i7300_edac.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205
  1. /*
  2. * Intel 7300 class Memory Controllers kernel module (Clarksboro)
  3. *
  4. * This file may be distributed under the terms of the
  5. * GNU General Public License version 2 only.
  6. *
  7. * Copyright (c) 2010 by:
  8. * Mauro Carvalho Chehab <mchehab@redhat.com>
  9. *
  10. * Red Hat Inc. http://www.redhat.com
  11. *
  12. * Intel 7300 Chipset Memory Controller Hub (MCH) - Datasheet
  13. * http://www.intel.com/Assets/PDF/datasheet/318082.pdf
  14. *
  15. * TODO: The chipset allow checking for PCI Express errors also. Currently,
  16. * the driver covers only memory error errors
  17. *
  18. * This driver uses "csrows" EDAC attribute to represent DIMM slot#
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/pci.h>
  23. #include <linux/pci_ids.h>
  24. #include <linux/slab.h>
  25. #include <linux/edac.h>
  26. #include <linux/mmzone.h>
  27. #include "edac_core.h"
  28. /*
  29. * Alter this version for the I7300 module when modifications are made
  30. */
  31. #define I7300_REVISION " Ver: 1.0.0"
  32. #define EDAC_MOD_STR "i7300_edac"
  33. #define i7300_printk(level, fmt, arg...) \
  34. edac_printk(level, "i7300", fmt, ##arg)
  35. #define i7300_mc_printk(mci, level, fmt, arg...) \
  36. edac_mc_chipset_printk(mci, level, "i7300", fmt, ##arg)
  37. /***********************************************
  38. * i7300 Limit constants Structs and static vars
  39. ***********************************************/
  40. /*
  41. * Memory topology is organized as:
  42. * Branch 0 - 2 channels: channels 0 and 1 (FDB0 PCI dev 21.0)
  43. * Branch 1 - 2 channels: channels 2 and 3 (FDB1 PCI dev 22.0)
  44. * Each channel can have to 8 DIMM sets (called as SLOTS)
  45. * Slots should generally be filled in pairs
  46. * Except on Single Channel mode of operation
  47. * just slot 0/channel0 filled on this mode
  48. * On normal operation mode, the two channels on a branch should be
  49. * filled together for the same SLOT#
  50. * When in mirrored mode, Branch 1 replicate memory at Branch 0, so, the four
  51. * channels on both branches should be filled
  52. */
  53. /* Limits for i7300 */
  54. #define MAX_SLOTS 8
  55. #define MAX_BRANCHES 2
  56. #define MAX_CH_PER_BRANCH 2
  57. #define MAX_CHANNELS (MAX_CH_PER_BRANCH * MAX_BRANCHES)
  58. #define MAX_MIR 3
  59. #define to_channel(ch, branch) ((((branch)) << 1) | (ch))
  60. #define to_csrow(slot, ch, branch) \
  61. (to_channel(ch, branch) | ((slot) << 2))
  62. /* Device name and register DID (Device ID) */
  63. struct i7300_dev_info {
  64. const char *ctl_name; /* name for this device */
  65. u16 fsb_mapping_errors; /* DID for the branchmap,control */
  66. };
  67. /* Table of devices attributes supported by this driver */
  68. static const struct i7300_dev_info i7300_devs[] = {
  69. {
  70. .ctl_name = "I7300",
  71. .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7300_MCH_ERR,
  72. },
  73. };
  74. struct i7300_dimm_info {
  75. int megabytes; /* size, 0 means not present */
  76. };
  77. /* driver private data structure */
  78. struct i7300_pvt {
  79. struct pci_dev *pci_dev_16_0_fsb_ctlr; /* 16.0 */
  80. struct pci_dev *pci_dev_16_1_fsb_addr_map; /* 16.1 */
  81. struct pci_dev *pci_dev_16_2_fsb_err_regs; /* 16.2 */
  82. struct pci_dev *pci_dev_2x_0_fbd_branch[MAX_BRANCHES]; /* 21.0 and 22.0 */
  83. u16 tolm; /* top of low memory */
  84. u64 ambase; /* AMB BAR */
  85. u32 mc_settings; /* Report several settings */
  86. u32 mc_settings_a;
  87. u16 mir[MAX_MIR]; /* Memory Interleave Reg*/
  88. u16 mtr[MAX_SLOTS][MAX_BRANCHES]; /* Memory Technlogy Reg */
  89. u16 ambpresent[MAX_CHANNELS]; /* AMB present regs */
  90. /* DIMM information matrix, allocating architecture maximums */
  91. struct i7300_dimm_info dimm_info[MAX_SLOTS][MAX_CHANNELS];
  92. /* Temporary buffer for use when preparing error messages */
  93. char *tmp_prt_buffer;
  94. };
  95. /* FIXME: Why do we need to have this static? */
  96. static struct edac_pci_ctl_info *i7300_pci;
  97. /***************************************************
  98. * i7300 Register definitions for memory enumeration
  99. ***************************************************/
  100. /*
  101. * Device 16,
  102. * Function 0: System Address (not documented)
  103. * Function 1: Memory Branch Map, Control, Errors Register
  104. */
  105. /* OFFSETS for Function 0 */
  106. #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
  107. #define MAXCH 0x56 /* Max Channel Number */
  108. #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
  109. /* OFFSETS for Function 1 */
  110. #define MC_SETTINGS 0x40
  111. #define IS_MIRRORED(mc) ((mc) & (1 << 16))
  112. #define IS_ECC_ENABLED(mc) ((mc) & (1 << 5))
  113. #define IS_RETRY_ENABLED(mc) ((mc) & (1 << 31))
  114. #define IS_SCRBALGO_ENHANCED(mc) ((mc) & (1 << 8))
  115. #define MC_SETTINGS_A 0x58
  116. #define IS_SINGLE_MODE(mca) ((mca) & (1 << 14))
  117. #define TOLM 0x6C
  118. #define MIR0 0x80
  119. #define MIR1 0x84
  120. #define MIR2 0x88
  121. /*
  122. * Note: Other Intel EDAC drivers use AMBPRESENT to identify if the available
  123. * memory. From datasheet item 7.3.1 (FB-DIMM technology & organization), it
  124. * seems that we cannot use this information directly for the same usage.
