sa11x0-dma.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. /*
  2. * SA11x0 DMAengine support
  3. *
  4. * Copyright (C) 2012 Russell King
  5. * Derived in part from arch/arm/mach-sa1100/dma.c,
  6. * Copyright (C) 2000, 2001 by Nicolas Pitre
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/device.h>
  14. #include <linux/dmaengine.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/sa11x0-dma.h>
  21. #include <linux/slab.h>
  22. #include <linux/spinlock.h>
  23. #include "virt-dma.h"
  24. #define NR_PHY_CHAN 6
  25. #define DMA_ALIGN 3
  26. #define DMA_MAX_SIZE 0x1fff
  27. #define DMA_CHUNK_SIZE 0x1000
  28. #define DMA_DDAR 0x00
  29. #define DMA_DCSR_S 0x04
  30. #define DMA_DCSR_C 0x08
  31. #define DMA_DCSR_R 0x0c
  32. #define DMA_DBSA 0x10
  33. #define DMA_DBTA 0x14
  34. #define DMA_DBSB 0x18
  35. #define DMA_DBTB 0x1c
  36. #define DMA_SIZE 0x20
  37. #define DCSR_RUN (1 << 0)
  38. #define DCSR_IE (1 << 1)
  39. #define DCSR_ERROR (1 << 2)
  40. #define DCSR_DONEA (1 << 3)
  41. #define DCSR_STRTA (1 << 4)
  42. #define DCSR_DONEB (1 << 5)
  43. #define DCSR_STRTB (1 << 6)
  44. #define DCSR_BIU (1 << 7)
  45. #define DDAR_RW (1 << 0) /* 0 = W, 1 = R */
  46. #define DDAR_E (1 << 1) /* 0 = LE, 1 = BE */
  47. #define DDAR_BS (1 << 2) /* 0 = BS4, 1 = BS8 */
  48. #define DDAR_DW (1 << 3) /* 0 = 8b, 1 = 16b */
  49. #define DDAR_Ser0UDCTr (0x0 << 4)
  50. #define DDAR_Ser0UDCRc (0x1 << 4)
  51. #define DDAR_Ser1SDLCTr (0x2 << 4)
  52. #define DDAR_Ser1SDLCRc (0x3 << 4)
  53. #define DDAR_Ser1UARTTr (0x4 << 4)
  54. #define DDAR_Ser1UARTRc (0x5 << 4)
  55. #define DDAR_Ser2ICPTr (0x6 << 4)
  56. #define DDAR_Ser2ICPRc (0x7 << 4)
  57. #define DDAR_Ser3UARTTr (0x8 << 4)
  58. #define DDAR_Ser3UARTRc (0x9 << 4)
  59. #define DDAR_Ser4MCP0Tr (0xa << 4)
  60. #define DDAR_Ser4MCP0Rc (0xb << 4)
  61. #define DDAR_Ser4MCP1Tr (0xc << 4)
  62. #define DDAR_Ser4MCP1Rc (0xd << 4)
  63. #define DDAR_Ser4SSPTr (0xe << 4)
  64. #define DDAR_Ser4SSPRc (0xf << 4)
  65. struct sa11x0_dma_sg {
  66. u32 addr;
  67. u32 len;
  68. };
  69. struct sa11x0_dma_desc {
  70. struct virt_dma_desc vd;
  71. u32 ddar;
  72. size_t size;
  73. unsigned period;
  74. bool cyclic;
  75. unsigned sglen;
  76. struct sa11x0_dma_sg sg[0];
  77. };
  78. struct sa11x0_dma_phy;
  79. struct sa11x0_dma_chan {
  80. struct virt_dma_chan vc;
  81. /* protected by c->vc.lock */
  82. struct sa11x0_dma_phy *phy;
  83. enum dma_status status;
  84. /* protected by d->lock */
  85. struct list_head node;
  86. u32 ddar;
  87. const char *name;
  88. };
  89. struct sa11x0_dma_phy {
  90. void __iomem *base;
  91. struct sa11x0_dma_dev *dev;
  92. unsigned num;
  93. struct sa11x0_dma_chan *vchan;
  94. /* Protected by c->vc.lock */
  95. unsigned sg_load;
  96. struct sa11x0_dma_desc *txd_load;
  97. unsigned sg_done;
  98. struct sa11x0_dma_desc *txd_done;
  99. #ifdef CONFIG_PM_SLEEP
  100. u32 dbs[2];
  101. u32 dbt[2];
  102. u32 dcsr;
  103. #endif
  104. };
  105. struct sa11x0_dma_dev {
  106. struct dma_device slave;
  107. void __iomem *base;
  108. spinlock_t lock;
  109. struct tasklet_struct task;
  110. struct list_head chan_pending;
  111. struct sa11x0_dma_phy phy[NR_PHY_CHAN];
  112. };
  113. static struct sa11x0_dma_chan *to_sa11x0_dma_chan(struct dma_chan *chan)
  114. {
  115. return container_of(chan, struct sa11x0_dma_chan, vc.chan);
  116. }
  117. static struct sa11x0_dma_dev *to_sa11x0_dma(struct dma_device *dmadev)
  118. {
  119. return container_of(dmadev, struct sa11x0_dma_dev, slave);
  120. }
  121. static struct sa11x0_dma_desc *sa11x0_dma_next_desc(struct sa11x0_dma_chan *c)
  122. {
  123. struct virt_dma_desc *vd = vchan_next_desc(&c->vc);
  124. return vd ? container_of(vd, struct sa11x0_dma_desc, vd) : NULL;
  125. }
  126. static void sa11x0_dma_free_desc(struct virt_dma_desc *vd)
  127. {
  128. kfree(container_of(vd, struct sa11x0_dma_desc, vd));
  129. }
  130. static void sa11x0_dma_start_desc(struct sa11x0_dma_phy *p, struct sa11x0_dma_desc *txd)
  131. {
  132. list_del(&txd->vd.node);
