUTPUT_EDP;
  1558. psb_intel_encoder->dev_priv=intel_dp;
  1559. intel_dp->encoder = psb_intel_encoder;
  1560. intel_dp->output_reg = output_reg;
  1561. drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
  1562. drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
  1563. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1564. connector->interlace_allowed = false;
  1565. connector->doublescan_allowed = false;
  1566. drm_sysfs_connector_add(connector);
  1567. /* Set up the DDC bus. */
  1568. switch (output_reg) {
  1569. case DP_B:
  1570. name = "DPDDC-B";
  1571. psb_intel_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
  1572. break;
  1573. case DP_C:
  1574. name = "DPDDC-C";
  1575. psb_intel_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
  1576. break;
  1577. }
  1578. cdv_disable_intel_clock_gating(dev);
  1579. cdv_intel_dp_i2c_init(psb_intel_connector, psb_intel_encoder, name);
  1580. /* FIXME:fail check */
  1581. cdv_intel_dp_add_properties(connector);
  1582. if (is_edp(psb_intel_encoder)) {
  1583. int ret;
  1584. struct edp_power_seq cur;
  1585. u32 pp_on, pp_off, pp_div;
  1586. u32 pwm_ctrl;
  1587. pp_on = REG_READ(PP_CONTROL);
  1588. pp_on &= ~PANEL_UNLOCK_MASK;
  1589. pp_on |= PANEL_UNLOCK_REGS;
  1590. REG_WRITE(PP_CONTROL, pp_on);
  1591. pwm_ctrl = REG_READ(BLC_PWM_CTL2);
  1592. pwm_ctrl |= PWM_PIPE_B;
  1593. REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
  1594. pp_on = REG_READ(PP_ON_DELAYS);
  1595. pp_off = REG_READ(PP_OFF_DELAYS);
  1596. pp_div = REG_READ(PP_DIVISOR);
  1597. /* Pull timing values out of registers */
  1598. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  1599. PANEL_POWER_UP_DELAY_SHIFT;
  1600. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  1601. PANEL_LIGHT_ON_DELAY_SHIFT;
  1602. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  1603. PANEL_LIGHT_OFF_DELAY_SHIFT;
  1604. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  1605. PANEL_POWER_DOWN_DELAY_SHIFT;
  1606. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  1607. PANEL_POWER_CYCLE_DELAY_SHIFT);
  1608. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  1609. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  1610. intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
  1611. intel_dp->backlight_on_delay = cur.t8 / 10;
  1612. intel_dp->backlight_off_delay = cur.t9 / 10;
  1613. intel_dp->panel_power_down_delay = cur.t10 / 10;
  1614. intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
  1615. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  1616. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  1617. intel_dp->panel_power_cycle_delay);
  1618. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  1619. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  1620. cdv_intel_edp_panel_vdd_on(psb_intel_encoder);
  1621. ret = cdv_intel_dp_aux_native_read(psb_intel_encoder, DP_DPCD_REV,
  1622. intel_dp->dpcd,
  1623. sizeof(intel_dp->dpcd));
  1624. cdv_intel_edp_panel_vdd_off(psb_intel_encoder);
  1625. if (ret == 0) {
  1626. /* if this fails, presume the device is a ghost */
  1627. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  1628. cdv_intel_dp_encoder_destroy(encoder);
  1629. cdv_intel_dp_destroy(connector);
  1630. goto err_priv;
  1631. } else {
  1632. DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
  1633. intel_dp->dpcd[0], intel_dp->dpcd[1],
  1634. intel_dp->dpcd[2], intel_dp->dpcd[3]);
  1635. }
  1636. /* The CDV reference driver moves pnale backlight setup into the displays that
  1637. have a backlight: this is a good idea and one we should probably adopt, however
  1638. we need to migrate all the drivers before we can do that */
  1639. /*cdv_intel_panel_setup_backlight(dev); */
  1640. }
  1641. return;
  1642. err_priv:
  1643. kfree(psb_intel_connector);
  1644. err_connector:
  1645. kfree(psb_intel_encoder);
  1646. }