ste_dma40.c 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. #define MAX(a, b) (((a) < (b)) ? (b) : (a))
  45. /**
  46. * enum 40_command - The different commands and/or statuses.
  47. *
  48. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  49. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  50. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  51. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  52. */
  53. enum d40_command {
  54. D40_DMA_STOP = 0,
  55. D40_DMA_RUN = 1,
  56. D40_DMA_SUSPEND_REQ = 2,
  57. D40_DMA_SUSPENDED = 3
  58. };
  59. /*
  60. * enum d40_events - The different Event Enables for the event lines.
  61. *
  62. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  63. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  64. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  65. * @D40_ROUND_EVENTLINE: Status check for event line.
  66. */
  67. enum d40_events {
  68. D40_DEACTIVATE_EVENTLINE = 0,
  69. D40_ACTIVATE_EVENTLINE = 1,
  70. D40_SUSPEND_REQ_EVENTLINE = 2,
  71. D40_ROUND_EVENTLINE = 3
  72. };
  73. /*
  74. * These are the registers that has to be saved and later restored
  75. * when the DMA hw is powered off.
  76. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  77. */
  78. static u32 d40_backup_regs[] = {
  79. D40_DREG_LCPA,
  80. D40_DREG_LCLA,
  81. D40_DREG_PRMSE,
  82. D40_DREG_PRMSO,
  83. D40_DREG_PRMOE,
  84. D40_DREG_PRMOO,
  85. };
  86. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  87. /*
  88. * since 9540 and 8540 has the same HW revision
  89. * use v4a for 9540 or ealier
  90. * use v4b for 8540 or later
  91. * HW revision:
  92. * DB8500ed has revision 0
  93. * DB8500v1 has revision 2
  94. * DB8500v2 has revision 3
  95. * AP9540v1 has revision 4
  96. * DB8540v1 has revision 4
  97. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  98. */
  99. static u32 d40_backup_regs_v4a[] = {
  100. D40_DREG_PSEG1,
  101. D40_DREG_PSEG2,
  102. D40_DREG_PSEG3,
  103. D40_DREG_PSEG4,
  104. D40_DREG_PCEG1,
  105. D40_DREG_PCEG2,
  106. D40_DREG_PCEG3,
  107. D40_DREG_PCEG4,
  108. D40_DREG_RSEG1,
  109. D40_DREG_RSEG2,
  110. D40_DREG_RSEG3,
  111. D40_DREG_RSEG4,
  112. D40_DREG_RCEG1,
  113. D40_DREG_RCEG2,
  114. D40_DREG_RCEG3,
  115. D40_DREG_RCEG4,
  116. };
  117. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  118. static u32 d40_backup_regs_v4b[] = {
  119. D40_DREG_CPSEG1,
  120. D40_DREG_CPSEG2,
  121. D40_DREG_CPSEG3,
  122. D40_DREG_CPSEG4,
  123. D40_DREG_CPSEG5,
  124. D40_DREG_CPCEG1,
  125. D40_DREG_CPCEG2,
  126. D40_DREG_CPCEG3,
  127. D40_DREG_CPCEG4,
  128. D40_DREG_CPCEG5,
  129. D40_DREG_CRSEG1,
  130. D40_DREG_CRSEG2,
  131. D40_DREG_CRSEG3,
  132. D40_DREG_CRSEG4,
  133. D40_DREG_CRSEG5,
  134. D40_DREG_CRCEG1,
  135. D40_DREG_CRCEG2,
  136. D40_DREG_CRCEG3,
  137. D40_DREG_CRCEG4,
  138. D40_DREG_CRCEG5,
  139. };
  140. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  141. static u32 d40_backup_regs_chan[] = {
  142. D40_CHAN_REG_SSCFG,
  143. D40_CHAN_REG_SSELT,
  144. D40_CHAN_REG_SSPTR,
  145. D40_CHAN_REG_SSLNK,
  146. D40_CHAN_REG_SDCFG,
  147. D40_CHAN_REG_SDELT,
  148. D40_CHAN_REG_SDPTR,
  149. D40_CHAN_REG_SDLNK,
  150. };
  151. /**
  152. * struct d40_interrupt_lookup - lookup table for interrupt handler
  153. *
  154. * @src: Interrupt mask register.
  155. * @clr: Interrupt clear register.
  156. * @is_error: true if this is an error interrupt.
  157. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  158. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  159. */
  160. struct d40_interrupt_lookup {
  161. u32 src;
  162. u32 clr;
  163. bool is_error;
  164. int offset;
  165. };
  166. static struct d40_interrupt_lookup il_v4a[] = {
  167. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  168. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  169. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  170. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  171. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  172. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  173. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  174. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  175. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  176. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  177. };
  178. static struct d40_interrupt_lookup il_v4b[] = {
  179. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  180. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  181. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  182. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  183. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  184. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  185. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  186. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  187. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  188. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  189. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  190. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  191. };
  192. /**
  193. * struct d40_reg_val - simple lookup struct
  194. *
  195. * @reg: The register.
  196. * @val: The value that belongs to the register in reg.
  197. */
  198. struct d40_reg_val {
  199. unsigned int reg;
  200. unsigned int val;
  201. };
  202. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  203. /* Clock every part of the DMA block from start */
  204. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  205. /* Interrupts on all logical channels */
  206. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  207. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  208. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  209. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  210. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  211. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  212. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  213. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  214. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  215. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  216. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  217. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  218. };
  219. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  220. /* Clock every part of the DMA block from start */
  221. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  222. /* Interrupts on all logical channels */
  223. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  224. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  225. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  226. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  227. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  228. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  229. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  230. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  231. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  232. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  233. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  234. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  235. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  236. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  237. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  238. };
  239. /**
  240. * struct d40_lli_pool - Structure for keeping LLIs in memory
  241. *
  242. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  243. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  244. * pre_alloc_lli is used.
  245. * @dma_addr: DMA address, if mapped
  246. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  247. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  248. * one buffer to one buffer.
  249. */
  250. struct d40_lli_pool {
  251. void *base;
  252. int size;
  253. dma_addr_t dma_addr;
  254. /* Space for dst and src, plus an extra for padding */
  255. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  256. };
  257. /**
  258. * struct d40_desc - A descriptor is one DMA job.
  259. *
  260. * @lli_phy: LLI settings for physical channel. Both src and dst=
  261. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  262. * lli_len equals one.
  263. * @lli_log: Same as above but for logical channels.
  264. * @lli_pool: The pool with two entries pre-allocated.
  265. * @lli_len: Number of llis of current descriptor.
  266. * @lli_current: Number of transferred llis.
  267. * @lcla_alloc: Number of LCLA entries allocated.
  268. * @txd: DMA engine struct. Used for among other things for communication
  269. * during a transfer.
  270. * @node: List entry.
  271. * @is_in_client_list: true if the client owns this descriptor.
  272. * @cyclic: true if this is a cyclic job
  273. *
  274. * This descriptor is used for both logical and physical transfers.
  275. */
  276. struct d40_desc {
  277. /* LLI physical */
  278. struct d40_phy_lli_bidir lli_phy;
  279. /* LLI logical */
  280. struct d40_log_lli_bidir lli_log;
  281. struct d40_lli_pool lli_pool;
  282. int lli_len;
  283. int lli_current;
  284. int lcla_alloc;
  285. struct dma_async_tx_descriptor txd;
  286. struct list_head node;
  287. bool is_in_client_list;
  288. bool cyclic;
  289. };
  290. /**
  291. * struct d40_lcla_pool - LCLA pool settings and data.
  292. *
  293. * @base: The virtual address of LCLA. 18 bit aligned.
  294. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  295. * This pointer is only there for clean-up on error.
  296. * @pages: The number of pages needed for all physical channels.
  297. * Only used later for clean-up on error
  298. * @lock: Lock to protect the content in this struct.
  299. * @alloc_map: big map over which LCLA entry is own by which job.
  300. */
  301. struct d40_lcla_pool {
  302. void *base;
  303. dma_addr_t dma_addr;
  304. void *base_unaligned;
  305. int pages;
  306. spinlock_t lock;
  307. struct d40_desc **alloc_map;
  308. };
  309. /**
  310. * struct d40_phy_res - struct for handling eventlines mapped to physical
  311. * channels.
  312. *
  313. * @lock: A lock protection this entity.
  314. * @reserved: True if used by secure world or otherwise.
  315. * @num: The physical channel number of this entity.
  316. * @allocated_src: Bit mapped to show which src event line's are mapped to
  317. * this physical channel. Can also be free or physically allocated.
  318. * @allocated_dst: Same as for src but is dst.
  319. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  320. * event line number.
  321. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  322. */
  323. struct d40_phy_res {
  324. spinlock_t lock;
  325. bool reserved;
  326. int num;
  327. u32 allocated_src;
  328. u32 allocated_dst;
  329. bool use_soft_lli;
  330. };
  331. struct d40_base;
  332. /**
  333. * struct d40_chan - Struct that describes a channel.
  334. *
  335. * @lock: A spinlock to protect this struct.
  336. * @log_num: The logical number, if any of this channel.
  337. * @pending_tx: The number of pending transfers. Used between interrupt handler
  338. * and tasklet.
  339. * @busy: Set to true when transfer is ongoing on this channel.
  340. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  341. * point is NULL, then the channel is not allocated.
  342. * @chan: DMA engine handle.
  343. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  344. * transfer and call client callback.
  345. * @client: Cliented owned descriptor list.
  346. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  347. * @active: Active descriptor.
  348. * @done: Completed jobs
  349. * @queue: Queued jobs.
  350. * @prepare_queue: Prepared jobs.
  351. * @dma_cfg: The client configuration of this dma channel.
  352. * @configured: whether the dma_cfg configuration is valid
  353. * @base: Pointer to the device instance struct.
  354. * @src_def_cfg: Default cfg register setting for src.
  355. * @dst_def_cfg: Default cfg register setting for dst.
  356. * @log_def: Default logical channel settings.
  357. * @lcpa: Pointer to dst and src lcpa settings.
  358. * @runtime_addr: runtime configured address.
  359. * @runtime_direction: runtime configured direction.
  360. *
  361. * This struct can either "be" a logical or a physical channel.
  362. */
  363. struct d40_chan {
  364. spinlock_t lock;
  365. int log_num;
  366. int pending_tx;
  367. bool busy;
  368. struct d40_phy_res *phy_chan;
  369. struct dma_chan chan;
  370. struct tasklet_struct tasklet;
  371. struct list_head client;
  372. struct list_head pending_queue;
  373. struct list_head active;
  374. struct list_head done;
  375. struct list_head queue;
  376. struct list_head prepare_queue;
  377. struct stedma40_chan_cfg dma_cfg;
  378. bool configured;
  379. struct d40_base *base;
  380. /* Default register configurations */
  381. u32 src_def_cfg;
  382. u32 dst_def_cfg;
  383. struct d40_def_lcsp log_def;
  384. struct d40_log_lli_full *lcpa;
  385. /* Runtime reconfiguration */
  386. dma_addr_t runtime_addr;
  387. enum dma_transfer_direction runtime_direction;
  388. };
  389. /**
  390. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  391. * controller
  392. *
  393. * @backup: the pointer to the registers address array for backup
  394. * @backup_size: the size of the registers address array for backup
  395. * @realtime_en: the realtime enable register
  396. * @realtime_clear: the realtime clear register
  397. * @high_prio_en: the high priority enable register
  398. * @high_prio_clear: the high priority clear register
  399. * @interrupt_en: the interrupt enable register
  400. * @interrupt_clear: the interrupt clear register
  401. * @il: the pointer to struct d40_interrupt_lookup
  402. * @il_size: the size of d40_interrupt_lookup array
  403. * @init_reg: the pointer to the struct d40_reg_val
  404. * @init_reg_size: the size of d40_reg_val array
  405. */
  406. struct d40_gen_dmac {
  407. u32 *backup;
  408. u32 backup_size;
  409. u32 realtime_en;
  410. u32 realtime_clear;
  411. u32 high_prio_en;
  412. u32 high_prio_clear;
  413. u32 interrupt_en;
  414. u32 interrupt_clear;
  415. struct d40_interrupt_lookup *il;
  416. u32 il_size;
  417. struct d40_reg_val *init_reg;
  418. u32 init_reg_size;
  419. };
  420. /**
  421. * struct d40_base - The big global struct, one for each probe'd instance.
  422. *
  423. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  424. * @execmd_lock: Lock for execute command usage since several channels share
  425. * the same physical register.
  426. * @dev: The device structure.
  427. * @virtbase: The virtual base address of the DMA's register.
  428. * @rev: silicon revision detected.
  429. * @clk: Pointer to the DMA clock structure.
  430. * @phy_start: Physical memory start of the DMA registers.
  431. * @phy_size: Size of the DMA register map.
  432. * @irq: The IRQ number.
  433. * @num_phy_chans: The number of physical channels. Read from HW. This
  434. * is the number of available channels for this driver, not counting "Secure
  435. * mode" allocated physical channels.
