ohci.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842
  1. /*
  2. * Driver for OHCI 1394 controllers
  3. *
  4. * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software Foundation,
  18. * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19. */
  20. #include <linux/bitops.h>
  21. #include <linux/bug.h>
  22. #include <linux/compiler.h>
  23. #include <linux/delay.h>
  24. #include <linux/device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/firewire.h>
  27. #include <linux/firewire-constants.h>
  28. #include <linux/init.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/io.h>
  31. #include <linux/kernel.h>
  32. #include <linux/list.h>
  33. #include <linux/mm.h>
  34. #include <linux/module.h>
  35. #include <linux/moduleparam.h>
  36. #include <linux/mutex.h>
  37. #include <linux/pci.h>
  38. #include <linux/pci_ids.h>
  39. #include <linux/slab.h>
  40. #include <linux/spinlock.h>
  41. #include <linux/string.h>
  42. #include <linux/time.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/workqueue.h>
  45. #include <asm/byteorder.h>
  46. #include <asm/page.h>
  47. #ifdef CONFIG_PPC_PMAC
  48. #include <asm/pmac_feature.h>
  49. #endif
  50. #include "core.h"
  51. #include "ohci.h"
  52. #define DESCRIPTOR_OUTPUT_MORE 0
  53. #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
  54. #define DESCRIPTOR_INPUT_MORE (2 << 12)
  55. #define DESCRIPTOR_INPUT_LAST (3 << 12)
  56. #define DESCRIPTOR_STATUS (1 << 11)
  57. #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
  58. #define DESCRIPTOR_PING (1 << 7)
  59. #define DESCRIPTOR_YY (1 << 6)
  60. #define DESCRIPTOR_NO_IRQ (0 << 4)
  61. #define DESCRIPTOR_IRQ_ERROR (1 << 4)
  62. #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
  63. #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
  64. #define DESCRIPTOR_WAIT (3 << 0)
  65. struct descriptor {
  66. __le16 req_count;
  67. __le16 control;
  68. __le32 data_address;
  69. __le32 branch_address;
  70. __le16 res_count;
  71. __le16 transfer_status;
  72. } __attribute__((aligned(16)));
  73. #define CONTROL_SET(regs) (regs)
  74. #define CONTROL_CLEAR(regs) ((regs) + 4)
  75. #define COMMAND_PTR(regs) ((regs) + 12)
  76. #define CONTEXT_MATCH(regs) ((regs) + 16)
  77. #define AR_BUFFER_SIZE (32*1024)
  78. #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
  79. /* we need at least two pages for proper list management */
  80. #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
  81. #define MAX_ASYNC_PAYLOAD 4096
  82. #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
  83. #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
  84. struct ar_context {
  85. struct fw_ohci *ohci;
  86. struct page *pages[AR_BUFFERS];
  87. void *buffer;
  88. struct descriptor *descriptors;
  89. dma_addr_t descriptors_bus;
  90. void *pointer;
  91. unsigned int last_buffer_index;
  92. u32 regs;
  93. struct tasklet_struct tasklet;
  94. };
  95. struct context;
  96. typedef int (*descriptor_callback_t)(struct context *ctx,
  97. struct descriptor *d,
  98. struct descriptor *last);
  99. /*
  100. * A buffer that contains a block of DMA-able coherent memory used for
  101. * storing a portion of a DMA descriptor program.
  102. */
  103. struct descriptor_buffer {
  104. struct list_head list;
  105. dma_addr_t buffer_bus;
  106. size_t buffer_size;
  107. size_t used;
  108. struct descriptor buffer[0];
  109. };
  110. struct context {
  111. struct fw_ohci *ohci;
  112. u32 regs;
  113. int total_allocation;
  114. u32 current_bus;
  115. bool running;
  116. bool flushing;
  117. /*
  118. * List of page-sized buffers for storing DMA descriptors.
  119. * Head of list contains buffers in use and tail of list contains
  120. * free buffers.
  121. */
  122. struct list_head buffer_list;
  123. /*
  124. * Pointer to a buffer inside buffer_list that contains the tail
  125. * end of the current DMA program.
  126. */
  127. struct descriptor_buffer *buffer_tail;
  128. /*
  129. * The descriptor containing the branch address of the first
  130. * descriptor that has not yet been filled by the device.
  131. */
  132. struct descriptor *last;
  133. /*
  134. * The last descriptor in the DMA program. It contains the branch
  135. * address that must be updated upon appending a new descriptor.
  136. */
  137. struct descriptor *prev;
  138. descriptor_callback_t callback;
  139. struct tasklet_struct tasklet;
  140. };
  141. #define IT_HEADER_SY(v) ((v) << 0)
  142. #define IT_HEADER_TCODE(v) ((v) << 4)
  143. #define IT_HEADER_CHANNEL(v) ((v) << 8)
  144. #define IT_HEADER_TAG(v) ((v) << 14)
  145. #define IT_HEADER_SPEED(v) ((v) << 16)
  146. #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
  147. struct iso_context {
  148. struct fw_iso_context base;
  149. struct context context;
  150. void *header;
  151. size_t header_length;
  152. unsigned long flushing_completions;
  153. u32 mc_buffer_bus;
  154. u16 mc_completed;
  155. u16 last_timestamp;
  156. u8 sync;
  157. u8 tags;
  158. };
  159. #define CONFIG_ROM_SIZE 1024
  160. struct fw_ohci {
  161. struct fw_card card;
  162. __iomem char *registers;
  163. int node_id;
  164. int generation;
  165. int request_generation; /* for timestamping incoming requests */
  166. unsigned quirks;
  167. unsigned int pri_req_max;
  168. u32 bus_time;
  169. bool bus_time_running;
  170. bool is_root;
  171. bool csr_state_setclear_abdicate;
  172. int n_ir;
  173. int n_it;
  174. /*
  175. * Spinlock for accessing fw_ohci data. Never call out of
  176. * this driver with this lock held.
  177. */
  178. spinlock_t lock;
  179. struct mutex phy_reg_mutex;
  180. void *misc_buffer;
  181. dma_addr_t misc_buffer_bus;
  182. struct ar_context ar_request_ctx;
  183. struct ar_context ar_response_ctx;
  184. struct context at_request_ctx;
  185. struct context at_response_ctx;
  186. u32 it_context_support;
  187. u32 it_context_mask; /* unoccupied IT contexts */
  188. struct iso_context *it_context_list;
  189. u64 ir_context_channels; /* unoccupied channels */
  190. u32 ir_context_support;
  191. u32 ir_context_mask; /* unoccupied IR contexts */
  192. struct iso_context *ir_context_list;
  193. u64 mc_channels; /* channels in use by the multichannel IR context */
  194. bool mc_allocated;
  195. __be32 *config_rom;
  196. dma_addr_t config_rom_bus;
  197. __be32 *next_config_rom;
  198. dma_addr_t next_config_rom_bus;
  199. __be32 next_header;
  200. __le32 *self_id_cpu;
  201. dma_addr_t self_id_bus;
  202. struct work_struct bus_reset_work;
  203. u32 self_id_buffer[512];
  204. };
  205. static inline struct fw_ohci *fw_ohci(struct fw_card *card)
  206. {
  207. return container_of(card, struct fw_ohci, card);
  208. }
  209. #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
  210. #define IR_CONTEXT_BUFFER_FILL 0x80000000
  211. #define IR_CONTEXT_ISOCH_HEADER 0x40000000
  212. #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
  213. #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
  214. #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
  215. #define CONTEXT_RUN 0x8000
  216. #define CONTEXT_WAKE 0x1000
  217. #define CONTEXT_DEAD 0x0800
  218. #define CONTEXT_ACTIVE 0x0400
  219. #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
  220. #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
  221. #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
  222. #define OHCI1394_REGISTER_SIZE 0x800
  223. #define OHCI1394_PCI_HCI_Control 0x40
  224. #define SELF_ID_BUF_SIZE 0x800
  225. #define OHCI_TCODE_PHY_PACKET 0x0e
  226. #define OHCI_VERSION_1_1 0x010010
  227. static char ohci_driver_name[] = KBUILD_MODNAME;
  228. #define PCI_DEVICE_ID_AGERE_FW643 0x5901
  229. #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
  230. #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
  231. #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
  232. #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
  233. #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
  234. #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
  235. #define QUIRK_CYCLE_TIMER 1
  236. #define QUIRK_RESET_PACKET 2
  237. #define QUIRK_BE_HEADERS 4
  238. #define QUIRK_NO_1394A 8
  239. #define QUIRK_NO_MSI 16
  240. #define QUIRK_TI_SLLZ059 32
  241. /* In case of multiple matches in ohci_quirks[], only the first one is used. */
  242. static const struct {
  243. unsigned short vendor, device, revision, flags;
  244. } ohci_quirks[] = {
  245. {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
  246. QUIRK_CYCLE_TIMER},
  247. {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
  248. QUIRK_BE_HEADERS},
  249. {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
  250. QUIRK_NO_MSI},
  251. {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
  252. QUIRK_RESET_PACKET},
  253. {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
  254. QUIRK_NO_MSI},
  255. {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
  256. QUIRK_CYCLE_TIMER},
  257. {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
  258. QUIRK_NO_MSI},
  259. {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
  260. QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
  261. {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
  262. QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
  263. {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
  264. QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
  265. {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
  266. QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
  267. {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
  268. QUIRK_RESET_PACKET},
  269. {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
  270. QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
  271. };
  272. /* This overrides anything that was found in ohci_quirks[]. */
  273. static int param_quirks;
  274. module_param_named(quirks, param_quirks, int, 0644);
  275. MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
  276. ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
  277. ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
  278. ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
  279. ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
  280. ", disable MSI = " __stringify(QUIRK_NO_MSI)
  281. ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
  282. ")");
  283. #define OHCI_PARAM_DEBUG_AT_AR 1
  284. #define OHCI_PARAM_DEBUG_SELFIDS 2
  285. #define OHCI_PARAM_DEBUG_IRQS 4
  286. #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
  287. static int param_debug;
  288. module_param_named(debug, param_debug, int, 0644);
  289. MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
  290. ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
  291. ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
  292. ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
  293. ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
  294. ", or a combination, or all = -1)");
  295. static void log_irqs(struct fw_ohci *ohci, u32 evt)
  296. {
  297. if (likely(!(param_debug &
  298. (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
  299. return;
  300. if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
  301. !(evt & OHCI1394_busReset))
  302. return;
  303. dev_notice(ohci->card.device,
  304. "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
  305. evt & OHCI1394_selfIDComplete ? " selfID" : "",
  306. evt & OHCI1394_RQPkt ? " AR_req" : "",
  307. evt & OHCI1394_RSPkt ? " AR_resp" : "",
  308. evt & OHCI1394_reqTxComplete ? " AT_req" : "",
  309. evt & OHCI1394_respTxComplete ? " AT_resp" : "",
  310. evt & OHCI1394_isochRx ? " IR" : "",
  311. evt & OHCI1394_isochTx ? " IT" : "",
  312. evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
  313. evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
  314. evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
  315. evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
  316. evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
  317. evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
  318. evt & OHCI1394_busReset ? " busReset" : "",
  319. evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
  320. OHCI1394_RSPkt | OHCI1394_reqTxComplete |
  321. OHCI1394_respTxComplete | OHCI1394_isochRx |
  322. OHCI1394_isochTx | OHCI1394_postedWriteErr |
  323. OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
  324. OHCI1394_cycleInconsistent |
  325. OHCI1394_regAccessFail | OHCI1394_busReset)
  326. ? " ?" : "");
  327. }
  328. static const char *speed[] = {
  329. [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
  330. };
  331. static const char *power[] = {
  332. [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
  333. [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
  334. };
  335. static const char port[] = { '.', '-', 'p', 'c', };
  336. static char _p(u32 *s, int shift)
  337. {
  338. return port[*s >> shift & 3];
  339. }
  340. static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
  341. {
  342. u32 *s;
  343. if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
  344. return;
  345. dev_notice(ohci->card.device,
  346. "%d selfIDs, generation %d, local node ID %04x\n",
  347. self_id_count, generation, ohci->node_id);
  348. for (s = ohci->self_id_buffer; self_id_count--; ++s)
  349. if ((*s & 1 << 23) == 0)
  350. dev_notice(ohci->card.device,
  351. "selfID 0: %08x, phy %d [%c%c%c] "
  352. "%s gc=%d %s %s%s%s\n",
  353. *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
  354. speed[*s >> 14 & 3], *s >> 16 & 63,
  355. power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
  356. *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
  357. else
  358. dev_notice(ohci->card.device,
  359. "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
  360. *s, *s >> 24 & 63,
  361. _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
  362. _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
  363. }
  364. static const char *evts[] = {
  365. [0x00] = "evt_no_status", [0x01] = "-reserved-",
  366. [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
  367. [0x04] = "evt_underrun", [0x05] = "evt_overrun",
  368. [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
  369. [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
  370. [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
  371. [0x0c] = "-reserved-", [0x0d] = "-reserved-",
  372. [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
  373. [0x10] = "-reserved-", [0x11] = "ack_complete",
  374. [0x12] = "ack_pending ", [0x13] = "-reserved-",
  375. [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
  376. [0x16] = "ack_busy_B", [0x17] = "-reserved-",
  377. [0x18] = "-reserved-", [0x19] = "-reserved-",
  378. [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
  379. [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
  380. [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
  381. [0x20] = "pending/cancelled",
  382. };
  383. static const char *tcodes[] = {
  384. [0x0] = "QW req", [0x1] = "BW req",
  385. [0x2] = "W resp", [0x3] = "-reserved-",
  386. [0x4] = "QR req", [0x5] = "BR req",
  387. [0x6] = "QR resp", [0x7] = "BR resp",
  388. [0x8] = "cycle start", [0x9] = "Lk req",
  389. [0xa] = "async stream packet", [0xb] = "Lk resp",
  390. [0xc] = "-reserved-", [0xd] = "-reserved-",
  391. [0xe] = "link internal", [0xf] = "-reserved-",
  392. };
  393. static void log_ar_at_event(struct fw_ohci *ohci,
  394. char dir, int speed, u32 *header, int evt)
  395. {
  396. int tcode = header[0] >> 4 & 0xf;
  397. char specific[12];
  398. if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
  399. return;
  400. if (unlikely(evt >= ARRAY_SIZE(evts)))
  401. evt = 0x1f;
  402. if (evt == OHCI1394_evt_bus_reset) {
  403. dev_notice(ohci->card.device,
  404. "A%c evt_bus_reset, generation %d\n",
  405. dir, (header[2] >> 16) & 0xff);
  406. return;
  407. }
  408. switch (tcode) {
  409. case 0x0: case 0x6: case 0x8:
  410. snprintf(specific, sizeof(specific), " = %08x",
  411. be32_to_cpu((__force __be32)header[3]));
  412. break;
  413. case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
  414. snprintf(specific, sizeof(specific), " %x,%x",
  415. header[3] >> 16, header[3] & 0xffff);
  416. break;
  417. default:
  418. specific[0] = '\0';
  419. }
  420. switch (tcode) {
  421. case 0xa:
  422. dev_notice(ohci->card.device,
  423. "A%c %s, %s\n",
  424. dir, evts[evt], tcodes[tcode]);
  425. break;
  426. case 0xe:
  427. dev_notice(ohci->card.device,
  428. "A%c %s, PHY %08x %08x\n",
  429. dir, evts[evt], header[1], header[2]);
  430. break;
  431. case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
  432. dev_notice(ohci->card.device,
  433. "A%c spd %x tl %02x, "
  434. "%04x -> %04x, %s, "
  435. "%s, %04x%08x%s\n",
  436. dir, speed, header[0] >> 10 & 0x3f,
  437. header[1] >> 16, header[0] >> 16, evts[evt],
  438. tcodes[tcode], header[1] & 0xffff, header[2], specific);
  439. break;
  440. default:
  441. dev_notice(ohci->card.device,
  442. "A%c spd %x tl %02x, "
  443. "%04x -> %04x, %s, "
  444. "%s%s\n",
  445. dir, speed, header[0] >> 10 & 0x3f,
  446. header[1] >> 16, header[0] >> 16, evts[evt],
  447. tcodes[tcode], specific);
  448. }
  449. }
  450. static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
  451. {
  452. writel(data, ohci->registers + offset);
  453. }
  454. static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
  455. {
  456. return readl(ohci->registers + offset);
  457. }
  458. static inline void flush_writes(const struct fw_ohci *ohci)
  459. {
  460. /* Do a dummy read to flush writes. */
  461. reg_read(ohci, OHCI1394_Version);
  462. }
  463. /*
  464. * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
  465. * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
  466. * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
  467. * directly. Exceptions are intrinsically serialized contexts like pci_probe.
