amd64_edac.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698
  1. #include "amd64_edac.h"
  2. #include <asm/amd_nb.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. static struct msr __percpu *msrs;
  13. /*
  14. * count successfully initialized driver instances for setup_pci_device()
  15. */
  16. static atomic_t drv_instances = ATOMIC_INIT(0);
  17. /* Per-node driver instances */
  18. static struct mem_ctl_info **mcis;
  19. static struct ecc_settings **ecc_stngs;
  20. /*
  21. * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
  22. * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
  23. * or higher value'.
  24. *
  25. *FIXME: Produce a better mapping/linearisation.
  26. */
  27. static const struct scrubrate {
  28. u32 scrubval; /* bit pattern for scrub rate */
  29. u32 bandwidth; /* bandwidth consumed (bytes/sec) */
  30. } scrubrates[] = {
  31. { 0x01, 1600000000UL},
  32. { 0x02, 800000000UL},
  33. { 0x03, 400000000UL},
  34. { 0x04, 200000000UL},
  35. { 0x05, 100000000UL},
  36. { 0x06, 50000000UL},
  37. { 0x07, 25000000UL},
  38. { 0x08, 12284069UL},
  39. { 0x09, 6274509UL},
  40. { 0x0A, 3121951UL},
  41. { 0x0B, 1560975UL},
  42. { 0x0C, 781440UL},
  43. { 0x0D, 390720UL},
  44. { 0x0E, 195300UL},
  45. { 0x0F, 97650UL},
  46. { 0x10, 48854UL},
  47. { 0x11, 24427UL},
  48. { 0x12, 12213UL},
  49. { 0x13, 6101UL},
  50. { 0x14, 3051UL},
  51. { 0x15, 1523UL},
  52. { 0x16, 761UL},
  53. { 0x00, 0UL}, /* scrubbing off */
  54. };
  55. int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
  56. u32 *val, const char *func)
  57. {
  58. int err = 0;
  59. err = pci_read_config_dword(pdev, offset, val);
  60. if (err)
  61. amd64_warn("%s: error reading F%dx%03x.\n",
  62. func, PCI_FUNC(pdev->devfn), offset);
  63. return err;
  64. }
  65. int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
  66. u32 val, const char *func)
  67. {
  68. int err = 0;
  69. err = pci_write_config_dword(pdev, offset, val);
  70. if (err)
  71. amd64_warn("%s: error writing to F%dx%03x.\n",
  72. func, PCI_FUNC(pdev->devfn), offset);
  73. return err;
  74. }
  75. /*
  76. *
  77. * Depending on the family, F2 DCT reads need special handling:
  78. *
  79. * K8: has a single DCT only
  80. *
  81. * F10h: each DCT has its own set of regs
  82. * DCT0 -> F2x040..
  83. * DCT1 -> F2x140..
  84. *
  85. * F15h: we select which DCT we access using F1x10C[DctCfgSel]
  86. *
  87. */
  88. static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  89. const char *func)
  90. {
  91. if (addr >= 0x100)
  92. return -EINVAL;
  93. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  94. }
  95. static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  96. const char *func)
  97. {
  98. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  99. }
  100. /*
  101. * Select DCT to which PCI cfg accesses are routed
  102. */
  103. static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
  104. {
  105. u32 reg = 0;
  106. amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
  107. reg &= 0xfffffffe;
  108. reg |= dct;
  109. amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
  110. }
  111. static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
  112. const char *func)
  113. {
  114. u8 dct = 0;
  115. if (addr >= 0x140 && addr <= 0x1a0) {
  116. dct = 1;
  117. addr -= 0x100;
  118. }
  119. f15h_select_dct(pvt, dct);
  120. return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
  121. }
  122. /*
  123. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  124. * hardware and can involve L2 cache, dcache as well as the main memory. With
  125. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  126. * functionality.
  127. *
  128. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  129. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  130. * bytes/sec for the setting.
  131. *
  132. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  133. * other archs, we might not have access to the caches directly.
  134. */
  135. /*
  136. * scan the scrub rate mapping table for a close or matching bandwidth value to
  137. * issue. If requested is too big, then use last maximum value found.
  138. */
  139. static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
  140. {
  141. u32 scrubval;
  142. int i;
  143. /*
  144. * map the configured rate (new_bw) to a value specific to the AMD64
  145. * memory controller and apply to register. Search for the first
  146. * bandwidth entry that is greater or equal than the setting requested
  147. * and program that. If at last entry, turn off DRAM scrubbing.
  148. *
  149. * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
  150. * by falling back to the last element in scrubrates[].
  151. */
  152. for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
  153. /*
  154. * skip scrub rates which aren't recommended
  155. * (see F10 BKDG, F3x58)
  156. */
  157. if (scrubrates[i].scrubval < min_rate)
  158. continue;
  159. if (scrubrates[i].bandwidth <= new_bw)
  160. break;
  161. }
  162. scrubval = scrubrates[i].scrubval;
  163. pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
  164. if (scrubval)
  165. return scrubrates[i].bandwidth;
  166. return 0;
  167. }
  168. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
  169. {
  170. struct amd64_pvt *pvt = mci->pvt_info;
  171. u32 min_scrubrate = 0x5;
  172. if (boot_cpu_data.x86 == 0xf)
  173. min_scrubrate = 0x0;
  174. /* F15h Erratum #505 */
  175. if (boot_cpu_data.x86 == 0x15)
  176. f15h_select_dct(pvt, 0);
  177. return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
  178. }
  179. static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
  180. {
  181. struct amd64_pvt *pvt = mci->pvt_info;
  182. u32 scrubval = 0;
  183. int i, retval = -EINVAL;
  184. /* F15h Erratum #505 */
  185. if (boot_cpu_data.x86 == 0x15)
  186. f15h_select_dct(pvt, 0);
  187. amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
  188. scrubval = scrubval & 0x001F;
  189. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  190. if (scrubrates[i].scrubval == scrubval) {
  191. retval = scrubrates[i].bandwidth;
  192. break;
  193. }
  194. }
  195. return retval;
  196. }
  197. /*
  198. * returns true if the SysAddr given by sys_addr matches the
  199. * DRAM base/limit associated with node_id
  200. */
  201. static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
  202. u8 nid)
  203. {
  204. u64 addr;
  205. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  206. * all ones if the most significant implemented address bit is 1.
  207. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  208. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  209. * Application Programming.
  210. */
  211. addr = sys_addr & 0x000000ffffffffffull;
  212. return ((addr >= get_dram_base(pvt, nid)) &&
  213. (addr <= get_dram_limit(pvt, nid)));
  214. }
  215. /*
  216. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  217. * mem_ctl_info structure for the node that the SysAddr maps to.
  218. *
  219. * On failure, return NULL.
  220. */
  221. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  222. u64 sys_addr)
  223. {
  224. struct amd64_pvt *pvt;
  225. u8 node_id;
  226. u32 intlv_en, bits;
  227. /*
  228. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  229. * 3.4.4.2) registers to map the SysAddr to a node ID.
  230. */
  231. pvt = mci->pvt_info;
  232. /*
  233. * The value of this field should be the same for all DRAM Base
  234. * registers. Therefore we arbitrarily choose to read it from the
  235. * register for node 0.
  236. */
  237. intlv_en = dram_intlv_en(pvt, 0);
  238. if (intlv_en == 0) {
  239. for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
  240. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  241. goto found;
  242. }
  243. goto err_no_match;
  244. }
  245. if (unlikely((intlv_en != 0x01) &&
  246. (intlv_en != 0x03) &&
  247. (intlv_en != 0x07))) {
  248. amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
  249. return NULL;
  250. }
  251. bits = (((u32) sys_addr) >> 12) & intlv_en;
  252. for (node_id = 0; ; ) {
  253. if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
  254. break; /* intlv_sel field matches */
  255. if (++node_id >= DRAM_RANGES)
  256. goto err_no_match;
  257. }
  258. /* sanity test for sys_addr */
  259. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  260. amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
  261. "range for node %d with node interleaving enabled.\n",
  262. __func__, sys_addr, node_id);
  263. return NULL;
  264. }
  265. found:
  266. return edac_mc_find((int)node_id);
  267. err_no_match:
  268. edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
  269. (unsigned long)sys_addr);
  270. return NULL;
  271. }
  272. /*
  273. * compute the CS base address of the @csrow on the DRAM controller @dct.
  274. * For details see F2x[5C:40] in the processor's BKDG
  275. */
  276. static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
  277. u64 *base, u64 *mask)
  278. {
  279. u64 csbase, csmask, base_bits, mask_bits;
  280. u8 addr_shift;
  281. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  282. csbase = pvt->csels[dct].csbases[csrow];
  283. csmask = pvt->csels[dct].csmasks[csrow];
  284. base_bits = GENMASK(21, 31) | GENMASK(9, 15);
  285. mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
  286. addr_shift = 4;
  287. } else {
  288. csbase = pvt->csels[dct].csbases[csrow];
  289. csmask = pvt->csels[dct].csmasks[csrow >> 1];
  290. addr_shift = 8;
  291. if (boot_cpu_data.x86 == 0x15)
  292. base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
  293. else
  294. base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
  295. }
  296. *base = (csbase & base_bits) << addr_shift;
  297. *mask = ~0ULL;
  298. /* poke holes for the csmask */
  299. *mask &= ~(mask_bits << addr_shift);
  300. /* OR them in */
  301. *mask |= (csmask & mask_bits) << addr_shift;
  302. }
  303. #define for_each_chip_select(i, dct, pvt) \
  304. for (i = 0; i < pvt->csels[dct].b_cnt; i++)
  305. #define chip_select_base(i, dct, pvt) \
  306. pvt->csels[dct].csbases[i]
  307. #define for_each_chip_select_mask(i, dct, pvt) \
  308. for (i = 0; i < pvt->csels[dct].m_cnt; i++)
  309. /*
  310. * @input_addr is an InputAddr associated with the node given by mci. Return the
  311. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  312. */
  313. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  314. {
  315. struct amd64_pvt *pvt;
  316. int csrow;
  317. u64 base, mask;
  318. pvt = mci->pvt_info;
  319. for_each_chip_select(csrow, 0, pvt) {
  320. if (!csrow_enabled(csrow, 0, pvt))
  321. continue;
  322. get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
  323. mask = ~mask;
  324. if ((input_addr & mask) == (base & mask)) {
  325. edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
  326. (unsigned long)input_addr, csrow,
  327. pvt->mc_node_id);
  328. return csrow;
  329. }
  330. }
  331. edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  332. (unsigned long)input_addr, pvt->mc_node_id);
  333. return -1;
  334. }
  335. /*
  336. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  337. * for the node represented by mci. Info is passed back in *hole_base,
  338. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  339. * info is invalid. Info may be invalid for either of the following reasons:
  340. *
  341. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  342. * Address Register does not exist.