  133. p->txd_load = txd;
  134. p->sg_load = 0;
  135. dev_vdbg(p->dev->slave.dev, "pchan %u: txd %p[%x]: starting: DDAR:%x\n",
  136. p->num, &txd->vd, txd->vd.tx.cookie, txd->ddar);
  137. }
  138. static void noinline sa11x0_dma_start_sg(struct sa11x0_dma_phy *p,
  139. struct sa11x0_dma_chan *c)
  140. {
  141. struct sa11x0_dma_desc *txd = p->txd_load;
  142. struct sa11x0_dma_sg *sg;
  143. void __iomem *base = p->base;
  144. unsigned dbsx, dbtx;
  145. u32 dcsr;
  146. if (!txd)
  147. return;
  148. dcsr = readl_relaxed(base + DMA_DCSR_R);
  149. /* Don't try to load the next transfer if both buffers are started */
  150. if ((dcsr & (DCSR_STRTA | DCSR_STRTB)) == (DCSR_STRTA | DCSR_STRTB))
  151. return;
  152. if (p->sg_load == txd->sglen) {
  153. if (!txd->cyclic) {
  154. struct sa11x0_dma_desc *txn = sa11x0_dma_next_desc(c);
  155. /*
  156. * We have reached the end of the current descriptor.
  157. * Peek at the next descriptor, and if compatible with
  158. * the current, start processing it.
  159. */
  160. if (txn && txn->ddar == txd->ddar) {
  161. txd = txn;
  162. sa11x0_dma_start_desc(p, txn);
  163. } else {
  164. p->txd_load = NULL;
  165. return;
  166. }
  167. } else {
  168. /* Cyclic: reset back to beginning */
  169. p->sg_load = 0;
  170. }
  171. }
  172. sg = &txd->sg[p->sg_load++];
  173. /* Select buffer to load according to channel status */
  174. if (((dcsr & (DCSR_BIU | DCSR_STRTB)) == (DCSR_BIU | DCSR_STRTB)) ||
  175. ((dcsr & (DCSR_BIU | DCSR_STRTA)) == 0)) {
  176. dbsx = DMA_DBSA;
  177. dbtx = DMA_DBTA;
  178. dcsr = DCSR_STRTA | DCSR_IE | DCSR_RUN;
  179. } else {
  180. dbsx = DMA_DBSB;
  181. dbtx = DMA_DBTB;
  182. dcsr = DCSR_STRTB | DCSR_IE | DCSR_RUN;
  183. }
  184. writel_relaxed(sg->addr, base + dbsx);
  185. writel_relaxed(sg->len, base + dbtx);
  186. writel(dcsr, base + DMA_DCSR_S);
  187. dev_dbg(p->dev->slave.dev, "pchan %u: load: DCSR:%02x DBS%c:%08x DBT%c:%08x\n",
  188. p->num, dcsr,
  189. 'A' + (dbsx == DMA_DBSB), sg->addr,
  190. 'A' + (dbtx == DMA_DBTB), sg->len);
  191. }
  192. static void noinline sa11x0_dma_complete(struct sa11x0_dma_phy *p,
  193. struct sa11x0_dma_chan *c)
  194. {
  195. struct sa11x0_dma_desc *txd = p->txd_done;
  196. if (++p->sg_done == txd->sglen) {
  197. if (!txd->cyclic) {
  198. vchan_cookie_complete(&txd->vd);
  199. p->sg_done = 0;
  200. p->txd_done = p->txd_load;
  201. if (!p->txd_done)
  202. tasklet_schedule(&p->dev->task);
  203. } else {
  204. if ((p->sg_done % txd->period) == 0)
  205. vchan_cyclic_callback(&txd->vd);
  206. /* Cyclic: reset back to beginning */
  207. p->sg_done = 0;
  208. }
  209. }
  210. sa11x0_dma_start_sg(p, c);
  211. }
  212. static irqreturn_t sa11x0_dma_irq(int irq, void *dev_id)
  213. {
  214. struct sa11x0_dma_phy *p = dev_id;
  215. struct sa11x0_dma_dev *d = p->dev;
  216. struct sa11x0_dma_chan *c;
  217. u32 dcsr;
  218. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  219. if (!(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB)))
  220. return IRQ_NONE;
  221. /* Clear reported status bits */
  222. writel_relaxed(dcsr & (DCSR_ERROR | DCSR_DONEA | DCSR_DONEB),
  223. p->base + DMA_DCSR_C);
  224. dev_dbg(d->slave.dev, "pchan %u: irq: DCSR:%02x\n", p->num, dcsr);
  225. if (dcsr & DCSR_ERROR) {
  226. dev_err(d->slave.dev, "pchan %u: error. DCSR:%02x DDAR:%08x DBSA:%08x DBTA:%08x DBSB:%08x DBTB:%08x\n",
  227. p->num, dcsr,
  228. readl_relaxed(p->base + DMA_DDAR),
  229. readl_relaxed(p->base + DMA_DBSA),
  230. readl_relaxed(p->base + DMA_DBTA),
  231. readl_relaxed(p->base + DMA_DBSB),
  232. readl_relaxed(p->base + DMA_DBTB));
  233. }
  234. c = p->vchan;
  235. if (c) {
  236. unsigned long flags;
  237. spin_lock_irqsave(&c->vc.lock, flags);
  238. /*
  239. * Now that we're holding the lock, check that the vchan
  240. * really is associated with this pchan before touching the
  241. * hardware. This should always succeed, because we won't
  242. * change p->vchan or c->phy while the channel is actively
  243. * transferring.