  468. */
  469. static int read_phy_reg(struct fw_ohci *ohci, int addr)
  470. {
  471. u32 val;
  472. int i;
  473. reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
  474. for (i = 0; i < 3 + 100; i++) {
  475. val = reg_read(ohci, OHCI1394_PhyControl);
  476. if (!~val)
  477. return -ENODEV; /* Card was ejected. */
  478. if (val & OHCI1394_PhyControl_ReadDone)
  479. return OHCI1394_PhyControl_ReadData(val);
  480. /*
  481. * Try a few times without waiting. Sleeping is necessary
  482. * only when the link/PHY interface is busy.
  483. */
  484. if (i >= 3)
  485. msleep(1);
  486. }
  487. dev_err(ohci->card.device, "failed to read phy reg\n");
  488. return -EBUSY;
  489. }
  490. static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
  491. {
  492. int i;
  493. reg_write(ohci, OHCI1394_PhyControl,
  494. OHCI1394_PhyControl_Write(addr, val));
  495. for (i = 0; i < 3 + 100; i++) {
  496. val = reg_read(ohci, OHCI1394_PhyControl);
  497. if (!~val)
  498. return -ENODEV; /* Card was ejected. */
  499. if (!(val & OHCI1394_PhyControl_WritePending))
  500. return 0;
  501. if (i >= 3)
  502. msleep(1);
  503. }
  504. dev_err(ohci->card.device, "failed to write phy reg\n");
  505. return -EBUSY;
  506. }
  507. static int update_phy_reg(struct fw_ohci *ohci, int addr,
  508. int clear_bits, int set_bits)
  509. {
  510. int ret = read_phy_reg(ohci, addr);
  511. if (ret < 0)
  512. return ret;
  513. /*
  514. * The interrupt status bits are cleared by writing a one bit.
  515. * Avoid clearing them unless explicitly requested in set_bits.
  516. */
  517. if (addr == 5)
  518. clear_bits |= PHY_INT_STATUS_BITS;
  519. return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
  520. }
  521. static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
  522. {
  523. int ret;
  524. ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
  525. if (ret < 0)
  526. return ret;
  527. return read_phy_reg(ohci, addr);
  528. }
  529. static int ohci_read_phy_reg(struct fw_card *card, int addr)
  530. {
  531. struct fw_ohci *ohci = fw_ohci(card);
  532. int ret;
  533. mutex_lock(&ohci->phy_reg_mutex);
  534. ret = read_phy_reg(ohci, addr);
  535. mutex_unlock(&ohci->phy_reg_mutex);
  536. return ret;
  537. }
  538. static int ohci_update_phy_reg(struct fw_card *card, int addr,
  539. int clear_bits, int set_bits)
  540. {
  541. struct fw_ohci *ohci = fw_ohci(card);
  542. int ret;
  543. mutex_lock(&ohci->phy_reg_mutex);
  544. ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
  545. mutex_unlock(&ohci->phy_reg_mutex);
  546. return ret;
  547. }
  548. static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
  549. {
  550. return page_private(ctx->pages[i]);
  551. }
  552. static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
  553. {
  554. struct descriptor *d;
  555. d = &ctx->descriptors[index];
  556. d->branch_address &= cpu_to_le32(~0xf);
  557. d->res_count = cpu_to_le16(PAGE_SIZE);
  558. d->transfer_status = 0;
  559. wmb(); /* finish init of new descriptors before branch_address update */
  560. d = &ctx->descriptors[ctx->last_buffer_index];
  561. d->branch_address |= cpu_to_le32(1);
  562. ctx->last_buffer_index = index;
  563. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
  564. }
  565. static void ar_context_release(struct ar_context *ctx)
  566. {
  567. unsigned int i;
  568. if (ctx->buffer)
  569. vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
  570. for (i = 0; i < AR_BUFFERS; i++)
  571. if (ctx->pages[i]) {
  572. dma_unmap_page(ctx->ohci->card.device,
  573. ar_buffer_bus(ctx, i),
  574. PAGE_SIZE, DMA_FROM_DEVICE);
  575. __free_page(ctx->pages[i]);
  576. }
  577. }
  578. static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
  579. {
  580. struct fw_ohci *ohci = ctx->ohci;
  581. if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
  582. reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
  583. flush_writes(ohci);
  584. dev_err(ohci->card.device, "AR error: %s; DMA stopped\n",
  585. error_msg);
  586. }
  587. /* FIXME: restart? */
  588. }
  589. static inline unsigned int ar_next_buffer_index(unsigned int index)
  590. {
  591. return (index + 1) % AR_BUFFERS;
  592. }
  593. static inline unsigned int ar_prev_buffer_index(unsigned int index)
  594. {
  595. return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
  596. }
  597. static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
  598. {
  599. return ar_next_buffer_index(ctx->last_buffer_index);
  600. }
  601. /*
  602. * We search for the buffer that contains the last AR packet DMA data written
  603. * by the controller.
  604. */
  605. static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
  606. unsigned int *buffer_offset)
  607. {
  608. unsigned int i, next_i, last = ctx->last_buffer_index;
  609. __le16 res_count, next_res_count;
  610. i = ar_first_buffer_index(ctx);
  611. res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
  612. /* A buffer that is not yet completely filled must be the last one. */
  613. while (i != last && res_count == 0) {
  614. /* Peek at the next descriptor. */
  615. next_i = ar_next_buffer_index(i);
  616. rmb(); /* read descriptors in order */
  617. next_res_count = ACCESS_ONCE(
  618. ctx->descriptors[next_i].res_count);
  619. /*
  620. * If the next descriptor is still empty, we must stop at this
  621. * descriptor.
  622. */
  623. if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
  624. /*
  625. * The exception is when the DMA data for one packet is
  626. * split over three buffers; in this case, the middle
  627. * buffer's descriptor might be never updated by the
  628. * controller and look still empty, and we have to peek
  629. * at the third one.
  630. */
  631. if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
  632. next_i = ar_next_buffer_index(next_i);
  633. rmb();
  634. next_res_count = ACCESS_ONCE(
  635. ctx->descriptors[next_i].res_count);
  636. if (next_res_count != cpu_to_le16(PAGE_SIZE))
  637. goto next_buffer_is_active;
  638. }
  639. break;
  640. }
  641. next_buffer_is_active:
  642. i = next_i;
  643. res_count = next_res_count;
  644. }
  645. rmb(); /* read res_count before the DMA data */
  646. *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
  647. if (*buffer_offset > PAGE_SIZE) {
  648. *buffer_offset = 0;
  649. ar_context_abort(ctx, "corrupted descriptor");
  650. }
  651. return i;
  652. }
  653. static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
  654. unsigned int end_buffer_index,
  655. unsigned int end_buffer_offset)
  656. {
  657. unsigned int i;
  658. i = ar_first_buffer_index(ctx);
  659. while (i != end_buffer_index) {
  660. dma_sync_single_for_cpu(ctx->ohci->card.device,
  661. ar_buffer_bus(ctx, i),
  662. PAGE_SIZE, DMA_FROM_DEVICE);
  663. i = ar_next_buffer_index(i);
  664. }
  665. if (end_buffer_offset > 0)
  666. dma_sync_single_for_cpu(ctx->ohci->card.device,
  667. ar_buffer_bus(ctx, i),
  668. end_buffer_offset, DMA_FROM_DEVICE);
  669. }
  670. #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
  671. #define cond_le32_to_cpu(v) \
  672. (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
  673. #else
  674. #define cond_le32_to_cpu(v) le32_to_cpu(v)
  675. #endif
  676. static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
  677. {
  678. struct fw_ohci *ohci = ctx->ohci;
  679. struct fw_packet p;
  680. u32 status, length, tcode;
  681. int evt;
  682. p.header[0] = cond_le32_to_cpu(buffer[0]);
  683. p.header[1] = cond_le32_to_cpu(buffer[1]);
  684. p.header[2] = cond_le32_to_cpu(buffer[2]);
  685. tcode = (p.header[0] >> 4) & 0x0f;
  686. switch (tcode) {
  687. case TCODE_WRITE_QUADLET_REQUEST:
  688. case TCODE_READ_QUADLET_RESPONSE:
  689. p.header[3] = (__force __u32) buffer[3];
  690. p.header_length = 16;
  691. p.payload_length = 0;
  692. break;
  693. case TCODE_READ_BLOCK_REQUEST :
  694. p.header[3] = cond_le32_to_cpu(buffer[3]);
  695. p.header_length = 16;
  696. p.payload_length = 0;
  697. break;
  698. case TCODE_WRITE_BLOCK_REQUEST:
  699. case TCODE_READ_BLOCK_RESPONSE:
  700. case TCODE_LOCK_REQUEST:
  701. case TCODE_LOCK_RESPONSE:
  702. p.header[3] = cond_le32_to_cpu(buffer[3]);
  703. p.header_length = 16;
  704. p.payload_length = p.header[3] >> 16;
  705. if (p.payload_length > MAX_ASYNC_PAYLOAD) {
  706. ar_context_abort(ctx, "invalid packet length");
  707. return NULL;
  708. }
  709. break;
  710. case TCODE_WRITE_RESPONSE:
  711. case TCODE_READ_QUADLET_REQUEST:
  712. case OHCI_TCODE_PHY_PACKET:
  713. p.header_length = 12;
  714. p.payload_length = 0;
  715. break;
  716. default:
  717. ar_context_abort(ctx, "invalid tcode");
  718. return NULL;
  719. }
  720. p.payload = (void *) buffer + p.header_length;
  721. /* FIXME: What to do about evt_* errors? */
  722. length = (p.header_length + p.payload_length + 3) / 4;
  723. status = cond_le32_to_cpu(buffer[length]);
  724. evt = (status >> 16) & 0x1f;
  725. p.ack = evt - 16;
  726. p.speed = (status >> 21) & 0x7;
  727. p.timestamp = status & 0xffff;
  728. p.generation = ohci->request_generation;
  729. log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
  730. /*
  731. * Several controllers, notably from NEC and VIA, forget to
  732. * write ack_complete status at PHY packet reception.
  733. */
  734. if (evt == OHCI1394_evt_no_status &&
  735. (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
  736. p.ack = ACK_COMPLETE;
  737. /*
  738. * The OHCI bus reset handler synthesizes a PHY packet with
  739. * the new generation number when a bus reset happens (see
  740. * section 8.4.2.3). This helps us determine when a request
  741. * was received and make sure we send the response in the same
  742. * generation. We only need this for requests; for responses
  743. * we use the unique tlabel for finding the matching
  744. * request.
  745. *
  746. * Alas some chips sometimes emit bus reset packets with a
  747. * wrong generation. We set the correct generation for these
  748. * at a slightly incorrect time (in bus_reset_work).
  749. */
  750. if (evt == OHCI1394_evt_bus_reset) {
  751. if (!(ohci->quirks & QUIRK_RESET_PACKET))
  752. ohci->request_generation = (p.header[2] >> 16) & 0xff;
  753. } else if (ctx == &ohci->ar_request_ctx) {
  754. fw_core_handle_request(&ohci->card, &p);
  755. } else {
  756. fw_core_handle_response(&ohci->card, &p);
  757. }
  758. return buffer + length + 1;
  759. }
  760. static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
  761. {
  762. void *next;
  763. while (p < end) {
  764. next = handle_ar_packet(ctx, p);
  765. if (!next)
  766. return p;
  767. p = next;
  768. }
  769. return p;
  770. }
  771. static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
  772. {
  773. unsigned int i;
  774. i = ar_first_buffer_index(ctx);
  775. while (i != end_buffer) {
  776. dma_sync_single_for_device(ctx->ohci->card.device,
  777. ar_buffer_bus(ctx, i),
  778. PAGE_SIZE, DMA_FROM_DEVICE);
  779. ar_context_link_page(ctx, i);
  780. i = ar_next_buffer_index(i);
  781. }
  782. }
  783. static void ar_context_tasklet(unsigned long data)
  784. {
  785. struct ar_context *ctx = (struct ar_context *)data;
  786. unsigned int end_buffer_index, end_buffer_offset;
  787. void *p, *end;
  788. p = ctx->pointer;
  789. if (!p)
  790. return;
  791. end_buffer_index = ar_search_last_active_buffer(ctx,
  792. &end_buffer_offset);
  793. ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
  794. end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
  795. if (end_buffer_index < ar_first_buffer_index(ctx)) {
  796. /*
  797. * The filled part of the overall buffer wraps around; handle
  798. * all packets up to the buffer end here. If the last packet
  799. * wraps around, its tail will be visible after the buffer end
  800. * because the buffer start pages are mapped there again.
  801. */
  802. void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
  803. p = handle_ar_packets(ctx, p, buffer_end);
  804. if (p < buffer_end)
  805. goto error;
  806. /* adjust p to point back into the actual buffer */
  807. p -= AR_BUFFERS * PAGE_SIZE;
  808. }
  809. p = handle_ar_packets(ctx, p, end);
  810. if (p != end) {
  811. if (p > end)
  812. ar_context_abort(ctx, "inconsistent descriptor");
  813. goto error;
  814. }
  815. ctx->pointer = p;
  816. ar_recycle_buffers(ctx, end_buffer_index);
  817. return;
  818. error:
  819. ctx->pointer = NULL;
  820. }
  821. static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
  822. unsigned int descriptors_offset, u32 regs)
  823. {
  824. unsigned int i;
  825. dma_addr_t dma_addr;
  826. struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
  827. struct descriptor *d;
  828. ctx->regs = regs;
  829. ctx->ohci = ohci;
  830. tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
  831. for (i = 0; i < AR_BUFFERS; i++) {
  832. ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
  833. if (!ctx->pages[i])
  834. goto out_of_memory;
  835. dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
  836. 0, PAGE_SIZE, DMA_FROM_DEVICE);
  837. if (dma_mapping_error(ohci->card.device, dma_addr)) {
  838. __free_page(ctx->pages[i]);
  839. ctx->pages[i] = NULL;
  840. goto out_of_memory;
  841. }
  842. set_page_private(ctx->pages[i], dma_addr);
  843. }
  844. for (i = 0; i < AR_BUFFERS; i++)
  845. pages[i] = ctx->pages[i];
  846. for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
  847. pages[AR_BUFFERS + i] = ctx->pages[i];
  848. ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
  849. -1, PAGE_KERNEL);
  850. if (!ctx->buffer)
  851. goto out_of_memory;
  852. ctx->descriptors = ohci->misc_buffer + descriptors_offset;
  853. ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
  854. for (i = 0; i < AR_BUFFERS; i++) {
  855. d = &ctx->descriptors[i];
  856. d->req_count = cpu_to_le16(PAGE_SIZE);
  857. d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
  858. DESCRIPTOR_STATUS |
  859. DESCRIPTOR_BRANCH_ALWAYS);
  860. d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
  861. d->branch_address = cpu_to_le32(ctx->descriptors_bus +
  862. ar_next_buffer_index(i) * sizeof(struct descriptor));
  863. }
  864. return 0;
  865. out_of_memory:
  866. ar_context_release(ctx);
  867. return -ENOMEM;
  868. }
  869. static void ar_context_run(struct ar_context *ctx)
  870. {
  871. unsigned int i;
  872. for (i = 0; i < AR_BUFFERS; i++)
  873. ar_context_link_page(ctx, i);
  874. ctx->pointer = ctx->buffer;
  875. reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
  876. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
  877. }
  878. static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
  879. {
  880. __le16 branch;
  881. branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
  882. /* figure out which descriptor the branch address goes in */
  883. if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
  884. return d;
  885. else
  886. return d + z - 1;
  887. }
  888. static void context_tasklet(unsigned long data)
  889. {
  890. struct context *ctx = (struct context *) data;
  891. struct descriptor *d, *last;
  892. u32 address;
  893. int z;
  894. struct descriptor_buffer *desc;
  895. desc = list_entry(ctx->buffer_list.next,
  896. struct descriptor_buffer, list);
  897. last = ctx->last;
  898. while (last->branch_address != 0) {
  899. struct descriptor_buffer *old_desc = desc;
  900. address = le32_to_cpu(last->branch_address);
  901. z = address & 0xf;
  902. address &= ~0xf;
  903. ctx->current_bus = address;
  904. /* If the branch address points to a buffer outside of the
  905. * current buffer, advance to the next buffer. */
  906. if (address < desc->buffer_bus ||
  907. address >= desc->buffer_bus + desc->used)
  908. desc = list_entry(desc->list.next,
  909. struct descriptor_buffer, list);
  910. d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
  911. last = find_branch_descriptor(d, z);
  912. if (!ctx->callback(ctx, d, last))
  913. break;
  914. if (old_desc != desc) {
  915. /* If we've advanced to the next buffer, move the
  916. * previous buffer to the free list. */
  917. unsigned long flags;
  918. old_desc->used = 0;
  919. spin_lock_irqsave(&ctx->ohci->lock, flags);
  920. list_move_tail(&old_desc->list, &ctx->buffer_list);
  921. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  922. }
  923. ctx->last = last;
  924. }
  925. }
  926. /*
  927. * Allocate a new buffer and add it to the list of free buffers for this
  928. * context. Must be called with ohci->lock held.