  343. *
  344. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  345. * indicating that its contents are not valid.
  346. *
  347. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  348. * complete 32-bit values despite the fact that the bitfields in the DHAR
  349. * only represent bits 31-24 of the base and offset values.
  350. */
  351. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  352. u64 *hole_offset, u64 *hole_size)
  353. {
  354. struct amd64_pvt *pvt = mci->pvt_info;
  355. /* only revE and later have the DRAM Hole Address Register */
  356. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
  357. edac_dbg(1, " revision %d for node %d does not support DHAR\n",
  358. pvt->ext_model, pvt->mc_node_id);
  359. return 1;
  360. }
  361. /* valid for Fam10h and above */
  362. if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
  363. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
  364. return 1;
  365. }
  366. if (!dhar_valid(pvt)) {
  367. edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
  368. pvt->mc_node_id);
  369. return 1;
  370. }
  371. /* This node has Memory Hoisting */
  372. /* +------------------+--------------------+--------------------+-----
  373. * | memory | DRAM hole | relocated |
  374. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  375. * | | | DRAM hole |
  376. * | | | [0x100000000, |
  377. * | | | (0x100000000+ |
  378. * | | | (0xffffffff-x))] |
  379. * +------------------+--------------------+--------------------+-----
  380. *
  381. * Above is a diagram of physical memory showing the DRAM hole and the
  382. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  383. * starts at address x (the base address) and extends through address
  384. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  385. * addresses in the hole so that they start at 0x100000000.
  386. */
  387. *hole_base = dhar_base(pvt);
  388. *hole_size = (1ULL << 32) - *hole_base;
  389. if (boot_cpu_data.x86 > 0xf)
  390. *hole_offset = f10_dhar_offset(pvt);
  391. else
  392. *hole_offset = k8_dhar_offset(pvt);
  393. edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  394. pvt->mc_node_id, (unsigned long)*hole_base,
  395. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  396. return 0;
  397. }
  398. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  399. /*
  400. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  401. * assumed that sys_addr maps to the node given by mci.
  402. *
  403. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  404. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  405. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  406. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  407. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  408. * These parts of the documentation are unclear. I interpret them as follows:
  409. *
  410. * When node n receives a SysAddr, it processes the SysAddr as follows:
  411. *
  412. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  413. * Limit registers for node n. If the SysAddr is not within the range
  414. * specified by the base and limit values, then node n ignores the Sysaddr
  415. * (since it does not map to node n). Otherwise continue to step 2 below.
  416. *
  417. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  418. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  419. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  420. * hole. If not, skip to step 3 below. Else get the value of the
  421. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  422. * offset defined by this value from the SysAddr.
  423. *
  424. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  425. * Base register for node n. To obtain the DramAddr, subtract the base
  426. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  427. */
  428. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  429. {
  430. struct amd64_pvt *pvt = mci->pvt_info;
  431. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  432. int ret;
  433. dram_base = get_dram_base(pvt, pvt->mc_node_id);
  434. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  435. &hole_size);
  436. if (!ret) {
  437. if ((sys_addr >= (1ULL << 32)) &&
  438. (sys_addr < ((1ULL << 32) + hole_size))) {
  439. /* use DHAR to translate SysAddr to DramAddr */
  440. dram_addr = sys_addr - hole_offset;
  441. edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  442. (unsigned long)sys_addr,
  443. (unsigned long)dram_addr);
  444. return dram_addr;
  445. }
  446. }
  447. /*
  448. * Translate the SysAddr to a DramAddr as shown near the start of
  449. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  450. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  451. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  452. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  453. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  454. * Programmer's Manual Volume 1 Application Programming.
  455. */
  456. dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
  457. edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
  458. (unsigned long)sys_addr, (unsigned long)dram_addr);
  459. return dram_addr;
  460. }
  461. /*
  462. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  463. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  464. * for node interleaving.
  465. */
  466. static int num_node_interleave_bits(unsigned intlv_en)
  467. {
  468. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  469. int n;
  470. BUG_ON(intlv_en > 7);
  471. n = intlv_shift_table[intlv_en];
  472. return n;
  473. }
  474. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  475. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  476. {
  477. struct amd64_pvt *pvt;
  478. int intlv_shift;
  479. u64 input_addr;
  480. pvt = mci->pvt_info;
  481. /*
  482. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  483. * concerning translating a DramAddr to an InputAddr.
  484. */
  485. intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
  486. input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
  487. (dram_addr & 0xfff);
  488. edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  489. intlv_shift, (unsigned long)dram_addr,
  490. (unsigned long)input_addr);
  491. return input_addr;
  492. }
  493. /*
  494. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  495. * assumed that @sys_addr maps to the node given by mci.
  496. */
  497. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  498. {
  499. u64 input_addr;
  500. input_addr =
  501. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  502. edac_dbg(2, "SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  503. (unsigned long)sys_addr, (unsigned long)input_addr);
  504. return input_addr;
  505. }
  506. /* Map the Error address to a PAGE and PAGE OFFSET. */
  507. static inline void error_address_to_page_and_offset(u64 error_address,
  508. struct err_info *err)
  509. {
  510. err->page = (u32) (error_address >> PAGE_SHIFT);
  511. err->offset = ((u32) error_address) & ~PAGE_MASK;
  512. }
  513. /*
  514. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  515. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  516. * of a node that detected an ECC memory error. mci represents the node that
  517. * the error address maps to (possibly different from the node that detected
  518. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  519. * error.
  520. */
  521. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  522. {
  523. int csrow;
  524. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  525. if (csrow == -1)
  526. amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
  527. "address 0x%lx\n", (unsigned long)sys_addr);
  528. return csrow;
  529. }
  530. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
  531. /*
  532. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  533. * are ECC capable.