  125. * Each memory slot may have up to 2 AMB interfaces, one for income and another
  126. * for outcome interface to the next slot.
  127. * For now, the driver just stores the AMB present registers, but rely only at
  128. * the MTR info to detect memory.
  129. * Datasheet is also not clear about how to map each AMBPRESENT registers to
  130. * one of the 4 available channels.
  131. */
  132. #define AMBPRESENT_0 0x64
  133. #define AMBPRESENT_1 0x66
  134. static const u16 mtr_regs[MAX_SLOTS] = {
  135. 0x80, 0x84, 0x88, 0x8c,
  136. 0x82, 0x86, 0x8a, 0x8e
  137. };
  138. /*
  139. * Defines to extract the vaious fields from the
  140. * MTRx - Memory Technology Registers
  141. */
  142. #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 8))
  143. #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 7))
  144. #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
  145. #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 5)) ? 8 : 4)
  146. #define MTR_DIMM_RANKS(mtr) (((mtr) & (1 << 4)) ? 1 : 0)
  147. #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
  148. #define MTR_DRAM_BANKS_ADDR_BITS 2
  149. #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
  150. #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
  151. #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
  152. /************************************************
  153. * i7300 Register definitions for error detection
  154. ************************************************/
  155. /*
  156. * Device 16.1: FBD Error Registers
  157. */
  158. #define FERR_FAT_FBD 0x98
  159. static const char *ferr_fat_fbd_name[] = {
  160. [22] = "Non-Redundant Fast Reset Timeout",
  161. [2] = ">Tmid Thermal event with intelligent throttling disabled",
  162. [1] = "Memory or FBD configuration CRC read error",
  163. [0] = "Memory Write error on non-redundant retry or "
  164. "FBD configuration Write error on retry",
  165. };
  166. #define GET_FBD_FAT_IDX(fbderr) (((fbderr) >> 28) & 3)
  167. #define FERR_FAT_FBD_ERR_MASK ((1 << 0) | (1 << 1) | (1 << 2) | (1 << 22))
  168. #define FERR_NF_FBD 0xa0
  169. static const char *ferr_nf_fbd_name[] = {
  170. [24] = "DIMM-Spare Copy Completed",
  171. [23] = "DIMM-Spare Copy Initiated",
  172. [22] = "Redundant Fast Reset Timeout",
  173. [21] = "Memory Write error on redundant retry",
  174. [18] = "SPD protocol Error",
  175. [17] = "FBD Northbound parity error on FBD Sync Status",
  176. [16] = "Correctable Patrol Data ECC",
  177. [15] = "Correctable Resilver- or Spare-Copy Data ECC",
  178. [14] = "Correctable Mirrored Demand Data ECC",
  179. [13] = "Correctable Non-Mirrored Demand Data ECC",
  180. [11] = "Memory or FBD configuration CRC read error",
  181. [10] = "FBD Configuration Write error on first attempt",
  182. [9] = "Memory Write error on first attempt",
  183. [8] = "Non-Aliased Uncorrectable Patrol Data ECC",
  184. [7] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
  185. [6] = "Non-Aliased Uncorrectable Mirrored Demand Data ECC",
  186. [5] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
  187. [4] = "Aliased Uncorrectable Patrol Data ECC",
  188. [3] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
  189. [2] = "Aliased Uncorrectable Mirrored Demand Data ECC",
  190. [1] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
  191. [0] = "Uncorrectable Data ECC on Replay",
  192. };
  193. #define GET_FBD_NF_IDX(fbderr) (((fbderr) >> 28) & 3)
  194. #define FERR_NF_FBD_ERR_MASK ((1 << 24) | (1 << 23) | (1 << 22) | (1 << 21) |\
  195. (1 << 18) | (1 << 17) | (1 << 16) | (1 << 15) |\
  196. (1 << 14) | (1 << 13) | (1 << 11) | (1 << 10) |\
  197. (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
  198. (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
  199. (1 << 1) | (1 << 0))
  200. #define EMASK_FBD 0xa8
  201. #define EMASK_FBD_ERR_MASK ((1 << 27) | (1 << 26) | (1 << 25) | (1 << 24) |\
  202. (1 << 22) | (1 << 21) | (1 << 20) | (1 << 19) |\
  203. (1 << 18) | (1 << 17) | (1 << 16) | (1 << 14) |\
  204. (1 << 13) | (1 << 12) | (1 << 11) | (1 << 10) |\
  205. (1 << 9) | (1 << 8) | (1 << 7) | (1 << 6) |\
  206. (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2) |\
  207. (1 << 1) | (1 << 0))
  208. /*
  209. * Device 16.2: Global Error Registers
  210. */
  211. #define FERR_GLOBAL_HI 0x48
  212. static const char *ferr_global_hi_name[] = {
  213. [3] = "FSB 3 Fatal Error",
  214. [2] = "FSB 2 Fatal Error",
  215. [1] = "FSB 1 Fatal Error",
  216. [0] = "FSB 0 Fatal Error",
  217. };
  218. #define ferr_global_hi_is_fatal(errno) 1
  219. #define FERR_GLOBAL_LO 0x40
  220. static const char *ferr_global_lo_name[] = {
  221. [31] = "Internal MCH Fatal Error",
  222. [30] = "Intel QuickData Technology Device Fatal Error",
  223. [29] = "FSB1 Fatal Error",
  224. [28] = "FSB0 Fatal Error",
  225. [27] = "FBD Channel 3 Fatal Error",
  226. [26] = "FBD Channel 2 Fatal Error",
  227. [25] = "FBD Channel 1 Fatal Error",
  228. [24] = "FBD Channel 0 Fatal Error",
  229. [23] = "PCI Express Device 7Fatal Error",
  230. [22] = "PCI Express Device 6 Fatal Error",
  231. [21] = "PCI Express Device 5 Fatal Error",
  232. [20] = "PCI Express Device 4 Fatal Error",
  233. [19] = "PCI Express Device 3 Fatal Error",
  234. [18] = "PCI Express Device 2 Fatal Error",