  244. */
  245. if (c->phy == p) {
  246. if (dcsr & DCSR_DONEA)
  247. sa11x0_dma_complete(p, c);
  248. if (dcsr & DCSR_DONEB)
  249. sa11x0_dma_complete(p, c);
  250. }
  251. spin_unlock_irqrestore(&c->vc.lock, flags);
  252. }
  253. return IRQ_HANDLED;
  254. }
  255. static void sa11x0_dma_start_txd(struct sa11x0_dma_chan *c)
  256. {
  257. struct sa11x0_dma_desc *txd = sa11x0_dma_next_desc(c);
  258. /* If the issued list is empty, we have no further txds to process */
  259. if (txd) {
  260. struct sa11x0_dma_phy *p = c->phy;
  261. sa11x0_dma_start_desc(p, txd);
  262. p->txd_done = txd;
  263. p->sg_done = 0;
  264. /* The channel should not have any transfers started */
  265. WARN_ON(readl_relaxed(p->base + DMA_DCSR_R) &
  266. (DCSR_STRTA | DCSR_STRTB));
  267. /* Clear the run and start bits before changing DDAR */
  268. writel_relaxed(DCSR_RUN | DCSR_STRTA | DCSR_STRTB,
  269. p->base + DMA_DCSR_C);
  270. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  271. /* Try to start both buffers */
  272. sa11x0_dma_start_sg(p, c);
  273. sa11x0_dma_start_sg(p, c);
  274. }
  275. }
  276. static void sa11x0_dma_tasklet(unsigned long arg)
  277. {
  278. struct sa11x0_dma_dev *d = (struct sa11x0_dma_dev *)arg;
  279. struct sa11x0_dma_phy *p;
  280. struct sa11x0_dma_chan *c;
  281. unsigned pch, pch_alloc = 0;
  282. dev_dbg(d->slave.dev, "tasklet enter\n");
  283. list_for_each_entry(c, &d->slave.channels, vc.chan.device_node) {
  284. spin_lock_irq(&c->vc.lock);
  285. p = c->phy;
  286. if (p && !p->txd_done) {
  287. sa11x0_dma_start_txd(c);
  288. if (!p->txd_done) {
  289. /* No current txd associated with this channel */
  290. dev_dbg(d->slave.dev, "pchan %u: free\n", p->num);
  291. /* Mark this channel free */
  292. c->phy = NULL;
  293. p->vchan = NULL;
  294. }
  295. }
  296. spin_unlock_irq(&c->vc.lock);
  297. }
  298. spin_lock_irq(&d->lock);
  299. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  300. p = &d->phy[pch];
  301. if (p->vchan == NULL && !list_empty(&d->chan_pending)) {
  302. c = list_first_entry(&d->chan_pending,
  303. struct sa11x0_dma_chan, node);
  304. list_del_init(&c->node);
  305. pch_alloc |= 1 << pch;
  306. /* Mark this channel allocated */
  307. p->vchan = c;
  308. dev_dbg(d->slave.dev, "pchan %u: alloc vchan %p\n", pch, &c->vc);
  309. }
  310. }
  311. spin_unlock_irq(&d->lock);
  312. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  313. if (pch_alloc & (1 << pch)) {
  314. p = &d->phy[pch];
  315. c = p->vchan;
  316. spin_lock_irq(&c->vc.lock);
  317. c->phy = p;
  318. sa11x0_dma_start_txd(c);
  319. spin_unlock_irq(&c->vc.lock);
  320. }
  321. }
  322. dev_dbg(d->slave.dev, "tasklet exit\n");
  323. }
  324. static int sa11x0_dma_alloc_chan_resources(struct dma_chan *chan)
  325. {
  326. return 0;
  327. }
  328. static void sa11x0_dma_free_chan_resources(struct dma_chan *chan)
  329. {
  330. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  331. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  332. unsigned long flags;
  333. spin_lock_irqsave(&d->lock, flags);
  334. list_del_init(&c->node);
  335. spin_unlock_irqrestore(&d->lock, flags);
  336. vchan_free_chan_resources(&c->vc);
  337. }
  338. static dma_addr_t sa11x0_dma_pos(struct sa11x0_dma_phy *p)
  339. {
  340. unsigned reg;
  341. u32 dcsr;
  342. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  343. if ((dcsr & (DCSR_BIU | DCSR_STRTA)) == DCSR_STRTA ||
  344. (dcsr & (DCSR_BIU | DCSR_STRTB)) == DCSR_BIU)
  345. reg = DMA_DBSA;
  346. else
  347. reg = DMA_DBSB;
  348. return readl_relaxed(p->base + reg);
  349. }
  350. static enum dma_status sa11x0_dma_tx_status(struct dma_chan *chan,
  351. dma_cookie_t cookie, struct dma_tx_state *state)
  352. {
  353. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  354. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  355. struct sa11x0_dma_phy *p;
  356. struct virt_dma_desc *vd;
  357. unsigned long flags;
  358. enum dma_status ret;
  359. ret = dma_cookie_status(&c->vc.chan, cookie, state);
  360. if (ret == DMA_SUCCESS)
  361. return ret;
  362. if (!state)
  363. return c->status;
  364. spin_lock_irqsave(&c->vc.lock, flags);
  365. p = c->phy;
  366. /*
  367. * If the cookie is on our issue queue, then the residue is
  368. * its total size.