  436. * @num_log_chans: The number of logical channels. Calculated from
  437. * num_phy_chans.
  438. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  439. * @dma_slave: dma_device channels that can do only do slave transfers.
  440. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  441. * @phy_chans: Room for all possible physical channels in system.
  442. * @log_chans: Room for all possible logical channels in system.
  443. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  444. * to log_chans entries.
  445. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  446. * to phy_chans entries.
  447. * @plat_data: Pointer to provided platform_data which is the driver
  448. * configuration.
  449. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  450. * @phy_res: Vector containing all physical channels.
  451. * @lcla_pool: lcla pool settings and data.
  452. * @lcpa_base: The virtual mapped address of LCPA.
  453. * @phy_lcpa: The physical address of the LCPA.
  454. * @lcpa_size: The size of the LCPA area.
  455. * @desc_slab: cache for descriptors.
  456. * @reg_val_backup: Here the values of some hardware registers are stored
  457. * before the DMA is powered off. They are restored when the power is back on.
  458. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  459. * later
  460. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  461. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  462. * @initialized: true if the dma has been initialized
  463. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  464. * DMA controller
  465. */
  466. struct d40_base {
  467. spinlock_t interrupt_lock;
  468. spinlock_t execmd_lock;
  469. struct device *dev;
  470. void __iomem *virtbase;
  471. u8 rev:4;
  472. struct clk *clk;
  473. phys_addr_t phy_start;
  474. resource_size_t phy_size;
  475. int irq;
  476. int num_phy_chans;
  477. int num_log_chans;
  478. struct device_dma_parameters dma_parms;
  479. struct dma_device dma_both;
  480. struct dma_device dma_slave;
  481. struct dma_device dma_memcpy;
  482. struct d40_chan *phy_chans;
  483. struct d40_chan *log_chans;
  484. struct d40_chan **lookup_log_chans;
  485. struct d40_chan **lookup_phy_chans;
  486. struct stedma40_platform_data *plat_data;
  487. struct regulator *lcpa_regulator;
  488. /* Physical half channels */
  489. struct d40_phy_res *phy_res;
  490. struct d40_lcla_pool lcla_pool;
  491. void *lcpa_base;
  492. dma_addr_t phy_lcpa;
  493. resource_size_t lcpa_size;
  494. struct kmem_cache *desc_slab;
  495. u32 reg_val_backup[BACKUP_REGS_SZ];
  496. u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
  497. u32 *reg_val_backup_chan;
  498. u16 gcc_pwr_off_mask;
  499. bool initialized;
  500. struct d40_gen_dmac gen_dmac;
  501. };
  502. static struct device *chan2dev(struct d40_chan *d40c)
  503. {
  504. return &d40c->chan.dev->device;
  505. }
  506. static bool chan_is_physical(struct d40_chan *chan)
  507. {
  508. return chan->log_num == D40_PHY_CHAN;
  509. }
  510. static bool chan_is_logical(struct d40_chan *chan)
  511. {
  512. return !chan_is_physical(chan);
  513. }
  514. static void __iomem *chan_base(struct d40_chan *chan)
  515. {
  516. return chan->base->virtbase + D40_DREG_PCBASE +
  517. chan->phy_chan->num * D40_DREG_PCDELTA;
  518. }
  519. #define d40_err(dev, format, arg...) \
  520. dev_err(dev, "[%s] " format, __func__, ## arg)
  521. #define chan_err(d40c, format, arg...) \
  522. d40_err(chan2dev(d40c), format, ## arg)
  523. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  524. int lli_len)
  525. {
  526. bool is_log = chan_is_logical(d40c);
  527. u32 align;
  528. void *base;
  529. if (is_log)
  530. align = sizeof(struct d40_log_lli);
  531. else
  532. align = sizeof(struct d40_phy_lli);
  533. if (lli_len == 1) {
  534. base = d40d->lli_pool.pre_alloc_lli;
  535. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  536. d40d->lli_pool.base = NULL;
  537. } else {
  538. d40d->lli_pool.size = lli_len * 2 * align;
  539. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  540. d40d->lli_pool.base = base;
  541. if (d40d->lli_pool.base == NULL)
  542. return -ENOMEM;
  543. }
  544. if (is_log) {
  545. d40d->lli_log.src = PTR_ALIGN(base, align);
  546. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  547. d40d->lli_pool.dma_addr = 0;
  548. } else {
  549. d40d->lli_phy.src = PTR_ALIGN(base, align);
  550. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  551. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  552. d40d->lli_phy.src,
  553. d40d->lli_pool.size,
  554. DMA_TO_DEVICE);
  555. if (dma_mapping_error(d40c->base->dev,
  556. d40d->lli_pool.dma_addr)) {
  557. kfree(d40d->lli_pool.base);
  558. d40d->lli_pool.base = NULL;
  559. d40d->lli_pool.dma_addr = 0;
  560. return -ENOMEM;
  561. }
  562. }
  563. return 0;
  564. }
  565. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  566. {
  567. if (d40d->lli_pool.dma_addr)
  568. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  569. d40d->lli_pool.size, DMA_TO_DEVICE);
  570. kfree(d40d->lli_pool.base);
  571. d40d->lli_pool.base = NULL;
  572. d40d->lli_pool.size = 0;
  573. d40d->lli_log.src = NULL;
  574. d40d->lli_log.dst = NULL;
  575. d40d->lli_phy.src = NULL;
  576. d40d->lli_phy.dst = NULL;
  577. }
  578. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  579. struct d40_desc *d40d)
  580. {
  581. unsigned long flags;
  582. int i;
  583. int ret = -EINVAL;
  584. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  585. /*
  586. * Allocate both src and dst at the same time, therefore the half
  587. * start on 1 since 0 can't be used since zero is used as end marker.
  588. */
  589. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  590. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  591. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  592. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  593. d40d->lcla_alloc++;
  594. ret = i;
  595. break;
  596. }
  597. }
  598. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  599. return ret;
  600. }
  601. static int d40_lcla_free_all(struct d40_chan *d40c,
  602. struct d40_desc *d40d)
  603. {
  604. unsigned long flags;
  605. int i;
  606. int ret = -EINVAL;
  607. if (chan_is_physical(d40c))
  608. return 0;
  609. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  610. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  611. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  612. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  613. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  614. d40d->lcla_alloc--;
  615. if (d40d->lcla_alloc == 0) {
  616. ret = 0;
  617. break;
  618. }
  619. }
  620. }
  621. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  622. return ret;
  623. }
  624. static void d40_desc_remove(struct d40_desc *d40d)
  625. {
  626. list_del(&d40d->node);
  627. }
  628. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  629. {
  630. struct d40_desc *desc = NULL;
  631. if (!list_empty(&d40c->client)) {
  632. struct d40_desc *d;
  633. struct d40_desc *_d;
  634. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  635. if (async_tx_test_ack(&d->txd)) {
  636. d40_desc_remove(d);
  637. desc = d;
  638. memset(desc, 0, sizeof(*desc));
  639. break;
  640. }
  641. }
  642. }
  643. if (!desc)
  644. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  645. if (desc)
  646. INIT_LIST_HEAD(&desc->node);
  647. return desc;
  648. }
  649. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  650. {
  651. d40_pool_lli_free(d40c, d40d);
  652. d40_lcla_free_all(d40c, d40d);
  653. kmem_cache_free(d40c->base->desc_slab, d40d);
  654. }
  655. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  656. {
  657. list_add_tail(&desc->node, &d40c->active);
  658. }
  659. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  660. {
  661. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  662. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  663. void __iomem *base = chan_base(chan);
  664. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  665. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  666. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  667. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  668. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  669. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  670. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  671. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  672. }
  673. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  674. {
  675. list_add_tail(&desc->node, &d40c->done);
  676. }
  677. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  678. {
  679. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  680. struct d40_log_lli_bidir *lli = &desc->lli_log;
  681. int lli_current = desc->lli_current;
  682. int lli_len = desc->lli_len;
  683. bool cyclic = desc->cyclic;
  684. int curr_lcla = -EINVAL;
  685. int first_lcla = 0;
  686. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  687. bool linkback;
  688. /*
  689. * We may have partially running cyclic transfers, in case we did't get
  690. * enough LCLA entries.
  691. */
  692. linkback = cyclic && lli_current == 0;
  693. /*
  694. * For linkback, we need one LCLA even with only one link, because we
  695. * can't link back to the one in LCPA space
  696. */
  697. if (linkback || (lli_len - lli_current > 1)) {
  698. /*
  699. * If the channel is expected to use only soft_lli don't
  700. * allocate a lcla. This is to avoid a HW issue that exists
  701. * in some controller during a peripheral to memory transfer
  702. * that uses linked lists.
  703. */
  704. if (!(chan->phy_chan->use_soft_lli &&
  705. chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
  706. curr_lcla = d40_lcla_alloc_one(chan, desc);
  707. first_lcla = curr_lcla;
  708. }
  709. /*
  710. * For linkback, we normally load the LCPA in the loop since we need to
  711. * link it to the second LCLA and not the first. However, if we
  712. * couldn't even get a first LCLA, then we have to run in LCPA and
  713. * reload manually.
  714. */
  715. if (!linkback || curr_lcla == -EINVAL) {
  716. unsigned int flags = 0;
  717. if (curr_lcla == -EINVAL)
  718. flags |= LLI_TERM_INT;
  719. d40_log_lli_lcpa_write(chan->lcpa,
  720. &lli->dst[lli_current],
  721. &lli->src[lli_current],
  722. curr_lcla,
  723. flags);
  724. lli_current++;
  725. }
  726. if (curr_lcla < 0)
  727. goto out;
  728. for (; lli_current < lli_len; lli_current++) {
  729. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  730. 8 * curr_lcla * 2;
  731. struct d40_log_lli *lcla = pool->base + lcla_offset;
  732. unsigned int flags = 0;
  733. int next_lcla;
  734. if (lli_current + 1 < lli_len)
  735. next_lcla = d40_lcla_alloc_one(chan, desc);
  736. else
  737. next_lcla = linkback ? first_lcla : -EINVAL;
  738. if (cyclic || next_lcla == -EINVAL)
  739. flags |= LLI_TERM_INT;
  740. if (linkback && curr_lcla == first_lcla) {
  741. /* First link goes in both LCPA and LCLA */
  742. d40_log_lli_lcpa_write(chan->lcpa,
  743. &lli->dst[lli_current],
  744. &lli->src[lli_current],
  745. next_lcla, flags);
  746. }
  747. /*
  748. * One unused LCLA in the cyclic case if the very first
  749. * next_lcla fails...
