caamhash.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888
  1. /*
  2. * caam - Freescale FSL CAAM support for ahash functions of crypto API
  3. *
  4. * Copyright 2011 Freescale Semiconductor, Inc.
  5. *
  6. * Based on caamalg.c crypto API driver.
  7. *
  8. * relationship of digest job descriptor or first job descriptor after init to
  9. * shared descriptors:
  10. *
  11. * --------------- ---------------
  12. * | JobDesc #1 |-------------------->| ShareDesc |
  13. * | *(packet 1) | | (hashKey) |
  14. * --------------- | (operation) |
  15. * ---------------
  16. *
  17. * relationship of subsequent job descriptors to shared descriptors:
  18. *
  19. * --------------- ---------------
  20. * | JobDesc #2 |-------------------->| ShareDesc |
  21. * | *(packet 2) | |------------->| (hashKey) |
  22. * --------------- | |-------->| (operation) |
  23. * . | | | (load ctx2) |
  24. * . | | ---------------
  25. * --------------- | |
  26. * | JobDesc #3 |------| |
  27. * | *(packet 3) | |
  28. * --------------- |
  29. * . |
  30. * . |
  31. * --------------- |
  32. * | JobDesc #4 |------------
  33. * | *(packet 4) |
  34. * ---------------
  35. *
  36. * The SharedDesc never changes for a connection unless rekeyed, but
  37. * each packet will likely be in a different place. So all we need
  38. * to know to process the packet is where the input is, where the
  39. * output goes, and what context we want to process with. Context is
  40. * in the SharedDesc, packet references in the JobDesc.
  41. *
  42. * So, a job desc looks like:
  43. *
  44. * ---------------------
  45. * | Header |
  46. * | ShareDesc Pointer |
  47. * | SEQ_OUT_PTR |
  48. * | (output buffer) |
  49. * | (output length) |
  50. * | SEQ_IN_PTR |
  51. * | (input buffer) |
  52. * | (input length) |
  53. * ---------------------
  54. */
  55. #include "compat.h"
  56. #include "regs.h"
  57. #include "intern.h"
  58. #include "desc_constr.h"
  59. #include "jr.h"
  60. #include "error.h"
  61. #include "sg_sw_sec4.h"
  62. #include "key_gen.h"
  63. #define CAAM_CRA_PRIORITY 3000
  64. /* max hash key is max split key size */
  65. #define CAAM_MAX_HASH_KEY_SIZE (SHA512_DIGEST_SIZE * 2)
  66. #define CAAM_MAX_HASH_BLOCK_SIZE SHA512_BLOCK_SIZE
  67. #define CAAM_MAX_HASH_DIGEST_SIZE SHA512_DIGEST_SIZE
  68. /* length of descriptors text */
  69. #define DESC_JOB_IO_LEN (CAAM_CMD_SZ * 5 + CAAM_PTR_SZ * 3)
  70. #define DESC_AHASH_BASE (4 * CAAM_CMD_SZ)
  71. #define DESC_AHASH_UPDATE_LEN (6 * CAAM_CMD_SZ)
  72. #define DESC_AHASH_UPDATE_FIRST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  73. #define DESC_AHASH_FINAL_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  74. #define DESC_AHASH_FINUP_LEN (DESC_AHASH_BASE + 5 * CAAM_CMD_SZ)
  75. #define DESC_AHASH_DIGEST_LEN (DESC_AHASH_BASE + 4 * CAAM_CMD_SZ)
  76. #define DESC_HASH_MAX_USED_BYTES (DESC_AHASH_FINAL_LEN + \
  77. CAAM_MAX_HASH_KEY_SIZE)
  78. #define DESC_HASH_MAX_USED_LEN (DESC_HASH_MAX_USED_BYTES / CAAM_CMD_SZ)
  79. /* caam context sizes for hashes: running digest + 8 */
  80. #define HASH_MSG_LEN 8
  81. #define MAX_CTX_LEN (HASH_MSG_LEN + SHA512_DIGEST_SIZE)
  82. #ifdef DEBUG
  83. /* for print_hex_dumps with line references */
  84. #define xstr(s) str(s)
  85. #define str(s) #s
  86. #define debug(format, arg...) printk(format, arg)
  87. #else
  88. #define debug(format, arg...)