  235. [17] = "PCI Express Device 1 Fatal Error",
  236. [16] = "ESI Fatal Error",
  237. [15] = "Internal MCH Non-Fatal Error",
  238. [14] = "Intel QuickData Technology Device Non Fatal Error",
  239. [13] = "FSB1 Non-Fatal Error",
  240. [12] = "FSB 0 Non-Fatal Error",
  241. [11] = "FBD Channel 3 Non-Fatal Error",
  242. [10] = "FBD Channel 2 Non-Fatal Error",
  243. [9] = "FBD Channel 1 Non-Fatal Error",
  244. [8] = "FBD Channel 0 Non-Fatal Error",
  245. [7] = "PCI Express Device 7 Non-Fatal Error",
  246. [6] = "PCI Express Device 6 Non-Fatal Error",
  247. [5] = "PCI Express Device 5 Non-Fatal Error",
  248. [4] = "PCI Express Device 4 Non-Fatal Error",
  249. [3] = "PCI Express Device 3 Non-Fatal Error",
  250. [2] = "PCI Express Device 2 Non-Fatal Error",
  251. [1] = "PCI Express Device 1 Non-Fatal Error",
  252. [0] = "ESI Non-Fatal Error",
  253. };
  254. #define ferr_global_lo_is_fatal(errno) ((errno < 16) ? 0 : 1)
  255. #define NRECMEMA 0xbe
  256. #define NRECMEMA_BANK(v) (((v) >> 12) & 7)
  257. #define NRECMEMA_RANK(v) (((v) >> 8) & 15)
  258. #define NRECMEMB 0xc0
  259. #define NRECMEMB_IS_WR(v) ((v) & (1 << 31))
  260. #define NRECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
  261. #define NRECMEMB_RAS(v) ((v) & 0xffff)
  262. #define REDMEMA 0xdc
  263. #define REDMEMB 0x7c
  264. #define IS_SECOND_CH(v) ((v) * (1 << 17))
  265. #define RECMEMA 0xe0
  266. #define RECMEMA_BANK(v) (((v) >> 12) & 7)
  267. #define RECMEMA_RANK(v) (((v) >> 8) & 15)
  268. #define RECMEMB 0xe4
  269. #define RECMEMB_IS_WR(v) ((v) & (1 << 31))
  270. #define RECMEMB_CAS(v) (((v) >> 16) & 0x1fff)
  271. #define RECMEMB_RAS(v) ((v) & 0xffff)
  272. /********************************************
  273. * i7300 Functions related to error detection
  274. ********************************************/
  275. /**
  276. * get_err_from_table() - Gets the error message from a table
  277. * @table: table name (array of char *)
  278. * @size: number of elements at the table
  279. * @pos: position of the element to be returned
  280. *
  281. * This is a small routine that gets the pos-th element of a table. If the
  282. * element doesn't exist (or it is empty), it returns "reserved".
  283. * Instead of calling it directly, the better is to call via the macro
  284. * GET_ERR_FROM_TABLE(), that automatically checks the table size via
  285. * ARRAY_SIZE() macro
  286. */
  287. static const char *get_err_from_table(const char *table[], int size, int pos)
  288. {
  289. if (unlikely(pos >= size))
  290. return "Reserved";
  291. if (unlikely(!table[pos]))
  292. return "Reserved";
  293. return table[pos];
  294. }
  295. #define GET_ERR_FROM_TABLE(table, pos) \
  296. get_err_from_table(table, ARRAY_SIZE(table), pos)
  297. /**
  298. * i7300_process_error_global() - Retrieve the hardware error information from
  299. * the hardware global error registers and
  300. * sends it to dmesg
  301. * @mci: struct mem_ctl_info pointer
  302. */
  303. static void i7300_process_error_global(struct mem_ctl_info *mci)
  304. {
  305. struct i7300_pvt *pvt;
  306. u32 errnum, error_reg;
  307. unsigned long errors;
  308. const char *specific;
  309. bool is_fatal;
  310. pvt = mci->pvt_info;
  311. /* read in the 1st FATAL error register */
  312. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  313. FERR_GLOBAL_HI, &error_reg);
  314. if (unlikely(error_reg)) {
  315. errors = error_reg;
  316. errnum = find_first_bit(&errors,
  317. ARRAY_SIZE(ferr_global_hi_name));
  318. specific = GET_ERR_FROM_TABLE(ferr_global_hi_name, errnum);
  319. is_fatal = ferr_global_hi_is_fatal(errnum);
  320. /* Clear the error bit */
  321. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  322. FERR_GLOBAL_HI, error_reg);
  323. goto error_global;
  324. }
  325. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  326. FERR_GLOBAL_LO, &error_reg);
  327. if (unlikely(error_reg)) {
  328. errors = error_reg;
  329. errnum = find_first_bit(&errors,
  330. ARRAY_SIZE(ferr_global_lo_name));
  331. specific = GET_ERR_FROM_TABLE(ferr_global_lo_name, errnum);
  332. is_fatal = ferr_global_lo_is_fatal(errnum);
  333. /* Clear the error bit */
  334. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  335. FERR_GLOBAL_LO, error_reg);
  336. goto error_global;
  337. }
  338. return;
  339. error_global:
  340. i7300_mc_printk(mci, KERN_EMERG, "%s misc error: %s\n",
  341. is_fatal ? "Fatal" : "NOT fatal", specific);
  342. }
  343. /**
  344. * i7300_process_fbd_error() - Retrieve the hardware error information from
  345. * the FBD error registers and sends it via
  346. * EDAC error API calls
  347. * @mci: struct mem_ctl_info pointer
  348. */
  349. static void i7300_process_fbd_error(struct mem_ctl_info *mci)
  350. {
  351. struct i7300_pvt *pvt;
  352. u32 errnum, value, error_reg;
  353. u16 val16;
  354. unsigned branch, channel, bank, rank, cas, ras;
  355. u32 syndrome;
  356. unsigned long errors;
  357. const char *specific;
  358. bool is_wr;
  359. pvt = mci->pvt_info;
  360. /* read in the 1st FATAL error register */
  361. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  362. FERR_FAT_FBD, &error_reg);
  363. if (unlikely(error_reg & FERR_FAT_FBD_ERR_MASK)) {
  364. errors = error_reg & FERR_FAT_FBD_ERR_MASK ;