  750. */
  751. d40_log_lli_lcla_write(lcla,
  752. &lli->dst[lli_current],
  753. &lli->src[lli_current],
  754. next_lcla, flags);
  755. /*
  756. * Cache maintenance is not needed if lcla is
  757. * mapped in esram
  758. */
  759. if (!use_esram_lcla) {
  760. dma_sync_single_range_for_device(chan->base->dev,
  761. pool->dma_addr, lcla_offset,
  762. 2 * sizeof(struct d40_log_lli),
  763. DMA_TO_DEVICE);
  764. }
  765. curr_lcla = next_lcla;
  766. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  767. lli_current++;
  768. break;
  769. }
  770. }
  771. out:
  772. desc->lli_current = lli_current;
  773. }
  774. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  775. {
  776. if (chan_is_physical(d40c)) {
  777. d40_phy_lli_load(d40c, d40d);
  778. d40d->lli_current = d40d->lli_len;
  779. } else
  780. d40_log_lli_to_lcxa(d40c, d40d);
  781. }
  782. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  783. {
  784. struct d40_desc *d;
  785. if (list_empty(&d40c->active))
  786. return NULL;
  787. d = list_first_entry(&d40c->active,
  788. struct d40_desc,
  789. node);
  790. return d;
  791. }
  792. /* remove desc from current queue and add it to the pending_queue */
  793. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  794. {
  795. d40_desc_remove(desc);
  796. desc->is_in_client_list = false;
  797. list_add_tail(&desc->node, &d40c->pending_queue);
  798. }
  799. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  800. {
  801. struct d40_desc *d;
  802. if (list_empty(&d40c->pending_queue))
  803. return NULL;
  804. d = list_first_entry(&d40c->pending_queue,
  805. struct d40_desc,
  806. node);
  807. return d;
  808. }
  809. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  810. {
  811. struct d40_desc *d;
  812. if (list_empty(&d40c->queue))
  813. return NULL;
  814. d = list_first_entry(&d40c->queue,
  815. struct d40_desc,
  816. node);
  817. return d;
  818. }
  819. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  820. {
  821. if (list_empty(&d40c->done))
  822. return NULL;
  823. return list_first_entry(&d40c->done, struct d40_desc, node);
  824. }
  825. static int d40_psize_2_burst_size(bool is_log, int psize)
  826. {
  827. if (is_log) {
  828. if (psize == STEDMA40_PSIZE_LOG_1)
  829. return 1;
  830. } else {
  831. if (psize == STEDMA40_PSIZE_PHY_1)
  832. return 1;
  833. }
  834. return 2 << psize;
  835. }
  836. /*
  837. * The dma only supports transmitting packages up to
  838. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  839. * dma elements required to send the entire sg list
  840. */
  841. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  842. {
  843. int dmalen;
  844. u32 max_w = max(data_width1, data_width2);
  845. u32 min_w = min(data_width1, data_width2);
  846. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  847. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  848. seg_max -= (1 << max_w);
  849. if (!IS_ALIGNED(size, 1 << max_w))
  850. return -EINVAL;
  851. if (size <= seg_max)
  852. dmalen = 1;
  853. else {
  854. dmalen = size / seg_max;
  855. if (dmalen * seg_max < size)
  856. dmalen++;
  857. }
  858. return dmalen;
  859. }
  860. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  861. u32 data_width1, u32 data_width2)
  862. {
  863. struct scatterlist *sg;
  864. int i;
  865. int len = 0;
  866. int ret;
  867. for_each_sg(sgl, sg, sg_len, i) {
  868. ret = d40_size_2_dmalen(sg_dma_len(sg),
  869. data_width1, data_width2);
  870. if (ret < 0)
  871. return ret;
  872. len += ret;
  873. }
  874. return len;
  875. }
  876. #ifdef CONFIG_PM
  877. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  878. u32 *regaddr, int num, bool save)
  879. {
  880. int i;
  881. for (i = 0; i < num; i++) {
  882. void __iomem *addr = baseaddr + regaddr[i];
  883. if (save)
  884. backup[i] = readl_relaxed(addr);
  885. else
  886. writel_relaxed(backup[i], addr);
  887. }
  888. }
  889. static void d40_save_restore_registers(struct d40_base *base, bool save)
  890. {
  891. int i;
  892. /* Save/Restore channel specific registers */
  893. for (i = 0; i < base->num_phy_chans; i++) {
  894. void __iomem *addr;
  895. int idx;
  896. if (base->phy_res[i].reserved)
  897. continue;
  898. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  899. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  900. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  901. d40_backup_regs_chan,
  902. ARRAY_SIZE(d40_backup_regs_chan),
  903. save);
  904. }
  905. /* Save/Restore global registers */
  906. dma40_backup(base->virtbase, base->reg_val_backup,
  907. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  908. save);
  909. /* Save/Restore registers only existing on dma40 v3 and later */
  910. if (base->gen_dmac.backup)
  911. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  912. base->gen_dmac.backup,
  913. base->gen_dmac.backup_size,
  914. save);
  915. }
  916. #else
  917. static void d40_save_restore_registers(struct d40_base *base, bool save)
  918. {
  919. }
  920. #endif
  921. static int __d40_execute_command_phy(struct d40_chan *d40c,
  922. enum d40_command command)
  923. {
  924. u32 status;
  925. int i;
  926. void __iomem *active_reg;
  927. int ret = 0;
  928. unsigned long flags;
  929. u32 wmask;
  930. if (command == D40_DMA_STOP) {
  931. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  932. if (ret)
  933. return ret;
  934. }
  935. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  936. if (d40c->phy_chan->num % 2 == 0)
  937. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  938. else
  939. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  940. if (command == D40_DMA_SUSPEND_REQ) {
  941. status = (readl(active_reg) &
  942. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  943. D40_CHAN_POS(d40c->phy_chan->num);
  944. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  945. goto done;
  946. }
  947. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  948. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  949. active_reg);
  950. if (command == D40_DMA_SUSPEND_REQ) {
  951. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  952. status = (readl(active_reg) &
  953. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  954. D40_CHAN_POS(d40c->phy_chan->num);
  955. cpu_relax();
  956. /*
  957. * Reduce the number of bus accesses while
  958. * waiting for the DMA to suspend.
  959. */
  960. udelay(3);
  961. if (status == D40_DMA_STOP ||
  962. status == D40_DMA_SUSPENDED)
  963. break;
  964. }
  965. if (i == D40_SUSPEND_MAX_IT) {
  966. chan_err(d40c,
  967. "unable to suspend the chl %d (log: %d) status %x\n",
  968. d40c->phy_chan->num, d40c->log_num,
  969. status);
  970. dump_stack();
  971. ret = -EBUSY;
  972. }
  973. }
  974. done:
  975. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  976. return ret;
  977. }
  978. static void d40_term_all(struct d40_chan *d40c)
  979. {
  980. struct d40_desc *d40d;
  981. struct d40_desc *_d;
  982. /* Release completed descriptors */
  983. while ((d40d = d40_first_done(d40c))) {
  984. d40_desc_remove(d40d);
  985. d40_desc_free(d40c, d40d);
  986. }
  987. /* Release active descriptors */
  988. while ((d40d = d40_first_active_get(d40c))) {
  989. d40_desc_remove(d40d);
  990. d40_desc_free(d40c, d40d);
  991. }
  992. /* Release queued descriptors waiting for transfer */
  993. while ((d40d = d40_first_queued(d40c))) {
  994. d40_desc_remove(d40d);
  995. d40_desc_free(d40c, d40d);
  996. }
  997. /* Release pending descriptors */
  998. while ((d40d = d40_first_pending(d40c))) {
  999. d40_desc_remove(d40d);
  1000. d40_desc_free(d40c, d40d);
  1001. }
  1002. /* Release client owned descriptors */
  1003. if (!list_empty(&d40c->client))
  1004. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1005. d40_desc_remove(d40d);
  1006. d40_desc_free(d40c, d40d);
  1007. }
  1008. /* Release descriptors in prepare queue */
  1009. if (!list_empty(&d40c->prepare_queue))
  1010. list_for_each_entry_safe(d40d, _d,
  1011. &d40c->prepare_queue, node) {
  1012. d40_desc_remove(d40d);
  1013. d40_desc_free(d40c, d40d);
  1014. }
  1015. d40c->pending_tx = 0;
  1016. }
  1017. static void __d40_config_set_event(struct d40_chan *d40c,
  1018. enum d40_events event_type, u32 event,
  1019. int reg)
  1020. {
  1021. void __iomem *addr = chan_base(d40c) + reg;
  1022. int tries;
  1023. u32 status;
  1024. switch (event_type) {
  1025. case D40_DEACTIVATE_EVENTLINE:
  1026. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1027. | ~D40_EVENTLINE_MASK(event), addr);
  1028. break;
  1029. case D40_SUSPEND_REQ_EVENTLINE:
  1030. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1031. D40_EVENTLINE_POS(event);
  1032. if (status == D40_DEACTIVATE_EVENTLINE ||
  1033. status == D40_SUSPEND_REQ_EVENTLINE)
  1034. break;
  1035. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1036. | ~D40_EVENTLINE_MASK(event), addr);
  1037. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1038. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1039. D40_EVENTLINE_POS(event);
  1040. cpu_relax();
  1041. /*
  1042. * Reduce the number of bus accesses while
  1043. * waiting for the DMA to suspend.
  1044. */
  1045. udelay(3);
  1046. if (status == D40_DEACTIVATE_EVENTLINE)
  1047. break;
  1048. }
  1049. if (tries == D40_SUSPEND_MAX_IT) {
  1050. chan_err(d40c,
  1051. "unable to stop the event_line chl %d (log: %d)"
  1052. "status %x\n", d40c->phy_chan->num,
  1053. d40c->log_num, status);
  1054. }
  1055. break;
  1056. case D40_ACTIVATE_EVENTLINE:
  1057. /*
  1058. * The hardware sometimes doesn't register the enable when src and dst
  1059. * event lines are active on the same logical channel. Retry to ensure
  1060. * it does. Usually only one retry is sufficient.
  1061. */
  1062. tries = 100;
  1063. while (--tries) {
  1064. writel((D40_ACTIVATE_EVENTLINE <<
  1065. D40_EVENTLINE_POS(event)) |
  1066. ~D40_EVENTLINE_MASK(event), addr);
  1067. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1068. break;
  1069. }
  1070. if (tries != 99)
  1071. dev_dbg(chan2dev(d40c),
  1072. "[%s] workaround enable S%cLNK (%d tries)\n",
  1073. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1074. 100 - tries);
  1075. WARN_ON(!tries);
  1076. break;
  1077. case D40_ROUND_EVENTLINE:
  1078. BUG();
  1079. break;
  1080. }
  1081. }
  1082. static void d40_config_set_event(struct d40_chan *d40c,
  1083. enum d40_events event_type)
  1084. {
  1085. /* Enable event line connected to device (or memcpy) */
  1086. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1087. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  1088. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1089. __d40_config_set_event(d40c, event_type, event,
  1090. D40_CHAN_REG_SSLNK);
  1091. }
  1092. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  1093. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1094. __d40_config_set_event(d40c, event_type, event,
  1095. D40_CHAN_REG_SDLNK);
  1096. }
  1097. }
  1098. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1099. {
  1100. void __iomem *chanbase = chan_base(d40c);
  1101. u32 val;
  1102. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1103. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1104. return val;
  1105. }
  1106. static int
  1107. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1108. {
  1109. unsigned long flags;
  1110. int ret = 0;
  1111. u32 active_status;
  1112. void __iomem *active_reg;
  1113. if (d40c->phy_chan->num % 2 == 0)
  1114. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1115. else
  1116. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1117. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1118. switch (command) {
  1119. case D40_DMA_STOP:
  1120. case D40_DMA_SUSPEND_REQ:
  1121. active_status = (readl(active_reg) &
  1122. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1123. D40_CHAN_POS(d40c->phy_chan->num);
  1124. if (active_status == D40_DMA_RUN)
  1125. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1126. else
  1127. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1128. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1129. ret = __d40_execute_command_phy(d40c, command);
  1130. break;
  1131. case D40_DMA_RUN:
  1132. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1133. ret = __d40_execute_command_phy(d40c, command);
  1134. break;
  1135. case D40_DMA_SUSPENDED:
  1136. BUG();
  1137. break;
  1138. }
  1139. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1140. return ret;
  1141. }
  1142. static int d40_channel_execute_command(struct d40_chan *d40c,
  1143. enum d40_command command)
  1144. {
  1145. if (chan_is_logical(d40c))
  1146. return __d40_execute_command_log(d40c, command);
  1147. else
  1148. return __d40_execute_command_phy(d40c, command);
  1149. }
  1150. static u32 d40_get_prmo(struct d40_chan *d40c)
  1151. {
  1152. static const unsigned int phy_map[] = {
  1153. [STEDMA40_PCHAN_BASIC_MODE]
  1154. = D40_DREG_PRMO_PCHAN_BASIC,
  1155. [STEDMA40_PCHAN_MODULO_MODE]
  1156. = D40_DREG_PRMO_PCHAN_MODULO,
  1157. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1158. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1159. };
  1160. static const unsigned int log_map[] = {
  1161. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1162. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1163. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1164. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1165. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1166. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1167. };
  1168. if (chan_is_physical(d40c))
  1169. return phy_map[d40c->dma_cfg.mode_opt];
  1170. else
  1171. return log_map[d40c->dma_cfg.mode_opt];
  1172. }
  1173. static void d40_config_write(struct d40_chan *d40c)
  1174. {
  1175. u32 addr_base;
  1176. u32 var;
  1177. /* Odd addresses are even addresses + 4 */
  1178. addr_base = (d40c->phy_chan->num % 2) * 4;
  1179. /* Setup channel mode to logical or physical */
  1180. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1181. D40_CHAN_POS(d40c->phy_chan->num);
  1182. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1183. /* Setup operational mode option register */
  1184. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1185. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1186. if (chan_is_logical(d40c)) {
  1187. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1188. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1189. void __iomem *chanbase = chan_base(d40c);
  1190. /* Set default config for CFG reg */
  1191. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1192. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1193. /* Set LIDX for lcla */
  1194. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1195. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1196. /* Clear LNK which will be used by d40_chan_has_events() */
  1197. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1198. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1199. }
  1200. }
  1201. static u32 d40_residue(struct d40_chan *d40c)
  1202. {
  1203. u32 num_elt;
  1204. if (chan_is_logical(d40c))
  1205. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1206. >> D40_MEM_LCSP2_ECNT_POS;
  1207. else {
  1208. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1209. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1210. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1211. }
  1212. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1213. }
  1214. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1215. {
  1216. bool is_link;
  1217. if (chan_is_logical(d40c))
  1218. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1219. else
  1220. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1221. & D40_SREG_LNK_PHYS_LNK_MASK;
  1222. return is_link;
  1223. }
  1224. static int d40_pause(struct d40_chan *d40c)
  1225. {
  1226. int res = 0;
  1227. unsigned long flags;
  1228. if (!d40c->busy)
  1229. return 0;
  1230. pm_runtime_get_sync(d40c->base->dev);
  1231. spin_lock_irqsave(&d40c->lock, flags);
  1232. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1233. pm_runtime_mark_last_busy(d40c->base->dev);
  1234. pm_runtime_put_autosuspend(d40c->base->dev);
  1235. spin_unlock_irqrestore(&d40c->lock, flags);
  1236. return res;
  1237. }
  1238. static int d40_resume(struct d40_chan *d40c)
  1239. {
  1240. int res = 0;
  1241. unsigned long flags;
  1242. if (!d40c->busy)
  1243. return 0;
  1244. spin_lock_irqsave(&d40c->lock, flags);
  1245. pm_runtime_get_sync(d40c->base->dev);
  1246. /* If bytes left to transfer or linked tx resume job */
  1247. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1248. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1249. pm_runtime_mark_last_busy(d40c->base->dev);
  1250. pm_runtime_put_autosuspend(d40c->base->dev);
  1251. spin_unlock_irqrestore(&d40c->lock, flags);
  1252. return res;
  1253. }
  1254. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1255. {
  1256. struct d40_chan *d40c = container_of(tx->chan,
  1257. struct d40_chan,
  1258. chan);
  1259. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1260. unsigned long flags;
  1261. dma_cookie_t cookie;
  1262. spin_lock_irqsave(&d40c->lock, flags);
  1263. cookie = dma_cookie_assign(tx);
  1264. d40_desc_queue(d40c, d40d);
  1265. spin_unlock_irqrestore(&d40c->lock, flags);
  1266. return cookie;
  1267. }
  1268. static int d40_start(struct d40_chan *d40c)
  1269. {
  1270. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1271. }
  1272. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1273. {
  1274. struct d40_desc *d40d;
  1275. int err;
  1276. /* Start queued jobs, if any */
  1277. d40d = d40_first_queued(d40c);
  1278. if (d40d != NULL) {
  1279. if (!d40c->busy) {
  1280. d40c->busy = true;
  1281. pm_runtime_get_sync(d40c->base->dev);
  1282. }
  1283. /* Remove from queue */
  1284. d40_desc_remove(d40d);
  1285. /* Add to active queue */
  1286. d40_desc_submit(d40c, d40d);
  1287. /* Initiate DMA job */
  1288. d40_desc_load(d40c, d40d);
  1289. /* Start dma job */
  1290. err = d40_start(d40c);
  1291. if (err)
  1292. return NULL;
  1293. }
  1294. return d40d;
  1295. }
  1296. /* called from interrupt context */
  1297. static void dma_tc_handle(struct d40_chan *d40c)
  1298. {
  1299. struct d40_desc *d40d;
  1300. /* Get first active entry from list */
  1301. d40d = d40_first_active_get(d40c);
  1302. if (d40d == NULL)
  1303. return;
  1304. if (d40d->cyclic) {
  1305. /*
  1306. * If this was a paritially loaded list, we need to reloaded
  1307. * it, and only when the list is completed. We need to check
  1308. * for done because the interrupt will hit for every link, and
  1309. * not just the last one.