  89. #endif
  90. /* ahash per-session context */
  91. struct caam_hash_ctx {
  92. struct device *jrdev;
  93. u32 sh_desc_update[DESC_HASH_MAX_USED_LEN];
  94. u32 sh_desc_update_first[DESC_HASH_MAX_USED_LEN];
  95. u32 sh_desc_fin[DESC_HASH_MAX_USED_LEN];
  96. u32 sh_desc_digest[DESC_HASH_MAX_USED_LEN];
  97. u32 sh_desc_finup[DESC_HASH_MAX_USED_LEN];
  98. dma_addr_t sh_desc_update_dma;
  99. dma_addr_t sh_desc_update_first_dma;
  100. dma_addr_t sh_desc_fin_dma;
  101. dma_addr_t sh_desc_digest_dma;
  102. dma_addr_t sh_desc_finup_dma;
  103. u32 alg_type;
  104. u32 alg_op;
  105. u8 key[CAAM_MAX_HASH_KEY_SIZE];
  106. dma_addr_t key_dma;
  107. int ctx_len;
  108. unsigned int split_key_len;
  109. unsigned int split_key_pad_len;
  110. };
  111. /* ahash state */
  112. struct caam_hash_state {
  113. dma_addr_t buf_dma;
  114. dma_addr_t ctx_dma;
  115. u8 buf_0[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  116. int buflen_0;
  117. u8 buf_1[CAAM_MAX_HASH_BLOCK_SIZE] ____cacheline_aligned;
  118. int buflen_1;
  119. u8 caam_ctx[MAX_CTX_LEN];
  120. int (*update)(struct ahash_request *req);
  121. int (*final)(struct ahash_request *req);
  122. int (*finup)(struct ahash_request *req);
  123. int current_buf;
  124. };
  125. /* Common job descriptor seq in/out ptr routines */
  126. /* Map state->caam_ctx, and append seq_out_ptr command that points to it */
  127. static inline void map_seq_out_ptr_ctx(u32 *desc, struct device *jrdev,
  128. struct caam_hash_state *state,
  129. int ctx_len)
  130. {
  131. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx,
  132. ctx_len, DMA_FROM_DEVICE);
  133. append_seq_out_ptr(desc, state->ctx_dma, ctx_len, 0);
  134. }
  135. /* Map req->result, and append seq_out_ptr command that points to it */
  136. static inline dma_addr_t map_seq_out_ptr_result(u32 *desc, struct device *jrdev,
  137. u8 *result, int digestsize)
  138. {
  139. dma_addr_t dst_dma;
  140. dst_dma = dma_map_single(jrdev, result, digestsize, DMA_FROM_DEVICE);
  141. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  142. return dst_dma;
  143. }
  144. /* Map current buffer in state and put it in link table */
  145. static inline dma_addr_t buf_map_to_sec4_sg(struct device *jrdev,
  146. struct sec4_sg_entry *sec4_sg,
  147. u8 *buf, int buflen)
  148. {
  149. dma_addr_t buf_dma;
  150. buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  151. dma_to_sec4_sg_one(sec4_sg, buf_dma, buflen, 0);
  152. return buf_dma;
  153. }
  154. /* Map req->src and put it in link table */
  155. static inline void src_map_to_sec4_sg(struct device *jrdev,
  156. struct scatterlist *src, int src_nents,
  157. struct sec4_sg_entry *sec4_sg,
  158. bool chained)
  159. {
  160. dma_map_sg_chained(jrdev, src, src_nents, DMA_TO_DEVICE, chained);
  161. sg_to_sec4_sg_last(src, src_nents, sec4_sg, 0);
  162. }
  163. /*
  164. * Only put buffer in link table if it contains data, which is possible,
  165. * since a buffer has previously been used, and needs to be unmapped,
  166. */
  167. static inline dma_addr_t
  168. try_buf_map_to_sec4_sg(struct device *jrdev, struct sec4_sg_entry *sec4_sg,
  169. u8 *buf, dma_addr_t buf_dma, int buflen,
  170. int last_buflen)
  171. {
  172. if (buf_dma && !dma_mapping_error(jrdev, buf_dma))
  173. dma_unmap_single(jrdev, buf_dma, last_buflen, DMA_TO_DEVICE);
  174. if (buflen)
  175. buf_dma = buf_map_to_sec4_sg(jrdev, sec4_sg, buf, buflen);
  176. else
  177. buf_dma = 0;
  178. return buf_dma;
  179. }
  180. /* Map state->caam_ctx, and add it to link table */
  181. static inline void ctx_map_to_sec4_sg(u32 *desc, struct device *jrdev,
  182. struct caam_hash_state *state,
  183. int ctx_len,