  369. */
  370. vd = vchan_find_desc(&c->vc, cookie);
  371. if (vd) {
  372. state->residue = container_of(vd, struct sa11x0_dma_desc, vd)->size;
  373. } else if (!p) {
  374. state->residue = 0;
  375. } else {
  376. struct sa11x0_dma_desc *txd;
  377. size_t bytes = 0;
  378. if (p->txd_done && p->txd_done->vd.tx.cookie == cookie)
  379. txd = p->txd_done;
  380. else if (p->txd_load && p->txd_load->vd.tx.cookie == cookie)
  381. txd = p->txd_load;
  382. else
  383. txd = NULL;
  384. ret = c->status;
  385. if (txd) {
  386. dma_addr_t addr = sa11x0_dma_pos(p);
  387. unsigned i;
  388. dev_vdbg(d->slave.dev, "tx_status: addr:%x\n", addr);
  389. for (i = 0; i < txd->sglen; i++) {
  390. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x\n",
  391. i, txd->sg[i].addr, txd->sg[i].len);
  392. if (addr >= txd->sg[i].addr &&
  393. addr < txd->sg[i].addr + txd->sg[i].len) {
  394. unsigned len;
  395. len = txd->sg[i].len -
  396. (addr - txd->sg[i].addr);
  397. dev_vdbg(d->slave.dev, "tx_status: [%u] +%x\n",
  398. i, len);
  399. bytes += len;
  400. i++;
  401. break;
  402. }
  403. }
  404. for (; i < txd->sglen; i++) {
  405. dev_vdbg(d->slave.dev, "tx_status: [%u] %x+%x ++\n",
  406. i, txd->sg[i].addr, txd->sg[i].len);
  407. bytes += txd->sg[i].len;
  408. }
  409. }
  410. state->residue = bytes;
  411. }
  412. spin_unlock_irqrestore(&c->vc.lock, flags);
  413. dev_vdbg(d->slave.dev, "tx_status: bytes 0x%zx\n", state->residue);
  414. return ret;
  415. }
  416. /*
  417. * Move pending txds to the issued list, and re-init pending list.
  418. * If not already pending, add this channel to the list of pending
  419. * channels and trigger the tasklet to run.
  420. */
  421. static void sa11x0_dma_issue_pending(struct dma_chan *chan)
  422. {
  423. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  424. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  425. unsigned long flags;
  426. spin_lock_irqsave(&c->vc.lock, flags);
  427. if (vchan_issue_pending(&c->vc)) {
  428. if (!c->phy) {
  429. spin_lock(&d->lock);
  430. if (list_empty(&c->node)) {
  431. list_add_tail(&c->node, &d->chan_pending);
  432. tasklet_schedule(&d->task);
  433. dev_dbg(d->slave.dev, "vchan %p: issued\n", &c->vc);
  434. }
  435. spin_unlock(&d->lock);
  436. }
  437. } else
  438. dev_dbg(d->slave.dev, "vchan %p: nothing to issue\n", &c->vc);
  439. spin_unlock_irqrestore(&c->vc.lock, flags);
  440. }
  441. static struct dma_async_tx_descriptor *sa11x0_dma_prep_slave_sg(
  442. struct dma_chan *chan, struct scatterlist *sg, unsigned int sglen,
  443. enum dma_transfer_direction dir, unsigned long flags, void *context)
  444. {
  445. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  446. struct sa11x0_dma_desc *txd;
  447. struct scatterlist *sgent;
  448. unsigned i, j = sglen;
  449. size_t size = 0;
  450. /* SA11x0 channels can only operate in their native direction */
  451. if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
  452. dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
  453. &c->vc, c->ddar, dir);
  454. return NULL;
  455. }
  456. /* Do not allow zero-sized txds */
  457. if (sglen == 0)
  458. return NULL;
  459. for_each_sg(sg, sgent, sglen, i) {
  460. dma_addr_t addr = sg_dma_address(sgent);
  461. unsigned int len = sg_dma_len(sgent);
  462. if (len > DMA_MAX_SIZE)
  463. j += DIV_ROUND_UP(len, DMA_MAX_SIZE & ~DMA_ALIGN) - 1;
  464. if (addr & DMA_ALIGN) {
  465. dev_dbg(chan->device->dev, "vchan %p: bad buffer alignment: %08x\n",
  466. &c->vc, addr);
  467. return NULL;
  468. }
  469. }
  470. txd = kzalloc(sizeof(*txd) + j * sizeof(txd->sg[0]), GFP_ATOMIC);
  471. if (!txd) {
  472. dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
  473. return NULL;
  474. }
  475. j = 0;
  476. for_each_sg(sg, sgent, sglen, i) {
  477. dma_addr_t addr = sg_dma_address(sgent);
  478. unsigned len = sg_dma_len(sgent);
  479. size += len;
  480. do {
  481. unsigned tlen = len;
  482. /*
  483. * Check whether the transfer will fit. If not, try
  484. * to split the transfer up such that we end up with
  485. * equal chunks - but make sure that we preserve the
  486. * alignment. This avoids small segments.