  929. */
  930. static int context_add_buffer(struct context *ctx)
  931. {
  932. struct descriptor_buffer *desc;
  933. dma_addr_t uninitialized_var(bus_addr);
  934. int offset;
  935. /*
  936. * 16MB of descriptors should be far more than enough for any DMA
  937. * program. This will catch run-away userspace or DoS attacks.
  938. */
  939. if (ctx->total_allocation >= 16*1024*1024)
  940. return -ENOMEM;
  941. desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
  942. &bus_addr, GFP_ATOMIC);
  943. if (!desc)
  944. return -ENOMEM;
  945. offset = (void *)&desc->buffer - (void *)desc;
  946. desc->buffer_size = PAGE_SIZE - offset;
  947. desc->buffer_bus = bus_addr + offset;
  948. desc->used = 0;
  949. list_add_tail(&desc->list, &ctx->buffer_list);
  950. ctx->total_allocation += PAGE_SIZE;
  951. return 0;
  952. }
  953. static int context_init(struct context *ctx, struct fw_ohci *ohci,
  954. u32 regs, descriptor_callback_t callback)
  955. {
  956. ctx->ohci = ohci;
  957. ctx->regs = regs;
  958. ctx->total_allocation = 0;
  959. INIT_LIST_HEAD(&ctx->buffer_list);
  960. if (context_add_buffer(ctx) < 0)
  961. return -ENOMEM;
  962. ctx->buffer_tail = list_entry(ctx->buffer_list.next,
  963. struct descriptor_buffer, list);
  964. tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
  965. ctx->callback = callback;
  966. /*
  967. * We put a dummy descriptor in the buffer that has a NULL
  968. * branch address and looks like it's been sent. That way we
  969. * have a descriptor to append DMA programs to.
  970. */
  971. memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
  972. ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
  973. ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
  974. ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
  975. ctx->last = ctx->buffer_tail->buffer;
  976. ctx->prev = ctx->buffer_tail->buffer;
  977. return 0;
  978. }
  979. static void context_release(struct context *ctx)
  980. {
  981. struct fw_card *card = &ctx->ohci->card;
  982. struct descriptor_buffer *desc, *tmp;
  983. list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
  984. dma_free_coherent(card->device, PAGE_SIZE, desc,
  985. desc->buffer_bus -
  986. ((void *)&desc->buffer - (void *)desc));
  987. }
  988. /* Must be called with ohci->lock held */
  989. static struct descriptor *context_get_descriptors(struct context *ctx,
  990. int z, dma_addr_t *d_bus)
  991. {
  992. struct descriptor *d = NULL;
  993. struct descriptor_buffer *desc = ctx->buffer_tail;
  994. if (z * sizeof(*d) > desc->buffer_size)
  995. return NULL;
  996. if (z * sizeof(*d) > desc->buffer_size - desc->used) {
  997. /* No room for the descriptor in this buffer, so advance to the
  998. * next one. */
  999. if (desc->list.next == &ctx->buffer_list) {
  1000. /* If there is no free buffer next in the list,
  1001. * allocate one. */
  1002. if (context_add_buffer(ctx) < 0)
  1003. return NULL;
  1004. }
  1005. desc = list_entry(desc->list.next,
  1006. struct descriptor_buffer, list);
  1007. ctx->buffer_tail = desc;
  1008. }
  1009. d = desc->buffer + desc->used / sizeof(*d);
  1010. memset(d, 0, z * sizeof(*d));
  1011. *d_bus = desc->buffer_bus + desc->used;
  1012. return d;
  1013. }
  1014. static void context_run(struct context *ctx, u32 extra)
  1015. {
  1016. struct fw_ohci *ohci = ctx->ohci;
  1017. reg_write(ohci, COMMAND_PTR(ctx->regs),
  1018. le32_to_cpu(ctx->last->branch_address));
  1019. reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
  1020. reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
  1021. ctx->running = true;
  1022. flush_writes(ohci);
  1023. }
  1024. static void context_append(struct context *ctx,
  1025. struct descriptor *d, int z, int extra)
  1026. {
  1027. dma_addr_t d_bus;
  1028. struct descriptor_buffer *desc = ctx->buffer_tail;
  1029. d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
  1030. desc->used += (z + extra) * sizeof(*d);
  1031. wmb(); /* finish init of new descriptors before branch_address update */
  1032. ctx->prev->branch_address = cpu_to_le32(d_bus | z);
  1033. ctx->prev = find_branch_descriptor(d, z);
  1034. }
  1035. static void context_stop(struct context *ctx)
  1036. {
  1037. struct fw_ohci *ohci = ctx->ohci;
  1038. u32 reg;
  1039. int i;
  1040. reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
  1041. ctx->running = false;
  1042. for (i = 0; i < 1000; i++) {
  1043. reg = reg_read(ohci, CONTROL_SET(ctx->regs));
  1044. if ((reg & CONTEXT_ACTIVE) == 0)
  1045. return;
  1046. if (i)
  1047. udelay(10);
  1048. }
  1049. dev_err(ohci->card.device, "DMA context still active (0x%08x)\n", reg);
  1050. }
  1051. struct driver_data {
  1052. u8 inline_data[8];
  1053. struct fw_packet *packet;
  1054. };
  1055. /*
  1056. * This function apppends a packet to the DMA queue for transmission.
  1057. * Must always be called with the ochi->lock held to ensure proper
  1058. * generation handling and locking around packet queue manipulation.
  1059. */
  1060. static int at_context_queue_packet(struct context *ctx,
  1061. struct fw_packet *packet)
  1062. {
  1063. struct fw_ohci *ohci = ctx->ohci;
  1064. dma_addr_t d_bus, uninitialized_var(payload_bus);
  1065. struct driver_data *driver_data;
  1066. struct descriptor *d, *last;
  1067. __le32 *header;
  1068. int z, tcode;
  1069. d = context_get_descriptors(ctx, 4, &d_bus);
  1070. if (d == NULL) {
  1071. packet->ack = RCODE_SEND_ERROR;
  1072. return -1;
  1073. }
  1074. d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
  1075. d[0].res_count = cpu_to_le16(packet->timestamp);
  1076. /*
  1077. * The DMA format for asynchronous link packets is different
  1078. * from the IEEE1394 layout, so shift the fields around
  1079. * accordingly.
  1080. */
  1081. tcode = (packet->header[0] >> 4) & 0x0f;
  1082. header = (__le32 *) &d[1];
  1083. switch (tcode) {
  1084. case TCODE_WRITE_QUADLET_REQUEST:
  1085. case TCODE_WRITE_BLOCK_REQUEST:
  1086. case TCODE_WRITE_RESPONSE:
  1087. case TCODE_READ_QUADLET_REQUEST:
  1088. case TCODE_READ_BLOCK_REQUEST:
  1089. case TCODE_READ_QUADLET_RESPONSE:
  1090. case TCODE_READ_BLOCK_RESPONSE:
  1091. case TCODE_LOCK_REQUEST:
  1092. case TCODE_LOCK_RESPONSE:
  1093. header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
  1094. (packet->speed << 16));
  1095. header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
  1096. (packet->header[0] & 0xffff0000));
  1097. header[2] = cpu_to_le32(packet->header[2]);
  1098. if (TCODE_IS_BLOCK_PACKET(tcode))
  1099. header[3] = cpu_to_le32(packet->header[3]);
  1100. else
  1101. header[3] = (__force __le32) packet->header[3];
  1102. d[0].req_count = cpu_to_le16(packet->header_length);
  1103. break;
  1104. case TCODE_LINK_INTERNAL:
  1105. header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
  1106. (packet->speed << 16));
  1107. header[1] = cpu_to_le32(packet->header[1]);
  1108. header[2] = cpu_to_le32(packet->header[2]);
  1109. d[0].req_count = cpu_to_le16(12);
  1110. if (is_ping_packet(&packet->header[1]))
  1111. d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
  1112. break;
  1113. case TCODE_STREAM_DATA:
  1114. header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
  1115. (packet->speed << 16));
  1116. header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
  1117. d[0].req_count = cpu_to_le16(8);
  1118. break;
  1119. default:
  1120. /* BUG(); */
  1121. packet->ack = RCODE_SEND_ERROR;
  1122. return -1;
  1123. }
  1124. BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
  1125. driver_data = (struct driver_data *) &d[3];
  1126. driver_data->packet = packet;
  1127. packet->driver_data = driver_data;
  1128. if (packet->payload_length > 0) {
  1129. if (packet->payload_length > sizeof(driver_data->inline_data)) {
  1130. payload_bus = dma_map_single(ohci->card.device,
  1131. packet->payload,
  1132. packet->payload_length,
  1133. DMA_TO_DEVICE);
  1134. if (dma_mapping_error(ohci->card.device, payload_bus)) {
  1135. packet->ack = RCODE_SEND_ERROR;
  1136. return -1;
  1137. }
  1138. packet->payload_bus = payload_bus;
  1139. packet->payload_mapped = true;
  1140. } else {
  1141. memcpy(driver_data->inline_data, packet->payload,
  1142. packet->payload_length);
  1143. payload_bus = d_bus + 3 * sizeof(*d);
  1144. }
  1145. d[2].req_count = cpu_to_le16(packet->payload_length);
  1146. d[2].data_address = cpu_to_le32(payload_bus);
  1147. last = &d[2];
  1148. z = 3;
  1149. } else {
  1150. last = &d[0];
  1151. z = 2;
  1152. }
  1153. last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
  1154. DESCRIPTOR_IRQ_ALWAYS |
  1155. DESCRIPTOR_BRANCH_ALWAYS);
  1156. /* FIXME: Document how the locking works. */
  1157. if (ohci->generation != packet->generation) {
  1158. if (packet->payload_mapped)
  1159. dma_unmap_single(ohci->card.device, payload_bus,
  1160. packet->payload_length, DMA_TO_DEVICE);
  1161. packet->ack = RCODE_GENERATION;
  1162. return -1;
  1163. }
  1164. context_append(ctx, d, z, 4 - z);
  1165. if (ctx->running)
  1166. reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
  1167. else
  1168. context_run(ctx, 0);
  1169. return 0;
  1170. }
  1171. static void at_context_flush(struct context *ctx)
  1172. {
  1173. tasklet_disable(&ctx->tasklet);
  1174. ctx->flushing = true;
  1175. context_tasklet((unsigned long)ctx);
  1176. ctx->flushing = false;
  1177. tasklet_enable(&ctx->tasklet);
  1178. }
  1179. static int handle_at_packet(struct context *context,
  1180. struct descriptor *d,
  1181. struct descriptor *last)
  1182. {
  1183. struct driver_data *driver_data;
  1184. struct fw_packet *packet;
  1185. struct fw_ohci *ohci = context->ohci;
  1186. int evt;
  1187. if (last->transfer_status == 0 && !context->flushing)
  1188. /* This descriptor isn't done yet, stop iteration. */
  1189. return 0;
  1190. driver_data = (struct driver_data *) &d[3];
  1191. packet = driver_data->packet;
  1192. if (packet == NULL)
  1193. /* This packet was cancelled, just continue. */
  1194. return 1;
  1195. if (packet->payload_mapped)
  1196. dma_unmap_single(ohci->card.device, packet->payload_bus,
  1197. packet->payload_length, DMA_TO_DEVICE);
  1198. evt = le16_to_cpu(last->transfer_status) & 0x1f;
  1199. packet->timestamp = le16_to_cpu(last->res_count);
  1200. log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
  1201. switch (evt) {
  1202. case OHCI1394_evt_timeout:
  1203. /* Async response transmit timed out. */
  1204. packet->ack = RCODE_CANCELLED;
  1205. break;
  1206. case OHCI1394_evt_flushed:
  1207. /*
  1208. * The packet was flushed should give same error as
  1209. * when we try to use a stale generation count.
  1210. */
  1211. packet->ack = RCODE_GENERATION;
  1212. break;
  1213. case OHCI1394_evt_missing_ack:
  1214. if (context->flushing)
  1215. packet->ack = RCODE_GENERATION;
  1216. else {
  1217. /*
  1218. * Using a valid (current) generation count, but the
  1219. * node is not on the bus or not sending acks.