  365. errnum = find_first_bit(&errors,
  366. ARRAY_SIZE(ferr_fat_fbd_name));
  367. specific = GET_ERR_FROM_TABLE(ferr_fat_fbd_name, errnum);
  368. branch = (GET_FBD_FAT_IDX(error_reg) == 2) ? 1 : 0;
  369. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
  370. NRECMEMA, &val16);
  371. bank = NRECMEMA_BANK(val16);
  372. rank = NRECMEMA_RANK(val16);
  373. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  374. NRECMEMB, &value);
  375. is_wr = NRECMEMB_IS_WR(value);
  376. cas = NRECMEMB_CAS(value);
  377. ras = NRECMEMB_RAS(value);
  378. /* Clean the error register */
  379. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  380. FERR_FAT_FBD, error_reg);
  381. snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
  382. "Bank=%d RAS=%d CAS=%d Err=0x%lx (%s))",
  383. bank, ras, cas, errors, specific);
  384. edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
  385. branch, -1, rank,
  386. is_wr ? "Write error" : "Read error",
  387. pvt->tmp_prt_buffer);
  388. }
  389. /* read in the 1st NON-FATAL error register */
  390. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  391. FERR_NF_FBD, &error_reg);
  392. if (unlikely(error_reg & FERR_NF_FBD_ERR_MASK)) {
  393. errors = error_reg & FERR_NF_FBD_ERR_MASK;
  394. errnum = find_first_bit(&errors,
  395. ARRAY_SIZE(ferr_nf_fbd_name));
  396. specific = GET_ERR_FROM_TABLE(ferr_nf_fbd_name, errnum);
  397. branch = (GET_FBD_NF_IDX(error_reg) == 2) ? 1 : 0;
  398. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  399. REDMEMA, &syndrome);
  400. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map,
  401. RECMEMA, &val16);
  402. bank = RECMEMA_BANK(val16);
  403. rank = RECMEMA_RANK(val16);
  404. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  405. RECMEMB, &value);
  406. is_wr = RECMEMB_IS_WR(value);
  407. cas = RECMEMB_CAS(value);
  408. ras = RECMEMB_RAS(value);
  409. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  410. REDMEMB, &value);
  411. channel = (branch << 1);
  412. if (IS_SECOND_CH(value))
  413. channel++;
  414. /* Clear the error bit */
  415. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  416. FERR_NF_FBD, error_reg);
  417. /* Form out message */
  418. snprintf(pvt->tmp_prt_buffer, PAGE_SIZE,
  419. "DRAM-Bank=%d RAS=%d CAS=%d, Err=0x%lx (%s))",
  420. bank, ras, cas, errors, specific);
  421. edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0,
  422. syndrome,
  423. branch >> 1, channel % 2, rank,
  424. is_wr ? "Write error" : "Read error",
  425. pvt->tmp_prt_buffer);
  426. }
  427. return;
  428. }
  429. /**
  430. * i7300_check_error() - Calls the error checking subroutines
  431. * @mci: struct mem_ctl_info pointer
  432. */
  433. static void i7300_check_error(struct mem_ctl_info *mci)
  434. {
  435. i7300_process_error_global(mci);
  436. i7300_process_fbd_error(mci);
  437. };
  438. /**
  439. * i7300_clear_error() - Clears the error registers
  440. * @mci: struct mem_ctl_info pointer
  441. */
  442. static void i7300_clear_error(struct mem_ctl_info *mci)
  443. {
  444. struct i7300_pvt *pvt = mci->pvt_info;
  445. u32 value;
  446. /*
  447. * All error values are RWC - we need to read and write 1 to the
  448. * bit that we want to cleanup
  449. */
  450. /* Clear global error registers */
  451. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  452. FERR_GLOBAL_HI, &value);
  453. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  454. FERR_GLOBAL_HI, value);
  455. pci_read_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  456. FERR_GLOBAL_LO, &value);
  457. pci_write_config_dword(pvt->pci_dev_16_2_fsb_err_regs,
  458. FERR_GLOBAL_LO, value);
  459. /* Clear FBD error registers */
  460. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  461. FERR_FAT_FBD, &value);
  462. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  463. FERR_FAT_FBD, value);
  464. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  465. FERR_NF_FBD, &value);
  466. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  467. FERR_NF_FBD, value);
  468. }
  469. /**
  470. * i7300_enable_error_reporting() - Enable the memory reporting logic at the
  471. * hardware
  472. * @mci: struct mem_ctl_info pointer
  473. */
  474. static void i7300_enable_error_reporting(struct mem_ctl_info *mci)
  475. {
  476. struct i7300_pvt *pvt = mci->pvt_info;
  477. u32 fbd_error_mask;
  478. /* Read the FBD Error Mask Register */
  479. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  480. EMASK_FBD, &fbd_error_mask);
  481. /* Enable with a '0' */
  482. fbd_error_mask &= ~(EMASK_FBD_ERR_MASK);
  483. pci_write_config_dword(pvt->pci_dev_16_1_fsb_addr_map,
  484. EMASK_FBD, fbd_error_mask);
  485. }
  486. /************************************************
  487. * i7300 Functions related to memory enumberation
  488. ************************************************/
  489. /**
  490. * decode_mtr() - Decodes the MTR descriptor, filling the edac structs
  491. * @pvt: pointer to the private data struct used by i7300 driver
  492. * @slot: DIMM slot (0 to 7)
  493. * @ch: Channel number within the branch (0 or 1)
  494. * @branch: Branch number (0 or 1)
  495. * @dinfo: Pointer to DIMM info where dimm size is stored
  496. * @p_csrow: Pointer to the struct csrow_info that corresponds to that element