  487. */
  488. if (tlen > DMA_MAX_SIZE) {
  489. unsigned mult = DIV_ROUND_UP(tlen,
  490. DMA_MAX_SIZE & ~DMA_ALIGN);
  491. tlen = (tlen / mult) & ~DMA_ALIGN;
  492. }
  493. txd->sg[j].addr = addr;
  494. txd->sg[j].len = tlen;
  495. addr += tlen;
  496. len -= tlen;
  497. j++;
  498. } while (len);
  499. }
  500. txd->ddar = c->ddar;
  501. txd->size = size;
  502. txd->sglen = j;
  503. dev_dbg(chan->device->dev, "vchan %p: txd %p: size %u nr %u\n",
  504. &c->vc, &txd->vd, txd->size, txd->sglen);
  505. return vchan_tx_prep(&c->vc, &txd->vd, flags);
  506. }
  507. static struct dma_async_tx_descriptor *sa11x0_dma_prep_dma_cyclic(
  508. struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
  509. enum dma_transfer_direction dir, unsigned long flags, void *context)
  510. {
  511. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  512. struct sa11x0_dma_desc *txd;
  513. unsigned i, j, k, sglen, sgperiod;
  514. /* SA11x0 channels can only operate in their native direction */
  515. if (dir != (c->ddar & DDAR_RW ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV)) {
  516. dev_err(chan->device->dev, "vchan %p: bad DMA direction: DDAR:%08x dir:%u\n",
  517. &c->vc, c->ddar, dir);
  518. return NULL;
  519. }
  520. sgperiod = DIV_ROUND_UP(period, DMA_MAX_SIZE & ~DMA_ALIGN);
  521. sglen = size * sgperiod / period;
  522. /* Do not allow zero-sized txds */
  523. if (sglen == 0)
  524. return NULL;
  525. txd = kzalloc(sizeof(*txd) + sglen * sizeof(txd->sg[0]), GFP_ATOMIC);
  526. if (!txd) {
  527. dev_dbg(chan->device->dev, "vchan %p: kzalloc failed\n", &c->vc);
  528. return NULL;
  529. }
  530. for (i = k = 0; i < size / period; i++) {
  531. size_t tlen, len = period;
  532. for (j = 0; j < sgperiod; j++, k++) {
  533. tlen = len;
  534. if (tlen > DMA_MAX_SIZE) {
  535. unsigned mult = DIV_ROUND_UP(tlen, DMA_MAX_SIZE & ~DMA_ALIGN);
  536. tlen = (tlen / mult) & ~DMA_ALIGN;
  537. }
  538. txd->sg[k].addr = addr;
  539. txd->sg[k].len = tlen;
  540. addr += tlen;
  541. len -= tlen;
  542. }
  543. WARN_ON(len != 0);
  544. }
  545. WARN_ON(k != sglen);
  546. txd->ddar = c->ddar;
  547. txd->size = size;
  548. txd->sglen = sglen;
  549. txd->cyclic = 1;
  550. txd->period = sgperiod;
  551. return vchan_tx_prep(&c->vc, &txd->vd, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  552. }
  553. static int sa11x0_dma_slave_config(struct sa11x0_dma_chan *c, struct dma_slave_config *cfg)
  554. {
  555. u32 ddar = c->ddar & ((0xf << 4) | DDAR_RW);
  556. dma_addr_t addr;
  557. enum dma_slave_buswidth width;
  558. u32 maxburst;
  559. if (ddar & DDAR_RW) {
  560. addr = cfg->src_addr;
  561. width = cfg->src_addr_width;
  562. maxburst = cfg->src_maxburst;
  563. } else {
  564. addr = cfg->dst_addr;
  565. width = cfg->dst_addr_width;
  566. maxburst = cfg->dst_maxburst;
  567. }
  568. if ((width != DMA_SLAVE_BUSWIDTH_1_BYTE &&
  569. width != DMA_SLAVE_BUSWIDTH_2_BYTES) ||
  570. (maxburst != 4 && maxburst != 8))
  571. return -EINVAL;
  572. if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
  573. ddar |= DDAR_DW;
  574. if (maxburst == 8)
  575. ddar |= DDAR_BS;
  576. dev_dbg(c->vc.chan.device->dev, "vchan %p: dma_slave_config addr %x width %u burst %u\n",
  577. &c->vc, addr, width, maxburst);
  578. c->ddar = ddar | (addr & 0xf0000000) | (addr & 0x003ffffc) << 6;
  579. return 0;
  580. }
  581. static int sa11x0_dma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  582. unsigned long arg)
  583. {
  584. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  585. struct sa11x0_dma_dev *d = to_sa11x0_dma(chan->device);
  586. struct sa11x0_dma_phy *p;
  587. LIST_HEAD(head);
  588. unsigned long flags;