  534. */
  535. static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
  536. {
  537. u8 bit;
  538. unsigned long edac_cap = EDAC_FLAG_NONE;
  539. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
  540. ? 19
  541. : 17;
  542. if (pvt->dclr0 & BIT(bit))
  543. edac_cap = EDAC_FLAG_SECDED;
  544. return edac_cap;
  545. }
  546. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
  547. static void amd64_dump_dramcfg_low(u32 dclr, int chan)
  548. {
  549. edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
  550. edac_dbg(1, " DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
  551. (dclr & BIT(16)) ? "un" : "",
  552. (dclr & BIT(19)) ? "yes" : "no");
  553. edac_dbg(1, " PAR/ERR parity: %s\n",
  554. (dclr & BIT(8)) ? "enabled" : "disabled");
  555. if (boot_cpu_data.x86 == 0x10)
  556. edac_dbg(1, " DCT 128bit mode width: %s\n",
  557. (dclr & BIT(11)) ? "128b" : "64b");
  558. edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
  559. (dclr & BIT(12)) ? "yes" : "no",
  560. (dclr & BIT(13)) ? "yes" : "no",
  561. (dclr & BIT(14)) ? "yes" : "no",
  562. (dclr & BIT(15)) ? "yes" : "no");
  563. }
  564. /* Display and decode various NB registers for debug purposes. */
  565. static void dump_misc_regs(struct amd64_pvt *pvt)
  566. {
  567. edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
  568. edac_dbg(1, " NB two channel DRAM capable: %s\n",
  569. (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
  570. edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
  571. (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
  572. (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
  573. amd64_dump_dramcfg_low(pvt->dclr0, 0);
  574. edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
  575. edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
  576. pvt->dhar, dhar_base(pvt),
  577. (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
  578. : f10_dhar_offset(pvt));
  579. edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
  580. amd64_debug_display_dimm_sizes(pvt, 0);
  581. /* everything below this point is Fam10h and above */
  582. if (boot_cpu_data.x86 == 0xf)
  583. return;
  584. amd64_debug_display_dimm_sizes(pvt, 1);
  585. amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
  586. /* Only if NOT ganged does dclr1 have valid info */
  587. if (!dct_ganging_enabled(pvt))
  588. amd64_dump_dramcfg_low(pvt->dclr1, 1);
  589. }
  590. /*
  591. * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
  592. */
  593. static void prep_chip_selects(struct amd64_pvt *pvt)
  594. {
  595. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
  596. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  597. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
  598. } else {
  599. pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
  600. pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
  601. }
  602. }
  603. /*
  604. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
  605. */
  606. static void read_dct_base_mask(struct amd64_pvt *pvt)
  607. {
  608. int cs;
  609. prep_chip_selects(pvt);
  610. for_each_chip_select(cs, 0, pvt) {
  611. int reg0 = DCSB0 + (cs * 4);
  612. int reg1 = DCSB1 + (cs * 4);
  613. u32 *base0 = &pvt->csels[0].csbases[cs];
  614. u32 *base1 = &pvt->csels[1].csbases[cs];
  615. if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
  616. edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
  617. cs, *base0, reg0);
  618. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  619. continue;
  620. if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
  621. edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
  622. cs, *base1, reg1);
  623. }
  624. for_each_chip_select_mask(cs, 0, pvt) {
  625. int reg0 = DCSM0 + (cs * 4);
  626. int reg1 = DCSM1 + (cs * 4);
  627. u32 *mask0 = &pvt->csels[0].csmasks[cs];
  628. u32 *mask1 = &pvt->csels[1].csmasks[cs];
  629. if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
  630. edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
  631. cs, *mask0, reg0);
  632. if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
  633. continue;
  634. if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
  635. edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
  636. cs, *mask1, reg1);
  637. }
  638. }
  639. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
  640. {
  641. enum mem_type type;
  642. /* F15h supports only DDR3 */
  643. if (boot_cpu_data.x86 >= 0x15)
  644. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  645. else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
  646. if (pvt->dchr0 & DDR3_MODE)
  647. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
  648. else
  649. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  650. } else {
  651. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  652. }
  653. amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
  654. return type;
  655. }
  656. /* Get the number of DCT channels the memory controller is using. */
  657. static int k8_early_channel_count(struct amd64_pvt *pvt)
  658. {
  659. int flag;
  660. if (pvt->ext_model >= K8_REV_F)
  661. /* RevF (NPT) and later */
  662. flag = pvt->dclr0 & WIDTH_128;
  663. else
  664. /* RevE and earlier */
  665. flag = pvt->dclr0 & REVE_WIDTH_128;
  666. /* not used */
  667. pvt->dclr1 = 0;
  668. return (flag) ? 2 : 1;
  669. }
  670. /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
  671. static u64 get_error_address(struct mce *m)
  672. {
  673. struct cpuinfo_x86 *c = &boot_cpu_data;
  674. u64 addr;
  675. u8 start_bit = 1;
  676. u8 end_bit = 47;
  677. if (c->x86 == 0xf) {
  678. start_bit = 3;
  679. end_bit = 39;
  680. }
  681. addr = m->addr & GENMASK(start_bit, end_bit);
  682. /*
  683. * Erratum 637 workaround
  684. */
  685. if (c->x86 == 0x15) {
  686. struct amd64_pvt *pvt;
  687. u64 cc6_base, tmp_addr;
  688. u32 tmp;
  689. u16 mce_nid;
  690. u8 intlv_en;
  691. if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
  692. return addr;
  693. mce_nid = amd_get_nb_id(m->extcpu);
  694. pvt = mcis[mce_nid]->pvt_info;
  695. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
  696. intlv_en = tmp >> 21 & 0x7;
  697. /* add [47:27] + 3 trailing bits */
  698. cc6_base = (tmp & GENMASK(0, 20)) << 3;
  699. /* reverse and add DramIntlvEn */
  700. cc6_base |= intlv_en ^ 0x7;
  701. /* pin at [47:24] */
  702. cc6_base <<= 24;
  703. if (!intlv_en)
  704. return cc6_base | (addr & GENMASK(0, 23));
  705. amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
  706. /* faster log2 */
  707. tmp_addr = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
  708. /* OR DramIntlvSel into bits [14:12] */
  709. tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
  710. /* add remaining [11:0] bits from original MC4_ADDR */
  711. tmp_addr |= addr & GENMASK(0, 11);
  712. return cc6_base | tmp_addr;
  713. }
  714. return addr;
  715. }
  716. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  717. unsigned int device,
  718. struct pci_dev *related)
  719. {
  720. struct pci_dev *dev = NULL;
  721. while ((dev = pci_get_device(vendor, device, dev))) {
  722. if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
  723. (dev->bus->number == related->bus->number) &&
  724. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  725. break;
  726. }
  727. return dev;
  728. }
  729. static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
  730. {
  731. struct amd_northbridge *nb;
  732. struct pci_dev *misc, *f1 = NULL;
  733. struct cpuinfo_x86 *c = &boot_cpu_data;
  734. int off = range << 3;
  735. u32 llim;
  736. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
  737. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
  738. if (c->x86 == 0xf)
  739. return;
  740. if (!dram_rw(pvt, range))
  741. return;
  742. amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
  743. amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
  744. /* F15h: factor in CC6 save area by reading dst node's limit reg */
  745. if (c->x86 != 0x15)
  746. return;
  747. nb = node_to_amd_nb(dram_dst_node(pvt, range));
  748. if (WARN_ON(!nb))
  749. return;
  750. misc = nb->misc;
  751. f1 = pci_get_related_function(misc->vendor, PCI_DEVICE_ID_AMD_15H_NB_F1, misc);
  752. if (WARN_ON(!f1))
  753. return;
  754. amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
  755. pvt->ranges[range].lim.lo &= GENMASK(0, 15);
  756. /* {[39:27],111b} */
  757. pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
  758. pvt->ranges[range].lim.hi &= GENMASK(0, 7);
  759. /* [47:40] */
  760. pvt->ranges[range].lim.hi |= llim >> 13;
  761. pci_dev_put(f1);
  762. }
  763. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  764. struct err_info *err)
  765. {
  766. struct amd64_pvt *pvt = mci->pvt_info;
  767. error_address_to_page_and_offset(sys_addr, err);
  768. /*
  769. * Find out which node the error address belongs to. This may be
  770. * different from the node that detected the error.
  771. */
  772. err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
  773. if (!err->src_mci) {
  774. amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
  775. (unsigned long)sys_addr);
  776. err->err_code = ERR_NODE;
  777. return;
  778. }
  779. /* Now map the sys_addr to a CSROW */
  780. err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
  781. if (err->csrow < 0) {
  782. err->err_code = ERR_CSROW;
  783. return;
  784. }
  785. /* CHIPKILL enabled */
  786. if (pvt->nbcfg & NBCFG_CHIPKILL) {
  787. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  788. if (err->channel < 0) {
  789. /*
  790. * Syndrome didn't map, so we don't know which of the
  791. * 2 DIMMs is in error. So we need to ID 'both' of them
  792. * as suspect.
  793. */
  794. amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
  795. "possible error reporting race\n",
  796. err->syndrome);
  797. err->err_code = ERR_CHANNEL;
  798. return;
  799. }
  800. } else {
  801. /*
  802. * non-chipkill ecc mode
  803. *
  804. * The k8 documentation is unclear about how to determine the
  805. * channel number when using non-chipkill memory. This method
  806. * was obtained from email communication with someone at AMD.
  807. * (Wish the email was placed in this comment - norsk)
  808. */
  809. err->channel = ((sys_addr & BIT(3)) != 0);
  810. }
  811. }
  812. static int ddr2_cs_size(unsigned i, bool dct_width)
  813. {
  814. unsigned shift = 0;
  815. if (i <= 2)
  816. shift = i;
  817. else if (!(i & 0x1))
  818. shift = i >> 1;
  819. else
  820. shift = (i + 1) >> 1;
  821. return 128 << (shift + !!dct_width);
  822. }
  823. static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  824. unsigned cs_mode)
  825. {
  826. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  827. if (pvt->ext_model >= K8_REV_F) {
  828. WARN_ON(cs_mode > 11);
  829. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  830. }
  831. else if (pvt->ext_model >= K8_REV_D) {
  832. unsigned diff;
  833. WARN_ON(cs_mode > 10);
  834. /*
  835. * the below calculation, besides trying to win an obfuscated C
  836. * contest, maps cs_mode values to DIMM chip select sizes. The
  837. * mappings are:
  838. *
  839. * cs_mode CS size (mb)
  840. * ======= ============
  841. * 0 32
  842. * 1 64
  843. * 2 128
  844. * 3 128
  845. * 4 256
  846. * 5 512
  847. * 6 256
  848. * 7 512
  849. * 8 1024
  850. * 9 1024
  851. * 10 2048
  852. *
  853. * Basically, it calculates a value with which to shift the
  854. * smallest CS size of 32MB.
  855. *
  856. * ddr[23]_cs_size have a similar purpose.
  857. */
  858. diff = cs_mode/3 + (unsigned)(cs_mode > 5);
  859. return 32 << (cs_mode - diff);
  860. }
  861. else {
  862. WARN_ON(cs_mode > 6);
  863. return 32 << cs_mode;
  864. }
  865. }
  866. /*
  867. * Get the number of DCT channels in use.
  868. *
  869. * Return:
  870. * number of Memory Channels in operation
  871. * Pass back:
  872. * contents of the DCL0_LOW register
  873. */
  874. static int f1x_early_channel_count(struct amd64_pvt *pvt)
  875. {
  876. int i, j, channels = 0;
  877. /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
  878. if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
  879. return 2;
  880. /*
  881. * Need to check if in unganged mode: In such, there are 2 channels,
  882. * but they are not in 128 bit mode and thus the above 'dclr0' status
  883. * bit will be OFF.
  884. *
  885. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  886. * their CSEnable bit on. If so, then SINGLE DIMM case.
  887. */
  888. edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
  889. /*
  890. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  891. * is more than just one DIMM present in unganged mode. Need to check
  892. * both controllers since DIMMs can be placed in either one.
