ste_dma40_ll.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/platform_data/dma-ste-dma40.h>
  9. #include "ste_dma40_ll.h"
  10. /* Sets up proper LCSP1 and LCSP3 register for a logical channel */
  11. void d40_log_cfg(struct stedma40_chan_cfg *cfg,
  12. u32 *lcsp1, u32 *lcsp3)
  13. {
  14. u32 l3 = 0; /* dst */
  15. u32 l1 = 0; /* src */
  16. /* src is mem? -> increase address pos */
  17. if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
  18. cfg->dir == STEDMA40_MEM_TO_MEM)
  19. l1 |= 1 << D40_MEM_LCSP1_SCFG_INCR_POS;
  20. /* dst is mem? -> increase address pos */
  21. if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
  22. cfg->dir == STEDMA40_MEM_TO_MEM)
  23. l3 |= 1 << D40_MEM_LCSP3_DCFG_INCR_POS;
  24. /* src is hw? -> master port 1 */
  25. if (cfg->dir == STEDMA40_PERIPH_TO_MEM ||
  26. cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
  27. l1 |= 1 << D40_MEM_LCSP1_SCFG_MST_POS;
  28. /* dst is hw? -> master port 1 */
  29. if (cfg->dir == STEDMA40_MEM_TO_PERIPH ||
  30. cfg->dir == STEDMA40_PERIPH_TO_PERIPH)
  31. l3 |= 1 << D40_MEM_LCSP3_DCFG_MST_POS;
  32. l3 |= 1 << D40_MEM_LCSP3_DCFG_EIM_POS;
  33. l3 |= cfg->dst_info.psize << D40_MEM_LCSP3_DCFG_PSIZE_POS;
  34. l3 |= cfg->dst_info.data_width << D40_MEM_LCSP3_DCFG_ESIZE_POS;
  35. l1 |= 1 << D40_MEM_LCSP1_SCFG_EIM_POS;
  36. l1 |= cfg->src_info.psize << D40_MEM_LCSP1_SCFG_PSIZE_POS;
  37. l1 |= cfg->src_info.data_width << D40_MEM_LCSP1_SCFG_ESIZE_POS;
  38. *lcsp1 = l1;
  39. *lcsp3 = l3;
  40. }
  41. /* Sets up SRC and DST CFG register for both logical and physical channels */
  42. void d40_phy_cfg(struct stedma40_chan_cfg *cfg,
  43. u32 *src_cfg, u32 *dst_cfg, bool is_log)
  44. {
  45. u32 src = 0;
  46. u32 dst = 0;
  47. if (!is_log) {
  48. /* Physical channel */
  49. if ((cfg->dir == STEDMA40_PERIPH_TO_MEM) ||
  50. (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
  51. /* Set master port to 1 */
  52. src |= 1 << D40_SREG_CFG_MST_POS;
  53. src |= D40_TYPE_TO_EVENT(cfg->src_dev_type);
  54. if (cfg->src_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
  55. src |= 1 << D40_SREG_CFG_PHY_TM_POS;
  56. else
  57. src |= 3 << D40_SREG_CFG_PHY_TM_POS;
  58. }
  59. if ((cfg->dir == STEDMA40_MEM_TO_PERIPH) ||
  60. (cfg->dir == STEDMA40_PERIPH_TO_PERIPH)) {
  61. /* Set master port to 1 */
  62. dst |= 1 << D40_SREG_CFG_MST_POS;
  63. dst |= D40_TYPE_TO_EVENT(cfg->dst_dev_type);
  64. if (cfg->dst_info.flow_ctrl == STEDMA40_NO_FLOW_CTRL)
  65. dst |= 1 << D40_SREG_CFG_PHY_TM_POS;
  66. else
  67. dst |= 3 << D40_SREG_CFG_PHY_TM_POS;
  68. }
  69. /* Interrupt on end of transfer for destination */
  70. dst |= 1 << D40_SREG_CFG_TIM_POS;
  71. /* Generate interrupt on error */
  72. src |= 1 << D40_SREG_CFG_EIM_POS;
  73. dst |= 1 << D40_SREG_CFG_EIM_POS;
  74. /* PSIZE */
  75. if (cfg->src_info.psize != STEDMA40_PSIZE_PHY_1) {
  76. src |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  77. src |= cfg->src_info.psize << D40_SREG_CFG_PSIZE_POS;
  78. }
  79. if (cfg->dst_info.psize != STEDMA40_PSIZE_PHY_1) {
  80. dst |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  81. dst |= cfg->dst_info.psize << D40_SREG_CFG_PSIZE_POS;
  82. }
  83. /* Element size */
  84. src |= cfg->src_info.data_width << D40_SREG_CFG_ESIZE_POS;
  85. dst |= cfg->dst_info.data_width << D40_SREG_CFG_ESIZE_POS;
  86. /* Set the priority bit to high for the physical channel */