  589. int ret;
  590. switch (cmd) {
  591. case DMA_SLAVE_CONFIG:
  592. return sa11x0_dma_slave_config(c, (struct dma_slave_config *)arg);
  593. case DMA_TERMINATE_ALL:
  594. dev_dbg(d->slave.dev, "vchan %p: terminate all\n", &c->vc);
  595. /* Clear the tx descriptor lists */
  596. spin_lock_irqsave(&c->vc.lock, flags);
  597. vchan_get_all_descriptors(&c->vc, &head);
  598. p = c->phy;
  599. if (p) {
  600. dev_dbg(d->slave.dev, "pchan %u: terminating\n", p->num);
  601. /* vchan is assigned to a pchan - stop the channel */
  602. writel(DCSR_RUN | DCSR_IE |
  603. DCSR_STRTA | DCSR_DONEA |
  604. DCSR_STRTB | DCSR_DONEB,
  605. p->base + DMA_DCSR_C);
  606. if (p->txd_load) {
  607. if (p->txd_load != p->txd_done)
  608. list_add_tail(&p->txd_load->vd.node, &head);
  609. p->txd_load = NULL;
  610. }
  611. if (p->txd_done) {
  612. list_add_tail(&p->txd_done->vd.node, &head);
  613. p->txd_done = NULL;
  614. }
  615. c->phy = NULL;
  616. spin_lock(&d->lock);
  617. p->vchan = NULL;
  618. spin_unlock(&d->lock);
  619. tasklet_schedule(&d->task);
  620. }
  621. spin_unlock_irqrestore(&c->vc.lock, flags);
  622. vchan_dma_desc_free_list(&c->vc, &head);
  623. ret = 0;
  624. break;
  625. case DMA_PAUSE:
  626. dev_dbg(d->slave.dev, "vchan %p: pause\n", &c->vc);
  627. spin_lock_irqsave(&c->vc.lock, flags);
  628. if (c->status == DMA_IN_PROGRESS) {
  629. c->status = DMA_PAUSED;
  630. p = c->phy;
  631. if (p) {
  632. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  633. } else {
  634. spin_lock(&d->lock);
  635. list_del_init(&c->node);
  636. spin_unlock(&d->lock);
  637. }
  638. }
  639. spin_unlock_irqrestore(&c->vc.lock, flags);
  640. ret = 0;
  641. break;
  642. case DMA_RESUME:
  643. dev_dbg(d->slave.dev, "vchan %p: resume\n", &c->vc);
  644. spin_lock_irqsave(&c->vc.lock, flags);
  645. if (c->status == DMA_PAUSED) {
  646. c->status = DMA_IN_PROGRESS;
  647. p = c->phy;
  648. if (p) {
  649. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_S);
  650. } else if (!list_empty(&c->vc.desc_issued)) {
  651. spin_lock(&d->lock);
  652. list_add_tail(&c->node, &d->chan_pending);
  653. spin_unlock(&d->lock);
  654. }
  655. }
  656. spin_unlock_irqrestore(&c->vc.lock, flags);
  657. ret = 0;
  658. break;
  659. default:
  660. ret = -ENXIO;
  661. break;
  662. }
  663. return ret;
  664. }
  665. struct sa11x0_dma_channel_desc {
  666. u32 ddar;
  667. const char *name;
  668. };
  669. #define CD(d1, d2) { .ddar = DDAR_##d1 | d2, .name = #d1 }
  670. static const struct sa11x0_dma_channel_desc chan_desc[] = {
  671. CD(Ser0UDCTr, 0),
  672. CD(Ser0UDCRc, DDAR_RW),
  673. CD(Ser1SDLCTr, 0),
  674. CD(Ser1SDLCRc, DDAR_RW),
  675. CD(Ser1UARTTr, 0),
  676. CD(Ser1UARTRc, DDAR_RW),
  677. CD(Ser2ICPTr, 0),
  678. CD(Ser2ICPRc, DDAR_RW),
  679. CD(Ser3UARTTr, 0),
  680. CD(Ser3UARTRc, DDAR_RW),
  681. CD(Ser4MCP0Tr, 0),
  682. CD(Ser4MCP0Rc, DDAR_RW),
  683. CD(Ser4MCP1Tr, 0),
  684. CD(Ser4MCP1Rc, DDAR_RW),
  685. CD(Ser4SSPTr, 0),
  686. CD(Ser4SSPRc, DDAR_RW),
  687. };
  688. static int sa11x0_dma_init_dmadev(struct dma_device *dmadev,
  689. struct device *dev)
  690. {
  691. unsigned i;
  692. dmadev->chancnt = ARRAY_SIZE(chan_desc);
  693. INIT_LIST_HEAD(&dmadev->channels);
  694. dmadev->dev = dev;
  695. dmadev->device_alloc_chan_resources = sa11x0_dma_alloc_chan_resources;
  696. dmadev->device_free_chan_resources = sa11x0_dma_free_chan_resources;
  697. dmadev->device_control = sa11x0_dma_control;
  698. dmadev->device_tx_status = sa11x0_dma_tx_status;
  699. dmadev->device_issue_pending = sa11x0_dma_issue_pending;
  700. for (i = 0; i < dmadev->chancnt; i++) {
  701. struct sa11x0_dma_chan *c;