  184. struct sec4_sg_entry *sec4_sg,
  185. u32 flag)
  186. {
  187. state->ctx_dma = dma_map_single(jrdev, state->caam_ctx, ctx_len, flag);
  188. dma_to_sec4_sg_one(sec4_sg, state->ctx_dma, ctx_len, 0);
  189. }
  190. /* Common shared descriptor commands */
  191. static inline void append_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  192. {
  193. append_key_as_imm(desc, ctx->key, ctx->split_key_pad_len,
  194. ctx->split_key_len, CLASS_2 |
  195. KEY_DEST_MDHA_SPLIT | KEY_ENC);
  196. }
  197. /* Append key if it has been set */
  198. static inline void init_sh_desc_key_ahash(u32 *desc, struct caam_hash_ctx *ctx)
  199. {
  200. u32 *key_jump_cmd;
  201. init_sh_desc(desc, HDR_SHARE_SERIAL);
  202. if (ctx->split_key_len) {
  203. /* Skip if already shared */
  204. key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
  205. JUMP_COND_SHRD);
  206. append_key_ahash(desc, ctx);
  207. set_jump_tgt_here(desc, key_jump_cmd);
  208. }
  209. /* Propagate errors from shared to job descriptor */
  210. append_cmd(desc, SET_OK_NO_PROP_ERRORS | CMD_LOAD);
  211. }
  212. /*
  213. * For ahash read data from seqin following state->caam_ctx,
  214. * and write resulting class2 context to seqout, which may be state->caam_ctx
  215. * or req->result
  216. */
  217. static inline void ahash_append_load_str(u32 *desc, int digestsize)
  218. {
  219. /* Calculate remaining bytes to read */
  220. append_math_add(desc, VARSEQINLEN, SEQINLEN, REG0, CAAM_CMD_SZ);
  221. /* Read remaining bytes */
  222. append_seq_fifo_load(desc, 0, FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_LAST2 |
  223. FIFOLD_TYPE_MSG | KEY_VLF);
  224. /* Store class2 context bytes */
  225. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  226. LDST_SRCDST_BYTE_CONTEXT);
  227. }
  228. /*
  229. * For ahash update, final and finup, import context, read and write to seqout
  230. */
  231. static inline void ahash_ctx_data_to_out(u32 *desc, u32 op, u32 state,
  232. int digestsize,
  233. struct caam_hash_ctx *ctx)
  234. {
  235. init_sh_desc_key_ahash(desc, ctx);
  236. /* Import context from software */
  237. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  238. LDST_CLASS_2_CCB | ctx->ctx_len);
  239. /* Class 2 operation */
  240. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  241. /*
  242. * Load from buf and/or src and write to req->result or state->context
  243. */
  244. ahash_append_load_str(desc, digestsize);
  245. }
  246. /* For ahash firsts and digest, read and write to seqout */
  247. static inline void ahash_data_to_out(u32 *desc, u32 op, u32 state,
  248. int digestsize, struct caam_hash_ctx *ctx)
  249. {
  250. init_sh_desc_key_ahash(desc, ctx);
  251. /* Class 2 operation */
  252. append_operation(desc, op | state | OP_ALG_ENCRYPT);
  253. /*
  254. * Load from buf and/or src and write to req->result or state->context
  255. */
  256. ahash_append_load_str(desc, digestsize);
  257. }
  258. static int ahash_set_sh_desc(struct crypto_ahash *ahash)
  259. {
  260. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  261. int digestsize = crypto_ahash_digestsize(ahash);
  262. struct device *jrdev = ctx->jrdev;
  263. u32 have_key = 0;
  264. u32 *desc;
  265. if (ctx->split_key_len)
  266. have_key = OP_ALG_AAI_HMAC_PRECOMP;
  267. /* ahash_update shared descriptor */
  268. desc = ctx->sh_desc_update;
  269. init_sh_desc(desc, HDR_SHARE_SERIAL);
  270. /* Import context from software */
  271. append_cmd(desc, CMD_SEQ_LOAD | LDST_SRCDST_BYTE_CONTEXT |
  272. LDST_CLASS_2_CCB | ctx->ctx_len);
  273. /* Class 2 operation */
  274. append_operation(desc, ctx->alg_type | OP_ALG_AS_UPDATE |
  275. OP_ALG_ENCRYPT);