  1310. */
  1311. if (d40d->lli_current < d40d->lli_len
  1312. && !d40_tx_is_linked(d40c)
  1313. && !d40_residue(d40c)) {
  1314. d40_lcla_free_all(d40c, d40d);
  1315. d40_desc_load(d40c, d40d);
  1316. (void) d40_start(d40c);
  1317. if (d40d->lli_current == d40d->lli_len)
  1318. d40d->lli_current = 0;
  1319. }
  1320. } else {
  1321. d40_lcla_free_all(d40c, d40d);
  1322. if (d40d->lli_current < d40d->lli_len) {
  1323. d40_desc_load(d40c, d40d);
  1324. /* Start dma job */
  1325. (void) d40_start(d40c);
  1326. return;
  1327. }
  1328. if (d40_queue_start(d40c) == NULL)
  1329. d40c->busy = false;
  1330. pm_runtime_mark_last_busy(d40c->base->dev);
  1331. pm_runtime_put_autosuspend(d40c->base->dev);
  1332. d40_desc_remove(d40d);
  1333. d40_desc_done(d40c, d40d);
  1334. }
  1335. d40c->pending_tx++;
  1336. tasklet_schedule(&d40c->tasklet);
  1337. }
  1338. static void dma_tasklet(unsigned long data)
  1339. {
  1340. struct d40_chan *d40c = (struct d40_chan *) data;
  1341. struct d40_desc *d40d;
  1342. unsigned long flags;
  1343. dma_async_tx_callback callback;
  1344. void *callback_param;
  1345. spin_lock_irqsave(&d40c->lock, flags);
  1346. /* Get first entry from the done list */
  1347. d40d = d40_first_done(d40c);
  1348. if (d40d == NULL) {
  1349. /* Check if we have reached here for cyclic job */
  1350. d40d = d40_first_active_get(d40c);
  1351. if (d40d == NULL || !d40d->cyclic)
  1352. goto err;
  1353. }
  1354. if (!d40d->cyclic)
  1355. dma_cookie_complete(&d40d->txd);
  1356. /*
  1357. * If terminating a channel pending_tx is set to zero.
  1358. * This prevents any finished active jobs to return to the client.
  1359. */
  1360. if (d40c->pending_tx == 0) {
  1361. spin_unlock_irqrestore(&d40c->lock, flags);
  1362. return;
  1363. }
  1364. /* Callback to client */
  1365. callback = d40d->txd.callback;
  1366. callback_param = d40d->txd.callback_param;
  1367. if (!d40d->cyclic) {
  1368. if (async_tx_test_ack(&d40d->txd)) {
  1369. d40_desc_remove(d40d);
  1370. d40_desc_free(d40c, d40d);
  1371. } else if (!d40d->is_in_client_list) {
  1372. d40_desc_remove(d40d);
  1373. d40_lcla_free_all(d40c, d40d);
  1374. list_add_tail(&d40d->node, &d40c->client);
  1375. d40d->is_in_client_list = true;
  1376. }
  1377. }
  1378. d40c->pending_tx--;
  1379. if (d40c->pending_tx)
  1380. tasklet_schedule(&d40c->tasklet);
  1381. spin_unlock_irqrestore(&d40c->lock, flags);
  1382. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1383. callback(callback_param);
  1384. return;
  1385. err:
  1386. /* Rescue manouver if receiving double interrupts */
  1387. if (d40c->pending_tx > 0)
  1388. d40c->pending_tx--;
  1389. spin_unlock_irqrestore(&d40c->lock, flags);
  1390. }
  1391. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1392. {
  1393. int i;
  1394. u32 idx;
  1395. u32 row;
  1396. long chan = -1;
  1397. struct d40_chan *d40c;
  1398. unsigned long flags;
  1399. struct d40_base *base = data;
  1400. u32 regs[base->gen_dmac.il_size];
  1401. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1402. u32 il_size = base->gen_dmac.il_size;
  1403. spin_lock_irqsave(&base->interrupt_lock, flags);
  1404. /* Read interrupt status of both logical and physical channels */
  1405. for (i = 0; i < il_size; i++)
  1406. regs[i] = readl(base->virtbase + il[i].src);
  1407. for (;;) {
  1408. chan = find_next_bit((unsigned long *)regs,
  1409. BITS_PER_LONG * il_size, chan + 1);
  1410. /* No more set bits found? */
  1411. if (chan == BITS_PER_LONG * il_size)
  1412. break;
  1413. row = chan / BITS_PER_LONG;
  1414. idx = chan & (BITS_PER_LONG - 1);
  1415. if (il[row].offset == D40_PHY_CHAN)
  1416. d40c = base->lookup_phy_chans[idx];
  1417. else
  1418. d40c = base->lookup_log_chans[il[row].offset + idx];
  1419. if (!d40c) {
  1420. /*
  1421. * No error because this can happen if something else
  1422. * in the system is using the channel.
  1423. */
  1424. continue;
  1425. }
  1426. /* ACK interrupt */
  1427. writel(1 << idx, base->virtbase + il[row].clr);
  1428. spin_lock(&d40c->lock);
  1429. if (!il[row].is_error)
  1430. dma_tc_handle(d40c);
  1431. else
  1432. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1433. chan, il[row].offset, idx);
  1434. spin_unlock(&d40c->lock);
  1435. }
  1436. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1437. return IRQ_HANDLED;
  1438. }
  1439. static int d40_validate_conf(struct d40_chan *d40c,
  1440. struct stedma40_chan_cfg *conf)
  1441. {
  1442. int res = 0;
  1443. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1444. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1445. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1446. if (!conf->dir) {
  1447. chan_err(d40c, "Invalid direction.\n");
  1448. res = -EINVAL;
  1449. }
  1450. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1451. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1452. d40c->runtime_addr == 0) {
  1453. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1454. conf->dst_dev_type);
  1455. res = -EINVAL;
  1456. }
  1457. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1458. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1459. d40c->runtime_addr == 0) {
  1460. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1461. conf->src_dev_type);
  1462. res = -EINVAL;
  1463. }
  1464. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1465. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1466. chan_err(d40c, "Invalid dst\n");
  1467. res = -EINVAL;
  1468. }
  1469. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1470. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1471. chan_err(d40c, "Invalid src\n");
  1472. res = -EINVAL;
  1473. }
  1474. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1475. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1476. chan_err(d40c, "No event line\n");
  1477. res = -EINVAL;
  1478. }
  1479. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1480. (src_event_group != dst_event_group)) {
  1481. chan_err(d40c, "Invalid event group\n");
  1482. res = -EINVAL;
  1483. }
  1484. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1485. /*
  1486. * DMAC HW supports it. Will be added to this driver,
  1487. * in case any dma client requires it.
  1488. */
  1489. chan_err(d40c, "periph to periph not supported\n");
  1490. res = -EINVAL;
  1491. }
  1492. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1493. (1 << conf->src_info.data_width) !=
  1494. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1495. (1 << conf->dst_info.data_width)) {
  1496. /*
  1497. * The DMAC hardware only supports
  1498. * src (burst x width) == dst (burst x width)
  1499. */
  1500. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1501. res = -EINVAL;
  1502. }
  1503. return res;
  1504. }
  1505. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1506. bool is_src, int log_event_line, bool is_log,
  1507. bool *first_user)
  1508. {
  1509. unsigned long flags;
  1510. spin_lock_irqsave(&phy->lock, flags);
  1511. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1512. == D40_ALLOC_FREE);
  1513. if (!is_log) {
  1514. /* Physical interrupts are masked per physical full channel */
  1515. if (phy->allocated_src == D40_ALLOC_FREE &&
  1516. phy->allocated_dst == D40_ALLOC_FREE) {
  1517. phy->allocated_dst = D40_ALLOC_PHY;
  1518. phy->allocated_src = D40_ALLOC_PHY;
  1519. goto found;
  1520. } else
  1521. goto not_found;
  1522. }
  1523. /* Logical channel */
  1524. if (is_src) {
  1525. if (phy->allocated_src == D40_ALLOC_PHY)
  1526. goto not_found;
  1527. if (phy->allocated_src == D40_ALLOC_FREE)
  1528. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1529. if (!(phy->allocated_src & (1 << log_event_line))) {
  1530. phy->allocated_src |= 1 << log_event_line;
  1531. goto found;
  1532. } else
  1533. goto not_found;
  1534. } else {
  1535. if (phy->allocated_dst == D40_ALLOC_PHY)
  1536. goto not_found;
  1537. if (phy->allocated_dst == D40_ALLOC_FREE)
  1538. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1539. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1540. phy->allocated_dst |= 1 << log_event_line;
  1541. goto found;
  1542. } else
  1543. goto not_found;
  1544. }
  1545. not_found:
  1546. spin_unlock_irqrestore(&phy->lock, flags);
  1547. return false;
  1548. found:
  1549. spin_unlock_irqrestore(&phy->lock, flags);
  1550. return true;
  1551. }
  1552. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1553. int log_event_line)
  1554. {
  1555. unsigned long flags;
  1556. bool is_free = false;
  1557. spin_lock_irqsave(&phy->lock, flags);
  1558. if (!log_event_line) {
  1559. phy->allocated_dst = D40_ALLOC_FREE;
  1560. phy->allocated_src = D40_ALLOC_FREE;
  1561. is_free = true;
  1562. goto out;
  1563. }
  1564. /* Logical channel */
  1565. if (is_src) {
  1566. phy->allocated_src &= ~(1 << log_event_line);
  1567. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1568. phy->allocated_src = D40_ALLOC_FREE;
  1569. } else {
  1570. phy->allocated_dst &= ~(1 << log_event_line);
  1571. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1572. phy->allocated_dst = D40_ALLOC_FREE;
  1573. }
  1574. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1575. D40_ALLOC_FREE);
  1576. out:
  1577. spin_unlock_irqrestore(&phy->lock, flags);
  1578. return is_free;
  1579. }
  1580. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1581. {
  1582. int dev_type;
  1583. int event_group;
  1584. int event_line;
  1585. struct d40_phy_res *phys;
  1586. int i;
  1587. int j;
  1588. int log_num;
  1589. int num_phy_chans;
  1590. bool is_src;
  1591. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1592. phys = d40c->base->phy_res;
  1593. num_phy_chans = d40c->base->num_phy_chans;
  1594. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1595. dev_type = d40c->dma_cfg.src_dev_type;
  1596. log_num = 2 * dev_type;
  1597. is_src = true;
  1598. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1599. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1600. /* dst event lines are used for logical memcpy */
  1601. dev_type = d40c->dma_cfg.dst_dev_type;
  1602. log_num = 2 * dev_type + 1;
  1603. is_src = false;
  1604. } else
  1605. return -EINVAL;
  1606. event_group = D40_TYPE_TO_GROUP(dev_type);
  1607. event_line = D40_TYPE_TO_EVENT(dev_type);
  1608. if (!is_log) {
  1609. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1610. /* Find physical half channel */
  1611. if (d40c->dma_cfg.use_fixed_channel) {
  1612. i = d40c->dma_cfg.phy_channel;
  1613. if (d40_alloc_mask_set(&phys[i], is_src,
  1614. 0, is_log,
  1615. first_phy_user))
  1616. goto found_phy;
  1617. } else {
  1618. for (i = 0; i < num_phy_chans; i++) {
  1619. if (d40_alloc_mask_set(&phys[i], is_src,
  1620. 0, is_log,
  1621. first_phy_user))
  1622. goto found_phy;
  1623. }
  1624. }
  1625. } else
  1626. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1627. int phy_num = j + event_group * 2;
  1628. for (i = phy_num; i < phy_num + 2; i++) {
  1629. if (d40_alloc_mask_set(&phys[i],
  1630. is_src,
  1631. 0,
  1632. is_log,
  1633. first_phy_user))
  1634. goto found_phy;
  1635. }
  1636. }
  1637. return -EINVAL;
  1638. found_phy:
  1639. d40c->phy_chan = &phys[i];
  1640. d40c->log_num = D40_PHY_CHAN;
  1641. goto out;
  1642. }
  1643. if (dev_type == -1)
  1644. return -EINVAL;
  1645. /* Find logical channel */
  1646. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1647. int phy_num = j + event_group * 2;
  1648. if (d40c->dma_cfg.use_fixed_channel) {
  1649. i = d40c->dma_cfg.phy_channel;
  1650. if ((i != phy_num) && (i != phy_num + 1)) {
  1651. dev_err(chan2dev(d40c),
  1652. "invalid fixed phy channel %d\n", i);
  1653. return -EINVAL;
  1654. }
  1655. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1656. is_log, first_phy_user))
  1657. goto found_log;
  1658. dev_err(chan2dev(d40c),
  1659. "could not allocate fixed phy channel %d\n", i);
  1660. return -EINVAL;
  1661. }
  1662. /*
  1663. * Spread logical channels across all available physical rather
  1664. * than pack every logical channel at the first available phy
  1665. * channels.