  1220. */
  1221. packet->ack = RCODE_NO_ACK;
  1222. }
  1223. break;
  1224. case ACK_COMPLETE + 0x10:
  1225. case ACK_PENDING + 0x10:
  1226. case ACK_BUSY_X + 0x10:
  1227. case ACK_BUSY_A + 0x10:
  1228. case ACK_BUSY_B + 0x10:
  1229. case ACK_DATA_ERROR + 0x10:
  1230. case ACK_TYPE_ERROR + 0x10:
  1231. packet->ack = evt - 0x10;
  1232. break;
  1233. case OHCI1394_evt_no_status:
  1234. if (context->flushing) {
  1235. packet->ack = RCODE_GENERATION;
  1236. break;
  1237. }
  1238. /* fall through */
  1239. default:
  1240. packet->ack = RCODE_SEND_ERROR;
  1241. break;
  1242. }
  1243. packet->callback(packet, &ohci->card, packet->ack);
  1244. return 1;
  1245. }
  1246. #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
  1247. #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
  1248. #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
  1249. #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
  1250. #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
  1251. static void handle_local_rom(struct fw_ohci *ohci,
  1252. struct fw_packet *packet, u32 csr)
  1253. {
  1254. struct fw_packet response;
  1255. int tcode, length, i;
  1256. tcode = HEADER_GET_TCODE(packet->header[0]);
  1257. if (TCODE_IS_BLOCK_PACKET(tcode))
  1258. length = HEADER_GET_DATA_LENGTH(packet->header[3]);
  1259. else
  1260. length = 4;
  1261. i = csr - CSR_CONFIG_ROM;
  1262. if (i + length > CONFIG_ROM_SIZE) {
  1263. fw_fill_response(&response, packet->header,
  1264. RCODE_ADDRESS_ERROR, NULL, 0);
  1265. } else if (!TCODE_IS_READ_REQUEST(tcode)) {
  1266. fw_fill_response(&response, packet->header,
  1267. RCODE_TYPE_ERROR, NULL, 0);
  1268. } else {
  1269. fw_fill_response(&response, packet->header, RCODE_COMPLETE,
  1270. (void *) ohci->config_rom + i, length);
  1271. }
  1272. fw_core_handle_response(&ohci->card, &response);
  1273. }
  1274. static void handle_local_lock(struct fw_ohci *ohci,
  1275. struct fw_packet *packet, u32 csr)
  1276. {
  1277. struct fw_packet response;
  1278. int tcode, length, ext_tcode, sel, try;
  1279. __be32 *payload, lock_old;
  1280. u32 lock_arg, lock_data;
  1281. tcode = HEADER_GET_TCODE(packet->header[0]);
  1282. length = HEADER_GET_DATA_LENGTH(packet->header[3]);
  1283. payload = packet->payload;
  1284. ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
  1285. if (tcode == TCODE_LOCK_REQUEST &&
  1286. ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
  1287. lock_arg = be32_to_cpu(payload[0]);
  1288. lock_data = be32_to_cpu(payload[1]);
  1289. } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
  1290. lock_arg = 0;
  1291. lock_data = 0;
  1292. } else {
  1293. fw_fill_response(&response, packet->header,
  1294. RCODE_TYPE_ERROR, NULL, 0);
  1295. goto out;
  1296. }
  1297. sel = (csr - CSR_BUS_MANAGER_ID) / 4;
  1298. reg_write(ohci, OHCI1394_CSRData, lock_data);
  1299. reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
  1300. reg_write(ohci, OHCI1394_CSRControl, sel);
  1301. for (try = 0; try < 20; try++)
  1302. if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
  1303. lock_old = cpu_to_be32(reg_read(ohci,
  1304. OHCI1394_CSRData));
  1305. fw_fill_response(&response, packet->header,
  1306. RCODE_COMPLETE,
  1307. &lock_old, sizeof(lock_old));
  1308. goto out;
  1309. }
  1310. dev_err(ohci->card.device, "swap not done (CSR lock timeout)\n");
  1311. fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
  1312. out:
  1313. fw_core_handle_response(&ohci->card, &response);
  1314. }
  1315. static void handle_local_request(struct context *ctx, struct fw_packet *packet)
  1316. {
  1317. u64 offset, csr;
  1318. if (ctx == &ctx->ohci->at_request_ctx) {
  1319. packet->ack = ACK_PENDING;
  1320. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1321. }
  1322. offset =
  1323. ((unsigned long long)
  1324. HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
  1325. packet->header[2];
  1326. csr = offset - CSR_REGISTER_BASE;
  1327. /* Handle config rom reads. */
  1328. if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
  1329. handle_local_rom(ctx->ohci, packet, csr);
  1330. else switch (csr) {
  1331. case CSR_BUS_MANAGER_ID:
  1332. case CSR_BANDWIDTH_AVAILABLE:
  1333. case CSR_CHANNELS_AVAILABLE_HI:
  1334. case CSR_CHANNELS_AVAILABLE_LO:
  1335. handle_local_lock(ctx->ohci, packet, csr);
  1336. break;
  1337. default:
  1338. if (ctx == &ctx->ohci->at_request_ctx)
  1339. fw_core_handle_request(&ctx->ohci->card, packet);
  1340. else
  1341. fw_core_handle_response(&ctx->ohci->card, packet);
  1342. break;
  1343. }
  1344. if (ctx == &ctx->ohci->at_response_ctx) {
  1345. packet->ack = ACK_COMPLETE;
  1346. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1347. }
  1348. }
  1349. static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
  1350. {
  1351. unsigned long flags;
  1352. int ret;
  1353. spin_lock_irqsave(&ctx->ohci->lock, flags);
  1354. if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
  1355. ctx->ohci->generation == packet->generation) {
  1356. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  1357. handle_local_request(ctx, packet);
  1358. return;
  1359. }
  1360. ret = at_context_queue_packet(ctx, packet);
  1361. spin_unlock_irqrestore(&ctx->ohci->lock, flags);
  1362. if (ret < 0)
  1363. packet->callback(packet, &ctx->ohci->card, packet->ack);
  1364. }
  1365. static void detect_dead_context(struct fw_ohci *ohci,
  1366. const char *name, unsigned int regs)
  1367. {
  1368. u32 ctl;
  1369. ctl = reg_read(ohci, CONTROL_SET(regs));
  1370. if (ctl & CONTEXT_DEAD)
  1371. dev_err(ohci->card.device,
  1372. "DMA context %s has stopped, error code: %s\n",
  1373. name, evts[ctl & 0x1f]);
  1374. }
  1375. static void handle_dead_contexts(struct fw_ohci *ohci)
  1376. {
  1377. unsigned int i;
  1378. char name[8];
  1379. detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
  1380. detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
  1381. detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
  1382. detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
  1383. for (i = 0; i < 32; ++i) {
  1384. if (!(ohci->it_context_support & (1 << i)))
  1385. continue;
  1386. sprintf(name, "IT%u", i);
  1387. detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
  1388. }
  1389. for (i = 0; i < 32; ++i) {
  1390. if (!(ohci->ir_context_support & (1 << i)))
  1391. continue;
  1392. sprintf(name, "IR%u", i);
  1393. detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
  1394. }
  1395. /* TODO: maybe try to flush and restart the dead contexts */
  1396. }
  1397. static u32 cycle_timer_ticks(u32 cycle_timer)
  1398. {
  1399. u32 ticks;
  1400. ticks = cycle_timer & 0xfff;
  1401. ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
  1402. ticks += (3072 * 8000) * (cycle_timer >> 25);
  1403. return ticks;
  1404. }
  1405. /*
  1406. * Some controllers exhibit one or more of the following bugs when updating the
  1407. * iso cycle timer register:
  1408. * - When the lowest six bits are wrapping around to zero, a read that happens
  1409. * at the same time will return garbage in the lowest ten bits.
  1410. * - When the cycleOffset field wraps around to zero, the cycleCount field is
  1411. * not incremented for about 60 ns.
  1412. * - Occasionally, the entire register reads zero.
  1413. *
  1414. * To catch these, we read the register three times and ensure that the
  1415. * difference between each two consecutive reads is approximately the same, i.e.
  1416. * less than twice the other. Furthermore, any negative difference indicates an
  1417. * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
  1418. * execute, so we have enough precision to compute the ratio of the differences.)
  1419. */
  1420. static u32 get_cycle_time(struct fw_ohci *ohci)
  1421. {
  1422. u32 c0, c1, c2;
  1423. u32 t0, t1, t2;
  1424. s32 diff01, diff12;
  1425. int i;
  1426. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1427. if (ohci->quirks & QUIRK_CYCLE_TIMER) {
  1428. i = 0;
  1429. c1 = c2;
  1430. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1431. do {
  1432. c0 = c1;
  1433. c1 = c2;
  1434. c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
  1435. t0 = cycle_timer_ticks(c0);
  1436. t1 = cycle_timer_ticks(c1);
  1437. t2 = cycle_timer_ticks(c2);
  1438. diff01 = t1 - t0;
  1439. diff12 = t2 - t1;
  1440. } while ((diff01 <= 0 || diff12 <= 0 ||
  1441. diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
  1442. && i++ < 20);
  1443. }
  1444. return c2;
  1445. }
  1446. /*
  1447. * This function has to be called at least every 64 seconds. The bus_time
  1448. * field stores not only the upper 25 bits of the BUS_TIME register but also
  1449. * the most significant bit of the cycle timer in bit 6 so that we can detect
  1450. * changes in this bit.
  1451. */
  1452. static u32 update_bus_time(struct fw_ohci *ohci)
  1453. {
  1454. u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
  1455. if (unlikely(!ohci->bus_time_running)) {
  1456. reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
  1457. ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
  1458. (cycle_time_seconds & 0x40);
  1459. ohci->bus_time_running = true;
  1460. }
  1461. if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
  1462. ohci->bus_time += 0x40;
  1463. return ohci->bus_time | cycle_time_seconds;
  1464. }
  1465. static int get_status_for_port(struct fw_ohci *ohci, int port_index)
  1466. {
  1467. int reg;
  1468. mutex_lock(&ohci->phy_reg_mutex);
  1469. reg = write_phy_reg(ohci, 7, port_index);
  1470. if (reg >= 0)
  1471. reg = read_phy_reg(ohci, 8);
  1472. mutex_unlock(&ohci->phy_reg_mutex);
  1473. if (reg < 0)
  1474. return reg;
  1475. switch (reg & 0x0f) {
  1476. case 0x06:
  1477. return 2; /* is child node (connected to parent node) */
  1478. case 0x0e:
  1479. return 3; /* is parent node (connected to child node) */
  1480. }
  1481. return 1; /* not connected */
  1482. }
  1483. static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
  1484. int self_id_count)
  1485. {
  1486. int i;
  1487. u32 entry;
  1488. for (i = 0; i < self_id_count; i++) {
  1489. entry = ohci->self_id_buffer[i];
  1490. if ((self_id & 0xff000000) == (entry & 0xff000000))
  1491. return -1;
  1492. if ((self_id & 0xff000000) < (entry & 0xff000000))
  1493. return i;
  1494. }
  1495. return i;
  1496. }
  1497. static int initiated_reset(struct fw_ohci *ohci)
  1498. {
  1499. int reg;
  1500. int ret = 0;
  1501. mutex_lock(&ohci->phy_reg_mutex);
  1502. reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
  1503. if (reg >= 0) {
  1504. reg = read_phy_reg(ohci, 8);
  1505. reg |= 0x40;
  1506. reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
  1507. if (reg >= 0) {
  1508. reg = read_phy_reg(ohci, 12); /* read register 12 */
  1509. if (reg >= 0) {
  1510. if ((reg & 0x08) == 0x08) {
  1511. /* bit 3 indicates "initiated reset" */
  1512. ret = 0x2;
  1513. }
  1514. }
  1515. }
  1516. }
  1517. mutex_unlock(&ohci->phy_reg_mutex);
  1518. return ret;
  1519. }
  1520. /*
  1521. * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
  1522. * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
  1523. * Construct the selfID from phy register contents.
  1524. */
  1525. static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
  1526. {
  1527. int reg, i, pos, status;
  1528. /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
  1529. u32 self_id = 0x8040c800;
  1530. reg = reg_read(ohci, OHCI1394_NodeID);
  1531. if (!(reg & OHCI1394_NodeID_idValid)) {
  1532. dev_notice(ohci->card.device,
  1533. "node ID not valid, new bus reset in progress\n");
  1534. return -EBUSY;
  1535. }
  1536. self_id |= ((reg & 0x3f) << 24); /* phy ID */
  1537. reg = ohci_read_phy_reg(&ohci->card, 4);
  1538. if (reg < 0)
  1539. return reg;
  1540. self_id |= ((reg & 0x07) << 8); /* power class */
  1541. reg = ohci_read_phy_reg(&ohci->card, 1);
  1542. if (reg < 0)
  1543. return reg;
  1544. self_id |= ((reg & 0x3f) << 16); /* gap count */
  1545. for (i = 0; i < 3; i++) {
  1546. status = get_status_for_port(ohci, i);
  1547. if (status < 0)
  1548. return status;
  1549. self_id |= ((status & 0x3) << (6 - (i * 2)));
  1550. }
  1551. self_id |= initiated_reset(ohci);
  1552. pos = get_self_id_pos(ohci, self_id, self_id_count);
  1553. if (pos >= 0) {
  1554. memmove(&(ohci->self_id_buffer[pos+1]),
  1555. &(ohci->self_id_buffer[pos]),
  1556. (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
  1557. ohci->self_id_buffer[pos] = self_id;
  1558. self_id_count++;
  1559. }
  1560. return self_id_count;
  1561. }
  1562. static void bus_reset_work(struct work_struct *work)
  1563. {
  1564. struct fw_ohci *ohci =
  1565. container_of(work, struct fw_ohci, bus_reset_work);
  1566. int self_id_count, generation, new_generation, i, j;
  1567. u32 reg;
  1568. void *free_rom = NULL;
  1569. dma_addr_t free_rom_bus = 0;
  1570. bool is_new_root;
  1571. reg = reg_read(ohci, OHCI1394_NodeID);
  1572. if (!(reg & OHCI1394_NodeID_idValid)) {
  1573. dev_notice(ohci->card.device,
  1574. "node ID not valid, new bus reset in progress\n");
  1575. return;
  1576. }
  1577. if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
  1578. dev_notice(ohci->card.device, "malconfigured bus\n");
  1579. return;
  1580. }
  1581. ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
  1582. OHCI1394_NodeID_nodeNumber);
  1583. is_new_root = (reg & OHCI1394_NodeID_root) != 0;
  1584. if (!(ohci->is_root && is_new_root))
  1585. reg_write(ohci, OHCI1394_LinkControlSet,
  1586. OHCI1394_LinkControl_cycleMaster);
  1587. ohci->is_root = is_new_root;
  1588. reg = reg_read(ohci, OHCI1394_SelfIDCount);
  1589. if (reg & OHCI1394_SelfIDCount_selfIDError) {
  1590. dev_notice(ohci->card.device, "inconsistent self IDs\n");
  1591. return;
  1592. }
  1593. /*
  1594. * The count in the SelfIDCount register is the number of
  1595. * bytes in the self ID receive buffer. Since we also receive
  1596. * the inverted quadlets and a header quadlet, we shift one
  1597. * bit extra to get the actual number of self IDs.
  1598. */
  1599. self_id_count = (reg >> 3) & 0xff;
  1600. if (self_id_count > 252) {
  1601. dev_notice(ohci->card.device, "inconsistent self IDs\n");
  1602. return;
  1603. }
  1604. generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
  1605. rmb();
  1606. for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
  1607. if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
  1608. /*
  1609. * If the invalid data looks like a cycle start packet,
  1610. * it's likely to be the result of the cycle master
  1611. * having a wrong gap count. In this case, the self IDs
  1612. * so far are valid and should be processed so that the
  1613. * bus manager can then correct the gap count.
  1614. */
  1615. if (cond_le32_to_cpu(ohci->self_id_cpu[i])
  1616. == 0xffff008f) {
  1617. dev_notice(ohci->card.device,
  1618. "ignoring spurious self IDs\n");
  1619. self_id_count = j;
  1620. break;
  1621. } else {
  1622. dev_notice(ohci->card.device,
  1623. "inconsistent self IDs\n");
  1624. return;
  1625. }
  1626. }
  1627. ohci->self_id_buffer[j] =
  1628. cond_le32_to_cpu(ohci->self_id_cpu[i]);
  1629. }
  1630. if (ohci->quirks & QUIRK_TI_SLLZ059) {
  1631. self_id_count = find_and_insert_self_id(ohci, self_id_count);
  1632. if (self_id_count < 0) {
  1633. dev_notice(ohci->card.device,
  1634. "could not construct local self ID\n");
  1635. return;
  1636. }
  1637. }
  1638. if (self_id_count == 0) {
  1639. dev_notice(ohci->card.device, "inconsistent self IDs\n");
  1640. return;
  1641. }
  1642. rmb();
  1643. /*
  1644. * Check the consistency of the self IDs we just read. The
  1645. * problem we face is that a new bus reset can start while we
  1646. * read out the self IDs from the DMA buffer. If this happens,
  1647. * the DMA buffer will be overwritten with new self IDs and we
  1648. * will read out inconsistent data. The OHCI specification
  1649. * (section 11.2) recommends a technique similar to
  1650. * linux/seqlock.h, where we remember the generation of the
  1651. * self IDs in the buffer before reading them out and compare
  1652. * it to the current generation after reading them out. If
  1653. * the two generations match we know we have a consistent set
  1654. * of self IDs.