  87. if (cfg->high_priority) {
  88. src |= 1 << D40_SREG_CFG_PRI_POS;
  89. dst |= 1 << D40_SREG_CFG_PRI_POS;
  90. }
  91. } else {
  92. /* Logical channel */
  93. dst |= 1 << D40_SREG_CFG_LOG_GIM_POS;
  94. src |= 1 << D40_SREG_CFG_LOG_GIM_POS;
  95. }
  96. if (cfg->src_info.big_endian)
  97. src |= 1 << D40_SREG_CFG_LBE_POS;
  98. if (cfg->dst_info.big_endian)
  99. dst |= 1 << D40_SREG_CFG_LBE_POS;
  100. *src_cfg = src;
  101. *dst_cfg = dst;
  102. }
  103. static int d40_phy_fill_lli(struct d40_phy_lli *lli,
  104. dma_addr_t data,
  105. u32 data_size,
  106. dma_addr_t next_lli,
  107. u32 reg_cfg,
  108. struct stedma40_half_channel_info *info,
  109. unsigned int flags)
  110. {
  111. bool addr_inc = flags & LLI_ADDR_INC;
  112. bool term_int = flags & LLI_TERM_INT;
  113. unsigned int data_width = info->data_width;
  114. int psize = info->psize;
  115. int num_elems;
  116. if (psize == STEDMA40_PSIZE_PHY_1)
  117. num_elems = 1;
  118. else
  119. num_elems = 2 << psize;
  120. /* Must be aligned */
  121. if (!IS_ALIGNED(data, 0x1 << data_width))
  122. return -EINVAL;
  123. /* Transfer size can't be smaller than (num_elms * elem_size) */
  124. if (data_size < num_elems * (0x1 << data_width))
  125. return -EINVAL;
  126. /* The number of elements. IE now many chunks */
  127. lli->reg_elt = (data_size >> data_width) << D40_SREG_ELEM_PHY_ECNT_POS;
  128. /*
  129. * Distance to next element sized entry.
  130. * Usually the size of the element unless you want gaps.
  131. */
  132. if (addr_inc)
  133. lli->reg_elt |= (0x1 << data_width) <<
  134. D40_SREG_ELEM_PHY_EIDX_POS;
  135. /* Where the data is */
  136. lli->reg_ptr = data;
  137. lli->reg_cfg = reg_cfg;
  138. /* If this scatter list entry is the last one, no next link */
  139. if (next_lli == 0)
  140. lli->reg_lnk = 0x1 << D40_SREG_LNK_PHY_TCP_POS;
  141. else
  142. lli->reg_lnk = next_lli;
  143. /* Set/clear interrupt generation on this link item.*/
  144. if (term_int)
  145. lli->reg_cfg |= 0x1 << D40_SREG_CFG_TIM_POS;
  146. else
  147. lli->reg_cfg &= ~(0x1 << D40_SREG_CFG_TIM_POS);
  148. /* Post link */
  149. lli->reg_lnk |= 0 << D40_SREG_LNK_PHY_PRE_POS;
  150. return 0;
  151. }
  152. static int d40_seg_size(int size, int data_width1, int data_width2)
  153. {
  154. u32 max_w = max(data_width1, data_width2);
  155. u32 min_w = min(data_width1, data_width2);
  156. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  157. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  158. seg_max -= (1 << max_w);
  159. if (size <= seg_max)
  160. return size;
  161. if (size <= 2 * seg_max)
  162. return ALIGN(size / 2, 1 << max_w);
  163. return seg_max;
  164. }
  165. static struct d40_phy_lli *
  166. d40_phy_buf_to_lli(struct d40_phy_lli *lli, dma_addr_t addr, u32 size,
  167. dma_addr_t lli_phys, dma_addr_t first_phys, u32 reg_cfg,
  168. struct stedma40_half_channel_info *info,
  169. struct stedma40_half_channel_info *otherinfo,
  170. unsigned long flags)
  171. {
  172. bool lastlink = flags & LLI_LAST_LINK;
  173. bool addr_inc = flags & LLI_ADDR_INC;
  174. bool term_int = flags & LLI_TERM_INT;
  175. bool cyclic = flags & LLI_CYCLIC;
  176. int err;
  177. dma_addr_t next = lli_phys;
  178. int size_rest = size;
  179. int size_seg = 0;
  180. /*
  181. * This piece may be split up based on d40_seg_size(); we only want the
  182. * term int on the last part.