  1666. */
  1667. if (is_src) {
  1668. for (i = phy_num; i < phy_num + 2; i++) {
  1669. if (d40_alloc_mask_set(&phys[i], is_src,
  1670. event_line, is_log,
  1671. first_phy_user))
  1672. goto found_log;
  1673. }
  1674. } else {
  1675. for (i = phy_num + 1; i >= phy_num; i--) {
  1676. if (d40_alloc_mask_set(&phys[i], is_src,
  1677. event_line, is_log,
  1678. first_phy_user))
  1679. goto found_log;
  1680. }
  1681. }
  1682. }
  1683. return -EINVAL;
  1684. found_log:
  1685. d40c->phy_chan = &phys[i];
  1686. d40c->log_num = log_num;
  1687. out:
  1688. if (is_log)
  1689. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1690. else
  1691. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1692. return 0;
  1693. }
  1694. static int d40_config_memcpy(struct d40_chan *d40c)
  1695. {
  1696. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1697. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1698. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1699. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1700. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1701. memcpy[d40c->chan.chan_id];
  1702. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1703. dma_has_cap(DMA_SLAVE, cap)) {
  1704. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1705. } else {
  1706. chan_err(d40c, "No memcpy\n");
  1707. return -EINVAL;
  1708. }
  1709. return 0;
  1710. }
  1711. static int d40_free_dma(struct d40_chan *d40c)
  1712. {
  1713. int res = 0;
  1714. u32 event;
  1715. struct d40_phy_res *phy = d40c->phy_chan;
  1716. bool is_src;
  1717. /* Terminate all queued and active transfers */
  1718. d40_term_all(d40c);
  1719. if (phy == NULL) {
  1720. chan_err(d40c, "phy == null\n");
  1721. return -EINVAL;
  1722. }
  1723. if (phy->allocated_src == D40_ALLOC_FREE &&
  1724. phy->allocated_dst == D40_ALLOC_FREE) {
  1725. chan_err(d40c, "channel already free\n");
  1726. return -EINVAL;
  1727. }
  1728. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1729. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1730. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1731. is_src = false;
  1732. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1733. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1734. is_src = true;
  1735. } else {
  1736. chan_err(d40c, "Unknown direction\n");
  1737. return -EINVAL;
  1738. }
  1739. pm_runtime_get_sync(d40c->base->dev);
  1740. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1741. if (res) {
  1742. chan_err(d40c, "stop failed\n");
  1743. goto out;
  1744. }
  1745. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1746. if (chan_is_logical(d40c))
  1747. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1748. else
  1749. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1750. if (d40c->busy) {
  1751. pm_runtime_mark_last_busy(d40c->base->dev);
  1752. pm_runtime_put_autosuspend(d40c->base->dev);
  1753. }
  1754. d40c->busy = false;
  1755. d40c->phy_chan = NULL;
  1756. d40c->configured = false;
  1757. out:
  1758. pm_runtime_mark_last_busy(d40c->base->dev);
  1759. pm_runtime_put_autosuspend(d40c->base->dev);
  1760. return res;
  1761. }
  1762. static bool d40_is_paused(struct d40_chan *d40c)
  1763. {
  1764. void __iomem *chanbase = chan_base(d40c);
  1765. bool is_paused = false;
  1766. unsigned long flags;
  1767. void __iomem *active_reg;
  1768. u32 status;
  1769. u32 event;
  1770. spin_lock_irqsave(&d40c->lock, flags);
  1771. if (chan_is_physical(d40c)) {
  1772. if (d40c->phy_chan->num % 2 == 0)
  1773. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1774. else
  1775. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1776. status = (readl(active_reg) &
  1777. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1778. D40_CHAN_POS(d40c->phy_chan->num);
  1779. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1780. is_paused = true;
  1781. goto _exit;
  1782. }
  1783. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1784. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1785. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1786. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1787. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1788. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1789. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1790. } else {
  1791. chan_err(d40c, "Unknown direction\n");
  1792. goto _exit;
  1793. }
  1794. status = (status & D40_EVENTLINE_MASK(event)) >>
  1795. D40_EVENTLINE_POS(event);
  1796. if (status != D40_DMA_RUN)
  1797. is_paused = true;
  1798. _exit:
  1799. spin_unlock_irqrestore(&d40c->lock, flags);
  1800. return is_paused;
  1801. }
  1802. static u32 stedma40_residue(struct dma_chan *chan)
  1803. {
  1804. struct d40_chan *d40c =
  1805. container_of(chan, struct d40_chan, chan);
  1806. u32 bytes_left;
  1807. unsigned long flags;
  1808. spin_lock_irqsave(&d40c->lock, flags);
  1809. bytes_left = d40_residue(d40c);
  1810. spin_unlock_irqrestore(&d40c->lock, flags);
  1811. return bytes_left;
  1812. }
  1813. static int
  1814. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1815. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1816. unsigned int sg_len, dma_addr_t src_dev_addr,
  1817. dma_addr_t dst_dev_addr)
  1818. {
  1819. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1820. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1821. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1822. int ret;
  1823. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1824. src_dev_addr,
  1825. desc->lli_log.src,
  1826. chan->log_def.lcsp1,
  1827. src_info->data_width,
  1828. dst_info->data_width);
  1829. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1830. dst_dev_addr,
  1831. desc->lli_log.dst,
  1832. chan->log_def.lcsp3,
  1833. dst_info->data_width,
  1834. src_info->data_width);
  1835. return ret < 0 ? ret : 0;
  1836. }
  1837. static int
  1838. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1839. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1840. unsigned int sg_len, dma_addr_t src_dev_addr,
  1841. dma_addr_t dst_dev_addr)
  1842. {
  1843. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1844. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1845. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1846. unsigned long flags = 0;
  1847. int ret;
  1848. if (desc->cyclic)
  1849. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1850. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1851. desc->lli_phy.src,
  1852. virt_to_phys(desc->lli_phy.src),
  1853. chan->src_def_cfg,
  1854. src_info, dst_info, flags);
  1855. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1856. desc->lli_phy.dst,
  1857. virt_to_phys(desc->lli_phy.dst),
  1858. chan->dst_def_cfg,
  1859. dst_info, src_info, flags);
  1860. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1861. desc->lli_pool.size, DMA_TO_DEVICE);
  1862. return ret < 0 ? ret : 0;
  1863. }
  1864. static struct d40_desc *
  1865. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1866. unsigned int sg_len, unsigned long dma_flags)
  1867. {
  1868. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1869. struct d40_desc *desc;
  1870. int ret;
  1871. desc = d40_desc_get(chan);
  1872. if (!desc)
  1873. return NULL;
  1874. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1875. cfg->dst_info.data_width);
  1876. if (desc->lli_len < 0) {
  1877. chan_err(chan, "Unaligned size\n");
  1878. goto err;
  1879. }
  1880. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1881. if (ret < 0) {
  1882. chan_err(chan, "Could not allocate lli\n");
  1883. goto err;
  1884. }
  1885. desc->lli_current = 0;
  1886. desc->txd.flags = dma_flags;
  1887. desc->txd.tx_submit = d40_tx_submit;
  1888. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1889. return desc;
  1890. err:
  1891. d40_desc_free(chan, desc);
  1892. return NULL;
  1893. }
  1894. static dma_addr_t
  1895. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1896. {
  1897. struct stedma40_platform_data *plat = chan->base->plat_data;
  1898. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1899. dma_addr_t addr = 0;
  1900. if (chan->runtime_addr)
  1901. return chan->runtime_addr;
  1902. if (direction == DMA_DEV_TO_MEM)
  1903. addr = plat->dev_rx[cfg->src_dev_type];
  1904. else if (direction == DMA_MEM_TO_DEV)
  1905. addr = plat->dev_tx[cfg->dst_dev_type];
  1906. return addr;
  1907. }
  1908. static struct dma_async_tx_descriptor *
  1909. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1910. struct scatterlist *sg_dst, unsigned int sg_len,
  1911. enum dma_transfer_direction direction, unsigned long dma_flags)
  1912. {
  1913. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1914. dma_addr_t src_dev_addr = 0;
  1915. dma_addr_t dst_dev_addr = 0;
  1916. struct d40_desc *desc;
  1917. unsigned long flags;
  1918. int ret;
  1919. if (!chan->phy_chan) {
  1920. chan_err(chan, "Cannot prepare unallocated channel\n");
  1921. return NULL;
  1922. }
  1923. spin_lock_irqsave(&chan->lock, flags);
  1924. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1925. if (desc == NULL)
  1926. goto err;
  1927. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1928. desc->cyclic = true;
  1929. if (direction != DMA_TRANS_NONE) {
  1930. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1931. if (direction == DMA_DEV_TO_MEM)
  1932. src_dev_addr = dev_addr;
  1933. else if (direction == DMA_MEM_TO_DEV)
  1934. dst_dev_addr = dev_addr;
  1935. }
  1936. if (chan_is_logical(chan))
  1937. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1938. sg_len, src_dev_addr, dst_dev_addr);
  1939. else
  1940. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1941. sg_len, src_dev_addr, dst_dev_addr);
  1942. if (ret) {
  1943. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1944. chan_is_logical(chan) ? "log" : "phy", ret);
  1945. goto err;
  1946. }
  1947. /*
  1948. * add descriptor to the prepare queue in order to be able
  1949. * to free them later in terminate_all
  1950. */
  1951. list_add_tail(&desc->node, &chan->prepare_queue);
  1952. spin_unlock_irqrestore(&chan->lock, flags);
  1953. return &desc->txd;
  1954. err:
  1955. if (desc)
  1956. d40_desc_free(chan, desc);
  1957. spin_unlock_irqrestore(&chan->lock, flags);
  1958. return NULL;
  1959. }
  1960. bool stedma40_filter(struct dma_chan *chan, void *data)
  1961. {
  1962. struct stedma40_chan_cfg *info = data;
  1963. struct d40_chan *d40c =
  1964. container_of(chan, struct d40_chan, chan);
  1965. int err;
  1966. if (data) {
  1967. err = d40_validate_conf(d40c, info);
  1968. if (!err)
  1969. d40c->dma_cfg = *info;
  1970. } else
  1971. err = d40_config_memcpy(d40c);
  1972. if (!err)
  1973. d40c->configured = true;
  1974. return err == 0;
  1975. }
  1976. EXPORT_SYMBOL(stedma40_filter);
  1977. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1978. {
  1979. bool realtime = d40c->dma_cfg.realtime;
  1980. bool highprio = d40c->dma_cfg.high_priority;
  1981. u32 rtreg;
  1982. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1983. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1984. u32 bit = 1 << event;
  1985. u32 prioreg;
  1986. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  1987. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  1988. /*
  1989. * Due to a hardware bug, in some cases a logical channel triggered by
  1990. * a high priority destination event line can generate extra packet
  1991. * transactions.