  1655. */
  1656. new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
  1657. if (new_generation != generation) {
  1658. dev_notice(ohci->card.device,
  1659. "new bus reset, discarding self ids\n");
  1660. return;
  1661. }
  1662. /* FIXME: Document how the locking works. */
  1663. spin_lock_irq(&ohci->lock);
  1664. ohci->generation = -1; /* prevent AT packet queueing */
  1665. context_stop(&ohci->at_request_ctx);
  1666. context_stop(&ohci->at_response_ctx);
  1667. spin_unlock_irq(&ohci->lock);
  1668. /*
  1669. * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
  1670. * packets in the AT queues and software needs to drain them.
  1671. * Some OHCI 1.1 controllers (JMicron) apparently require this too.
  1672. */
  1673. at_context_flush(&ohci->at_request_ctx);
  1674. at_context_flush(&ohci->at_response_ctx);
  1675. spin_lock_irq(&ohci->lock);
  1676. ohci->generation = generation;
  1677. reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
  1678. if (ohci->quirks & QUIRK_RESET_PACKET)
  1679. ohci->request_generation = generation;
  1680. /*
  1681. * This next bit is unrelated to the AT context stuff but we
  1682. * have to do it under the spinlock also. If a new config rom
  1683. * was set up before this reset, the old one is now no longer
  1684. * in use and we can free it. Update the config rom pointers
  1685. * to point to the current config rom and clear the
  1686. * next_config_rom pointer so a new update can take place.
  1687. */
  1688. if (ohci->next_config_rom != NULL) {
  1689. if (ohci->next_config_rom != ohci->config_rom) {
  1690. free_rom = ohci->config_rom;
  1691. free_rom_bus = ohci->config_rom_bus;
  1692. }
  1693. ohci->config_rom = ohci->next_config_rom;
  1694. ohci->config_rom_bus = ohci->next_config_rom_bus;
  1695. ohci->next_config_rom = NULL;
  1696. /*
  1697. * Restore config_rom image and manually update
  1698. * config_rom registers. Writing the header quadlet
  1699. * will indicate that the config rom is ready, so we
  1700. * do that last.
  1701. */
  1702. reg_write(ohci, OHCI1394_BusOptions,
  1703. be32_to_cpu(ohci->config_rom[2]));
  1704. ohci->config_rom[0] = ohci->next_header;
  1705. reg_write(ohci, OHCI1394_ConfigROMhdr,
  1706. be32_to_cpu(ohci->next_header));
  1707. }
  1708. #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
  1709. reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
  1710. reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
  1711. #endif
  1712. spin_unlock_irq(&ohci->lock);
  1713. if (free_rom)
  1714. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1715. free_rom, free_rom_bus);
  1716. log_selfids(ohci, generation, self_id_count);
  1717. fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
  1718. self_id_count, ohci->self_id_buffer,
  1719. ohci->csr_state_setclear_abdicate);
  1720. ohci->csr_state_setclear_abdicate = false;
  1721. }
  1722. static irqreturn_t irq_handler(int irq, void *data)
  1723. {
  1724. struct fw_ohci *ohci = data;
  1725. u32 event, iso_event;
  1726. int i;
  1727. event = reg_read(ohci, OHCI1394_IntEventClear);
  1728. if (!event || !~event)
  1729. return IRQ_NONE;
  1730. /*
  1731. * busReset and postedWriteErr must not be cleared yet
  1732. * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
  1733. */
  1734. reg_write(ohci, OHCI1394_IntEventClear,
  1735. event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
  1736. log_irqs(ohci, event);
  1737. if (event & OHCI1394_selfIDComplete)
  1738. queue_work(fw_workqueue, &ohci->bus_reset_work);
  1739. if (event & OHCI1394_RQPkt)
  1740. tasklet_schedule(&ohci->ar_request_ctx.tasklet);
  1741. if (event & OHCI1394_RSPkt)
  1742. tasklet_schedule(&ohci->ar_response_ctx.tasklet);
  1743. if (event & OHCI1394_reqTxComplete)
  1744. tasklet_schedule(&ohci->at_request_ctx.tasklet);
  1745. if (event & OHCI1394_respTxComplete)
  1746. tasklet_schedule(&ohci->at_response_ctx.tasklet);
  1747. if (event & OHCI1394_isochRx) {
  1748. iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
  1749. reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
  1750. while (iso_event) {
  1751. i = ffs(iso_event) - 1;
  1752. tasklet_schedule(
  1753. &ohci->ir_context_list[i].context.tasklet);
  1754. iso_event &= ~(1 << i);
  1755. }
  1756. }
  1757. if (event & OHCI1394_isochTx) {
  1758. iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
  1759. reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
  1760. while (iso_event) {
  1761. i = ffs(iso_event) - 1;
  1762. tasklet_schedule(
  1763. &ohci->it_context_list[i].context.tasklet);
  1764. iso_event &= ~(1 << i);
  1765. }
  1766. }
  1767. if (unlikely(event & OHCI1394_regAccessFail))
  1768. dev_err(ohci->card.device, "register access failure\n");
  1769. if (unlikely(event & OHCI1394_postedWriteErr)) {
  1770. reg_read(ohci, OHCI1394_PostedWriteAddressHi);
  1771. reg_read(ohci, OHCI1394_PostedWriteAddressLo);
  1772. reg_write(ohci, OHCI1394_IntEventClear,
  1773. OHCI1394_postedWriteErr);
  1774. if (printk_ratelimit())
  1775. dev_err(ohci->card.device, "PCI posted write error\n");
  1776. }
  1777. if (unlikely(event & OHCI1394_cycleTooLong)) {
  1778. if (printk_ratelimit())
  1779. dev_notice(ohci->card.device,
  1780. "isochronous cycle too long\n");
  1781. reg_write(ohci, OHCI1394_LinkControlSet,
  1782. OHCI1394_LinkControl_cycleMaster);
  1783. }
  1784. if (unlikely(event & OHCI1394_cycleInconsistent)) {
  1785. /*
  1786. * We need to clear this event bit in order to make
  1787. * cycleMatch isochronous I/O work. In theory we should
  1788. * stop active cycleMatch iso contexts now and restart
  1789. * them at least two cycles later. (FIXME?)
  1790. */
  1791. if (printk_ratelimit())
  1792. dev_notice(ohci->card.device,
  1793. "isochronous cycle inconsistent\n");
  1794. }
  1795. if (unlikely(event & OHCI1394_unrecoverableError))
  1796. handle_dead_contexts(ohci);
  1797. if (event & OHCI1394_cycle64Seconds) {
  1798. spin_lock(&ohci->lock);
  1799. update_bus_time(ohci);
  1800. spin_unlock(&ohci->lock);
  1801. } else
  1802. flush_writes(ohci);
  1803. return IRQ_HANDLED;
  1804. }
  1805. static int software_reset(struct fw_ohci *ohci)
  1806. {
  1807. u32 val;
  1808. int i;
  1809. reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
  1810. for (i = 0; i < 500; i++) {
  1811. val = reg_read(ohci, OHCI1394_HCControlSet);
  1812. if (!~val)
  1813. return -ENODEV; /* Card was ejected. */
  1814. if (!(val & OHCI1394_HCControl_softReset))
  1815. return 0;
  1816. msleep(1);
  1817. }
  1818. return -EBUSY;
  1819. }
  1820. static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
  1821. {
  1822. size_t size = length * 4;
  1823. memcpy(dest, src, size);
  1824. if (size < CONFIG_ROM_SIZE)
  1825. memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
  1826. }
  1827. static int configure_1394a_enhancements(struct fw_ohci *ohci)
  1828. {
  1829. bool enable_1394a;
  1830. int ret, clear, set, offset;
  1831. /* Check if the driver should configure link and PHY. */
  1832. if (!(reg_read(ohci, OHCI1394_HCControlSet) &
  1833. OHCI1394_HCControl_programPhyEnable))
  1834. return 0;
  1835. /* Paranoia: check whether the PHY supports 1394a, too. */
  1836. enable_1394a = false;
  1837. ret = read_phy_reg(ohci, 2);
  1838. if (ret < 0)
  1839. return ret;
  1840. if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
  1841. ret = read_paged_phy_reg(ohci, 1, 8);
  1842. if (ret < 0)
  1843. return ret;
  1844. if (ret >= 1)
  1845. enable_1394a = true;
  1846. }
  1847. if (ohci->quirks & QUIRK_NO_1394A)
  1848. enable_1394a = false;
  1849. /* Configure PHY and link consistently. */
  1850. if (enable_1394a) {
  1851. clear = 0;
  1852. set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
  1853. } else {
  1854. clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
  1855. set = 0;
  1856. }
  1857. ret = update_phy_reg(ohci, 5, clear, set);
  1858. if (ret < 0)
  1859. return ret;
  1860. if (enable_1394a)
  1861. offset = OHCI1394_HCControlSet;
  1862. else
  1863. offset = OHCI1394_HCControlClear;
  1864. reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
  1865. /* Clean up: configuration has been taken care of. */
  1866. reg_write(ohci, OHCI1394_HCControlClear,
  1867. OHCI1394_HCControl_programPhyEnable);
  1868. return 0;
  1869. }
  1870. static int probe_tsb41ba3d(struct fw_ohci *ohci)
  1871. {
  1872. /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
  1873. static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
  1874. int reg, i;
  1875. reg = read_phy_reg(ohci, 2);
  1876. if (reg < 0)
  1877. return reg;
  1878. if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
  1879. return 0;
  1880. for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
  1881. reg = read_paged_phy_reg(ohci, 1, i + 10);
  1882. if (reg < 0)
  1883. return reg;
  1884. if (reg != id[i])
  1885. return 0;
  1886. }
  1887. return 1;
  1888. }
  1889. static int ohci_enable(struct fw_card *card,
  1890. const __be32 *config_rom, size_t length)
  1891. {
  1892. struct fw_ohci *ohci = fw_ohci(card);
  1893. struct pci_dev *dev = to_pci_dev(card->device);
  1894. u32 lps, version, irqs;
  1895. int i, ret;
  1896. if (software_reset(ohci)) {
  1897. dev_err(card->device, "failed to reset ohci card\n");
  1898. return -EBUSY;
  1899. }
  1900. /*
  1901. * Now enable LPS, which we need in order to start accessing
  1902. * most of the registers. In fact, on some cards (ALI M5251),
  1903. * accessing registers in the SClk domain without LPS enabled
  1904. * will lock up the machine. Wait 50msec to make sure we have
  1905. * full link enabled. However, with some cards (well, at least
  1906. * a JMicron PCIe card), we have to try again sometimes.
  1907. */
  1908. reg_write(ohci, OHCI1394_HCControlSet,
  1909. OHCI1394_HCControl_LPS |
  1910. OHCI1394_HCControl_postedWriteEnable);
  1911. flush_writes(ohci);
  1912. for (lps = 0, i = 0; !lps && i < 3; i++) {
  1913. msleep(50);
  1914. lps = reg_read(ohci, OHCI1394_HCControlSet) &
  1915. OHCI1394_HCControl_LPS;
  1916. }
  1917. if (!lps) {
  1918. dev_err(card->device, "failed to set Link Power Status\n");
  1919. return -EIO;
  1920. }
  1921. if (ohci->quirks & QUIRK_TI_SLLZ059) {
  1922. ret = probe_tsb41ba3d(ohci);
  1923. if (ret < 0)
  1924. return ret;
  1925. if (ret)
  1926. dev_notice(card->device, "local TSB41BA3D phy\n");
  1927. else
  1928. ohci->quirks &= ~QUIRK_TI_SLLZ059;
  1929. }
  1930. reg_write(ohci, OHCI1394_HCControlClear,
  1931. OHCI1394_HCControl_noByteSwapData);
  1932. reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
  1933. reg_write(ohci, OHCI1394_LinkControlSet,
  1934. OHCI1394_LinkControl_cycleTimerEnable |
  1935. OHCI1394_LinkControl_cycleMaster);
  1936. reg_write(ohci, OHCI1394_ATRetries,
  1937. OHCI1394_MAX_AT_REQ_RETRIES |
  1938. (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
  1939. (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
  1940. (200 << 16));
  1941. ohci->bus_time_running = false;
  1942. for (i = 0; i < 32; i++)
  1943. if (ohci->ir_context_support & (1 << i))
  1944. reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
  1945. IR_CONTEXT_MULTI_CHANNEL_MODE);
  1946. version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
  1947. if (version >= OHCI_VERSION_1_1) {
  1948. reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
  1949. 0xfffffffe);
  1950. card->broadcast_channel_auto_allocated = true;
  1951. }
  1952. /* Get implemented bits of the priority arbitration request counter. */
  1953. reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
  1954. ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
  1955. reg_write(ohci, OHCI1394_FairnessControl, 0);
  1956. card->priority_budget_implemented = ohci->pri_req_max != 0;
  1957. reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
  1958. reg_write(ohci, OHCI1394_IntEventClear, ~0);
  1959. reg_write(ohci, OHCI1394_IntMaskClear, ~0);
  1960. ret = configure_1394a_enhancements(ohci);
  1961. if (ret < 0)
  1962. return ret;
  1963. /* Activate link_on bit and contender bit in our self ID packets.*/
  1964. ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
  1965. if (ret < 0)
  1966. return ret;
  1967. /*
  1968. * When the link is not yet enabled, the atomic config rom
  1969. * update mechanism described below in ohci_set_config_rom()
  1970. * is not active. We have to update ConfigRomHeader and
  1971. * BusOptions manually, and the write to ConfigROMmap takes
  1972. * effect immediately. We tie this to the enabling of the
  1973. * link, so we have a valid config rom before enabling - the
  1974. * OHCI requires that ConfigROMhdr and BusOptions have valid
  1975. * values before enabling.
  1976. *
  1977. * However, when the ConfigROMmap is written, some controllers
  1978. * always read back quadlets 0 and 2 from the config rom to
  1979. * the ConfigRomHeader and BusOptions registers on bus reset.
  1980. * They shouldn't do that in this initial case where the link
  1981. * isn't enabled. This means we have to use the same
  1982. * workaround here, setting the bus header to 0 and then write
  1983. * the right values in the bus reset tasklet.
  1984. */
  1985. if (config_rom) {
  1986. ohci->next_config_rom =
  1987. dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  1988. &ohci->next_config_rom_bus,
  1989. GFP_KERNEL);
  1990. if (ohci->next_config_rom == NULL)
  1991. return -ENOMEM;
  1992. copy_config_rom(ohci->next_config_rom, config_rom, length);
  1993. } else {
  1994. /*
  1995. * In the suspend case, config_rom is NULL, which
  1996. * means that we just reuse the old config rom.
  1997. */
  1998. ohci->next_config_rom = ohci->config_rom;
  1999. ohci->next_config_rom_bus = ohci->config_rom_bus;
  2000. }
  2001. ohci->next_header = ohci->next_config_rom[0];
  2002. ohci->next_config_rom[0] = 0;
  2003. reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
  2004. reg_write(ohci, OHCI1394_BusOptions,
  2005. be32_to_cpu(ohci->next_config_rom[2]));
  2006. reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
  2007. reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
  2008. if (!(ohci->quirks & QUIRK_NO_MSI))
  2009. pci_enable_msi(dev);
  2010. if (request_irq(dev->irq, irq_handler,
  2011. pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
  2012. ohci_driver_name, ohci)) {
  2013. dev_err(card->device, "failed to allocate interrupt %d\n",
  2014. dev->irq);
  2015. pci_disable_msi(dev);
  2016. if (config_rom) {
  2017. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  2018. ohci->next_config_rom,
  2019. ohci->next_config_rom_bus);
  2020. ohci->next_config_rom = NULL;
  2021. }
  2022. return -EIO;
  2023. }
  2024. irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
  2025. OHCI1394_RQPkt | OHCI1394_RSPkt |
  2026. OHCI1394_isochTx | OHCI1394_isochRx |
  2027. OHCI1394_postedWriteErr |
  2028. OHCI1394_selfIDComplete |
  2029. OHCI1394_regAccessFail |
  2030. OHCI1394_cycleInconsistent |
  2031. OHCI1394_unrecoverableError |
  2032. OHCI1394_cycleTooLong |
  2033. OHCI1394_masterIntEnable;
  2034. if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
  2035. irqs |= OHCI1394_busReset;
  2036. reg_write(ohci, OHCI1394_IntMaskSet, irqs);
  2037. reg_write(ohci, OHCI1394_HCControlSet,
  2038. OHCI1394_HCControl_linkEnable |
  2039. OHCI1394_HCControl_BIBimageValid);
  2040. reg_write(ohci, OHCI1394_LinkControlSet,
  2041. OHCI1394_LinkControl_rcvSelfID |
  2042. OHCI1394_LinkControl_rcvPhyPkt);
  2043. ar_context_run(&ohci->ar_request_ctx);
  2044. ar_context_run(&ohci->ar_response_ctx);
  2045. flush_writes(ohci);
  2046. /* We are ready to go, reset bus to finish initialization. */
  2047. fw_schedule_bus_reset(&ohci->card, false, true);
  2048. return 0;
  2049. }
  2050. static int ohci_set_config_rom(struct fw_card *card,
  2051. const __be32 *config_rom, size_t length)
  2052. {
  2053. struct fw_ohci *ohci;
  2054. __be32 *next_config_rom;
  2055. dma_addr_t uninitialized_var(next_config_rom_bus);
  2056. ohci = fw_ohci(card);
  2057. /*
  2058. * When the OHCI controller is enabled, the config rom update
  2059. * mechanism is a bit tricky, but easy enough to use. See
  2060. * section 5.5.6 in the OHCI specification.