  497. */
  498. static int decode_mtr(struct i7300_pvt *pvt,
  499. int slot, int ch, int branch,
  500. struct i7300_dimm_info *dinfo,
  501. struct dimm_info *dimm)
  502. {
  503. int mtr, ans, addrBits, channel;
  504. channel = to_channel(ch, branch);
  505. mtr = pvt->mtr[slot][branch];
  506. ans = MTR_DIMMS_PRESENT(mtr) ? 1 : 0;
  507. edac_dbg(2, "\tMTR%d CH%d: DIMMs are %sPresent (mtr)\n",
  508. slot, channel, ans ? "" : "NOT ");
  509. /* Determine if there is a DIMM present in this DIMM slot */
  510. if (!ans)
  511. return 0;
  512. /* Start with the number of bits for a Bank
  513. * on the DRAM */
  514. addrBits = MTR_DRAM_BANKS_ADDR_BITS;
  515. /* Add thenumber of ROW bits */
  516. addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
  517. /* add the number of COLUMN bits */
  518. addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
  519. /* add the number of RANK bits */
  520. addrBits += MTR_DIMM_RANKS(mtr);
  521. addrBits += 6; /* add 64 bits per DIMM */
  522. addrBits -= 20; /* divide by 2^^20 */
  523. addrBits -= 3; /* 8 bits per bytes */
  524. dinfo->megabytes = 1 << addrBits;
  525. edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
  526. edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
  527. MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
  528. edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
  529. edac_dbg(2, "\t\tNUMRANK: %s\n",
  530. MTR_DIMM_RANKS(mtr) ? "double" : "single");
  531. edac_dbg(2, "\t\tNUMROW: %s\n",
  532. MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
  533. MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
  534. MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
  535. "65,536 - 16 rows");
  536. edac_dbg(2, "\t\tNUMCOL: %s\n",
  537. MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
  538. MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
  539. MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
  540. "reserved");
  541. edac_dbg(2, "\t\tSIZE: %d MB\n", dinfo->megabytes);
  542. /*
  543. * The type of error detection actually depends of the
  544. * mode of operation. When it is just one single memory chip, at
  545. * socket 0, channel 0, it uses 8-byte-over-32-byte SECDED+ code.
  546. * In normal or mirrored mode, it uses Lockstep mode,
  547. * with the possibility of using an extended algorithm for x8 memories
  548. * See datasheet Sections 7.3.6 to 7.3.8
  549. */
  550. dimm->nr_pages = MiB_TO_PAGES(dinfo->megabytes);
  551. dimm->grain = 8;
  552. dimm->mtype = MEM_FB_DDR2;
  553. if (IS_SINGLE_MODE(pvt->mc_settings_a)) {
  554. dimm->edac_mode = EDAC_SECDED;
  555. edac_dbg(2, "\t\tECC code is 8-byte-over-32-byte SECDED+ code\n");
  556. } else {
  557. edac_dbg(2, "\t\tECC code is on Lockstep mode\n");
  558. if (MTR_DRAM_WIDTH(mtr) == 8)
  559. dimm->edac_mode = EDAC_S8ECD8ED;
  560. else
  561. dimm->edac_mode = EDAC_S4ECD4ED;
  562. }
  563. /* ask what device type on this row */
  564. if (MTR_DRAM_WIDTH(mtr) == 8) {
  565. edac_dbg(2, "\t\tScrub algorithm for x8 is on %s mode\n",
  566. IS_SCRBALGO_ENHANCED(pvt->mc_settings) ?
  567. "enhanced" : "normal");
  568. dimm->dtype = DEV_X8;
  569. } else
  570. dimm->dtype = DEV_X4;
  571. return mtr;
  572. }
  573. /**
  574. * print_dimm_size() - Prints dump of the memory organization
  575. * @pvt: pointer to the private data struct used by i7300 driver
  576. *
  577. * Useful for debug. If debug is disabled, this routine do nothing
  578. */
  579. static void print_dimm_size(struct i7300_pvt *pvt)
  580. {
  581. #ifdef CONFIG_EDAC_DEBUG
  582. struct i7300_dimm_info *dinfo;
  583. char *p;
  584. int space, n;
  585. int channel, slot;
  586. space = PAGE_SIZE;
  587. p = pvt->tmp_prt_buffer;
  588. n = snprintf(p, space, " ");
  589. p += n;
  590. space -= n;
  591. for (channel = 0; channel < MAX_CHANNELS; channel++) {
  592. n = snprintf(p, space, "channel %d | ", channel);
  593. p += n;
  594. space -= n;
  595. }
  596. edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
  597. p = pvt->tmp_prt_buffer;
  598. space = PAGE_SIZE;
  599. n = snprintf(p, space, "-------------------------------"
  600. "------------------------------");
  601. p += n;
  602. space -= n;
  603. edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
  604. p = pvt->tmp_prt_buffer;
  605. space = PAGE_SIZE;
  606. for (slot = 0; slot < MAX_SLOTS; slot++) {
  607. n = snprintf(p, space, "csrow/SLOT %d ", slot);
  608. p += n;
  609. space -= n;
  610. for (channel = 0; channel < MAX_CHANNELS; channel++) {
  611. dinfo = &pvt->dimm_info[slot][channel];
  612. n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
  613. p += n;
  614. space -= n;
  615. }
  616. edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
  617. p = pvt->tmp_prt_buffer;
  618. space = PAGE_SIZE;
  619. }
  620. n = snprintf(p, space, "-------------------------------"
  621. "------------------------------");
  622. p += n;
  623. space -= n;
  624. edac_dbg(2, "%s\n", pvt->tmp_prt_buffer);
  625. p = pvt->tmp_prt_buffer;
  626. space = PAGE_SIZE;
  627. #endif
  628. }
  629. /**
  630. * i7300_init_csrows() - Initialize the 'csrows' table within
  631. * the mci control structure with the
  632. * addressing of memory.