  893. */
  894. for (i = 0; i < 2; i++) {
  895. u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
  896. for (j = 0; j < 4; j++) {
  897. if (DBAM_DIMM(j, dbam) > 0) {
  898. channels++;
  899. break;
  900. }
  901. }
  902. }
  903. if (channels > 2)
  904. channels = 2;
  905. amd64_info("MCT channel count: %d\n", channels);
  906. return channels;
  907. }
  908. static int ddr3_cs_size(unsigned i, bool dct_width)
  909. {
  910. unsigned shift = 0;
  911. int cs_size = 0;
  912. if (i == 0 || i == 3 || i == 4)
  913. cs_size = -1;
  914. else if (i <= 2)
  915. shift = i;
  916. else if (i == 12)
  917. shift = 7;
  918. else if (!(i & 0x1))
  919. shift = i >> 1;
  920. else
  921. shift = (i + 1) >> 1;
  922. if (cs_size != -1)
  923. cs_size = (128 * (1 << !!dct_width)) << shift;
  924. return cs_size;
  925. }
  926. static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  927. unsigned cs_mode)
  928. {
  929. u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
  930. WARN_ON(cs_mode > 11);
  931. if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
  932. return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
  933. else
  934. return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
  935. }
  936. /*
  937. * F15h supports only 64bit DCT interfaces
  938. */
  939. static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
  940. unsigned cs_mode)
  941. {
  942. WARN_ON(cs_mode > 12);
  943. return ddr3_cs_size(cs_mode, false);
  944. }
  945. static void read_dram_ctl_register(struct amd64_pvt *pvt)
  946. {
  947. if (boot_cpu_data.x86 == 0xf)
  948. return;
  949. if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
  950. edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
  951. pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
  952. edac_dbg(0, " DCTs operate in %s mode\n",
  953. (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
  954. if (!dct_ganging_enabled(pvt))
  955. edac_dbg(0, " Address range split per DCT: %s\n",
  956. (dct_high_range_enabled(pvt) ? "yes" : "no"));
  957. edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
  958. (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
  959. (dct_memory_cleared(pvt) ? "yes" : "no"));
  960. edac_dbg(0, " channel interleave: %s, "
  961. "interleave bits selector: 0x%x\n",
  962. (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
  963. dct_sel_interleave_addr(pvt));
  964. }
  965. amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
  966. }
  967. /*
  968. * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  969. * Interleaving Modes.
  970. */
  971. static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  972. bool hi_range_sel, u8 intlv_en)
  973. {
  974. u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
  975. if (dct_ganging_enabled(pvt))
  976. return 0;
  977. if (hi_range_sel)
  978. return dct_sel_high;
  979. /*
  980. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  981. */
  982. if (dct_interleave_enabled(pvt)) {
  983. u8 intlv_addr = dct_sel_interleave_addr(pvt);
  984. /* return DCT select function: 0=DCT0, 1=DCT1 */
  985. if (!intlv_addr)
  986. return sys_addr >> 6 & 1;
  987. if (intlv_addr & 0x2) {
  988. u8 shift = intlv_addr & 0x1 ? 9 : 6;
  989. u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  990. return ((sys_addr >> shift) & 1) ^ temp;
  991. }
  992. return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
  993. }
  994. if (dct_high_range_enabled(pvt))
  995. return ~dct_sel_high & 1;
  996. return 0;
  997. }
  998. /* Convert the sys_addr to the normalized DCT address */
  999. static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
  1000. u64 sys_addr, bool hi_rng,
  1001. u32 dct_sel_base_addr)
  1002. {
  1003. u64 chan_off;
  1004. u64 dram_base = get_dram_base(pvt, range);
  1005. u64 hole_off = f10_dhar_offset(pvt);
  1006. u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
  1007. if (hi_rng) {
  1008. /*
  1009. * if
  1010. * base address of high range is below 4Gb
  1011. * (bits [47:27] at [31:11])
  1012. * DRAM address space on this DCT is hoisted above 4Gb &&
  1013. * sys_addr > 4Gb
  1014. *
  1015. * remove hole offset from sys_addr
  1016. * else
  1017. * remove high range offset from sys_addr
  1018. */
  1019. if ((!(dct_sel_base_addr >> 16) ||
  1020. dct_sel_base_addr < dhar_base(pvt)) &&
  1021. dhar_valid(pvt) &&
  1022. (sys_addr >= BIT_64(32)))
  1023. chan_off = hole_off;
  1024. else
  1025. chan_off = dct_sel_base_off;
  1026. } else {
  1027. /*
  1028. * if
  1029. * we have a valid hole &&
  1030. * sys_addr > 4Gb
  1031. *
  1032. * remove hole
  1033. * else
  1034. * remove dram base to normalize to DCT address
  1035. */
  1036. if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
  1037. chan_off = hole_off;
  1038. else
  1039. chan_off = dram_base;
  1040. }
  1041. return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
  1042. }
  1043. /*
  1044. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1045. * spare row
  1046. */
  1047. static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
  1048. {
  1049. int tmp_cs;
  1050. if (online_spare_swap_done(pvt, dct) &&
  1051. csrow == online_spare_bad_dramcs(pvt, dct)) {
  1052. for_each_chip_select(tmp_cs, dct, pvt) {
  1053. if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
  1054. csrow = tmp_cs;
  1055. break;
  1056. }
  1057. }
  1058. }
  1059. return csrow;
  1060. }
  1061. /*
  1062. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1063. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1064. *
  1065. * Return:
  1066. * -EINVAL: NOT FOUND
  1067. * 0..csrow = Chip-Select Row
  1068. */
  1069. static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
  1070. {
  1071. struct mem_ctl_info *mci;
  1072. struct amd64_pvt *pvt;
  1073. u64 cs_base, cs_mask;
  1074. int cs_found = -EINVAL;
  1075. int csrow;
  1076. mci = mcis[nid];
  1077. if (!mci)
  1078. return cs_found;
  1079. pvt = mci->pvt_info;
  1080. edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
  1081. for_each_chip_select(csrow, dct, pvt) {
  1082. if (!csrow_enabled(csrow, dct, pvt))
  1083. continue;
  1084. get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
  1085. edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
  1086. csrow, cs_base, cs_mask);
  1087. cs_mask = ~cs_mask;
  1088. edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
  1089. (in_addr & cs_mask), (cs_base & cs_mask));
  1090. if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
  1091. cs_found = f10_process_possible_spare(pvt, dct, csrow);
  1092. edac_dbg(1, " MATCH csrow=%d\n", cs_found);
  1093. break;
  1094. }
  1095. }
  1096. return cs_found;
  1097. }
  1098. /*
  1099. * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
  1100. * swapped with a region located at the bottom of memory so that the GPU can use
  1101. * the interleaved region and thus two channels.
  1102. */
  1103. static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
  1104. {
  1105. u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
  1106. if (boot_cpu_data.x86 == 0x10) {
  1107. /* only revC3 and revE have that feature */
  1108. if (boot_cpu_data.x86_model < 4 ||
  1109. (boot_cpu_data.x86_model < 0xa &&
  1110. boot_cpu_data.x86_mask < 3))
  1111. return sys_addr;
  1112. }
  1113. amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
  1114. if (!(swap_reg & 0x1))
  1115. return sys_addr;
  1116. swap_base = (swap_reg >> 3) & 0x7f;
  1117. swap_limit = (swap_reg >> 11) & 0x7f;
  1118. rgn_size = (swap_reg >> 20) & 0x7f;
  1119. tmp_addr = sys_addr >> 27;
  1120. if (!(sys_addr >> 34) &&
  1121. (((tmp_addr >= swap_base) &&
  1122. (tmp_addr <= swap_limit)) ||
  1123. (tmp_addr < rgn_size)))
  1124. return sys_addr ^ (u64)swap_base << 27;
  1125. return sys_addr;
  1126. }
  1127. /* For a given @dram_range, check if @sys_addr falls within it. */
  1128. static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
  1129. u64 sys_addr, int *chan_sel)
  1130. {
  1131. int cs_found = -EINVAL;
  1132. u64 chan_addr;
  1133. u32 dct_sel_base;
  1134. u8 channel;
  1135. bool high_range = false;
  1136. u8 node_id = dram_dst_node(pvt, range);
  1137. u8 intlv_en = dram_intlv_en(pvt, range);
  1138. u32 intlv_sel = dram_intlv_sel(pvt, range);
  1139. edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
  1140. range, sys_addr, get_dram_limit(pvt, range));
  1141. if (dhar_valid(pvt) &&
  1142. dhar_base(pvt) <= sys_addr &&
  1143. sys_addr < BIT_64(32)) {
  1144. amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
  1145. sys_addr);
  1146. return -EINVAL;
  1147. }
  1148. if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1149. return -EINVAL;
  1150. sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
  1151. dct_sel_base = dct_sel_baseaddr(pvt);
  1152. /*
  1153. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1154. * select between DCT0 and DCT1.
  1155. */
  1156. if (dct_high_range_enabled(pvt) &&
  1157. !dct_ganging_enabled(pvt) &&
  1158. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1159. high_range = true;
  1160. channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1161. chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
  1162. high_range, dct_sel_base);
  1163. /* Remove node interleaving, see F1x120 */
  1164. if (intlv_en)
  1165. chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
  1166. (chan_addr & 0xfff);
  1167. /* remove channel interleave */
  1168. if (dct_interleave_enabled(pvt) &&
  1169. !dct_high_range_enabled(pvt) &&
  1170. !dct_ganging_enabled(pvt)) {
  1171. if (dct_sel_interleave_addr(pvt) != 1) {
  1172. if (dct_sel_interleave_addr(pvt) == 0x3)
  1173. /* hash 9 */
  1174. chan_addr = ((chan_addr >> 10) << 9) |
  1175. (chan_addr & 0x1ff);
  1176. else
  1177. /* A[6] or hash 6 */
  1178. chan_addr = ((chan_addr >> 7) << 6) |
  1179. (chan_addr & 0x3f);
  1180. } else
  1181. /* A[12] */
  1182. chan_addr = ((chan_addr >> 13) << 12) |
  1183. (chan_addr & 0xfff);
  1184. }
  1185. edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
  1186. cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
  1187. if (cs_found >= 0)
  1188. *chan_sel = channel;
  1189. return cs_found;
  1190. }
  1191. static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1192. int *chan_sel)
  1193. {
  1194. int cs_found = -EINVAL;
  1195. unsigned range;
  1196. for (range = 0; range < DRAM_RANGES; range++) {
  1197. if (!dram_rw(pvt, range))
  1198. continue;
  1199. if ((get_dram_base(pvt, range) <= sys_addr) &&
  1200. (get_dram_limit(pvt, range) >= sys_addr)) {
  1201. cs_found = f1x_match_to_this_node(pvt, range,
  1202. sys_addr, chan_sel);
  1203. if (cs_found >= 0)
  1204. break;
  1205. }
  1206. }
  1207. return cs_found;
  1208. }
  1209. /*
  1210. * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
  1211. * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
  1212. *
  1213. * The @sys_addr is usually an error address received from the hardware
  1214. * (MCX_ADDR).