  702. c = kzalloc(sizeof(*c), GFP_KERNEL);
  703. if (!c) {
  704. dev_err(dev, "no memory for channel %u\n", i);
  705. return -ENOMEM;
  706. }
  707. c->status = DMA_IN_PROGRESS;
  708. c->ddar = chan_desc[i].ddar;
  709. c->name = chan_desc[i].name;
  710. INIT_LIST_HEAD(&c->node);
  711. c->vc.desc_free = sa11x0_dma_free_desc;
  712. vchan_init(&c->vc, dmadev);
  713. }
  714. return dma_async_device_register(dmadev);
  715. }
  716. static int sa11x0_dma_request_irq(struct platform_device *pdev, int nr,
  717. void *data)
  718. {
  719. int irq = platform_get_irq(pdev, nr);
  720. if (irq <= 0)
  721. return -ENXIO;
  722. return request_irq(irq, sa11x0_dma_irq, 0, dev_name(&pdev->dev), data);
  723. }
  724. static void sa11x0_dma_free_irq(struct platform_device *pdev, int nr,
  725. void *data)
  726. {
  727. int irq = platform_get_irq(pdev, nr);
  728. if (irq > 0)
  729. free_irq(irq, data);
  730. }
  731. static void sa11x0_dma_free_channels(struct dma_device *dmadev)
  732. {
  733. struct sa11x0_dma_chan *c, *cn;
  734. list_for_each_entry_safe(c, cn, &dmadev->channels, vc.chan.device_node) {
  735. list_del(&c->vc.chan.device_node);
  736. tasklet_kill(&c->vc.task);
  737. kfree(c);
  738. }
  739. }
  740. static int sa11x0_dma_probe(struct platform_device *pdev)
  741. {
  742. struct sa11x0_dma_dev *d;
  743. struct resource *res;
  744. unsigned i;
  745. int ret;
  746. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  747. if (!res)
  748. return -ENXIO;
  749. d = kzalloc(sizeof(*d), GFP_KERNEL);
  750. if (!d) {
  751. ret = -ENOMEM;
  752. goto err_alloc;
  753. }
  754. spin_lock_init(&d->lock);
  755. INIT_LIST_HEAD(&d->chan_pending);
  756. d->base = ioremap(res->start, resource_size(res));
  757. if (!d->base) {
  758. ret = -ENOMEM;
  759. goto err_ioremap;
  760. }
  761. tasklet_init(&d->task, sa11x0_dma_tasklet, (unsigned long)d);
  762. for (i = 0; i < NR_PHY_CHAN; i++) {
  763. struct sa11x0_dma_phy *p = &d->phy[i];
  764. p->dev = d;
  765. p->num = i;
  766. p->base = d->base + i * DMA_SIZE;
  767. writel_relaxed(DCSR_RUN | DCSR_IE | DCSR_ERROR |
  768. DCSR_DONEA | DCSR_STRTA | DCSR_DONEB | DCSR_STRTB,
  769. p->base + DMA_DCSR_C);
  770. writel_relaxed(0, p->base + DMA_DDAR);
  771. ret = sa11x0_dma_request_irq(pdev, i, p);
  772. if (ret) {
  773. while (i) {
  774. i--;
  775. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  776. }
  777. goto err_irq;
  778. }
  779. }
  780. dma_cap_set(DMA_SLAVE, d->slave.cap_mask);
  781. dma_cap_set(DMA_CYCLIC, d->slave.cap_mask);
  782. d->slave.device_prep_slave_sg = sa11x0_dma_prep_slave_sg;
  783. d->slave.device_prep_dma_cyclic = sa11x0_dma_prep_dma_cyclic;
  784. ret = sa11x0_dma_init_dmadev(&d->slave, &pdev->dev);
  785. if (ret) {
  786. dev_warn(d->slave.dev, "failed to register slave async device: %d\n",
  787. ret);
  788. goto err_slave_reg;
  789. }
  790. platform_set_drvdata(pdev, d);
  791. return 0;
  792. err_slave_reg:
  793. sa11x0_dma_free_channels(&d->slave);
  794. for (i = 0; i < NR_PHY_CHAN; i++)
  795. sa11x0_dma_free_irq(pdev, i, &d->phy[i]);
  796. err_irq:
  797. tasklet_kill(&d->task);
  798. iounmap(d->base);
  799. err_ioremap:
  800. kfree(d);
  801. err_alloc:
  802. return ret;
  803. }
  804. static int sa11x0_dma_remove(struct platform_device *pdev)
  805. {
  806. struct sa11x0_dma_dev *d = platform_get_drvdata(pdev);
  807. unsigned pch;
  808. dma_async_device_unregister(&d->slave);
  809. sa11x0_dma_free_channels(&d->slave);
  810. for (pch = 0; pch < NR_PHY_CHAN; pch++)
  811. sa11x0_dma_free_irq(pdev, pch, &d->phy[pch]);
  812. tasklet_kill(&d->task);
  813. iounmap(d->base);
  814. kfree(d);
  815. return 0;
  816. }