  183. */
  184. if (term_int)
  185. flags &= ~LLI_TERM_INT;
  186. do {
  187. size_seg = d40_seg_size(size_rest, info->data_width,
  188. otherinfo->data_width);
  189. size_rest -= size_seg;
  190. if (size_rest == 0 && term_int)
  191. flags |= LLI_TERM_INT;
  192. if (size_rest == 0 && lastlink)
  193. next = cyclic ? first_phys : 0;
  194. else
  195. next = ALIGN(next + sizeof(struct d40_phy_lli),
  196. D40_LLI_ALIGN);
  197. err = d40_phy_fill_lli(lli, addr, size_seg, next,
  198. reg_cfg, info, flags);
  199. if (err)
  200. goto err;
  201. lli++;
  202. if (addr_inc)
  203. addr += size_seg;
  204. } while (size_rest);
  205. return lli;
  206. err:
  207. return NULL;
  208. }
  209. int d40_phy_sg_to_lli(struct scatterlist *sg,
  210. int sg_len,
  211. dma_addr_t target,
  212. struct d40_phy_lli *lli_sg,
  213. dma_addr_t lli_phys,
  214. u32 reg_cfg,
  215. struct stedma40_half_channel_info *info,
  216. struct stedma40_half_channel_info *otherinfo,
  217. unsigned long flags)
  218. {
  219. int total_size = 0;
  220. int i;
  221. struct scatterlist *current_sg = sg;
  222. struct d40_phy_lli *lli = lli_sg;
  223. dma_addr_t l_phys = lli_phys;
  224. if (!target)
  225. flags |= LLI_ADDR_INC;
  226. for_each_sg(sg, current_sg, sg_len, i) {
  227. dma_addr_t sg_addr = sg_dma_address(current_sg);
  228. unsigned int len = sg_dma_len(current_sg);
  229. dma_addr_t dst = target ?: sg_addr;
  230. total_size += sg_dma_len(current_sg);
  231. if (i == sg_len - 1)
  232. flags |= LLI_TERM_INT | LLI_LAST_LINK;
  233. l_phys = ALIGN(lli_phys + (lli - lli_sg) *
  234. sizeof(struct d40_phy_lli), D40_LLI_ALIGN);
  235. lli = d40_phy_buf_to_lli(lli, dst, len, l_phys, lli_phys,
  236. reg_cfg, info, otherinfo, flags);
  237. if (lli == NULL)
  238. return -EINVAL;
  239. }
  240. return total_size;
  241. }
  242. /* DMA logical lli operations */
  243. static void d40_log_lli_link(struct d40_log_lli *lli_dst,
  244. struct d40_log_lli *lli_src,
  245. int next, unsigned int flags)
  246. {
  247. bool interrupt = flags & LLI_TERM_INT;
  248. u32 slos = 0;
  249. u32 dlos = 0;
  250. if (next != -EINVAL) {
  251. slos = next * 2;
  252. dlos = next * 2 + 1;
  253. }
  254. if (interrupt) {
  255. lli_dst->lcsp13 |= D40_MEM_LCSP1_SCFG_TIM_MASK;
  256. lli_dst->lcsp13 |= D40_MEM_LCSP3_DTCP_MASK;
  257. }
  258. lli_src->lcsp13 = (lli_src->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
  259. (slos << D40_MEM_LCSP1_SLOS_POS);
  260. lli_dst->lcsp13 = (lli_dst->lcsp13 & ~D40_MEM_LCSP1_SLOS_MASK) |
  261. (dlos << D40_MEM_LCSP1_SLOS_POS);
  262. }
  263. void d40_log_lli_lcpa_write(struct d40_log_lli_full *lcpa,
  264. struct d40_log_lli *lli_dst,
  265. struct d40_log_lli *lli_src,
  266. int next, unsigned int flags)
  267. {
  268. d40_log_lli_link(lli_dst, lli_src, next, flags);
  269. writel_relaxed(lli_src->lcsp02, &lcpa[0].lcsp0);
  270. writel_relaxed(lli_src->lcsp13, &lcpa[0].lcsp1);