  276. /* Load data and write to result or context */
  277. ahash_append_load_str(desc, ctx->ctx_len);
  278. ctx->sh_desc_update_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  279. DMA_TO_DEVICE);
  280. if (dma_mapping_error(jrdev, ctx->sh_desc_update_dma)) {
  281. dev_err(jrdev, "unable to map shared descriptor\n");
  282. return -ENOMEM;
  283. }
  284. #ifdef DEBUG
  285. print_hex_dump(KERN_ERR, "ahash update shdesc@"xstr(__LINE__)": ",
  286. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  287. #endif
  288. /* ahash_update_first shared descriptor */
  289. desc = ctx->sh_desc_update_first;
  290. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INIT,
  291. ctx->ctx_len, ctx);
  292. ctx->sh_desc_update_first_dma = dma_map_single(jrdev, desc,
  293. desc_bytes(desc),
  294. DMA_TO_DEVICE);
  295. if (dma_mapping_error(jrdev, ctx->sh_desc_update_first_dma)) {
  296. dev_err(jrdev, "unable to map shared descriptor\n");
  297. return -ENOMEM;
  298. }
  299. #ifdef DEBUG
  300. print_hex_dump(KERN_ERR, "ahash update first shdesc@"xstr(__LINE__)": ",
  301. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  302. #endif
  303. /* ahash_final shared descriptor */
  304. desc = ctx->sh_desc_fin;
  305. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  306. OP_ALG_AS_FINALIZE, digestsize, ctx);
  307. ctx->sh_desc_fin_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  308. DMA_TO_DEVICE);
  309. if (dma_mapping_error(jrdev, ctx->sh_desc_fin_dma)) {
  310. dev_err(jrdev, "unable to map shared descriptor\n");
  311. return -ENOMEM;
  312. }
  313. #ifdef DEBUG
  314. print_hex_dump(KERN_ERR, "ahash final shdesc@"xstr(__LINE__)": ",
  315. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  316. desc_bytes(desc), 1);
  317. #endif
  318. /* ahash_finup shared descriptor */
  319. desc = ctx->sh_desc_finup;
  320. ahash_ctx_data_to_out(desc, have_key | ctx->alg_type,
  321. OP_ALG_AS_FINALIZE, digestsize, ctx);
  322. ctx->sh_desc_finup_dma = dma_map_single(jrdev, desc, desc_bytes(desc),
  323. DMA_TO_DEVICE);
  324. if (dma_mapping_error(jrdev, ctx->sh_desc_finup_dma)) {
  325. dev_err(jrdev, "unable to map shared descriptor\n");
  326. return -ENOMEM;
  327. }
  328. #ifdef DEBUG
  329. print_hex_dump(KERN_ERR, "ahash finup shdesc@"xstr(__LINE__)": ",
  330. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  331. desc_bytes(desc), 1);
  332. #endif
  333. /* ahash_digest shared descriptor */
  334. desc = ctx->sh_desc_digest;
  335. ahash_data_to_out(desc, have_key | ctx->alg_type, OP_ALG_AS_INITFINAL,
  336. digestsize, ctx);
  337. ctx->sh_desc_digest_dma = dma_map_single(jrdev, desc,
  338. desc_bytes(desc),
  339. DMA_TO_DEVICE);
  340. if (dma_mapping_error(jrdev, ctx->sh_desc_digest_dma)) {
  341. dev_err(jrdev, "unable to map shared descriptor\n");
  342. return -ENOMEM;
  343. }
  344. #ifdef DEBUG
  345. print_hex_dump(KERN_ERR, "ahash digest shdesc@"xstr(__LINE__)": ",
  346. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  347. desc_bytes(desc), 1);
  348. #endif
  349. return 0;
  350. }
  351. static u32 gen_split_hash_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  352. u32 keylen)
  353. {
  354. return gen_split_key(ctx->jrdev, ctx->key, ctx->split_key_len,
  355. ctx->split_key_pad_len, key_in, keylen,
  356. ctx->alg_op);
  357. }
  358. /* Digest hash size if it is too large */
  359. static u32 hash_digest_key(struct caam_hash_ctx *ctx, const u8 *key_in,
  360. u32 *keylen, u8 *key_out, u32 digestsize)
  361. {
  362. struct device *jrdev = ctx->jrdev;
  363. u32 *desc;
  364. struct split_key_result result;
  365. dma_addr_t src_dma, dst_dma;
  366. int ret = 0;