  2061. *
  2062. * The OHCI controller caches the new config rom address in a
  2063. * shadow register (ConfigROMmapNext) and needs a bus reset
  2064. * for the changes to take place. When the bus reset is
  2065. * detected, the controller loads the new values for the
  2066. * ConfigRomHeader and BusOptions registers from the specified
  2067. * config rom and loads ConfigROMmap from the ConfigROMmapNext
  2068. * shadow register. All automatically and atomically.
  2069. *
  2070. * Now, there's a twist to this story. The automatic load of
  2071. * ConfigRomHeader and BusOptions doesn't honor the
  2072. * noByteSwapData bit, so with a be32 config rom, the
  2073. * controller will load be32 values in to these registers
  2074. * during the atomic update, even on litte endian
  2075. * architectures. The workaround we use is to put a 0 in the
  2076. * header quadlet; 0 is endian agnostic and means that the
  2077. * config rom isn't ready yet. In the bus reset tasklet we
  2078. * then set up the real values for the two registers.
  2079. *
  2080. * We use ohci->lock to avoid racing with the code that sets
  2081. * ohci->next_config_rom to NULL (see bus_reset_work).
  2082. */
  2083. next_config_rom =
  2084. dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  2085. &next_config_rom_bus, GFP_KERNEL);
  2086. if (next_config_rom == NULL)
  2087. return -ENOMEM;
  2088. spin_lock_irq(&ohci->lock);
  2089. /*
  2090. * If there is not an already pending config_rom update,
  2091. * push our new allocation into the ohci->next_config_rom
  2092. * and then mark the local variable as null so that we
  2093. * won't deallocate the new buffer.
  2094. *
  2095. * OTOH, if there is a pending config_rom update, just
  2096. * use that buffer with the new config_rom data, and
  2097. * let this routine free the unused DMA allocation.
  2098. */
  2099. if (ohci->next_config_rom == NULL) {
  2100. ohci->next_config_rom = next_config_rom;
  2101. ohci->next_config_rom_bus = next_config_rom_bus;
  2102. next_config_rom = NULL;
  2103. }
  2104. copy_config_rom(ohci->next_config_rom, config_rom, length);
  2105. ohci->next_header = config_rom[0];
  2106. ohci->next_config_rom[0] = 0;
  2107. reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
  2108. spin_unlock_irq(&ohci->lock);
  2109. /* If we didn't use the DMA allocation, delete it. */
  2110. if (next_config_rom != NULL)
  2111. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  2112. next_config_rom, next_config_rom_bus);
  2113. /*
  2114. * Now initiate a bus reset to have the changes take
  2115. * effect. We clean up the old config rom memory and DMA
  2116. * mappings in the bus reset tasklet, since the OHCI
  2117. * controller could need to access it before the bus reset
  2118. * takes effect.
  2119. */
  2120. fw_schedule_bus_reset(&ohci->card, true, true);
  2121. return 0;
  2122. }
  2123. static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
  2124. {
  2125. struct fw_ohci *ohci = fw_ohci(card);
  2126. at_context_transmit(&ohci->at_request_ctx, packet);
  2127. }
  2128. static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
  2129. {
  2130. struct fw_ohci *ohci = fw_ohci(card);
  2131. at_context_transmit(&ohci->at_response_ctx, packet);
  2132. }
  2133. static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
  2134. {
  2135. struct fw_ohci *ohci = fw_ohci(card);
  2136. struct context *ctx = &ohci->at_request_ctx;
  2137. struct driver_data *driver_data = packet->driver_data;
  2138. int ret = -ENOENT;
  2139. tasklet_disable(&ctx->tasklet);
  2140. if (packet->ack != 0)
  2141. goto out;
  2142. if (packet->payload_mapped)
  2143. dma_unmap_single(ohci->card.device, packet->payload_bus,
  2144. packet->payload_length, DMA_TO_DEVICE);
  2145. log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
  2146. driver_data->packet = NULL;
  2147. packet->ack = RCODE_CANCELLED;
  2148. packet->callback(packet, &ohci->card, packet->ack);
  2149. ret = 0;
  2150. out:
  2151. tasklet_enable(&ctx->tasklet);
  2152. return ret;
  2153. }
  2154. static int ohci_enable_phys_dma(struct fw_card *card,
  2155. int node_id, int generation)
  2156. {
  2157. #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
  2158. return 0;
  2159. #else
  2160. struct fw_ohci *ohci = fw_ohci(card);
  2161. unsigned long flags;
  2162. int n, ret = 0;
  2163. /*
  2164. * FIXME: Make sure this bitmask is cleared when we clear the busReset
  2165. * interrupt bit. Clear physReqResourceAllBuses on bus reset.
  2166. */
  2167. spin_lock_irqsave(&ohci->lock, flags);
  2168. if (ohci->generation != generation) {
  2169. ret = -ESTALE;
  2170. goto out;
  2171. }
  2172. /*
  2173. * Note, if the node ID contains a non-local bus ID, physical DMA is
  2174. * enabled for _all_ nodes on remote buses.
  2175. */
  2176. n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
  2177. if (n < 32)
  2178. reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
  2179. else
  2180. reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
  2181. flush_writes(ohci);
  2182. out:
  2183. spin_unlock_irqrestore(&ohci->lock, flags);
  2184. return ret;
  2185. #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
  2186. }
  2187. static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
  2188. {
  2189. struct fw_ohci *ohci = fw_ohci(card);
  2190. unsigned long flags;
  2191. u32 value;
  2192. switch (csr_offset) {
  2193. case CSR_STATE_CLEAR:
  2194. case CSR_STATE_SET:
  2195. if (ohci->is_root &&
  2196. (reg_read(ohci, OHCI1394_LinkControlSet) &
  2197. OHCI1394_LinkControl_cycleMaster))
  2198. value = CSR_STATE_BIT_CMSTR;
  2199. else
  2200. value = 0;
  2201. if (ohci->csr_state_setclear_abdicate)
  2202. value |= CSR_STATE_BIT_ABDICATE;
  2203. return value;
  2204. case CSR_NODE_IDS:
  2205. return reg_read(ohci, OHCI1394_NodeID) << 16;
  2206. case CSR_CYCLE_TIME:
  2207. return get_cycle_time(ohci);
  2208. case CSR_BUS_TIME:
  2209. /*
  2210. * We might be called just after the cycle timer has wrapped
  2211. * around but just before the cycle64Seconds handler, so we
  2212. * better check here, too, if the bus time needs to be updated.
  2213. */
  2214. spin_lock_irqsave(&ohci->lock, flags);
  2215. value = update_bus_time(ohci);
  2216. spin_unlock_irqrestore(&ohci->lock, flags);
  2217. return value;
  2218. case CSR_BUSY_TIMEOUT:
  2219. value = reg_read(ohci, OHCI1394_ATRetries);
  2220. return (value >> 4) & 0x0ffff00f;
  2221. case CSR_PRIORITY_BUDGET:
  2222. return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
  2223. (ohci->pri_req_max << 8);
  2224. default:
  2225. WARN_ON(1);
  2226. return 0;
  2227. }
  2228. }
  2229. static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
  2230. {
  2231. struct fw_ohci *ohci = fw_ohci(card);
  2232. unsigned long flags;
  2233. switch (csr_offset) {
  2234. case CSR_STATE_CLEAR:
  2235. if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
  2236. reg_write(ohci, OHCI1394_LinkControlClear,
  2237. OHCI1394_LinkControl_cycleMaster);
  2238. flush_writes(ohci);
  2239. }
  2240. if (value & CSR_STATE_BIT_ABDICATE)
  2241. ohci->csr_state_setclear_abdicate = false;
  2242. break;
  2243. case CSR_STATE_SET:
  2244. if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
  2245. reg_write(ohci, OHCI1394_LinkControlSet,
  2246. OHCI1394_LinkControl_cycleMaster);
  2247. flush_writes(ohci);
  2248. }
  2249. if (value & CSR_STATE_BIT_ABDICATE)
  2250. ohci->csr_state_setclear_abdicate = true;
  2251. break;
  2252. case CSR_NODE_IDS:
  2253. reg_write(ohci, OHCI1394_NodeID, value >> 16);
  2254. flush_writes(ohci);
  2255. break;
  2256. case CSR_CYCLE_TIME:
  2257. reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
  2258. reg_write(ohci, OHCI1394_IntEventSet,
  2259. OHCI1394_cycleInconsistent);
  2260. flush_writes(ohci);
  2261. break;
  2262. case CSR_BUS_TIME:
  2263. spin_lock_irqsave(&ohci->lock, flags);
  2264. ohci->bus_time = (update_bus_time(ohci) & 0x40) |
  2265. (value & ~0x7f);
  2266. spin_unlock_irqrestore(&ohci->lock, flags);
  2267. break;
  2268. case CSR_BUSY_TIMEOUT:
  2269. value = (value & 0xf) | ((value & 0xf) << 4) |
  2270. ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
  2271. reg_write(ohci, OHCI1394_ATRetries, value);
  2272. flush_writes(ohci);
  2273. break;
  2274. case CSR_PRIORITY_BUDGET:
  2275. reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
  2276. flush_writes(ohci);
  2277. break;
  2278. default:
  2279. WARN_ON(1);
  2280. break;
  2281. }
  2282. }
  2283. static void flush_iso_completions(struct iso_context *ctx)
  2284. {
  2285. ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
  2286. ctx->header_length, ctx->header,
  2287. ctx->base.callback_data);
  2288. ctx->header_length = 0;
  2289. }
  2290. static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
  2291. {
  2292. u32 *ctx_hdr;
  2293. if (ctx->header_length + ctx->base.header_size > PAGE_SIZE)
  2294. flush_iso_completions(ctx);
  2295. ctx_hdr = ctx->header + ctx->header_length;
  2296. ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
  2297. /*
  2298. * The two iso header quadlets are byteswapped to little
  2299. * endian by the controller, but we want to present them
  2300. * as big endian for consistency with the bus endianness.
  2301. */
  2302. if (ctx->base.header_size > 0)
  2303. ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
  2304. if (ctx->base.header_size > 4)
  2305. ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
  2306. if (ctx->base.header_size > 8)
  2307. memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
  2308. ctx->header_length += ctx->base.header_size;
  2309. }
  2310. static int handle_ir_packet_per_buffer(struct context *context,
  2311. struct descriptor *d,
  2312. struct descriptor *last)
  2313. {
  2314. struct iso_context *ctx =
  2315. container_of(context, struct iso_context, context);
  2316. struct descriptor *pd;
  2317. u32 buffer_dma;
  2318. for (pd = d; pd <= last; pd++)
  2319. if (pd->transfer_status)
  2320. break;
  2321. if (pd > last)
  2322. /* Descriptor(s) not done yet, stop iteration */
  2323. return 0;
  2324. while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
  2325. d++;
  2326. buffer_dma = le32_to_cpu(d->data_address);
  2327. dma_sync_single_range_for_cpu(context->ohci->card.device,
  2328. buffer_dma & PAGE_MASK,
  2329. buffer_dma & ~PAGE_MASK,
  2330. le16_to_cpu(d->req_count),
  2331. DMA_FROM_DEVICE);
  2332. }
  2333. copy_iso_headers(ctx, (u32 *) (last + 1));
  2334. if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
  2335. flush_iso_completions(ctx);
  2336. return 1;
  2337. }
  2338. /* d == last because each descriptor block is only a single descriptor. */
  2339. static int handle_ir_buffer_fill(struct context *context,
  2340. struct descriptor *d,
  2341. struct descriptor *last)
  2342. {
  2343. struct iso_context *ctx =
  2344. container_of(context, struct iso_context, context);
  2345. unsigned int req_count, res_count, completed;
  2346. u32 buffer_dma;
  2347. req_count = le16_to_cpu(last->req_count);
  2348. res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
  2349. completed = req_count - res_count;
  2350. buffer_dma = le32_to_cpu(last->data_address);
  2351. if (completed > 0) {
  2352. ctx->mc_buffer_bus = buffer_dma;
  2353. ctx->mc_completed = completed;
  2354. }
  2355. if (res_count != 0)
  2356. /* Descriptor(s) not done yet, stop iteration */
  2357. return 0;
  2358. dma_sync_single_range_for_cpu(context->ohci->card.device,
  2359. buffer_dma & PAGE_MASK,
  2360. buffer_dma & ~PAGE_MASK,
  2361. completed, DMA_FROM_DEVICE);
  2362. if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
  2363. ctx->base.callback.mc(&ctx->base,
  2364. buffer_dma + completed,
  2365. ctx->base.callback_data);
  2366. ctx->mc_completed = 0;
  2367. }
  2368. return 1;
  2369. }
  2370. static void flush_ir_buffer_fill(struct iso_context *ctx)
  2371. {
  2372. dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
  2373. ctx->mc_buffer_bus & PAGE_MASK,
  2374. ctx->mc_buffer_bus & ~PAGE_MASK,
  2375. ctx->mc_completed, DMA_FROM_DEVICE);
  2376. ctx->base.callback.mc(&ctx->base,
  2377. ctx->mc_buffer_bus + ctx->mc_completed,
  2378. ctx->base.callback_data);
  2379. ctx->mc_completed = 0;
  2380. }
  2381. static inline void sync_it_packet_for_cpu(struct context *context,
  2382. struct descriptor *pd)
  2383. {
  2384. __le16 control;
  2385. u32 buffer_dma;
  2386. /* only packets beginning with OUTPUT_MORE* have data buffers */
  2387. if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
  2388. return;
  2389. /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
  2390. pd += 2;
  2391. /*
  2392. * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
  2393. * data buffer is in the context program's coherent page and must not
  2394. * be synced.