  271. writel_relaxed(lli_dst->lcsp02, &lcpa[0].lcsp2);
  272. writel_relaxed(lli_dst->lcsp13, &lcpa[0].lcsp3);
  273. }
  274. void d40_log_lli_lcla_write(struct d40_log_lli *lcla,
  275. struct d40_log_lli *lli_dst,
  276. struct d40_log_lli *lli_src,
  277. int next, unsigned int flags)
  278. {
  279. d40_log_lli_link(lli_dst, lli_src, next, flags);
  280. writel_relaxed(lli_src->lcsp02, &lcla[0].lcsp02);
  281. writel_relaxed(lli_src->lcsp13, &lcla[0].lcsp13);
  282. writel_relaxed(lli_dst->lcsp02, &lcla[1].lcsp02);
  283. writel_relaxed(lli_dst->lcsp13, &lcla[1].lcsp13);
  284. }
  285. static void d40_log_fill_lli(struct d40_log_lli *lli,
  286. dma_addr_t data, u32 data_size,
  287. u32 reg_cfg,
  288. u32 data_width,
  289. unsigned int flags)
  290. {
  291. bool addr_inc = flags & LLI_ADDR_INC;
  292. lli->lcsp13 = reg_cfg;
  293. /* The number of elements to transfer */
  294. lli->lcsp02 = ((data_size >> data_width) <<
  295. D40_MEM_LCSP0_ECNT_POS) & D40_MEM_LCSP0_ECNT_MASK;
  296. BUG_ON((data_size >> data_width) > STEDMA40_MAX_SEG_SIZE);
  297. /* 16 LSBs address of the current element */
  298. lli->lcsp02 |= data & D40_MEM_LCSP0_SPTR_MASK;
  299. /* 16 MSBs address of the current element */
  300. lli->lcsp13 |= data & D40_MEM_LCSP1_SPTR_MASK;
  301. if (addr_inc)
  302. lli->lcsp13 |= D40_MEM_LCSP1_SCFG_INCR_MASK;
  303. }
  304. static struct d40_log_lli *d40_log_buf_to_lli(struct d40_log_lli *lli_sg,
  305. dma_addr_t addr,
  306. int size,
  307. u32 lcsp13, /* src or dst*/
  308. u32 data_width1,
  309. u32 data_width2,
  310. unsigned int flags)
  311. {
  312. bool addr_inc = flags & LLI_ADDR_INC;
  313. struct d40_log_lli *lli = lli_sg;
  314. int size_rest = size;
  315. int size_seg = 0;
  316. do {
  317. size_seg = d40_seg_size(size_rest, data_width1, data_width2);
  318. size_rest -= size_seg;
  319. d40_log_fill_lli(lli,
  320. addr,
  321. size_seg,
  322. lcsp13, data_width1,
  323. flags);
  324. if (addr_inc)
  325. addr += size_seg;
  326. lli++;
  327. } while (size_rest);
  328. return lli;
  329. }
  330. int d40_log_sg_to_lli(struct scatterlist *sg,
  331. int sg_len,
  332. dma_addr_t dev_addr,
  333. struct d40_log_lli *lli_sg,
  334. u32 lcsp13, /* src or dst*/
  335. u32 data_width1, u32 data_width2)
  336. {
  337. int total_size = 0;
  338. struct scatterlist *current_sg = sg;
  339. int i;
  340. struct d40_log_lli *lli = lli_sg;
  341. unsigned long flags = 0;
  342. if (!dev_addr)
  343. flags |= LLI_ADDR_INC;
  344. for_each_sg(sg, current_sg, sg_len, i) {
  345. dma_addr_t sg_addr = sg_dma_address(current_sg);
  346. unsigned int len = sg_dma_len(current_sg);
  347. dma_addr_t addr = dev_addr ?: sg_addr;
  348. total_size += sg_dma_len(current_sg);
  349. lli = d40_log_buf_to_lli(lli, addr, len,
  350. lcsp13,
  351. data_width1,
  352. data_width2,
  353. flags);
  354. }
  355. return total_size;
  356. }