  1992. *
  1993. * The workaround is to not set the high priority level for the
  1994. * destination event lines that trigger logical channels.
  1995. */
  1996. if (!src && chan_is_logical(d40c))
  1997. highprio = false;
  1998. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  1999. /* Destination event lines are stored in the upper halfword */
  2000. if (!src)
  2001. bit <<= 16;
  2002. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2003. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2004. }
  2005. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2006. {
  2007. if (d40c->base->rev < 3)
  2008. return;
  2009. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  2010. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2011. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  2012. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  2013. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2014. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  2015. }
  2016. /* DMA ENGINE functions */
  2017. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2018. {
  2019. int err;
  2020. unsigned long flags;
  2021. struct d40_chan *d40c =
  2022. container_of(chan, struct d40_chan, chan);
  2023. bool is_free_phy;
  2024. spin_lock_irqsave(&d40c->lock, flags);
  2025. dma_cookie_init(chan);
  2026. /* If no dma configuration is set use default configuration (memcpy) */
  2027. if (!d40c->configured) {
  2028. err = d40_config_memcpy(d40c);
  2029. if (err) {
  2030. chan_err(d40c, "Failed to configure memcpy channel\n");
  2031. goto fail;
  2032. }
  2033. }
  2034. err = d40_allocate_channel(d40c, &is_free_phy);
  2035. if (err) {
  2036. chan_err(d40c, "Failed to allocate channel\n");
  2037. d40c->configured = false;
  2038. goto fail;
  2039. }
  2040. pm_runtime_get_sync(d40c->base->dev);
  2041. /* Fill in basic CFG register values */
  2042. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2043. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2044. d40_set_prio_realtime(d40c);
  2045. if (chan_is_logical(d40c)) {
  2046. d40_log_cfg(&d40c->dma_cfg,
  2047. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2048. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2049. d40c->lcpa = d40c->base->lcpa_base +
  2050. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  2051. else
  2052. d40c->lcpa = d40c->base->lcpa_base +
  2053. d40c->dma_cfg.dst_dev_type *
  2054. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2055. }
  2056. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2057. chan_is_logical(d40c) ? "logical" : "physical",
  2058. d40c->phy_chan->num,
  2059. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2060. /*
  2061. * Only write channel configuration to the DMA if the physical
  2062. * resource is free. In case of multiple logical channels
  2063. * on the same physical resource, only the first write is necessary.
  2064. */
  2065. if (is_free_phy)
  2066. d40_config_write(d40c);
  2067. fail:
  2068. pm_runtime_mark_last_busy(d40c->base->dev);
  2069. pm_runtime_put_autosuspend(d40c->base->dev);
  2070. spin_unlock_irqrestore(&d40c->lock, flags);
  2071. return err;
  2072. }
  2073. static void d40_free_chan_resources(struct dma_chan *chan)
  2074. {
  2075. struct d40_chan *d40c =
  2076. container_of(chan, struct d40_chan, chan);
  2077. int err;
  2078. unsigned long flags;
  2079. if (d40c->phy_chan == NULL) {
  2080. chan_err(d40c, "Cannot free unallocated channel\n");
  2081. return;
  2082. }
  2083. spin_lock_irqsave(&d40c->lock, flags);
  2084. err = d40_free_dma(d40c);
  2085. if (err)
  2086. chan_err(d40c, "Failed to free channel\n");
  2087. spin_unlock_irqrestore(&d40c->lock, flags);
  2088. }
  2089. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2090. dma_addr_t dst,
  2091. dma_addr_t src,
  2092. size_t size,
  2093. unsigned long dma_flags)
  2094. {
  2095. struct scatterlist dst_sg;
  2096. struct scatterlist src_sg;
  2097. sg_init_table(&dst_sg, 1);
  2098. sg_init_table(&src_sg, 1);
  2099. sg_dma_address(&dst_sg) = dst;
  2100. sg_dma_address(&src_sg) = src;
  2101. sg_dma_len(&dst_sg) = size;
  2102. sg_dma_len(&src_sg) = size;
  2103. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2104. }
  2105. static struct dma_async_tx_descriptor *
  2106. d40_prep_memcpy_sg(struct dma_chan *chan,
  2107. struct scatterlist *dst_sg, unsigned int dst_nents,
  2108. struct scatterlist *src_sg, unsigned int src_nents,
  2109. unsigned long dma_flags)
  2110. {
  2111. if (dst_nents != src_nents)
  2112. return NULL;
  2113. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2114. }
  2115. static struct dma_async_tx_descriptor *
  2116. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2117. unsigned int sg_len, enum dma_transfer_direction direction,
  2118. unsigned long dma_flags, void *context)
  2119. {
  2120. if (!is_slave_direction(direction))
  2121. return NULL;
  2122. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2123. }
  2124. static struct dma_async_tx_descriptor *
  2125. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2126. size_t buf_len, size_t period_len,
  2127. enum dma_transfer_direction direction, unsigned long flags,
  2128. void *context)
  2129. {
  2130. unsigned int periods = buf_len / period_len;
  2131. struct dma_async_tx_descriptor *txd;
  2132. struct scatterlist *sg;
  2133. int i;
  2134. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2135. for (i = 0; i < periods; i++) {
  2136. sg_dma_address(&sg[i]) = dma_addr;
  2137. sg_dma_len(&sg[i]) = period_len;
  2138. dma_addr += period_len;
  2139. }
  2140. sg[periods].offset = 0;
  2141. sg_dma_len(&sg[periods]) = 0;
  2142. sg[periods].page_link =
  2143. ((unsigned long)sg | 0x01) & ~0x02;
  2144. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2145. DMA_PREP_INTERRUPT);
  2146. kfree(sg);
  2147. return txd;
  2148. }
  2149. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2150. dma_cookie_t cookie,
  2151. struct dma_tx_state *txstate)
  2152. {
  2153. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2154. enum dma_status ret;
  2155. if (d40c->phy_chan == NULL) {
  2156. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2157. return -EINVAL;
  2158. }
  2159. ret = dma_cookie_status(chan, cookie, txstate);
  2160. if (ret != DMA_SUCCESS)
  2161. dma_set_residue(txstate, stedma40_residue(chan));
  2162. if (d40_is_paused(d40c))
  2163. ret = DMA_PAUSED;
  2164. return ret;
  2165. }
  2166. static void d40_issue_pending(struct dma_chan *chan)
  2167. {
  2168. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2169. unsigned long flags;
  2170. if (d40c->phy_chan == NULL) {
  2171. chan_err(d40c, "Channel is not allocated!\n");
  2172. return;
  2173. }
  2174. spin_lock_irqsave(&d40c->lock, flags);
  2175. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2176. /* Busy means that queued jobs are already being processed */
  2177. if (!d40c->busy)
  2178. (void) d40_queue_start(d40c);
  2179. spin_unlock_irqrestore(&d40c->lock, flags);
  2180. }
  2181. static void d40_terminate_all(struct dma_chan *chan)
  2182. {
  2183. unsigned long flags;
  2184. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2185. int ret;
  2186. spin_lock_irqsave(&d40c->lock, flags);
  2187. pm_runtime_get_sync(d40c->base->dev);
  2188. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2189. if (ret)
  2190. chan_err(d40c, "Failed to stop channel\n");
  2191. d40_term_all(d40c);
  2192. pm_runtime_mark_last_busy(d40c->base->dev);
  2193. pm_runtime_put_autosuspend(d40c->base->dev);
  2194. if (d40c->busy) {
  2195. pm_runtime_mark_last_busy(d40c->base->dev);
  2196. pm_runtime_put_autosuspend(d40c->base->dev);
  2197. }
  2198. d40c->busy = false;
  2199. spin_unlock_irqrestore(&d40c->lock, flags);
  2200. }
  2201. static int
  2202. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2203. struct stedma40_half_channel_info *info,
  2204. enum dma_slave_buswidth width,
  2205. u32 maxburst)
  2206. {
  2207. enum stedma40_periph_data_width addr_width;
  2208. int psize;
  2209. switch (width) {
  2210. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2211. addr_width = STEDMA40_BYTE_WIDTH;
  2212. break;
  2213. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2214. addr_width = STEDMA40_HALFWORD_WIDTH;
  2215. break;
  2216. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2217. addr_width = STEDMA40_WORD_WIDTH;
  2218. break;
  2219. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2220. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2221. break;
  2222. default:
  2223. dev_err(d40c->base->dev,
  2224. "illegal peripheral address width "
  2225. "requested (%d)\n",
  2226. width);
  2227. return -EINVAL;
  2228. }
  2229. if (chan_is_logical(d40c)) {
  2230. if (maxburst >= 16)
  2231. psize = STEDMA40_PSIZE_LOG_16;
  2232. else if (maxburst >= 8)
  2233. psize = STEDMA40_PSIZE_LOG_8;
  2234. else if (maxburst >= 4)
  2235. psize = STEDMA40_PSIZE_LOG_4;
  2236. else
  2237. psize = STEDMA40_PSIZE_LOG_1;
  2238. } else {
  2239. if (maxburst >= 16)
  2240. psize = STEDMA40_PSIZE_PHY_16;
  2241. else if (maxburst >= 8)
  2242. psize = STEDMA40_PSIZE_PHY_8;
  2243. else if (maxburst >= 4)
  2244. psize = STEDMA40_PSIZE_PHY_4;
  2245. else
  2246. psize = STEDMA40_PSIZE_PHY_1;
  2247. }
  2248. info->data_width = addr_width;
  2249. info->psize = psize;
  2250. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2251. return 0;
  2252. }
  2253. /* Runtime reconfiguration extension */
  2254. static int d40_set_runtime_config(struct dma_chan *chan,
  2255. struct dma_slave_config *config)
  2256. {
  2257. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2258. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2259. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2260. dma_addr_t config_addr;
  2261. u32 src_maxburst, dst_maxburst;
  2262. int ret;
  2263. src_addr_width = config->src_addr_width;
  2264. src_maxburst = config->src_maxburst;
  2265. dst_addr_width = config->dst_addr_width;
  2266. dst_maxburst = config->dst_maxburst;
  2267. if (config->direction == DMA_DEV_TO_MEM) {
  2268. dma_addr_t dev_addr_rx =
  2269. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2270. config_addr = config->src_addr;
  2271. if (dev_addr_rx)
  2272. dev_dbg(d40c->base->dev,
  2273. "channel has a pre-wired RX address %08x "
  2274. "overriding with %08x\n",
  2275. dev_addr_rx, config_addr);
  2276. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2277. dev_dbg(d40c->base->dev,
  2278. "channel was not configured for peripheral "
  2279. "to memory transfer (%d) overriding\n",
  2280. cfg->dir);
  2281. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2282. /* Configure the memory side */
  2283. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2284. dst_addr_width = src_addr_width;
  2285. if (dst_maxburst == 0)
  2286. dst_maxburst = src_maxburst;
  2287. } else if (config->direction == DMA_MEM_TO_DEV) {
  2288. dma_addr_t dev_addr_tx =
  2289. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2290. config_addr = config->dst_addr;
  2291. if (dev_addr_tx)
  2292. dev_dbg(d40c->base->dev,
  2293. "channel has a pre-wired TX address %08x "
  2294. "overriding with %08x\n",
  2295. dev_addr_tx, config_addr);