  1215. */
  1216. static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
  1217. struct err_info *err)
  1218. {
  1219. struct amd64_pvt *pvt = mci->pvt_info;
  1220. error_address_to_page_and_offset(sys_addr, err);
  1221. err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
  1222. if (err->csrow < 0) {
  1223. err->err_code = ERR_CSROW;
  1224. return;
  1225. }
  1226. /*
  1227. * We need the syndromes for channel detection only when we're
  1228. * ganged. Otherwise @chan should already contain the channel at
  1229. * this point.
  1230. */
  1231. if (dct_ganging_enabled(pvt))
  1232. err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
  1233. }
  1234. /*
  1235. * debug routine to display the memory sizes of all logical DIMMs and its
  1236. * CSROWs
  1237. */
  1238. static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
  1239. {
  1240. int dimm, size0, size1;
  1241. u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
  1242. u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1243. if (boot_cpu_data.x86 == 0xf) {
  1244. /* K8 families < revF not supported yet */
  1245. if (pvt->ext_model < K8_REV_F)
  1246. return;
  1247. else
  1248. WARN_ON(ctrl != 0);
  1249. }
  1250. dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
  1251. dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
  1252. : pvt->csels[0].csbases;
  1253. edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
  1254. ctrl, dbam);
  1255. edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
  1256. /* Dump memory sizes for DIMM and its CSROWs */
  1257. for (dimm = 0; dimm < 4; dimm++) {
  1258. size0 = 0;
  1259. if (dcsb[dimm*2] & DCSB_CS_ENABLE)
  1260. size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1261. DBAM_DIMM(dimm, dbam));
  1262. size1 = 0;
  1263. if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
  1264. size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
  1265. DBAM_DIMM(dimm, dbam));
  1266. amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
  1267. dimm * 2, size0,
  1268. dimm * 2 + 1, size1);
  1269. }
  1270. }
  1271. static struct amd64_family_type amd64_family_types[] = {
  1272. [K8_CPUS] = {
  1273. .ctl_name = "K8",
  1274. .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1275. .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1276. .ops = {
  1277. .early_channel_count = k8_early_channel_count,
  1278. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1279. .dbam_to_cs = k8_dbam_to_chip_select,
  1280. .read_dct_pci_cfg = k8_read_dct_pci_cfg,
  1281. }
  1282. },
  1283. [F10_CPUS] = {
  1284. .ctl_name = "F10h",
  1285. .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1286. .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1287. .ops = {
  1288. .early_channel_count = f1x_early_channel_count,
  1289. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1290. .dbam_to_cs = f10_dbam_to_chip_select,
  1291. .read_dct_pci_cfg = f10_read_dct_pci_cfg,
  1292. }
  1293. },
  1294. [F15_CPUS] = {
  1295. .ctl_name = "F15h",
  1296. .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
  1297. .f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
  1298. .ops = {
  1299. .early_channel_count = f1x_early_channel_count,
  1300. .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
  1301. .dbam_to_cs = f15_dbam_to_chip_select,
  1302. .read_dct_pci_cfg = f15_read_dct_pci_cfg,
  1303. }
  1304. },
  1305. };
  1306. /*
  1307. * These are tables of eigenvectors (one per line) which can be used for the
  1308. * construction of the syndrome tables. The modified syndrome search algorithm
  1309. * uses those to find the symbol in error and thus the DIMM.
  1310. *
  1311. * Algorithm courtesy of Ross LaFetra from AMD.
  1312. */
  1313. static const u16 x4_vectors[] = {
  1314. 0x2f57, 0x1afe, 0x66cc, 0xdd88,
  1315. 0x11eb, 0x3396, 0x7f4c, 0xeac8,
  1316. 0x0001, 0x0002, 0x0004, 0x0008,
  1317. 0x1013, 0x3032, 0x4044, 0x8088,
  1318. 0x106b, 0x30d6, 0x70fc, 0xe0a8,
  1319. 0x4857, 0xc4fe, 0x13cc, 0x3288,
  1320. 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
  1321. 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
  1322. 0x15c1, 0x2a42, 0x89ac, 0x4758,
  1323. 0x2b03, 0x1602, 0x4f0c, 0xca08,
  1324. 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
  1325. 0x8ba7, 0x465e, 0x244c, 0x1cc8,
  1326. 0x2b87, 0x164e, 0x642c, 0xdc18,
  1327. 0x40b9, 0x80de, 0x1094, 0x20e8,
  1328. 0x27db, 0x1eb6, 0x9dac, 0x7b58,
  1329. 0x11c1, 0x2242, 0x84ac, 0x4c58,
  1330. 0x1be5, 0x2d7a, 0x5e34, 0xa718,
  1331. 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
  1332. 0x4c97, 0xc87e, 0x11fc, 0x33a8,
  1333. 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
  1334. 0x16b3, 0x3d62, 0x4f34, 0x8518,
  1335. 0x1e2f, 0x391a, 0x5cac, 0xf858,
  1336. 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
  1337. 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
  1338. 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
  1339. 0x4397, 0xc27e, 0x17fc, 0x3ea8,
  1340. 0x1617, 0x3d3e, 0x6464, 0xb8b8,
  1341. 0x23ff, 0x12aa, 0xab6c, 0x56d8,
  1342. 0x2dfb, 0x1ba6, 0x913c, 0x7328,
  1343. 0x185d, 0x2ca6, 0x7914, 0x9e28,
  1344. 0x171b, 0x3e36, 0x7d7c, 0xebe8,
  1345. 0x4199, 0x82ee, 0x19f4, 0x2e58,
  1346. 0x4807, 0xc40e, 0x130c, 0x3208,
  1347. 0x1905, 0x2e0a, 0x5804, 0xac08,
  1348. 0x213f, 0x132a, 0xadfc, 0x5ba8,
  1349. 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
  1350. };
  1351. static const u16 x8_vectors[] = {
  1352. 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
  1353. 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
  1354. 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
  1355. 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
  1356. 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
  1357. 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
  1358. 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
  1359. 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
  1360. 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
  1361. 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
  1362. 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
  1363. 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
  1364. 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
  1365. 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
  1366. 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
  1367. 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
  1368. 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
  1369. 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
  1370. 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
  1371. };
  1372. static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
  1373. unsigned v_dim)
  1374. {
  1375. unsigned int i, err_sym;
  1376. for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
  1377. u16 s = syndrome;
  1378. unsigned v_idx = err_sym * v_dim;
  1379. unsigned v_end = (err_sym + 1) * v_dim;
  1380. /* walk over all 16 bits of the syndrome */
  1381. for (i = 1; i < (1U << 16); i <<= 1) {
  1382. /* if bit is set in that eigenvector... */
  1383. if (v_idx < v_end && vectors[v_idx] & i) {
  1384. u16 ev_comp = vectors[v_idx++];
  1385. /* ... and bit set in the modified syndrome, */
  1386. if (s & i) {
  1387. /* remove it. */
  1388. s ^= ev_comp;
  1389. if (!s)
  1390. return err_sym;
  1391. }
  1392. } else if (s & i)
  1393. /* can't get to zero, move to next symbol */
  1394. break;
  1395. }
  1396. }
  1397. edac_dbg(0, "syndrome(%x) not found\n", syndrome);
  1398. return -1;
  1399. }
  1400. static int map_err_sym_to_channel(int err_sym, int sym_size)
  1401. {
  1402. if (sym_size == 4)
  1403. switch (err_sym) {
  1404. case 0x20:
  1405. case 0x21:
  1406. return 0;
  1407. break;
  1408. case 0x22:
  1409. case 0x23:
  1410. return 1;
  1411. break;
  1412. default:
  1413. return err_sym >> 4;
  1414. break;
  1415. }
  1416. /* x8 symbols */
  1417. else
  1418. switch (err_sym) {
  1419. /* imaginary bits not in a DIMM */
  1420. case 0x10:
  1421. WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
  1422. err_sym);
  1423. return -1;
  1424. break;
  1425. case 0x11:
  1426. return 0;
  1427. break;
  1428. case 0x12:
  1429. return 1;
  1430. break;
  1431. default:
  1432. return err_sym >> 3;
  1433. break;
  1434. }
  1435. return -1;
  1436. }
  1437. static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
  1438. {