  633. * @mci: struct mem_ctl_info pointer
  634. */
  635. static int i7300_init_csrows(struct mem_ctl_info *mci)
  636. {
  637. struct i7300_pvt *pvt;
  638. struct i7300_dimm_info *dinfo;
  639. int rc = -ENODEV;
  640. int mtr;
  641. int ch, branch, slot, channel;
  642. struct dimm_info *dimm;
  643. pvt = mci->pvt_info;
  644. edac_dbg(2, "Memory Technology Registers:\n");
  645. /* Get the AMB present registers for the four channels */
  646. for (branch = 0; branch < MAX_BRANCHES; branch++) {
  647. /* Read and dump branch 0's MTRs */
  648. channel = to_channel(0, branch);
  649. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  650. AMBPRESENT_0,
  651. &pvt->ambpresent[channel]);
  652. edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
  653. channel, pvt->ambpresent[channel]);
  654. channel = to_channel(1, branch);
  655. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  656. AMBPRESENT_1,
  657. &pvt->ambpresent[channel]);
  658. edac_dbg(2, "\t\tAMB-present CH%d = 0x%x:\n",
  659. channel, pvt->ambpresent[channel]);
  660. }
  661. /* Get the set of MTR[0-7] regs by each branch */
  662. for (slot = 0; slot < MAX_SLOTS; slot++) {
  663. int where = mtr_regs[slot];
  664. for (branch = 0; branch < MAX_BRANCHES; branch++) {
  665. pci_read_config_word(pvt->pci_dev_2x_0_fbd_branch[branch],
  666. where,
  667. &pvt->mtr[slot][branch]);
  668. for (ch = 0; ch < MAX_CH_PER_BRANCH; ch++) {
  669. int channel = to_channel(ch, branch);
  670. dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
  671. mci->n_layers, branch, ch, slot);
  672. dinfo = &pvt->dimm_info[slot][channel];
  673. mtr = decode_mtr(pvt, slot, ch, branch,
  674. dinfo, dimm);
  675. /* if no DIMMS on this row, continue */
  676. if (!MTR_DIMMS_PRESENT(mtr))
  677. continue;
  678. rc = 0;
  679. }
  680. }
  681. }
  682. return rc;
  683. }
  684. /**
  685. * decode_mir() - Decodes Memory Interleave Register (MIR) info
  686. * @int mir_no: number of the MIR register to decode
  687. * @mir: array with the MIR data cached on the driver
  688. */
  689. static void decode_mir(int mir_no, u16 mir[MAX_MIR])
  690. {
  691. if (mir[mir_no] & 3)
  692. edac_dbg(2, "MIR%d: limit= 0x%x Branch(es) that participate: %s %s\n",
  693. mir_no,
  694. (mir[mir_no] >> 4) & 0xfff,
  695. (mir[mir_no] & 1) ? "B0" : "",
  696. (mir[mir_no] & 2) ? "B1" : "");
  697. }
  698. /**
  699. * i7300_get_mc_regs() - Get the contents of the MC enumeration registers
  700. * @mci: struct mem_ctl_info pointer
  701. *
  702. * Data read is cached internally for its usage when needed
  703. */
  704. static int i7300_get_mc_regs(struct mem_ctl_info *mci)
  705. {
  706. struct i7300_pvt *pvt;
  707. u32 actual_tolm;
  708. int i, rc;
  709. pvt = mci->pvt_info;
  710. pci_read_config_dword(pvt->pci_dev_16_0_fsb_ctlr, AMBASE,
  711. (u32 *) &pvt->ambase);
  712. edac_dbg(2, "AMBASE= 0x%lx\n", (long unsigned int)pvt->ambase);
  713. /* Get the Branch Map regs */
  714. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, TOLM, &pvt->tolm);
  715. pvt->tolm >>= 12;
  716. edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
  717. pvt->tolm, pvt->tolm);
  718. actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
  719. edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
  720. actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
  721. /* Get memory controller settings */
  722. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS,
  723. &pvt->mc_settings);
  724. pci_read_config_dword(pvt->pci_dev_16_1_fsb_addr_map, MC_SETTINGS_A,
  725. &pvt->mc_settings_a);
  726. if (IS_SINGLE_MODE(pvt->mc_settings_a))
  727. edac_dbg(0, "Memory controller operating on single mode\n");
  728. else
  729. edac_dbg(0, "Memory controller operating on %smirrored mode\n",
  730. IS_MIRRORED(pvt->mc_settings) ? "" : "non-");
  731. edac_dbg(0, "Error detection is %s\n",
  732. IS_ECC_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
  733. edac_dbg(0, "Retry is %s\n",
  734. IS_RETRY_ENABLED(pvt->mc_settings) ? "enabled" : "disabled");
  735. /* Get Memory Interleave Range registers */
  736. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR0,
  737. &pvt->mir[0]);
  738. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR1,
  739. &pvt->mir[1]);
  740. pci_read_config_word(pvt->pci_dev_16_1_fsb_addr_map, MIR2,
  741. &pvt->mir[2]);
  742. /* Decode the MIR regs */
  743. for (i = 0; i < MAX_MIR; i++)
  744. decode_mir(i, pvt->mir);
  745. rc = i7300_init_csrows(mci);
  746. if (rc < 0)
  747. return rc;
  748. /* Go and determine the size of each DIMM and place in an
  749. * orderly matrix */
  750. print_dimm_size(pvt);
  751. return 0;
  752. }
  753. /*************************************************