  2296. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2297. dev_dbg(d40c->base->dev,
  2298. "channel was not configured for memory "
  2299. "to peripheral transfer (%d) overriding\n",
  2300. cfg->dir);
  2301. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2302. /* Configure the memory side */
  2303. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2304. src_addr_width = dst_addr_width;
  2305. if (src_maxburst == 0)
  2306. src_maxburst = dst_maxburst;
  2307. } else {
  2308. dev_err(d40c->base->dev,
  2309. "unrecognized channel direction %d\n",
  2310. config->direction);
  2311. return -EINVAL;
  2312. }
  2313. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2314. dev_err(d40c->base->dev,
  2315. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2316. src_maxburst,
  2317. src_addr_width,
  2318. dst_maxburst,
  2319. dst_addr_width);
  2320. return -EINVAL;
  2321. }
  2322. if (src_maxburst > 16) {
  2323. src_maxburst = 16;
  2324. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2325. } else if (dst_maxburst > 16) {
  2326. dst_maxburst = 16;
  2327. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2328. }
  2329. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2330. src_addr_width,
  2331. src_maxburst);
  2332. if (ret)
  2333. return ret;
  2334. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2335. dst_addr_width,
  2336. dst_maxburst);
  2337. if (ret)
  2338. return ret;
  2339. /* Fill in register values */
  2340. if (chan_is_logical(d40c))
  2341. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2342. else
  2343. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2344. &d40c->dst_def_cfg, false);
  2345. /* These settings will take precedence later */
  2346. d40c->runtime_addr = config_addr;
  2347. d40c->runtime_direction = config->direction;
  2348. dev_dbg(d40c->base->dev,
  2349. "configured channel %s for %s, data width %d/%d, "
  2350. "maxburst %d/%d elements, LE, no flow control\n",
  2351. dma_chan_name(chan),
  2352. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2353. src_addr_width, dst_addr_width,
  2354. src_maxburst, dst_maxburst);
  2355. return 0;
  2356. }
  2357. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2358. unsigned long arg)
  2359. {
  2360. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2361. if (d40c->phy_chan == NULL) {
  2362. chan_err(d40c, "Channel is not allocated!\n");
  2363. return -EINVAL;
  2364. }
  2365. switch (cmd) {
  2366. case DMA_TERMINATE_ALL:
  2367. d40_terminate_all(chan);
  2368. return 0;
  2369. case DMA_PAUSE:
  2370. return d40_pause(d40c);
  2371. case DMA_RESUME:
  2372. return d40_resume(d40c);
  2373. case DMA_SLAVE_CONFIG:
  2374. return d40_set_runtime_config(chan,
  2375. (struct dma_slave_config *) arg);
  2376. default:
  2377. break;
  2378. }
  2379. /* Other commands are unimplemented */
  2380. return -ENXIO;
  2381. }
  2382. /* Initialization functions */
  2383. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2384. struct d40_chan *chans, int offset,
  2385. int num_chans)
  2386. {
  2387. int i = 0;
  2388. struct d40_chan *d40c;
  2389. INIT_LIST_HEAD(&dma->channels);
  2390. for (i = offset; i < offset + num_chans; i++) {
  2391. d40c = &chans[i];
  2392. d40c->base = base;
  2393. d40c->chan.device = dma;
  2394. spin_lock_init(&d40c->lock);
  2395. d40c->log_num = D40_PHY_CHAN;
  2396. INIT_LIST_HEAD(&d40c->done);
  2397. INIT_LIST_HEAD(&d40c->active);
  2398. INIT_LIST_HEAD(&d40c->queue);
  2399. INIT_LIST_HEAD(&d40c->pending_queue);
  2400. INIT_LIST_HEAD(&d40c->client);
  2401. INIT_LIST_HEAD(&d40c->prepare_queue);
  2402. tasklet_init(&d40c->tasklet, dma_tasklet,
  2403. (unsigned long) d40c);
  2404. list_add_tail(&d40c->chan.device_node,
  2405. &dma->channels);
  2406. }
  2407. }
  2408. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2409. {
  2410. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2411. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2412. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2413. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2414. /*
  2415. * This controller can only access address at even
  2416. * 32bit boundaries, i.e. 2^2
  2417. */
  2418. dev->copy_align = 2;
  2419. }
  2420. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2421. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2422. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2423. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2424. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2425. dev->device_free_chan_resources = d40_free_chan_resources;
  2426. dev->device_issue_pending = d40_issue_pending;
  2427. dev->device_tx_status = d40_tx_status;
  2428. dev->device_control = d40_control;
  2429. dev->dev = base->dev;
  2430. }
  2431. static int __init d40_dmaengine_init(struct d40_base *base,
  2432. int num_reserved_chans)
  2433. {
  2434. int err ;
  2435. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2436. 0, base->num_log_chans);
  2437. dma_cap_zero(base->dma_slave.cap_mask);
  2438. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2439. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2440. d40_ops_init(base, &base->dma_slave);
  2441. err = dma_async_device_register(&base->dma_slave);
  2442. if (err) {
  2443. d40_err(base->dev, "Failed to register slave channels\n");
  2444. goto failure1;
  2445. }
  2446. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2447. base->num_log_chans, base->plat_data->memcpy_len);
  2448. dma_cap_zero(base->dma_memcpy.cap_mask);
  2449. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2450. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2451. d40_ops_init(base, &base->dma_memcpy);
  2452. err = dma_async_device_register(&base->dma_memcpy);
  2453. if (err) {
  2454. d40_err(base->dev,
  2455. "Failed to regsiter memcpy only channels\n");
  2456. goto failure2;
  2457. }
  2458. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2459. 0, num_reserved_chans);
  2460. dma_cap_zero(base->dma_both.cap_mask);
  2461. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2462. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2463. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2464. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2465. d40_ops_init(base, &base->dma_both);
  2466. err = dma_async_device_register(&base->dma_both);
  2467. if (err) {
  2468. d40_err(base->dev,
  2469. "Failed to register logical and physical capable channels\n");
  2470. goto failure3;
  2471. }
  2472. return 0;
  2473. failure3:
  2474. dma_async_device_unregister(&base->dma_memcpy);
  2475. failure2:
  2476. dma_async_device_unregister(&base->dma_slave);
  2477. failure1:
  2478. return err;
  2479. }
  2480. /* Suspend resume functionality */
  2481. #ifdef CONFIG_PM
  2482. static int dma40_pm_suspend(struct device *dev)
  2483. {
  2484. struct platform_device *pdev = to_platform_device(dev);
  2485. struct d40_base *base = platform_get_drvdata(pdev);
  2486. int ret = 0;
  2487. if (base->lcpa_regulator)
  2488. ret = regulator_disable(base->lcpa_regulator);
  2489. return ret;
  2490. }
  2491. static int dma40_runtime_suspend(struct device *dev)
  2492. {
  2493. struct platform_device *pdev = to_platform_device(dev);
  2494. struct d40_base *base = platform_get_drvdata(pdev);
  2495. d40_save_restore_registers(base, true);
  2496. /* Don't disable/enable clocks for v1 due to HW bugs */
  2497. if (base->rev != 1)
  2498. writel_relaxed(base->gcc_pwr_off_mask,
  2499. base->virtbase + D40_DREG_GCC);
  2500. return 0;
  2501. }
  2502. static int dma40_runtime_resume(struct device *dev)
  2503. {
  2504. struct platform_device *pdev = to_platform_device(dev);
  2505. struct d40_base *base = platform_get_drvdata(pdev);
  2506. if (base->initialized)
  2507. d40_save_restore_registers(base, false);
  2508. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2509. base->virtbase + D40_DREG_GCC);
  2510. return 0;
  2511. }
  2512. static int dma40_resume(struct device *dev)
  2513. {
  2514. struct platform_device *pdev = to_platform_device(dev);
  2515. struct d40_base *base = platform_get_drvdata(pdev);
  2516. int ret = 0;
  2517. if (base->lcpa_regulator)
  2518. ret = regulator_enable(base->lcpa_regulator);
  2519. return ret;
  2520. }
  2521. static const struct dev_pm_ops dma40_pm_ops = {
  2522. .suspend = dma40_pm_suspend,
  2523. .runtime_suspend = dma40_runtime_suspend,
  2524. .runtime_resume = dma40_runtime_resume,
  2525. .resume = dma40_resume,
  2526. };
  2527. #define DMA40_PM_OPS (&dma40_pm_ops)
  2528. #else
  2529. #define DMA40_PM_OPS NULL
  2530. #endif
  2531. /* Initialization functions. */
  2532. static int __init d40_phy_res_init(struct d40_base *base)
  2533. {
  2534. int i;
  2535. int num_phy_chans_avail = 0;
  2536. u32 val[2];
  2537. int odd_even_bit = -2;
  2538. int gcc = D40_DREG_GCC_ENA;
  2539. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2540. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2541. for (i = 0; i < base->num_phy_chans; i++) {
  2542. base->phy_res[i].num = i;
  2543. odd_even_bit += 2 * ((i % 2) == 0);
  2544. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2545. /* Mark security only channels as occupied */
  2546. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2547. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2548. base->phy_res[i].reserved = true;
  2549. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2550. D40_DREG_GCC_SRC);
  2551. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2552. D40_DREG_GCC_DST);
  2553. } else {
  2554. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2555. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2556. base->phy_res[i].reserved = false;
  2557. num_phy_chans_avail++;
  2558. }
  2559. spin_lock_init(&base->phy_res[i].lock);
  2560. }
  2561. /* Mark disabled channels as occupied */
  2562. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2563. int chan = base->plat_data->disabled_channels[i];
  2564. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2565. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2566. base->phy_res[chan].reserved = true;
  2567. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2568. D40_DREG_GCC_SRC);
  2569. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2570. D40_DREG_GCC_DST);
  2571. num_phy_chans_avail--;
  2572. }
  2573. /* Mark soft_lli channels */
  2574. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2575. int chan = base->plat_data->soft_lli_chans[i];
  2576. base->phy_res[chan].use_soft_lli = true;
  2577. }
  2578. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2579. num_phy_chans_avail, base->num_phy_chans);
  2580. /* Verify settings extended vs standard */
  2581. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2582. for (i = 0; i < base->num_phy_chans; i++) {
  2583. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2584. (val[0] & 0x3) != 1)
  2585. dev_info(base->dev,
  2586. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2587. __func__, i, val[0] & 0x3);
  2588. val[0] = val[0] >> 2;
  2589. }
  2590. /*
  2591. * To keep things simple, Enable all clocks initially.
  2592. * The clocks will get managed later post channel allocation.
  2593. * The clocks for the event lines on which reserved channels exists
  2594. * are not managed here.