  367. desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
  368. if (!desc) {
  369. dev_err(jrdev, "unable to allocate key input memory\n");
  370. return -ENOMEM;
  371. }
  372. init_job_desc(desc, 0);
  373. src_dma = dma_map_single(jrdev, (void *)key_in, *keylen,
  374. DMA_TO_DEVICE);
  375. if (dma_mapping_error(jrdev, src_dma)) {
  376. dev_err(jrdev, "unable to map key input memory\n");
  377. kfree(desc);
  378. return -ENOMEM;
  379. }
  380. dst_dma = dma_map_single(jrdev, (void *)key_out, digestsize,
  381. DMA_FROM_DEVICE);
  382. if (dma_mapping_error(jrdev, dst_dma)) {
  383. dev_err(jrdev, "unable to map key output memory\n");
  384. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  385. kfree(desc);
  386. return -ENOMEM;
  387. }
  388. /* Job descriptor to perform unkeyed hash on key_in */
  389. append_operation(desc, ctx->alg_type | OP_ALG_ENCRYPT |
  390. OP_ALG_AS_INITFINAL);
  391. append_seq_in_ptr(desc, src_dma, *keylen, 0);
  392. append_seq_fifo_load(desc, *keylen, FIFOLD_CLASS_CLASS2 |
  393. FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_MSG);
  394. append_seq_out_ptr(desc, dst_dma, digestsize, 0);
  395. append_seq_store(desc, digestsize, LDST_CLASS_2_CCB |
  396. LDST_SRCDST_BYTE_CONTEXT);
  397. #ifdef DEBUG
  398. print_hex_dump(KERN_ERR, "key_in@"xstr(__LINE__)": ",
  399. DUMP_PREFIX_ADDRESS, 16, 4, key_in, *keylen, 1);
  400. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  401. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  402. #endif
  403. result.err = 0;
  404. init_completion(&result.completion);
  405. ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
  406. if (!ret) {
  407. /* in progress */
  408. wait_for_completion_interruptible(&result.completion);
  409. ret = result.err;
  410. #ifdef DEBUG
  411. print_hex_dump(KERN_ERR, "digested key@"xstr(__LINE__)": ",
  412. DUMP_PREFIX_ADDRESS, 16, 4, key_in,
  413. digestsize, 1);
  414. #endif
  415. }
  416. *keylen = digestsize;
  417. dma_unmap_single(jrdev, src_dma, *keylen, DMA_TO_DEVICE);
  418. dma_unmap_single(jrdev, dst_dma, digestsize, DMA_FROM_DEVICE);
  419. kfree(desc);
  420. return ret;
  421. }
  422. static int ahash_setkey(struct crypto_ahash *ahash,
  423. const u8 *key, unsigned int keylen)
  424. {
  425. /* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
  426. static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
  427. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  428. struct device *jrdev = ctx->jrdev;
  429. int blocksize = crypto_tfm_alg_blocksize(&ahash->base);
  430. int digestsize = crypto_ahash_digestsize(ahash);
  431. int ret = 0;
  432. u8 *hashed_key = NULL;
  433. #ifdef DEBUG
  434. printk(KERN_ERR "keylen %d\n", keylen);
  435. #endif
  436. if (keylen > blocksize) {
  437. hashed_key = kmalloc(sizeof(u8) * digestsize, GFP_KERNEL |
  438. GFP_DMA);
  439. if (!hashed_key)
  440. return -ENOMEM;
  441. ret = hash_digest_key(ctx, key, &keylen, hashed_key,
  442. digestsize);
  443. if (ret)
  444. goto badkey;
  445. key = hashed_key;
  446. }
  447. /* Pick class 2 key length from algorithm submask */
  448. ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  449. OP_ALG_ALGSEL_SHIFT] * 2;
  450. ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
  451. #ifdef DEBUG
  452. printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
  453. ctx->split_key_len, ctx->split_key_pad_len);
  454. print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
  455. DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
  456. #endif
  457. ret = gen_split_hash_key(ctx, key, keylen);
  458. if (ret)
  459. goto badkey;
  460. ctx->key_dma = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