  1439. struct amd64_pvt *pvt = mci->pvt_info;
  1440. int err_sym = -1;
  1441. if (pvt->ecc_sym_sz == 8)
  1442. err_sym = decode_syndrome(syndrome, x8_vectors,
  1443. ARRAY_SIZE(x8_vectors),
  1444. pvt->ecc_sym_sz);
  1445. else if (pvt->ecc_sym_sz == 4)
  1446. err_sym = decode_syndrome(syndrome, x4_vectors,
  1447. ARRAY_SIZE(x4_vectors),
  1448. pvt->ecc_sym_sz);
  1449. else {
  1450. amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
  1451. return err_sym;
  1452. }
  1453. return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
  1454. }
  1455. static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
  1456. u8 ecc_type)
  1457. {
  1458. enum hw_event_mc_err_type err_type;
  1459. const char *string;
  1460. if (ecc_type == 2)
  1461. err_type = HW_EVENT_ERR_CORRECTED;
  1462. else if (ecc_type == 1)
  1463. err_type = HW_EVENT_ERR_UNCORRECTED;
  1464. else {
  1465. WARN(1, "Something is rotten in the state of Denmark.\n");
  1466. return;
  1467. }
  1468. switch (err->err_code) {
  1469. case DECODE_OK:
  1470. string = "";
  1471. break;
  1472. case ERR_NODE:
  1473. string = "Failed to map error addr to a node";
  1474. break;
  1475. case ERR_CSROW:
  1476. string = "Failed to map error addr to a csrow";
  1477. break;
  1478. case ERR_CHANNEL:
  1479. string = "unknown syndrome - possible error reporting race";
  1480. break;
  1481. default:
  1482. string = "WTF error";
  1483. break;
  1484. }
  1485. edac_mc_handle_error(err_type, mci, 1,
  1486. err->page, err->offset, err->syndrome,
  1487. err->csrow, err->channel, -1,
  1488. string, "");
  1489. }
  1490. static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
  1491. struct mce *m)
  1492. {
  1493. struct amd64_pvt *pvt = mci->pvt_info;
  1494. u8 ecc_type = (m->status >> 45) & 0x3;
  1495. u8 xec = XEC(m->status, 0x1f);
  1496. u16 ec = EC(m->status);
  1497. u64 sys_addr;
  1498. struct err_info err;
  1499. /* Bail out early if this was an 'observed' error */
  1500. if (PP(ec) == NBSL_PP_OBS)
  1501. return;
  1502. /* Do only ECC errors */
  1503. if (xec && xec != F10_NBSL_EXT_ERR_ECC)
  1504. return;
  1505. memset(&err, 0, sizeof(err));
  1506. sys_addr = get_error_address(m);
  1507. if (ecc_type == 2)
  1508. err.syndrome = extract_syndrome(m->status);
  1509. pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
  1510. __log_bus_error(mci, &err, ecc_type);
  1511. }
  1512. void amd64_decode_bus_error(int node_id, struct mce *m)
  1513. {
  1514. __amd64_decode_bus_error(mcis[node_id], m);
  1515. }
  1516. /*
  1517. * Use pvt->F2 which contains the F2 CPU PCI device to get the related
  1518. * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
  1519. */
  1520. static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
  1521. {
  1522. /* Reserve the ADDRESS MAP Device */
  1523. pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
  1524. if (!pvt->F1) {
  1525. amd64_err("error address map device not found: "
  1526. "vendor %x device 0x%x (broken BIOS?)\n",
  1527. PCI_VENDOR_ID_AMD, f1_id);
  1528. return -ENODEV;
  1529. }
  1530. /* Reserve the MISC Device */
  1531. pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
  1532. if (!pvt->F3) {
  1533. pci_dev_put(pvt->F1);
  1534. pvt->F1 = NULL;
  1535. amd64_err("error F3 device not found: "
  1536. "vendor %x device 0x%x (broken BIOS?)\n",
  1537. PCI_VENDOR_ID_AMD, f3_id);
  1538. return -ENODEV;
  1539. }
  1540. edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
  1541. edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
  1542. edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
  1543. return 0;
  1544. }
  1545. static void free_mc_sibling_devs(struct amd64_pvt *pvt)
  1546. {
  1547. pci_dev_put(pvt->F1);
  1548. pci_dev_put(pvt->F3);
  1549. }
  1550. /*
  1551. * Retrieve the hardware registers of the memory controller (this includes the
  1552. * 'Address Map' and 'Misc' device regs)
  1553. */
  1554. static void read_mc_regs(struct amd64_pvt *pvt)
  1555. {
  1556. struct cpuinfo_x86 *c = &boot_cpu_data;
  1557. u64 msr_val;
  1558. u32 tmp;
  1559. unsigned range;
  1560. /*
  1561. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  1562. * those are Read-As-Zero
  1563. */
  1564. rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
  1565. edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
  1566. /* check first whether TOP_MEM2 is enabled */
  1567. rdmsrl(MSR_K8_SYSCFG, msr_val);
  1568. if (msr_val & (1U << 21)) {
  1569. rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
  1570. edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
  1571. } else
  1572. edac_dbg(0, " TOP_MEM2 disabled\n");
  1573. amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
  1574. read_dram_ctl_register(pvt);
  1575. for (range = 0; range < DRAM_RANGES; range++) {
  1576. u8 rw;
  1577. /* read settings for this DRAM range */
  1578. read_dram_base_limit_regs(pvt, range);
  1579. rw = dram_rw(pvt, range);
  1580. if (!rw)
  1581. continue;
  1582. edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
  1583. range,
  1584. get_dram_base(pvt, range),
  1585. get_dram_limit(pvt, range));
  1586. edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
  1587. dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
  1588. (rw & 0x1) ? "R" : "-",
  1589. (rw & 0x2) ? "W" : "-",
  1590. dram_intlv_sel(pvt, range),
  1591. dram_dst_node(pvt, range));
  1592. }
  1593. read_dct_base_mask(pvt);
  1594. amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
  1595. amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
  1596. amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
  1597. amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
  1598. amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
  1599. if (!dct_ganging_enabled(pvt)) {
  1600. amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
  1601. amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
  1602. }
  1603. pvt->ecc_sym_sz = 4;
  1604. if (c->x86 >= 0x10) {
  1605. amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
  1606. amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
  1607. /* F10h, revD and later can do x8 ECC too */
  1608. if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
  1609. pvt->ecc_sym_sz = 8;
  1610. }
  1611. dump_misc_regs(pvt);
  1612. }
  1613. /*
  1614. * NOTE: CPU Revision Dependent code
  1615. *
  1616. * Input:
  1617. * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
  1618. * k8 private pointer to -->
  1619. * DRAM Bank Address mapping register
  1620. * node_id
  1621. * DCL register where dual_channel_active is
  1622. *
  1623. * The DBAM register consists of 4 sets of 4 bits each definitions:
  1624. *
  1625. * Bits: CSROWs
  1626. * 0-3 CSROWs 0 and 1
  1627. * 4-7 CSROWs 2 and 3
  1628. * 8-11 CSROWs 4 and 5
  1629. * 12-15 CSROWs 6 and 7
  1630. *
  1631. * Values range from: 0 to 15
  1632. * The meaning of the values depends on CPU revision and dual-channel state,
  1633. * see relevant BKDG more info.
  1634. *
  1635. * The memory controller provides for total of only 8 CSROWs in its current
  1636. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  1637. * single channel or two (2) DIMMs in dual channel mode.
  1638. *
  1639. * The following code logic collapses the various tables for CSROW based on CPU
  1640. * revision.
  1641. *
  1642. * Returns:
  1643. * The number of PAGE_SIZE pages on the specified CSROW number it
  1644. * encompasses
  1645. *
  1646. */
  1647. static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
  1648. {
  1649. u32 cs_mode, nr_pages;
  1650. u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
  1651. /*
  1652. * The math on this doesn't look right on the surface because x/2*4 can
  1653. * be simplified to x*2 but this expression makes use of the fact that
  1654. * it is integral math where 1/2=0. This intermediate value becomes the
  1655. * number of bits to shift the DBAM register to extract the proper CSROW
  1656. * field.
  1657. */
  1658. cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
  1659. nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
  1660. edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
  1661. csrow_nr, dct, cs_mode);
  1662. edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
  1663. return nr_pages;
  1664. }
  1665. /*
  1666. * Initialize the array of csrow attribute instances, based on the values
  1667. * from pci config hardware registers.