  754. * i7300 Functions related to device probe/release
  755. *************************************************/
  756. /**
  757. * i7300_put_devices() - Release the PCI devices
  758. * @mci: struct mem_ctl_info pointer
  759. */
  760. static void i7300_put_devices(struct mem_ctl_info *mci)
  761. {
  762. struct i7300_pvt *pvt;
  763. int branch;
  764. pvt = mci->pvt_info;
  765. /* Decrement usage count for devices */
  766. for (branch = 0; branch < MAX_CH_PER_BRANCH; branch++)
  767. pci_dev_put(pvt->pci_dev_2x_0_fbd_branch[branch]);
  768. pci_dev_put(pvt->pci_dev_16_2_fsb_err_regs);
  769. pci_dev_put(pvt->pci_dev_16_1_fsb_addr_map);
  770. }
  771. /**
  772. * i7300_get_devices() - Find and perform 'get' operation on the MCH's
  773. * device/functions we want to reference for this driver
  774. * @mci: struct mem_ctl_info pointer
  775. *
  776. * Access and prepare the several devices for usage:
  777. * I7300 devices used by this driver:
  778. * Device 16, functions 0,1 and 2: PCI_DEVICE_ID_INTEL_I7300_MCH_ERR
  779. * Device 21 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB0
  780. * Device 22 function 0: PCI_DEVICE_ID_INTEL_I7300_MCH_FB1
  781. */
  782. static int i7300_get_devices(struct mem_ctl_info *mci)
  783. {
  784. struct i7300_pvt *pvt;
  785. struct pci_dev *pdev;
  786. pvt = mci->pvt_info;
  787. /* Attempt to 'get' the MCH register we want */
  788. pdev = NULL;
  789. while (!pvt->pci_dev_16_1_fsb_addr_map ||
  790. !pvt->pci_dev_16_2_fsb_err_regs) {
  791. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  792. PCI_DEVICE_ID_INTEL_I7300_MCH_ERR, pdev);
  793. if (!pdev) {
  794. /* End of list, leave */
  795. i7300_printk(KERN_ERR,
  796. "'system address,Process Bus' "
  797. "device not found:"
  798. "vendor 0x%x device 0x%x ERR funcs "
  799. "(broken BIOS?)\n",
  800. PCI_VENDOR_ID_INTEL,
  801. PCI_DEVICE_ID_INTEL_I7300_MCH_ERR);
  802. goto error;
  803. }
  804. /* Store device 16 funcs 1 and 2 */
  805. switch (PCI_FUNC(pdev->devfn)) {
  806. case 1:
  807. pvt->pci_dev_16_1_fsb_addr_map = pdev;
  808. break;
  809. case 2:
  810. pvt->pci_dev_16_2_fsb_err_regs = pdev;
  811. break;
  812. }
  813. }
  814. edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
  815. pci_name(pvt->pci_dev_16_0_fsb_ctlr),
  816. pvt->pci_dev_16_0_fsb_ctlr->vendor,
  817. pvt->pci_dev_16_0_fsb_ctlr->device);
  818. edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
  819. pci_name(pvt->pci_dev_16_1_fsb_addr_map),
  820. pvt->pci_dev_16_1_fsb_addr_map->vendor,
  821. pvt->pci_dev_16_1_fsb_addr_map->device);
  822. edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
  823. pci_name(pvt->pci_dev_16_2_fsb_err_regs),
  824. pvt->pci_dev_16_2_fsb_err_regs->vendor,
  825. pvt->pci_dev_16_2_fsb_err_regs->device);
  826. pvt->pci_dev_2x_0_fbd_branch[0] = pci_get_device(PCI_VENDOR_ID_INTEL,
  827. PCI_DEVICE_ID_INTEL_I7300_MCH_FB0,
  828. NULL);
  829. if (!pvt->pci_dev_2x_0_fbd_branch[0]) {
  830. i7300_printk(KERN_ERR,
  831. "MC: 'BRANCH 0' device not found:"
  832. "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
  833. PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_FB0);
  834. goto error;
  835. }
  836. pvt->pci_dev_2x_0_fbd_branch[1] = pci_get_device(PCI_VENDOR_ID_INTEL,
  837. PCI_DEVICE_ID_INTEL_I7300_MCH_FB1,
  838. NULL);
  839. if (!pvt->pci_dev_2x_0_fbd_branch[1]) {
  840. i7300_printk(KERN_ERR,
  841. "MC: 'BRANCH 1' device not found:"
  842. "vendor 0x%x device 0x%x Func 0 "
  843. "(broken BIOS?)\n",
  844. PCI_VENDOR_ID_INTEL,
  845. PCI_DEVICE_ID_INTEL_I7300_MCH_FB1);
  846. goto error;
  847. }
  848. return 0;
  849. error:
  850. i7300_put_devices(mci);
  851. return -ENODEV;
  852. }
  853. /**
  854. * i7300_init_one() - Probe for one instance of the device
  855. * @pdev: struct pci_dev pointer
  856. * @id: struct pci_device_id pointer - currently unused
  857. */
  858. static int i7300_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
  859. {
  860. struct mem_ctl_info *mci;
  861. struct edac_mc_layer layers[3];
  862. struct i7300_pvt *pvt;
  863. int rc;
  864. /* wake up device */
  865. rc = pci_enable_device(pdev);
  866. if (rc == -EIO)
  867. return rc;
  868. edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
  869. pdev->bus->number,
  870. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  871. /* We only are looking for func 0 of the set */
  872. if (PCI_FUNC(pdev->devfn) != 0)
  873. return -ENODEV;
  874. /* allocate a new MC control structure */
  875. layers[0].type = EDAC_MC_LAYER_BRANCH;
  876. layers[0].size = MAX_BRANCHES;
  877. layers[0].is_virt_csrow = false;
  878. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  879. layers[1].size = MAX_CH_PER_BRANCH;
  880. layers[1].is_virt_csrow = true;