  2395. */
  2396. if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
  2397. (context->current_bus & PAGE_MASK)) {
  2398. if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
  2399. return;
  2400. pd++;
  2401. }
  2402. do {
  2403. buffer_dma = le32_to_cpu(pd->data_address);
  2404. dma_sync_single_range_for_cpu(context->ohci->card.device,
  2405. buffer_dma & PAGE_MASK,
  2406. buffer_dma & ~PAGE_MASK,
  2407. le16_to_cpu(pd->req_count),
  2408. DMA_TO_DEVICE);
  2409. control = pd->control;
  2410. pd++;
  2411. } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
  2412. }
  2413. static int handle_it_packet(struct context *context,
  2414. struct descriptor *d,
  2415. struct descriptor *last)
  2416. {
  2417. struct iso_context *ctx =
  2418. container_of(context, struct iso_context, context);
  2419. struct descriptor *pd;
  2420. __be32 *ctx_hdr;
  2421. for (pd = d; pd <= last; pd++)
  2422. if (pd->transfer_status)
  2423. break;
  2424. if (pd > last)
  2425. /* Descriptor(s) not done yet, stop iteration */
  2426. return 0;
  2427. sync_it_packet_for_cpu(context, d);
  2428. if (ctx->header_length + 4 > PAGE_SIZE)
  2429. flush_iso_completions(ctx);
  2430. ctx_hdr = ctx->header + ctx->header_length;
  2431. ctx->last_timestamp = le16_to_cpu(last->res_count);
  2432. /* Present this value as big-endian to match the receive code */
  2433. *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
  2434. le16_to_cpu(pd->res_count));
  2435. ctx->header_length += 4;
  2436. if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
  2437. flush_iso_completions(ctx);
  2438. return 1;
  2439. }
  2440. static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
  2441. {
  2442. u32 hi = channels >> 32, lo = channels;
  2443. reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
  2444. reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
  2445. reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
  2446. reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
  2447. mmiowb();
  2448. ohci->mc_channels = channels;
  2449. }
  2450. static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
  2451. int type, int channel, size_t header_size)
  2452. {
  2453. struct fw_ohci *ohci = fw_ohci(card);
  2454. struct iso_context *uninitialized_var(ctx);
  2455. descriptor_callback_t uninitialized_var(callback);
  2456. u64 *uninitialized_var(channels);
  2457. u32 *uninitialized_var(mask), uninitialized_var(regs);
  2458. int index, ret = -EBUSY;
  2459. spin_lock_irq(&ohci->lock);
  2460. switch (type) {
  2461. case FW_ISO_CONTEXT_TRANSMIT:
  2462. mask = &ohci->it_context_mask;
  2463. callback = handle_it_packet;
  2464. index = ffs(*mask) - 1;
  2465. if (index >= 0) {
  2466. *mask &= ~(1 << index);
  2467. regs = OHCI1394_IsoXmitContextBase(index);
  2468. ctx = &ohci->it_context_list[index];
  2469. }
  2470. break;
  2471. case FW_ISO_CONTEXT_RECEIVE:
  2472. channels = &ohci->ir_context_channels;
  2473. mask = &ohci->ir_context_mask;
  2474. callback = handle_ir_packet_per_buffer;
  2475. index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
  2476. if (index >= 0) {
  2477. *channels &= ~(1ULL << channel);
  2478. *mask &= ~(1 << index);
  2479. regs = OHCI1394_IsoRcvContextBase(index);
  2480. ctx = &ohci->ir_context_list[index];
  2481. }
  2482. break;
  2483. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2484. mask = &ohci->ir_context_mask;
  2485. callback = handle_ir_buffer_fill;
  2486. index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
  2487. if (index >= 0) {
  2488. ohci->mc_allocated = true;
  2489. *mask &= ~(1 << index);
  2490. regs = OHCI1394_IsoRcvContextBase(index);
  2491. ctx = &ohci->ir_context_list[index];
  2492. }
  2493. break;
  2494. default:
  2495. index = -1;
  2496. ret = -ENOSYS;
  2497. }
  2498. spin_unlock_irq(&ohci->lock);
  2499. if (index < 0)
  2500. return ERR_PTR(ret);
  2501. memset(ctx, 0, sizeof(*ctx));
  2502. ctx->header_length = 0;
  2503. ctx->header = (void *) __get_free_page(GFP_KERNEL);
  2504. if (ctx->header == NULL) {
  2505. ret = -ENOMEM;
  2506. goto out;
  2507. }
  2508. ret = context_init(&ctx->context, ohci, regs, callback);
  2509. if (ret < 0)
  2510. goto out_with_header;
  2511. if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
  2512. set_multichannel_mask(ohci, 0);
  2513. ctx->mc_completed = 0;
  2514. }
  2515. return &ctx->base;
  2516. out_with_header:
  2517. free_page((unsigned long)ctx->header);
  2518. out:
  2519. spin_lock_irq(&ohci->lock);
  2520. switch (type) {
  2521. case FW_ISO_CONTEXT_RECEIVE:
  2522. *channels |= 1ULL << channel;
  2523. break;
  2524. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2525. ohci->mc_allocated = false;
  2526. break;
  2527. }
  2528. *mask |= 1 << index;
  2529. spin_unlock_irq(&ohci->lock);
  2530. return ERR_PTR(ret);
  2531. }
  2532. static int ohci_start_iso(struct fw_iso_context *base,
  2533. s32 cycle, u32 sync, u32 tags)
  2534. {
  2535. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2536. struct fw_ohci *ohci = ctx->context.ohci;
  2537. u32 control = IR_CONTEXT_ISOCH_HEADER, match;
  2538. int index;
  2539. /* the controller cannot start without any queued packets */
  2540. if (ctx->context.last->branch_address == 0)
  2541. return -ENODATA;
  2542. switch (ctx->base.type) {
  2543. case FW_ISO_CONTEXT_TRANSMIT:
  2544. index = ctx - ohci->it_context_list;
  2545. match = 0;
  2546. if (cycle >= 0)
  2547. match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
  2548. (cycle & 0x7fff) << 16;
  2549. reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
  2550. reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
  2551. context_run(&ctx->context, match);
  2552. break;
  2553. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2554. control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
  2555. /* fall through */
  2556. case FW_ISO_CONTEXT_RECEIVE:
  2557. index = ctx - ohci->ir_context_list;
  2558. match = (tags << 28) | (sync << 8) | ctx->base.channel;
  2559. if (cycle >= 0) {
  2560. match |= (cycle & 0x07fff) << 12;
  2561. control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
  2562. }
  2563. reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
  2564. reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
  2565. reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
  2566. context_run(&ctx->context, control);
  2567. ctx->sync = sync;
  2568. ctx->tags = tags;
  2569. break;
  2570. }
  2571. return 0;
  2572. }
  2573. static int ohci_stop_iso(struct fw_iso_context *base)
  2574. {
  2575. struct fw_ohci *ohci = fw_ohci(base->card);
  2576. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2577. int index;
  2578. switch (ctx->base.type) {
  2579. case FW_ISO_CONTEXT_TRANSMIT:
  2580. index = ctx - ohci->it_context_list;
  2581. reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
  2582. break;
  2583. case FW_ISO_CONTEXT_RECEIVE:
  2584. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2585. index = ctx - ohci->ir_context_list;
  2586. reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
  2587. break;
  2588. }
  2589. flush_writes(ohci);
  2590. context_stop(&ctx->context);
  2591. tasklet_kill(&ctx->context.tasklet);
  2592. return 0;
  2593. }
  2594. static void ohci_free_iso_context(struct fw_iso_context *base)
  2595. {
  2596. struct fw_ohci *ohci = fw_ohci(base->card);
  2597. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2598. unsigned long flags;
  2599. int index;
  2600. ohci_stop_iso(base);
  2601. context_release(&ctx->context);
  2602. free_page((unsigned long)ctx->header);
  2603. spin_lock_irqsave(&ohci->lock, flags);
  2604. switch (base->type) {
  2605. case FW_ISO_CONTEXT_TRANSMIT:
  2606. index = ctx - ohci->it_context_list;
  2607. ohci->it_context_mask |= 1 << index;
  2608. break;
  2609. case FW_ISO_CONTEXT_RECEIVE:
  2610. index = ctx - ohci->ir_context_list;
  2611. ohci->ir_context_mask |= 1 << index;
  2612. ohci->ir_context_channels |= 1ULL << base->channel;
  2613. break;
  2614. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2615. index = ctx - ohci->ir_context_list;
  2616. ohci->ir_context_mask |= 1 << index;
  2617. ohci->ir_context_channels |= ohci->mc_channels;
  2618. ohci->mc_channels = 0;
  2619. ohci->mc_allocated = false;
  2620. break;
  2621. }
  2622. spin_unlock_irqrestore(&ohci->lock, flags);
  2623. }
  2624. static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
  2625. {
  2626. struct fw_ohci *ohci = fw_ohci(base->card);
  2627. unsigned long flags;
  2628. int ret;
  2629. switch (base->type) {
  2630. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2631. spin_lock_irqsave(&ohci->lock, flags);
  2632. /* Don't allow multichannel to grab other contexts' channels. */
  2633. if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
  2634. *channels = ohci->ir_context_channels;
  2635. ret = -EBUSY;
  2636. } else {
  2637. set_multichannel_mask(ohci, *channels);
  2638. ret = 0;
  2639. }
  2640. spin_unlock_irqrestore(&ohci->lock, flags);
  2641. break;
  2642. default:
  2643. ret = -EINVAL;
  2644. }
  2645. return ret;
  2646. }
  2647. #ifdef CONFIG_PM
  2648. static void ohci_resume_iso_dma(struct fw_ohci *ohci)
  2649. {
  2650. int i;
  2651. struct iso_context *ctx;
  2652. for (i = 0 ; i < ohci->n_ir ; i++) {
  2653. ctx = &ohci->ir_context_list[i];
  2654. if (ctx->context.running)
  2655. ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
  2656. }
  2657. for (i = 0 ; i < ohci->n_it ; i++) {
  2658. ctx = &ohci->it_context_list[i];
  2659. if (ctx->context.running)
  2660. ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
  2661. }
  2662. }
  2663. #endif
  2664. static int queue_iso_transmit(struct iso_context *ctx,
  2665. struct fw_iso_packet *packet,
  2666. struct fw_iso_buffer *buffer,
  2667. unsigned long payload)
  2668. {
  2669. struct descriptor *d, *last, *pd;
  2670. struct fw_iso_packet *p;
  2671. __le32 *header;
  2672. dma_addr_t d_bus, page_bus;
  2673. u32 z, header_z, payload_z, irq;
  2674. u32 payload_index, payload_end_index, next_page_index;
  2675. int page, end_page, i, length, offset;
  2676. p = packet;
  2677. payload_index = payload;
  2678. if (p->skip)
  2679. z = 1;
  2680. else
  2681. z = 2;
  2682. if (p->header_length > 0)
  2683. z++;
  2684. /* Determine the first page the payload isn't contained in. */
  2685. end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
  2686. if (p->payload_length > 0)
  2687. payload_z = end_page - (payload_index >> PAGE_SHIFT);
  2688. else
  2689. payload_z = 0;
  2690. z += payload_z;
  2691. /* Get header size in number of descriptors. */
  2692. header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
  2693. d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
  2694. if (d == NULL)
  2695. return -ENOMEM;
  2696. if (!p->skip) {
  2697. d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
  2698. d[0].req_count = cpu_to_le16(8);
  2699. /*
  2700. * Link the skip address to this descriptor itself. This causes
  2701. * a context to skip a cycle whenever lost cycles or FIFO
  2702. * overruns occur, without dropping the data. The application
  2703. * should then decide whether this is an error condition or not.
  2704. * FIXME: Make the context's cycle-lost behaviour configurable?
  2705. */
  2706. d[0].branch_address = cpu_to_le32(d_bus | z);
  2707. header = (__le32 *) &d[1];
  2708. header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
  2709. IT_HEADER_TAG(p->tag) |
  2710. IT_HEADER_TCODE(TCODE_STREAM_DATA) |
  2711. IT_HEADER_CHANNEL(ctx->base.channel) |
  2712. IT_HEADER_SPEED(ctx->base.speed));
  2713. header[1] =
  2714. cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
  2715. p->payload_length));
  2716. }
  2717. if (p->header_length > 0) {
  2718. d[2].req_count = cpu_to_le16(p->header_length);
  2719. d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
  2720. memcpy(&d[z], p->header, p->header_length);
  2721. }
  2722. pd = d + z - payload_z;
  2723. payload_end_index = payload_index + p->payload_length;
  2724. for (i = 0; i < payload_z; i++) {
  2725. page = payload_index >> PAGE_SHIFT;
  2726. offset = payload_index & ~PAGE_MASK;
  2727. next_page_index = (page + 1) << PAGE_SHIFT;
  2728. length =
  2729. min(next_page_index, payload_end_index) - payload_index;
  2730. pd[i].req_count = cpu_to_le16(length);
  2731. page_bus = page_private(buffer->pages[page]);
  2732. pd[i].data_address = cpu_to_le32(page_bus + offset);
  2733. dma_sync_single_range_for_device(ctx->context.ohci->card.device,
  2734. page_bus, offset, length,
  2735. DMA_TO_DEVICE);
  2736. payload_index += length;
  2737. }
  2738. if (p->interrupt)
  2739. irq = DESCRIPTOR_IRQ_ALWAYS;
  2740. else
  2741. irq = DESCRIPTOR_NO_IRQ;
  2742. last = z == 2 ? d : d + z - 1;
  2743. last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
  2744. DESCRIPTOR_STATUS |
  2745. DESCRIPTOR_BRANCH_ALWAYS |
  2746. irq);
  2747. context_append(&ctx->context, d, z, header_z);
  2748. return 0;
  2749. }
  2750. static int queue_iso_packet_per_buffer(struct iso_context *ctx,
  2751. struct fw_iso_packet *packet,
  2752. struct fw_iso_buffer *buffer,
  2753. unsigned long payload)
  2754. {
  2755. struct device *device = ctx->context.ohci->card.device;
  2756. struct descriptor *d, *pd;
  2757. dma_addr_t d_bus, page_bus;
  2758. u32 z, header_z, rest;
  2759. int i, j, length;
  2760. int page, offset, packet_count, header_size, payload_per_buffer;
  2761. /*
  2762. * The OHCI controller puts the isochronous header and trailer in the
  2763. * buffer, so we need at least 8 bytes.