  1668. */
  1669. static int init_csrows(struct mem_ctl_info *mci)
  1670. {
  1671. struct amd64_pvt *pvt = mci->pvt_info;
  1672. struct csrow_info *csrow;
  1673. struct dimm_info *dimm;
  1674. enum edac_type edac_mode;
  1675. enum mem_type mtype;
  1676. int i, j, empty = 1;
  1677. int nr_pages = 0;
  1678. u32 val;
  1679. amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
  1680. pvt->nbcfg = val;
  1681. edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
  1682. pvt->mc_node_id, val,
  1683. !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
  1684. /*
  1685. * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
  1686. */
  1687. for_each_chip_select(i, 0, pvt) {
  1688. bool row_dct0 = !!csrow_enabled(i, 0, pvt);
  1689. bool row_dct1 = false;
  1690. if (boot_cpu_data.x86 != 0xf)
  1691. row_dct1 = !!csrow_enabled(i, 1, pvt);
  1692. if (!row_dct0 && !row_dct1)
  1693. continue;
  1694. csrow = mci->csrows[i];
  1695. empty = 0;
  1696. edac_dbg(1, "MC node: %d, csrow: %d\n",
  1697. pvt->mc_node_id, i);
  1698. if (row_dct0) {
  1699. nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
  1700. csrow->channels[0]->dimm->nr_pages = nr_pages;
  1701. }
  1702. /* K8 has only one DCT */
  1703. if (boot_cpu_data.x86 != 0xf && row_dct1) {
  1704. int row_dct1_pages = amd64_csrow_nr_pages(pvt, 1, i);
  1705. csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
  1706. nr_pages += row_dct1_pages;
  1707. }
  1708. mtype = amd64_determine_memory_type(pvt, i);
  1709. edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
  1710. /*
  1711. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  1712. */
  1713. if (pvt->nbcfg & NBCFG_ECC_ENABLE)
  1714. edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
  1715. EDAC_S4ECD4ED : EDAC_SECDED;
  1716. else
  1717. edac_mode = EDAC_NONE;
  1718. for (j = 0; j < pvt->channel_count; j++) {
  1719. dimm = csrow->channels[j]->dimm;
  1720. dimm->mtype = mtype;
  1721. dimm->edac_mode = edac_mode;
  1722. }
  1723. }
  1724. return empty;
  1725. }
  1726. /* get all cores on this DCT */
  1727. static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
  1728. {
  1729. int cpu;
  1730. for_each_online_cpu(cpu)
  1731. if (amd_get_nb_id(cpu) == nid)
  1732. cpumask_set_cpu(cpu, mask);
  1733. }
  1734. /* check MCG_CTL on all the cpus on this node */
  1735. static bool amd64_nb_mce_bank_enabled_on_node(u16 nid)
  1736. {
  1737. cpumask_var_t mask;
  1738. int cpu, nbe;
  1739. bool ret = false;
  1740. if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
  1741. amd64_warn("%s: Error allocating mask\n", __func__);
  1742. return false;
  1743. }
  1744. get_cpus_on_this_dct_cpumask(mask, nid);
  1745. rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
  1746. for_each_cpu(cpu, mask) {
  1747. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1748. nbe = reg->l & MSR_MCGCTL_NBE;
  1749. edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  1750. cpu, reg->q,
  1751. (nbe ? "enabled" : "disabled"));
  1752. if (!nbe)
  1753. goto out;
  1754. }
  1755. ret = true;
  1756. out:
  1757. free_cpumask_var(mask);
  1758. return ret;
  1759. }
  1760. static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
  1761. {
  1762. cpumask_var_t cmask;
  1763. int cpu;
  1764. if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
  1765. amd64_warn("%s: error allocating mask\n", __func__);
  1766. return false;
  1767. }
  1768. get_cpus_on_this_dct_cpumask(cmask, nid);
  1769. rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1770. for_each_cpu(cpu, cmask) {
  1771. struct msr *reg = per_cpu_ptr(msrs, cpu);
  1772. if (on) {
  1773. if (reg->l & MSR_MCGCTL_NBE)
  1774. s->flags.nb_mce_enable = 1;
  1775. reg->l |= MSR_MCGCTL_NBE;
  1776. } else {
  1777. /*
  1778. * Turn off NB MCE reporting only when it was off before
  1779. */
  1780. if (!s->flags.nb_mce_enable)
  1781. reg->l &= ~MSR_MCGCTL_NBE;
  1782. }
  1783. }
  1784. wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
  1785. free_cpumask_var(cmask);
  1786. return 0;
  1787. }
  1788. static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  1789. struct pci_dev *F3)
  1790. {
  1791. bool ret = true;
  1792. u32 value, mask = 0x3; /* UECC/CECC enable */
  1793. if (toggle_ecc_err_reporting(s, nid, ON)) {
  1794. amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
  1795. return false;
  1796. }
  1797. amd64_read_pci_cfg(F3, NBCTL, &value);
  1798. s->old_nbctl = value & mask;
  1799. s->nbctl_valid = true;
  1800. value |= mask;
  1801. amd64_write_pci_cfg(F3, NBCTL, value);
  1802. amd64_read_pci_cfg(F3, NBCFG, &value);
  1803. edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1804. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1805. if (!(value & NBCFG_ECC_ENABLE)) {
  1806. amd64_warn("DRAM ECC disabled on this node, enabling...\n");
  1807. s->flags.nb_ecc_prev = 0;
  1808. /* Attempt to turn on DRAM ECC Enable */
  1809. value |= NBCFG_ECC_ENABLE;
  1810. amd64_write_pci_cfg(F3, NBCFG, value);
  1811. amd64_read_pci_cfg(F3, NBCFG, &value);
  1812. if (!(value & NBCFG_ECC_ENABLE)) {
  1813. amd64_warn("Hardware rejected DRAM ECC enable,"
  1814. "check memory DIMM configuration.\n");
  1815. ret = false;
  1816. } else {
  1817. amd64_info("Hardware accepted DRAM ECC Enable\n");
  1818. }
  1819. } else {
  1820. s->flags.nb_ecc_prev = 1;
  1821. }
  1822. edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
  1823. nid, value, !!(value & NBCFG_ECC_ENABLE));
  1824. return ret;
  1825. }
  1826. static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
  1827. struct pci_dev *F3)
  1828. {
  1829. u32 value, mask = 0x3; /* UECC/CECC enable */
  1830. if (!s->nbctl_valid)
  1831. return;
  1832. amd64_read_pci_cfg(F3, NBCTL, &value);
  1833. value &= ~mask;
  1834. value |= s->old_nbctl;
  1835. amd64_write_pci_cfg(F3, NBCTL, value);
  1836. /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
  1837. if (!s->flags.nb_ecc_prev) {
  1838. amd64_read_pci_cfg(F3, NBCFG, &value);
  1839. value &= ~NBCFG_ECC_ENABLE;
  1840. amd64_write_pci_cfg(F3, NBCFG, value);
  1841. }
  1842. /* restore the NB Enable MCGCTL bit */
  1843. if (toggle_ecc_err_reporting(s, nid, OFF))
  1844. amd64_warn("Error restoring NB MCGCTL settings!\n");
  1845. }
  1846. /*
  1847. * EDAC requires that the BIOS have ECC enabled before
  1848. * taking over the processing of ECC errors. A command line
  1849. * option allows to force-enable hardware ECC later in
  1850. * enable_ecc_error_reporting().
  1851. */
  1852. static const char *ecc_msg =
  1853. "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
  1854. " Either enable ECC checking or force module loading by setting "
  1855. "'ecc_enable_override'.\n"
  1856. " (Note that use of the override may cause unknown side effects.)\n";
  1857. static bool ecc_enabled(struct pci_dev *F3, u16 nid)
  1858. {
  1859. u32 value;
  1860. u8 ecc_en = 0;
  1861. bool nb_mce_en = false;
  1862. amd64_read_pci_cfg(F3, NBCFG, &value);
  1863. ecc_en = !!(value & NBCFG_ECC_ENABLE);
  1864. amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
  1865. nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
  1866. if (!nb_mce_en)
  1867. amd64_notice("NB MCE bank disabled, set MSR "
  1868. "0x%08x[4] on node %d to enable.\n",
  1869. MSR_IA32_MCG_CTL, nid);
  1870. if (!ecc_en || !nb_mce_en) {
  1871. amd64_notice("%s", ecc_msg);
  1872. return false;
  1873. }
  1874. return true;
  1875. }
  1876. static int set_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1877. {
  1878. int rc;
  1879. rc = amd64_create_sysfs_dbg_files(mci);
  1880. if (rc < 0)
  1881. return rc;
  1882. if (boot_cpu_data.x86 >= 0x10) {
  1883. rc = amd64_create_sysfs_inject_files(mci);
  1884. if (rc < 0)
  1885. return rc;
  1886. }
  1887. return 0;
  1888. }
  1889. static void del_mc_sysfs_attrs(struct mem_ctl_info *mci)
  1890. {
  1891. amd64_remove_sysfs_dbg_files(mci);
  1892. if (boot_cpu_data.x86 >= 0x10)
  1893. amd64_remove_sysfs_inject_files(mci);
  1894. }
  1895. static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
  1896. struct amd64_family_type *fam)
  1897. {
  1898. struct amd64_pvt *pvt = mci->pvt_info;
  1899. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  1900. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  1901. if (pvt->nbcap & NBCAP_SECDED)
  1902. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  1903. if (pvt->nbcap & NBCAP_CHIPKILL)
  1904. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  1905. mci->edac_cap = amd64_determine_edac_cap(pvt);
  1906. mci->mod_name = EDAC_MOD_STR;
  1907. mci->mod_ver = EDAC_AMD64_VERSION;
  1908. mci->ctl_name = fam->ctl_name;
  1909. mci->dev_name = pci_name(pvt->F2);
  1910. mci->ctl_page_to_phys = NULL;
  1911. /* memory scrubber interface */
  1912. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  1913. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  1914. }
  1915. /*
  1916. * returns a pointer to the family descriptor on success, NULL otherwise.
  1917. */
  1918. static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
  1919. {
  1920. u8 fam = boot_cpu_data.x86;
  1921. struct amd64_family_type *fam_type = NULL;
  1922. switch (fam) {
  1923. case 0xf:
  1924. fam_type = &amd64_family_types[K8_CPUS];
  1925. pvt->ops = &amd64_family_types[K8_CPUS].ops;
  1926. break;
  1927. case 0x10:
  1928. fam_type = &amd64_family_types[F10_CPUS];
  1929. pvt->ops = &amd64_family_types[F10_CPUS].ops;
  1930. break;
  1931. case 0x15:
  1932. fam_type = &amd64_family_types[F15_CPUS];
  1933. pvt->ops = &amd64_family_types[F15_CPUS].ops;
  1934. break;
  1935. default:
  1936. amd64_err("Unsupported family!\n");
  1937. return NULL;
  1938. }
  1939. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  1940. amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
  1941. (fam == 0xf ?