  881. layers[2].type = EDAC_MC_LAYER_SLOT;
  882. layers[2].size = MAX_SLOTS;
  883. layers[2].is_virt_csrow = true;
  884. mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
  885. if (mci == NULL)
  886. return -ENOMEM;
  887. edac_dbg(0, "MC: mci = %p\n", mci);
  888. mci->pdev = &pdev->dev; /* record ptr to the generic device */
  889. pvt = mci->pvt_info;
  890. pvt->pci_dev_16_0_fsb_ctlr = pdev; /* Record this device in our private */
  891. pvt->tmp_prt_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
  892. if (!pvt->tmp_prt_buffer) {
  893. edac_mc_free(mci);
  894. return -ENOMEM;
  895. }
  896. /* 'get' the pci devices we want to reserve for our use */
  897. if (i7300_get_devices(mci))
  898. goto fail0;
  899. mci->mc_idx = 0;
  900. mci->mtype_cap = MEM_FLAG_FB_DDR2;
  901. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  902. mci->edac_cap = EDAC_FLAG_NONE;
  903. mci->mod_name = "i7300_edac.c";
  904. mci->mod_ver = I7300_REVISION;
  905. mci->ctl_name = i7300_devs[0].ctl_name;
  906. mci->dev_name = pci_name(pdev);
  907. mci->ctl_page_to_phys = NULL;
  908. /* Set the function pointer to an actual operation function */
  909. mci->edac_check = i7300_check_error;
  910. /* initialize the MC control structure 'csrows' table
  911. * with the mapping and control information */
  912. if (i7300_get_mc_regs(mci)) {
  913. edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i7300_init_csrows() returned nonzero value\n");
  914. mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
  915. } else {
  916. edac_dbg(1, "MC: Enable error reporting now\n");
  917. i7300_enable_error_reporting(mci);
  918. }
  919. /* add this new MC control structure to EDAC's list of MCs */
  920. if (edac_mc_add_mc(mci)) {
  921. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  922. /* FIXME: perhaps some code should go here that disables error
  923. * reporting if we just enabled it
  924. */
  925. goto fail1;
  926. }
  927. i7300_clear_error(mci);
  928. /* allocating generic PCI control info */
  929. i7300_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
  930. if (!i7300_pci) {
  931. printk(KERN_WARNING
  932. "%s(): Unable to create PCI control\n",
  933. __func__);
  934. printk(KERN_WARNING
  935. "%s(): PCI error report via EDAC not setup\n",
  936. __func__);
  937. }
  938. return 0;
  939. /* Error exit unwinding stack */
  940. fail1:
  941. i7300_put_devices(mci);
  942. fail0:
  943. kfree(pvt->tmp_prt_buffer);
  944. edac_mc_free(mci);
  945. return -ENODEV;
  946. }
  947. /**
  948. * i7300_remove_one() - Remove the driver
  949. * @pdev: struct pci_dev pointer
  950. */
  951. static void i7300_remove_one(struct pci_dev *pdev)
  952. {
  953. struct mem_ctl_info *mci;
  954. char *tmp;
  955. edac_dbg(0, "\n");
  956. if (i7300_pci)
  957. edac_pci_release_generic_ctl(i7300_pci);
  958. mci = edac_mc_del_mc(&pdev->dev);
  959. if (!mci)
  960. return;
  961. tmp = ((struct i7300_pvt *)mci->pvt_info)->tmp_prt_buffer;
  962. /* retrieve references to resources, and free those resources */
  963. i7300_put_devices(mci);
  964. kfree(tmp);
  965. edac_mc_free(mci);
  966. }
  967. /*
  968. * pci_device_id: table for which devices we are looking for
  969. *
  970. * Has only 8086:360c PCI ID
  971. */
  972. static DEFINE_PCI_DEVICE_TABLE(i7300_pci_tbl) = {
  973. {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I7300_MCH_ERR)},
  974. {0,} /* 0 terminated list. */
  975. };
  976. MODULE_DEVICE_TABLE(pci, i7300_pci_tbl);
  977. /*
  978. * i7300_driver: pci_driver structure for this module
  979. */
  980. static struct pci_driver i7300_driver = {
  981. .name = "i7300_edac",
  982. .probe = i7300_init_one,
  983. .remove = i7300_remove_one,
  984. .id_table = i7300_pci_tbl,
  985. };
  986. /**
  987. * i7300_init() - Registers the driver
  988. */
  989. static int __init i7300_init(void)
  990. {
  991. int pci_rc;
  992. edac_dbg(2, "\n");
  993. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  994. opstate_init();
  995. pci_rc = pci_register_driver(&i7300_driver);
  996. return (pci_rc < 0) ? pci_rc : 0;
  997. }
  998. /**
  999. * i7300_init() - Unregisters the driver
  1000. */
  1001. static void __exit i7300_exit(void)
  1002. {
  1003. edac_dbg(2, "\n");
  1004. pci_unregister_driver(&i7300_driver);
  1005. }
  1006. module_init(i7300_init);
  1007. module_exit(i7300_exit);
  1008. MODULE_LICENSE("GPL");
  1009. MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
  1010. MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
  1011. MODULE_DESCRIPTION("MC Driver for Intel I7300 memory controllers - "
  1012. I7300_REVISION);
  1013. module_param(edac_op_state, int, 0444);
  1014. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");