  2595. */
  2596. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2597. base->gcc_pwr_off_mask = gcc;
  2598. return num_phy_chans_avail;
  2599. }
  2600. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2601. {
  2602. struct stedma40_platform_data *plat_data;
  2603. struct clk *clk = NULL;
  2604. void __iomem *virtbase = NULL;
  2605. struct resource *res = NULL;
  2606. struct d40_base *base = NULL;
  2607. int num_log_chans = 0;
  2608. int num_phy_chans;
  2609. int clk_ret = -EINVAL;
  2610. int i;
  2611. u32 pid;
  2612. u32 cid;
  2613. u8 rev;
  2614. clk = clk_get(&pdev->dev, NULL);
  2615. if (IS_ERR(clk)) {
  2616. d40_err(&pdev->dev, "No matching clock found\n");
  2617. goto failure;
  2618. }
  2619. clk_ret = clk_prepare_enable(clk);
  2620. if (clk_ret) {
  2621. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2622. goto failure;
  2623. }
  2624. /* Get IO for DMAC base address */
  2625. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2626. if (!res)
  2627. goto failure;
  2628. if (request_mem_region(res->start, resource_size(res),
  2629. D40_NAME " I/O base") == NULL)
  2630. goto failure;
  2631. virtbase = ioremap(res->start, resource_size(res));
  2632. if (!virtbase)
  2633. goto failure;
  2634. /* This is just a regular AMBA PrimeCell ID actually */
  2635. for (pid = 0, i = 0; i < 4; i++)
  2636. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2637. & 255) << (i * 8);
  2638. for (cid = 0, i = 0; i < 4; i++)
  2639. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2640. & 255) << (i * 8);
  2641. if (cid != AMBA_CID) {
  2642. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2643. goto failure;
  2644. }
  2645. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2646. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2647. AMBA_MANF_BITS(pid),
  2648. AMBA_VENDOR_ST);
  2649. goto failure;
  2650. }
  2651. /*
  2652. * HW revision:
  2653. * DB8500ed has revision 0
  2654. * ? has revision 1
  2655. * DB8500v1 has revision 2
  2656. * DB8500v2 has revision 3
  2657. * AP9540v1 has revision 4
  2658. * DB8540v1 has revision 4
  2659. */
  2660. rev = AMBA_REV_BITS(pid);
  2661. plat_data = pdev->dev.platform_data;
  2662. /* The number of physical channels on this HW */
  2663. if (plat_data->num_of_phy_chans)
  2664. num_phy_chans = plat_data->num_of_phy_chans;
  2665. else
  2666. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2667. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2668. rev, res->start, num_phy_chans);
  2669. if (rev < 2) {
  2670. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2671. rev);
  2672. goto failure;
  2673. }
  2674. /* Count the number of logical channels in use */
  2675. for (i = 0; i < plat_data->dev_len; i++)
  2676. if (plat_data->dev_rx[i] != 0)
  2677. num_log_chans++;
  2678. for (i = 0; i < plat_data->dev_len; i++)
  2679. if (plat_data->dev_tx[i] != 0)
  2680. num_log_chans++;
  2681. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2682. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2683. sizeof(struct d40_chan), GFP_KERNEL);
  2684. if (base == NULL) {
  2685. d40_err(&pdev->dev, "Out of memory\n");
  2686. goto failure;
  2687. }
  2688. base->rev = rev;
  2689. base->clk = clk;
  2690. base->num_phy_chans = num_phy_chans;
  2691. base->num_log_chans = num_log_chans;
  2692. base->phy_start = res->start;
  2693. base->phy_size = resource_size(res);
  2694. base->virtbase = virtbase;
  2695. base->plat_data = plat_data;
  2696. base->dev = &pdev->dev;
  2697. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2698. base->log_chans = &base->phy_chans[num_phy_chans];
  2699. if (base->plat_data->num_of_phy_chans == 14) {
  2700. base->gen_dmac.backup = d40_backup_regs_v4b;
  2701. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2702. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2703. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2704. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2705. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2706. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2707. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2708. base->gen_dmac.il = il_v4b;
  2709. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2710. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2711. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2712. } else {
  2713. if (base->rev >= 3) {
  2714. base->gen_dmac.backup = d40_backup_regs_v4a;
  2715. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2716. }
  2717. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2718. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2719. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2720. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2721. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2722. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2723. base->gen_dmac.il = il_v4a;
  2724. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2725. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2726. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2727. }
  2728. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2729. GFP_KERNEL);
  2730. if (!base->phy_res)
  2731. goto failure;
  2732. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2733. sizeof(struct d40_chan *),
  2734. GFP_KERNEL);
  2735. if (!base->lookup_phy_chans)
  2736. goto failure;
  2737. if (num_log_chans + plat_data->memcpy_len) {
  2738. /*
  2739. * The max number of logical channels are event lines for all
  2740. * src devices and dst devices
  2741. */
  2742. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2743. sizeof(struct d40_chan *),
  2744. GFP_KERNEL);
  2745. if (!base->lookup_log_chans)
  2746. goto failure;
  2747. }
  2748. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2749. sizeof(d40_backup_regs_chan),
  2750. GFP_KERNEL);
  2751. if (!base->reg_val_backup_chan)
  2752. goto failure;
  2753. base->lcla_pool.alloc_map =
  2754. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2755. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2756. if (!base->lcla_pool.alloc_map)
  2757. goto failure;
  2758. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2759. 0, SLAB_HWCACHE_ALIGN,
  2760. NULL);
  2761. if (base->desc_slab == NULL)
  2762. goto failure;
  2763. return base;
  2764. failure:
  2765. if (!clk_ret)
  2766. clk_disable_unprepare(clk);
  2767. if (!IS_ERR(clk))
  2768. clk_put(clk);
  2769. if (virtbase)
  2770. iounmap(virtbase);
  2771. if (res)
  2772. release_mem_region(res->start,
  2773. resource_size(res));
  2774. if (virtbase)
  2775. iounmap(virtbase);
  2776. if (base) {
  2777. kfree(base->lcla_pool.alloc_map);
  2778. kfree(base->reg_val_backup_chan);
  2779. kfree(base->lookup_log_chans);
  2780. kfree(base->lookup_phy_chans);
  2781. kfree(base->phy_res);
  2782. kfree(base);
  2783. }
  2784. return NULL;
  2785. }
  2786. static void __init d40_hw_init(struct d40_base *base)
  2787. {
  2788. int i;
  2789. u32 prmseo[2] = {0, 0};
  2790. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2791. u32 pcmis = 0;
  2792. u32 pcicr = 0;
  2793. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2794. u32 reg_size = base->gen_dmac.init_reg_size;
  2795. for (i = 0; i < reg_size; i++)
  2796. writel(dma_init_reg[i].val,
  2797. base->virtbase + dma_init_reg[i].reg);
  2798. /* Configure all our dma channels to default settings */
  2799. for (i = 0; i < base->num_phy_chans; i++) {
  2800. activeo[i % 2] = activeo[i % 2] << 2;
  2801. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2802. == D40_ALLOC_PHY) {
  2803. activeo[i % 2] |= 3;
  2804. continue;
  2805. }
  2806. /* Enable interrupt # */
  2807. pcmis = (pcmis << 1) | 1;
  2808. /* Clear interrupt # */
  2809. pcicr = (pcicr << 1) | 1;
  2810. /* Set channel to physical mode */
  2811. prmseo[i % 2] = prmseo[i % 2] << 2;
  2812. prmseo[i % 2] |= 1;
  2813. }
  2814. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2815. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2816. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2817. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2818. /* Write which interrupt to enable */
  2819. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2820. /* Write which interrupt to clear */
  2821. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2822. /* These are __initdata and cannot be accessed after init */
  2823. base->gen_dmac.init_reg = NULL;
  2824. base->gen_dmac.init_reg_size = 0;
  2825. }
  2826. static int __init d40_lcla_allocate(struct d40_base *base)
  2827. {
  2828. struct d40_lcla_pool *pool = &base->lcla_pool;
  2829. unsigned long *page_list;
  2830. int i, j;
  2831. int ret = 0;
  2832. /*
  2833. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2834. * To full fill this hardware requirement without wasting 256 kb
  2835. * we allocate pages until we get an aligned one.
  2836. */
  2837. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2838. GFP_KERNEL);
  2839. if (!page_list) {
  2840. ret = -ENOMEM;
  2841. goto failure;
  2842. }
  2843. /* Calculating how many pages that are required */
  2844. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2845. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2846. page_list[i] = __get_free_pages(GFP_KERNEL,
  2847. base->lcla_pool.pages);
  2848. if (!page_list[i]) {
  2849. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2850. base->lcla_pool.pages);
  2851. for (j = 0; j < i; j++)
  2852. free_pages(page_list[j], base->lcla_pool.pages);
  2853. goto failure;
  2854. }
  2855. if ((virt_to_phys((void *)page_list[i]) &
  2856. (LCLA_ALIGNMENT - 1)) == 0)
  2857. break;
  2858. }
  2859. for (j = 0; j < i; j++)
  2860. free_pages(page_list[j], base->lcla_pool.pages);
  2861. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2862. base->lcla_pool.base = (void *)page_list[i];
  2863. } else {
  2864. /*
  2865. * After many attempts and no succees with finding the correct
  2866. * alignment, try with allocating a big buffer.
  2867. */
  2868. dev_warn(base->dev,
  2869. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2870. __func__, base->lcla_pool.pages);
  2871. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2872. base->num_phy_chans +
  2873. LCLA_ALIGNMENT,
  2874. GFP_KERNEL);
  2875. if (!base->lcla_pool.base_unaligned) {
  2876. ret = -ENOMEM;
  2877. goto failure;
  2878. }
  2879. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2880. LCLA_ALIGNMENT);
  2881. }
  2882. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2883. SZ_1K * base->num_phy_chans,
  2884. DMA_TO_DEVICE);
  2885. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2886. pool->dma_addr = 0;
  2887. ret = -ENOMEM;
  2888. goto failure;
  2889. }
  2890. writel(virt_to_phys(base->lcla_pool.base),
  2891. base->virtbase + D40_DREG_LCLA);
  2892. failure:
  2893. kfree(page_list);
  2894. return ret;
  2895. }
  2896. static int __init d40_probe(struct platform_device *pdev)
  2897. {
  2898. int err;
  2899. int ret = -ENOENT;
  2900. struct d40_base *base;
  2901. struct resource *res = NULL;
  2902. int num_reserved_chans;
  2903. u32 val;
  2904. base = d40_hw_detect_init(pdev);
  2905. if (!base)
  2906. goto failure;
  2907. num_reserved_chans = d40_phy_res_init(base);
  2908. platform_set_drvdata(pdev, base);
  2909. spin_lock_init(&base->interrupt_lock);
  2910. spin_lock_init(&base->execmd_lock);
  2911. /* Get IO for logical channel parameter address */
  2912. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2913. if (!res) {
  2914. ret = -ENOENT;
  2915. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2916. goto failure;
  2917. }
  2918. base->lcpa_size = resource_size(res);
  2919. base->phy_lcpa = res->start;
  2920. if (request_mem_region(res->start, resource_size(res),
  2921. D40_NAME " I/O lcpa") == NULL) {
  2922. ret = -EBUSY;
  2923. d40_err(&pdev->dev,
  2924. "Failed to request LCPA region 0x%x-0x%x\n",
  2925. res->start, res->end);
  2926. goto failure;
  2927. }
  2928. /* We make use of ESRAM memory for this. */
  2929. val = readl(base->virtbase + D40_DREG_LCPA);
  2930. if (res->start != val && val != 0) {
  2931. dev_warn(&pdev->dev,
  2932. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2933. __func__, val, res->start);
  2934. } else
  2935. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2936. base->lcpa_base = ioremap(res->start, resource_size(res));
  2937. if (!base->lcpa_base) {
  2938. ret = -ENOMEM;
  2939. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2940. goto failure;
  2941. }
  2942. /* If lcla has to be located in ESRAM we don't need to allocate */
  2943. if (base->plat_data->use_esram_lcla) {
  2944. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2945. "lcla_esram");
  2946. if (!res) {
  2947. ret = -ENOENT;
  2948. d40_err(&pdev->dev,
  2949. "No \"lcla_esram\" memory resource\n");
  2950. goto failure;
  2951. }
  2952. base->lcla_pool.base = ioremap(res->start,
  2953. resource_size(res));
  2954. if (!base->lcla_pool.base) {
  2955. ret = -ENOMEM;
  2956. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2957. goto failure;
  2958. }
  2959. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2960. } else {
  2961. ret = d40_lcla_allocate(base);
  2962. if (ret) {
  2963. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2964. goto failure;
  2965. }
  2966. }
  2967. spin_lock_init(&base->lcla_pool.lock);
  2968. base->irq = platform_get_irq(pdev, 0);
  2969. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2970. if (ret) {
  2971. d40_err(&pdev->dev, "No IRQ defined\n");
  2972. goto failure;
  2973. }
  2974. pm_runtime_irq_safe(base->dev);
  2975. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2976. pm_runtime_use_autosuspend(base->dev);
  2977. pm_runtime_enable(base->dev);
  2978. pm_runtime_resume(base->dev);
  2979. if (base->plat_data->use_esram_lcla) {
  2980. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2981. if (IS_ERR(base->lcpa_regulator)) {
  2982. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2983. base->lcpa_regulator = NULL;
  2984. goto failure;
  2985. }
  2986. ret = regulator_enable(base->lcpa_regulator);
  2987. if (ret) {
  2988. d40_err(&pdev->dev,
  2989. "Failed to enable lcpa_regulator\n");
  2990. regulator_put(base->lcpa_regulator);
  2991. base->lcpa_regulator = NULL;
  2992. goto failure;
  2993. }
  2994. }
  2995. base->initialized = true;
  2996. err = d40_dmaengine_init(base, num_reserved_chans);
  2997. if (err)
  2998. goto failure;
  2999. base->dev->dma_parms = &base->dma_parms;
  3000. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3001. if (err) {
  3002. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3003. goto failure;
  3004. }
  3005. d40_hw_init(base);
  3006. dev_info(base->dev, "initialized\n");
  3007. return 0;
  3008. failure:
  3009. if (base) {
  3010. if (base->desc_slab)
  3011. kmem_cache_destroy(base->desc_slab);
  3012. if (base->virtbase)
  3013. iounmap(base->virtbase);
  3014. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3015. iounmap(base->lcla_pool.base);
  3016. base->lcla_pool.base = NULL;
  3017. }
  3018. if (base->lcla_pool.dma_addr)
  3019. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3020. SZ_1K * base->num_phy_chans,
  3021. DMA_TO_DEVICE);
  3022. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3023. free_pages((unsigned long)base->lcla_pool.base,
  3024. base->lcla_pool.pages);
  3025. kfree(base->lcla_pool.base_unaligned);
  3026. if (base->phy_lcpa)
  3027. release_mem_region(base->phy_lcpa,
  3028. base->lcpa_size);
  3029. if (base->phy_start)
  3030. release_mem_region(base->phy_start,
  3031. base->phy_size);
  3032. if (base->clk) {
  3033. clk_disable_unprepare(base->clk);
  3034. clk_put(base->clk);
  3035. }
  3036. if (base->lcpa_regulator) {
  3037. regulator_disable(base->lcpa_regulator);
  3038. regulator_put(base->lcpa_regulator);
  3039. }
  3040. kfree(base->lcla_pool.alloc_map);
  3041. kfree(base->lookup_log_chans);
  3042. kfree(base->lookup_phy_chans);
  3043. kfree(base->phy_res);
  3044. kfree(base);
  3045. }
  3046. d40_err(&pdev->dev, "probe failed\n");
  3047. return ret;
  3048. }
  3049. static struct platform_driver d40_driver = {
  3050. .driver = {
  3051. .owner = THIS_MODULE,
  3052. .name = D40_NAME,
  3053. .pm = DMA40_PM_OPS,
  3054. },
  3055. };
  3056. static int __init stedma40_init(void)
  3057. {
  3058. return platform_driver_probe(&d40_driver, d40_probe);
  3059. }
  3060. subsys_initcall(stedma40_init);