  1942. (pvt->ext_model >= K8_REV_F ? "revF or later "
  1943. : "revE or earlier ")
  1944. : ""), pvt->mc_node_id);
  1945. return fam_type;
  1946. }
  1947. static int amd64_init_one_instance(struct pci_dev *F2)
  1948. {
  1949. struct amd64_pvt *pvt = NULL;
  1950. struct amd64_family_type *fam_type = NULL;
  1951. struct mem_ctl_info *mci = NULL;
  1952. struct edac_mc_layer layers[2];
  1953. int err = 0, ret;
  1954. u16 nid = amd_get_node_id(F2);
  1955. ret = -ENOMEM;
  1956. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  1957. if (!pvt)
  1958. goto err_ret;
  1959. pvt->mc_node_id = nid;
  1960. pvt->F2 = F2;
  1961. ret = -EINVAL;
  1962. fam_type = amd64_per_family_init(pvt);
  1963. if (!fam_type)
  1964. goto err_free;
  1965. ret = -ENODEV;
  1966. err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
  1967. if (err)
  1968. goto err_free;
  1969. read_mc_regs(pvt);
  1970. /*
  1971. * We need to determine how many memory channels there are. Then use
  1972. * that information for calculating the size of the dynamic instance
  1973. * tables in the 'mci' structure.
  1974. */
  1975. ret = -EINVAL;
  1976. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  1977. if (pvt->channel_count < 0)
  1978. goto err_siblings;
  1979. ret = -ENOMEM;
  1980. layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
  1981. layers[0].size = pvt->csels[0].b_cnt;
  1982. layers[0].is_virt_csrow = true;
  1983. layers[1].type = EDAC_MC_LAYER_CHANNEL;
  1984. layers[1].size = pvt->channel_count;
  1985. layers[1].is_virt_csrow = false;
  1986. mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
  1987. if (!mci)
  1988. goto err_siblings;
  1989. mci->pvt_info = pvt;
  1990. mci->pdev = &pvt->F2->dev;
  1991. setup_mci_misc_attrs(mci, fam_type);
  1992. if (init_csrows(mci))
  1993. mci->edac_cap = EDAC_FLAG_NONE;
  1994. ret = -ENODEV;
  1995. if (edac_mc_add_mc(mci)) {
  1996. edac_dbg(1, "failed edac_mc_add_mc()\n");
  1997. goto err_add_mc;
  1998. }
  1999. if (set_mc_sysfs_attrs(mci)) {
  2000. edac_dbg(1, "failed edac_mc_add_mc()\n");
  2001. goto err_add_sysfs;
  2002. }
  2003. /* register stuff with EDAC MCE */
  2004. if (report_gart_errors)
  2005. amd_report_gart_errors(true);
  2006. amd_register_ecc_decoder(amd64_decode_bus_error);
  2007. mcis[nid] = mci;
  2008. atomic_inc(&drv_instances);
  2009. return 0;
  2010. err_add_sysfs:
  2011. edac_mc_del_mc(mci->pdev);
  2012. err_add_mc:
  2013. edac_mc_free(mci);
  2014. err_siblings:
  2015. free_mc_sibling_devs(pvt);
  2016. err_free:
  2017. kfree(pvt);
  2018. err_ret:
  2019. return ret;
  2020. }
  2021. static int amd64_probe_one_instance(struct pci_dev *pdev,
  2022. const struct pci_device_id *mc_type)
  2023. {
  2024. u16 nid = amd_get_node_id(pdev);
  2025. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2026. struct ecc_settings *s;
  2027. int ret = 0;
  2028. ret = pci_enable_device(pdev);
  2029. if (ret < 0) {
  2030. edac_dbg(0, "ret=%d\n", ret);
  2031. return -EIO;
  2032. }
  2033. ret = -ENOMEM;
  2034. s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
  2035. if (!s)
  2036. goto err_out;
  2037. ecc_stngs[nid] = s;
  2038. if (!ecc_enabled(F3, nid)) {
  2039. ret = -ENODEV;
  2040. if (!ecc_enable_override)
  2041. goto err_enable;
  2042. amd64_warn("Forcing ECC on!\n");
  2043. if (!enable_ecc_error_reporting(s, nid, F3))
  2044. goto err_enable;
  2045. }
  2046. ret = amd64_init_one_instance(pdev);
  2047. if (ret < 0) {
  2048. amd64_err("Error probing instance: %d\n", nid);
  2049. restore_ecc_error_reporting(s, nid, F3);
  2050. }
  2051. return ret;
  2052. err_enable:
  2053. kfree(s);
  2054. ecc_stngs[nid] = NULL;
  2055. err_out:
  2056. return ret;
  2057. }
  2058. static void amd64_remove_one_instance(struct pci_dev *pdev)
  2059. {
  2060. struct mem_ctl_info *mci;
  2061. struct amd64_pvt *pvt;
  2062. u16 nid = amd_get_node_id(pdev);
  2063. struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
  2064. struct ecc_settings *s = ecc_stngs[nid];
  2065. mci = find_mci_by_dev(&pdev->dev);
  2066. del_mc_sysfs_attrs(mci);
  2067. /* Remove from EDAC CORE tracking list */
  2068. mci = edac_mc_del_mc(&pdev->dev);
  2069. if (!mci)
  2070. return;
  2071. pvt = mci->pvt_info;
  2072. restore_ecc_error_reporting(s, nid, F3);
  2073. free_mc_sibling_devs(pvt);
  2074. /* unregister from EDAC MCE */
  2075. amd_report_gart_errors(false);
  2076. amd_unregister_ecc_decoder(amd64_decode_bus_error);
  2077. kfree(ecc_stngs[nid]);
  2078. ecc_stngs[nid] = NULL;
  2079. /* Free the EDAC CORE resources */
  2080. mci->pvt_info = NULL;
  2081. mcis[nid] = NULL;
  2082. kfree(pvt);
  2083. edac_mc_free(mci);
  2084. }
  2085. /*
  2086. * This table is part of the interface for loading drivers for PCI devices. The
  2087. * PCI core identifies what devices are on a system during boot, and then
  2088. * inquiry this table to see if this driver is for a given device found.
  2089. */
  2090. static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
  2091. {
  2092. .vendor = PCI_VENDOR_ID_AMD,
  2093. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2094. .subvendor = PCI_ANY_ID,
  2095. .subdevice = PCI_ANY_ID,
  2096. .class = 0,
  2097. .class_mask = 0,
  2098. },
  2099. {
  2100. .vendor = PCI_VENDOR_ID_AMD,
  2101. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2102. .subvendor = PCI_ANY_ID,
  2103. .subdevice = PCI_ANY_ID,
  2104. .class = 0,
  2105. .class_mask = 0,
  2106. },
  2107. {
  2108. .vendor = PCI_VENDOR_ID_AMD,
  2109. .device = PCI_DEVICE_ID_AMD_15H_NB_F2,
  2110. .subvendor = PCI_ANY_ID,
  2111. .subdevice = PCI_ANY_ID,
  2112. .class = 0,
  2113. .class_mask = 0,
  2114. },
  2115. {0, }
  2116. };
  2117. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2118. static struct pci_driver amd64_pci_driver = {
  2119. .name = EDAC_MOD_STR,
  2120. .probe = amd64_probe_one_instance,
  2121. .remove = amd64_remove_one_instance,
  2122. .id_table = amd64_pci_table,
  2123. };
  2124. static void setup_pci_device(void)
  2125. {
  2126. struct mem_ctl_info *mci;
  2127. struct amd64_pvt *pvt;
  2128. if (amd64_ctl_pci)
  2129. return;
  2130. mci = mcis[0];
  2131. if (mci) {
  2132. pvt = mci->pvt_info;
  2133. amd64_ctl_pci =
  2134. edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
  2135. if (!amd64_ctl_pci) {
  2136. pr_warning("%s(): Unable to create PCI control\n",
  2137. __func__);
  2138. pr_warning("%s(): PCI error report via EDAC not set\n",
  2139. __func__);
  2140. }
  2141. }
  2142. }
  2143. static int __init amd64_edac_init(void)
  2144. {
  2145. int err = -ENODEV;
  2146. printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
  2147. opstate_init();
  2148. if (amd_cache_northbridges() < 0)
  2149. goto err_ret;
  2150. err = -ENOMEM;
  2151. mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
  2152. ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
  2153. if (!(mcis && ecc_stngs))
  2154. goto err_free;
  2155. msrs = msrs_alloc();
  2156. if (!msrs)
  2157. goto err_free;
  2158. err = pci_register_driver(&amd64_pci_driver);
  2159. if (err)
  2160. goto err_pci;
  2161. err = -ENODEV;
  2162. if (!atomic_read(&drv_instances))
  2163. goto err_no_instances;
  2164. setup_pci_device();
  2165. return 0;
  2166. err_no_instances:
  2167. pci_unregister_driver(&amd64_pci_driver);
  2168. err_pci:
  2169. msrs_free(msrs);
  2170. msrs = NULL;
  2171. err_free:
  2172. kfree(mcis);
  2173. mcis = NULL;
  2174. kfree(ecc_stngs);
  2175. ecc_stngs = NULL;
  2176. err_ret:
  2177. return err;
  2178. }
  2179. static void __exit amd64_edac_exit(void)
  2180. {
  2181. if (amd64_ctl_pci)
  2182. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2183. pci_unregister_driver(&amd64_pci_driver);
  2184. kfree(ecc_stngs);
  2185. ecc_stngs = NULL;
  2186. kfree(mcis);
  2187. mcis = NULL;
  2188. msrs_free(msrs);
  2189. msrs = NULL;
  2190. }
  2191. module_init(amd64_edac_init);
  2192. module_exit(amd64_edac_exit);
  2193. MODULE_LICENSE("GPL");
  2194. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2195. "Dave Peterson, Thayne Harbaugh");
  2196. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2197. EDAC_AMD64_VERSION);
  2198. module_param(edac_op_state, int, 0444);
  2199. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");