  2764. */
  2765. packet_count = packet->header_length / ctx->base.header_size;
  2766. header_size = max(ctx->base.header_size, (size_t)8);
  2767. /* Get header size in number of descriptors. */
  2768. header_z = DIV_ROUND_UP(header_size, sizeof(*d));
  2769. page = payload >> PAGE_SHIFT;
  2770. offset = payload & ~PAGE_MASK;
  2771. payload_per_buffer = packet->payload_length / packet_count;
  2772. for (i = 0; i < packet_count; i++) {
  2773. /* d points to the header descriptor */
  2774. z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
  2775. d = context_get_descriptors(&ctx->context,
  2776. z + header_z, &d_bus);
  2777. if (d == NULL)
  2778. return -ENOMEM;
  2779. d->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2780. DESCRIPTOR_INPUT_MORE);
  2781. if (packet->skip && i == 0)
  2782. d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
  2783. d->req_count = cpu_to_le16(header_size);
  2784. d->res_count = d->req_count;
  2785. d->transfer_status = 0;
  2786. d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
  2787. rest = payload_per_buffer;
  2788. pd = d;
  2789. for (j = 1; j < z; j++) {
  2790. pd++;
  2791. pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2792. DESCRIPTOR_INPUT_MORE);
  2793. if (offset + rest < PAGE_SIZE)
  2794. length = rest;
  2795. else
  2796. length = PAGE_SIZE - offset;
  2797. pd->req_count = cpu_to_le16(length);
  2798. pd->res_count = pd->req_count;
  2799. pd->transfer_status = 0;
  2800. page_bus = page_private(buffer->pages[page]);
  2801. pd->data_address = cpu_to_le32(page_bus + offset);
  2802. dma_sync_single_range_for_device(device, page_bus,
  2803. offset, length,
  2804. DMA_FROM_DEVICE);
  2805. offset = (offset + length) & ~PAGE_MASK;
  2806. rest -= length;
  2807. if (offset == 0)
  2808. page++;
  2809. }
  2810. pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
  2811. DESCRIPTOR_INPUT_LAST |
  2812. DESCRIPTOR_BRANCH_ALWAYS);
  2813. if (packet->interrupt && i == packet_count - 1)
  2814. pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
  2815. context_append(&ctx->context, d, z, header_z);
  2816. }
  2817. return 0;
  2818. }
  2819. static int queue_iso_buffer_fill(struct iso_context *ctx,
  2820. struct fw_iso_packet *packet,
  2821. struct fw_iso_buffer *buffer,
  2822. unsigned long payload)
  2823. {
  2824. struct descriptor *d;
  2825. dma_addr_t d_bus, page_bus;
  2826. int page, offset, rest, z, i, length;
  2827. page = payload >> PAGE_SHIFT;
  2828. offset = payload & ~PAGE_MASK;
  2829. rest = packet->payload_length;
  2830. /* We need one descriptor for each page in the buffer. */
  2831. z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
  2832. if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
  2833. return -EFAULT;
  2834. for (i = 0; i < z; i++) {
  2835. d = context_get_descriptors(&ctx->context, 1, &d_bus);
  2836. if (d == NULL)
  2837. return -ENOMEM;
  2838. d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
  2839. DESCRIPTOR_BRANCH_ALWAYS);
  2840. if (packet->skip && i == 0)
  2841. d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
  2842. if (packet->interrupt && i == z - 1)
  2843. d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
  2844. if (offset + rest < PAGE_SIZE)
  2845. length = rest;
  2846. else
  2847. length = PAGE_SIZE - offset;
  2848. d->req_count = cpu_to_le16(length);
  2849. d->res_count = d->req_count;
  2850. d->transfer_status = 0;
  2851. page_bus = page_private(buffer->pages[page]);
  2852. d->data_address = cpu_to_le32(page_bus + offset);
  2853. dma_sync_single_range_for_device(ctx->context.ohci->card.device,
  2854. page_bus, offset, length,
  2855. DMA_FROM_DEVICE);
  2856. rest -= length;
  2857. offset = 0;
  2858. page++;
  2859. context_append(&ctx->context, d, 1, 0);
  2860. }
  2861. return 0;
  2862. }
  2863. static int ohci_queue_iso(struct fw_iso_context *base,
  2864. struct fw_iso_packet *packet,
  2865. struct fw_iso_buffer *buffer,
  2866. unsigned long payload)
  2867. {
  2868. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2869. unsigned long flags;
  2870. int ret = -ENOSYS;
  2871. spin_lock_irqsave(&ctx->context.ohci->lock, flags);
  2872. switch (base->type) {
  2873. case FW_ISO_CONTEXT_TRANSMIT:
  2874. ret = queue_iso_transmit(ctx, packet, buffer, payload);
  2875. break;
  2876. case FW_ISO_CONTEXT_RECEIVE:
  2877. ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
  2878. break;
  2879. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2880. ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
  2881. break;
  2882. }
  2883. spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
  2884. return ret;
  2885. }
  2886. static void ohci_flush_queue_iso(struct fw_iso_context *base)
  2887. {
  2888. struct context *ctx =
  2889. &container_of(base, struct iso_context, base)->context;
  2890. reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
  2891. }
  2892. static int ohci_flush_iso_completions(struct fw_iso_context *base)
  2893. {
  2894. struct iso_context *ctx = container_of(base, struct iso_context, base);
  2895. int ret = 0;
  2896. tasklet_disable(&ctx->context.tasklet);
  2897. if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
  2898. context_tasklet((unsigned long)&ctx->context);
  2899. switch (base->type) {
  2900. case FW_ISO_CONTEXT_TRANSMIT:
  2901. case FW_ISO_CONTEXT_RECEIVE:
  2902. if (ctx->header_length != 0)
  2903. flush_iso_completions(ctx);
  2904. break;
  2905. case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
  2906. if (ctx->mc_completed != 0)
  2907. flush_ir_buffer_fill(ctx);
  2908. break;
  2909. default:
  2910. ret = -ENOSYS;
  2911. }
  2912. clear_bit_unlock(0, &ctx->flushing_completions);
  2913. smp_mb__after_clear_bit();
  2914. }
  2915. tasklet_enable(&ctx->context.tasklet);
  2916. return ret;
  2917. }
  2918. static const struct fw_card_driver ohci_driver = {
  2919. .enable = ohci_enable,
  2920. .read_phy_reg = ohci_read_phy_reg,
  2921. .update_phy_reg = ohci_update_phy_reg,
  2922. .set_config_rom = ohci_set_config_rom,
  2923. .send_request = ohci_send_request,
  2924. .send_response = ohci_send_response,
  2925. .cancel_packet = ohci_cancel_packet,
  2926. .enable_phys_dma = ohci_enable_phys_dma,
  2927. .read_csr = ohci_read_csr,
  2928. .write_csr = ohci_write_csr,
  2929. .allocate_iso_context = ohci_allocate_iso_context,
  2930. .free_iso_context = ohci_free_iso_context,
  2931. .set_iso_channels = ohci_set_iso_channels,
  2932. .queue_iso = ohci_queue_iso,
  2933. .flush_queue_iso = ohci_flush_queue_iso,
  2934. .flush_iso_completions = ohci_flush_iso_completions,
  2935. .start_iso = ohci_start_iso,
  2936. .stop_iso = ohci_stop_iso,
  2937. };
  2938. #ifdef CONFIG_PPC_PMAC
  2939. static void pmac_ohci_on(struct pci_dev *dev)
  2940. {
  2941. if (machine_is(powermac)) {
  2942. struct device_node *ofn = pci_device_to_OF_node(dev);
  2943. if (ofn) {
  2944. pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
  2945. pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
  2946. }
  2947. }
  2948. }
  2949. static void pmac_ohci_off(struct pci_dev *dev)
  2950. {
  2951. if (machine_is(powermac)) {
  2952. struct device_node *ofn = pci_device_to_OF_node(dev);
  2953. if (ofn) {
  2954. pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
  2955. pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
  2956. }
  2957. }
  2958. }
  2959. #else
  2960. static inline void pmac_ohci_on(struct pci_dev *dev) {}
  2961. static inline void pmac_ohci_off(struct pci_dev *dev) {}
  2962. #endif /* CONFIG_PPC_PMAC */
  2963. static int pci_probe(struct pci_dev *dev,
  2964. const struct pci_device_id *ent)
  2965. {
  2966. struct fw_ohci *ohci;
  2967. u32 bus_options, max_receive, link_speed, version;
  2968. u64 guid;
  2969. int i, err;
  2970. size_t size;
  2971. if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
  2972. dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
  2973. return -ENOSYS;
  2974. }
  2975. ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
  2976. if (ohci == NULL) {
  2977. err = -ENOMEM;
  2978. goto fail;
  2979. }
  2980. fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
  2981. pmac_ohci_on(dev);
  2982. err = pci_enable_device(dev);
  2983. if (err) {
  2984. dev_err(&dev->dev, "failed to enable OHCI hardware\n");
  2985. goto fail_free;
  2986. }
  2987. pci_set_master(dev);
  2988. pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
  2989. pci_set_drvdata(dev, ohci);
  2990. spin_lock_init(&ohci->lock);
  2991. mutex_init(&ohci->phy_reg_mutex);
  2992. INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
  2993. if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
  2994. pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
  2995. dev_err(&dev->dev, "invalid MMIO resource\n");
  2996. err = -ENXIO;
  2997. goto fail_disable;
  2998. }
  2999. err = pci_request_region(dev, 0, ohci_driver_name);
  3000. if (err) {
  3001. dev_err(&dev->dev, "MMIO resource unavailable\n");
  3002. goto fail_disable;
  3003. }
  3004. ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
  3005. if (ohci->registers == NULL) {
  3006. dev_err(&dev->dev, "failed to remap registers\n");
  3007. err = -ENXIO;
  3008. goto fail_iomem;
  3009. }
  3010. for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
  3011. if ((ohci_quirks[i].vendor == dev->vendor) &&
  3012. (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
  3013. ohci_quirks[i].device == dev->device) &&
  3014. (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
  3015. ohci_quirks[i].revision >= dev->revision)) {
  3016. ohci->quirks = ohci_quirks[i].flags;
  3017. break;
  3018. }
  3019. if (param_quirks)
  3020. ohci->quirks = param_quirks;
  3021. /*
  3022. * Because dma_alloc_coherent() allocates at least one page,
  3023. * we save space by using a common buffer for the AR request/
  3024. * response descriptors and the self IDs buffer.
  3025. */
  3026. BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
  3027. BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
  3028. ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
  3029. PAGE_SIZE,
  3030. &ohci->misc_buffer_bus,
  3031. GFP_KERNEL);
  3032. if (!ohci->misc_buffer) {
  3033. err = -ENOMEM;
  3034. goto fail_iounmap;
  3035. }
  3036. err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
  3037. OHCI1394_AsReqRcvContextControlSet);
  3038. if (err < 0)
  3039. goto fail_misc_buf;
  3040. err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
  3041. OHCI1394_AsRspRcvContextControlSet);
  3042. if (err < 0)
  3043. goto fail_arreq_ctx;
  3044. err = context_init(&ohci->at_request_ctx, ohci,
  3045. OHCI1394_AsReqTrContextControlSet, handle_at_packet);
  3046. if (err < 0)
  3047. goto fail_arrsp_ctx;
  3048. err = context_init(&ohci->at_response_ctx, ohci,
  3049. OHCI1394_AsRspTrContextControlSet, handle_at_packet);
  3050. if (err < 0)
  3051. goto fail_atreq_ctx;
  3052. reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
  3053. ohci->ir_context_channels = ~0ULL;
  3054. ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
  3055. reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
  3056. ohci->ir_context_mask = ohci->ir_context_support;
  3057. ohci->n_ir = hweight32(ohci->ir_context_mask);
  3058. size = sizeof(struct iso_context) * ohci->n_ir;
  3059. ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
  3060. reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
  3061. ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
  3062. reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
  3063. ohci->it_context_mask = ohci->it_context_support;
  3064. ohci->n_it = hweight32(ohci->it_context_mask);
  3065. size = sizeof(struct iso_context) * ohci->n_it;
  3066. ohci->it_context_list = kzalloc(size, GFP_KERNEL);
  3067. if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
  3068. err = -ENOMEM;
  3069. goto fail_contexts;
  3070. }
  3071. ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
  3072. ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
  3073. bus_options = reg_read(ohci, OHCI1394_BusOptions);
  3074. max_receive = (bus_options >> 12) & 0xf;
  3075. link_speed = bus_options & 0x7;
  3076. guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
  3077. reg_read(ohci, OHCI1394_GUIDLo);
  3078. err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
  3079. if (err)
  3080. goto fail_contexts;
  3081. version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
  3082. dev_notice(&dev->dev,
  3083. "added OHCI v%x.%x device as card %d, "
  3084. "%d IR + %d IT contexts, quirks 0x%x\n",
  3085. version >> 16, version & 0xff, ohci->card.index,
  3086. ohci->n_ir, ohci->n_it, ohci->quirks);
  3087. return 0;
  3088. fail_contexts:
  3089. kfree(ohci->ir_context_list);
  3090. kfree(ohci->it_context_list);
  3091. context_release(&ohci->at_response_ctx);
  3092. fail_atreq_ctx:
  3093. context_release(&ohci->at_request_ctx);
  3094. fail_arrsp_ctx:
  3095. ar_context_release(&ohci->ar_response_ctx);
  3096. fail_arreq_ctx:
  3097. ar_context_release(&ohci->ar_request_ctx);
  3098. fail_misc_buf:
  3099. dma_free_coherent(ohci->card.device, PAGE_SIZE,
  3100. ohci->misc_buffer, ohci->misc_buffer_bus);
  3101. fail_iounmap:
  3102. pci_iounmap(dev, ohci->registers);
  3103. fail_iomem:
  3104. pci_release_region(dev, 0);
  3105. fail_disable:
  3106. pci_disable_device(dev);
  3107. fail_free:
  3108. kfree(ohci);
  3109. pmac_ohci_off(dev);
  3110. fail:
  3111. if (err == -ENOMEM)
  3112. dev_err(&dev->dev, "out of memory\n");
  3113. return err;
  3114. }
  3115. static void pci_remove(struct pci_dev *dev)
  3116. {
  3117. struct fw_ohci *ohci;
  3118. ohci = pci_get_drvdata(dev);
  3119. reg_write(ohci, OHCI1394_IntMaskClear, ~0);
  3120. flush_writes(ohci);
  3121. cancel_work_sync(&ohci->bus_reset_work);
  3122. fw_core_remove_card(&ohci->card);
  3123. /*
  3124. * FIXME: Fail all pending packets here, now that the upper
  3125. * layers can't queue any more.
  3126. */
  3127. software_reset(ohci);
  3128. free_irq(dev->irq, ohci);
  3129. if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
  3130. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  3131. ohci->next_config_rom, ohci->next_config_rom_bus);
  3132. if (ohci->config_rom)
  3133. dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
  3134. ohci->config_rom, ohci->config_rom_bus);
  3135. ar_context_release(&ohci->ar_request_ctx);
  3136. ar_context_release(&ohci->ar_response_ctx);
  3137. dma_free_coherent(ohci->card.device, PAGE_SIZE,
  3138. ohci->misc_buffer, ohci->misc_buffer_bus);
  3139. context_release(&ohci->at_request_ctx);
  3140. context_release(&ohci->at_response_ctx);
  3141. kfree(ohci->it_context_list);
  3142. kfree(ohci->ir_context_list);
  3143. pci_disable_msi(dev);
  3144. pci_iounmap(dev, ohci->registers);
  3145. pci_release_region(dev, 0);
  3146. pci_disable_device(dev);
  3147. kfree(ohci);
  3148. pmac_ohci_off(dev);
  3149. dev_notice(&dev->dev, "removed fw-ohci device\n");
  3150. }
  3151. #ifdef CONFIG_PM
  3152. static int pci_suspend(struct pci_dev *dev, pm_message_t state)
  3153. {
  3154. struct fw_ohci *ohci = pci_get_drvdata(dev);
  3155. int err;
  3156. software_reset(ohci);
  3157. free_irq(dev->irq, ohci);
  3158. pci_disable_msi(dev);
  3159. err = pci_save_state(dev);
  3160. if (err) {
  3161. dev_err(&dev->dev, "pci_save_state failed\n");
  3162. return err;
  3163. }
  3164. err = pci_set_power_state(dev, pci_choose_state(dev, state));
  3165. if (err)
  3166. dev_err(&dev->dev, "pci_set_power_state failed with %d\n", err);
  3167. pmac_ohci_off(dev);
  3168. return 0;
  3169. }
  3170. static int pci_resume(struct pci_dev *dev)
  3171. {
  3172. struct fw_ohci *ohci = pci_get_drvdata(dev);
  3173. int err;
  3174. pmac_ohci_on(dev);
  3175. pci_set_power_state(dev, PCI_D0);
  3176. pci_restore_state(dev);
  3177. err = pci_enable_device(dev);
  3178. if (err) {
  3179. dev_err(&dev->dev, "pci_enable_device failed\n");
  3180. return err;
  3181. }
  3182. /* Some systems don't setup GUID register on resume from ram */
  3183. if (!reg_read(ohci, OHCI1394_GUIDLo) &&
  3184. !reg_read(ohci, OHCI1394_GUIDHi)) {
  3185. reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
  3186. reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
  3187. }
  3188. err = ohci_enable(&ohci->card, NULL, 0);
  3189. if (err)
  3190. return err;
  3191. ohci_resume_iso_dma(ohci);
  3192. return 0;
  3193. }
  3194. #endif
  3195. static const struct pci_device_id pci_table[] = {
  3196. { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
  3197. { }
  3198. };
  3199. MODULE_DEVICE_TABLE(pci, pci_table);
  3200. static struct pci_driver fw_ohci_pci_driver = {
  3201. .name = ohci_driver_name,
  3202. .id_table = pci_table,
  3203. .probe = pci_probe,
  3204. .remove = pci_remove,
  3205. #ifdef CONFIG_PM
  3206. .resume = pci_resume,
  3207. .suspend = pci_suspend,
  3208. #endif
  3209. };
  3210. module_pci_driver(fw_ohci_pci_driver);
  3211. MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
  3212. MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
  3213. MODULE_LICENSE("GPL");
  3214. /* Provide a module alias so root-on-sbp2 initrds don't break. */
  3215. #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
  3216. MODULE_ALIAS("ohci1394");
  3217. #endif