  817. #ifdef CONFIG_PM_SLEEP
  818. static int sa11x0_dma_suspend(struct device *dev)
  819. {
  820. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  821. unsigned pch;
  822. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  823. struct sa11x0_dma_phy *p = &d->phy[pch];
  824. u32 dcsr, saved_dcsr;
  825. dcsr = saved_dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  826. if (dcsr & DCSR_RUN) {
  827. writel(DCSR_RUN | DCSR_IE, p->base + DMA_DCSR_C);
  828. dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  829. }
  830. saved_dcsr &= DCSR_RUN | DCSR_IE;
  831. if (dcsr & DCSR_BIU) {
  832. p->dbs[0] = readl_relaxed(p->base + DMA_DBSB);
  833. p->dbt[0] = readl_relaxed(p->base + DMA_DBTB);
  834. p->dbs[1] = readl_relaxed(p->base + DMA_DBSA);
  835. p->dbt[1] = readl_relaxed(p->base + DMA_DBTA);
  836. saved_dcsr |= (dcsr & DCSR_STRTA ? DCSR_STRTB : 0) |
  837. (dcsr & DCSR_STRTB ? DCSR_STRTA : 0);
  838. } else {
  839. p->dbs[0] = readl_relaxed(p->base + DMA_DBSA);
  840. p->dbt[0] = readl_relaxed(p->base + DMA_DBTA);
  841. p->dbs[1] = readl_relaxed(p->base + DMA_DBSB);
  842. p->dbt[1] = readl_relaxed(p->base + DMA_DBTB);
  843. saved_dcsr |= dcsr & (DCSR_STRTA | DCSR_STRTB);
  844. }
  845. p->dcsr = saved_dcsr;
  846. writel(DCSR_STRTA | DCSR_STRTB, p->base + DMA_DCSR_C);
  847. }
  848. return 0;
  849. }
  850. static int sa11x0_dma_resume(struct device *dev)
  851. {
  852. struct sa11x0_dma_dev *d = dev_get_drvdata(dev);
  853. unsigned pch;
  854. for (pch = 0; pch < NR_PHY_CHAN; pch++) {
  855. struct sa11x0_dma_phy *p = &d->phy[pch];
  856. struct sa11x0_dma_desc *txd = NULL;
  857. u32 dcsr = readl_relaxed(p->base + DMA_DCSR_R);
  858. WARN_ON(dcsr & (DCSR_BIU | DCSR_STRTA | DCSR_STRTB | DCSR_RUN));
  859. if (p->txd_done)
  860. txd = p->txd_done;
  861. else if (p->txd_load)
  862. txd = p->txd_load;
  863. if (!txd)
  864. continue;
  865. writel_relaxed(txd->ddar, p->base + DMA_DDAR);
  866. writel_relaxed(p->dbs[0], p->base + DMA_DBSA);
  867. writel_relaxed(p->dbt[0], p->base + DMA_DBTA);
  868. writel_relaxed(p->dbs[1], p->base + DMA_DBSB);
  869. writel_relaxed(p->dbt[1], p->base + DMA_DBTB);
  870. writel_relaxed(p->dcsr, p->base + DMA_DCSR_S);
  871. }
  872. return 0;
  873. }
  874. #endif
  875. static const struct dev_pm_ops sa11x0_dma_pm_ops = {
  876. .suspend_noirq = sa11x0_dma_suspend,
  877. .resume_noirq = sa11x0_dma_resume,
  878. .freeze_noirq = sa11x0_dma_suspend,
  879. .thaw_noirq = sa11x0_dma_resume,
  880. .poweroff_noirq = sa11x0_dma_suspend,
  881. .restore_noirq = sa11x0_dma_resume,
  882. };
  883. static struct platform_driver sa11x0_dma_driver = {
  884. .driver = {
  885. .name = "sa11x0-dma",
  886. .owner = THIS_MODULE,
  887. .pm = &sa11x0_dma_pm_ops,
  888. },
  889. .probe = sa11x0_dma_probe,
  890. .remove = sa11x0_dma_remove,
  891. };
  892. bool sa11x0_dma_filter_fn(struct dma_chan *chan, void *param)
  893. {
  894. if (chan->device->dev->driver == &sa11x0_dma_driver.driver) {
  895. struct sa11x0_dma_chan *c = to_sa11x0_dma_chan(chan);
  896. const char *p = param;
  897. return !strcmp(c->name, p);
  898. }
  899. return false;
  900. }
  901. EXPORT_SYMBOL(sa11x0_dma_filter_fn);
  902. static int __init sa11x0_dma_init(void)
  903. {
  904. return platform_driver_register(&sa11x0_dma_driver);
  905. }
  906. subsys_initcall(sa11x0_dma_init);
  907. static void __exit sa11x0_dma_exit(void)
  908. {
  909. platform_driver_unregister(&sa11x0_dma_driver);
  910. }
  911. module_exit(sa11x0_dma_exit);
  912. MODULE_AUTHOR("Russell King");
  913. MODULE_DESCRIPTION("SA-11x0 DMA driver");
  914. MODULE_LICENSE("GPL v2");
  915. MODULE_ALIAS("platform:sa11x0-dma");