  461. DMA_TO_DEVICE);
  462. if (dma_mapping_error(jrdev, ctx->key_dma)) {
  463. dev_err(jrdev, "unable to map key i/o memory\n");
  464. return -ENOMEM;
  465. }
  466. #ifdef DEBUG
  467. print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
  468. DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
  469. ctx->split_key_pad_len, 1);
  470. #endif
  471. ret = ahash_set_sh_desc(ahash);
  472. if (ret) {
  473. dma_unmap_single(jrdev, ctx->key_dma, ctx->split_key_pad_len,
  474. DMA_TO_DEVICE);
  475. }
  476. kfree(hashed_key);
  477. return ret;
  478. badkey:
  479. kfree(hashed_key);
  480. crypto_ahash_set_flags(ahash, CRYPTO_TFM_RES_BAD_KEY_LEN);
  481. return -EINVAL;
  482. }
  483. /*
  484. * ahash_edesc - s/w-extended ahash descriptor
  485. * @dst_dma: physical mapped address of req->result
  486. * @sec4_sg_dma: physical mapped address of h/w link table
  487. * @chained: if source is chained
  488. * @src_nents: number of segments in input scatterlist
  489. * @sec4_sg_bytes: length of dma mapped sec4_sg space
  490. * @sec4_sg: pointer to h/w link table
  491. * @hw_desc: the h/w job descriptor followed by any referenced link tables
  492. */
  493. struct ahash_edesc {
  494. dma_addr_t dst_dma;
  495. dma_addr_t sec4_sg_dma;
  496. bool chained;
  497. int src_nents;
  498. int sec4_sg_bytes;
  499. struct sec4_sg_entry *sec4_sg;
  500. u32 hw_desc[0];
  501. };
  502. static inline void ahash_unmap(struct device *dev,
  503. struct ahash_edesc *edesc,
  504. struct ahash_request *req, int dst_len)
  505. {
  506. if (edesc->src_nents)
  507. dma_unmap_sg_chained(dev, req->src, edesc->src_nents,
  508. DMA_TO_DEVICE, edesc->chained);
  509. if (edesc->dst_dma)
  510. dma_unmap_single(dev, edesc->dst_dma, dst_len, DMA_FROM_DEVICE);
  511. if (edesc->sec4_sg_bytes)
  512. dma_unmap_single(dev, edesc->sec4_sg_dma,
  513. edesc->sec4_sg_bytes, DMA_TO_DEVICE);
  514. }
  515. static inline void ahash_unmap_ctx(struct device *dev,
  516. struct ahash_edesc *edesc,
  517. struct ahash_request *req, int dst_len, u32 flag)
  518. {
  519. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  520. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  521. struct caam_hash_state *state = ahash_request_ctx(req);
  522. if (state->ctx_dma)
  523. dma_unmap_single(dev, state->ctx_dma, ctx->ctx_len, flag);
  524. ahash_unmap(dev, edesc, req, dst_len);
  525. }
  526. static void ahash_done(struct device *jrdev, u32 *desc, u32 err,
  527. void *context)
  528. {
  529. struct ahash_request *req = context;
  530. struct ahash_edesc *edesc;
  531. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  532. int digestsize = crypto_ahash_digestsize(ahash);
  533. #ifdef DEBUG
  534. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  535. struct caam_hash_state *state = ahash_request_ctx(req);
  536. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  537. #endif
  538. edesc = (struct ahash_edesc *)((char *)desc -
  539. offsetof(struct ahash_edesc, hw_desc));
  540. if (err) {
  541. char tmp[CAAM_ERROR_STR_MAX];
  542. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  543. }
  544. ahash_unmap(jrdev, edesc, req, digestsize);
  545. kfree(edesc);
  546. #ifdef DEBUG
  547. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  548. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  549. ctx->ctx_len, 1);
  550. if (req->result)
  551. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  552. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  553. digestsize, 1);
  554. #endif
  555. req->base.complete(&req->base, err);
  556. }
  557. static void ahash_done_bi(struct device *jrdev, u32 *desc, u32 err,
  558. void *context)
  559. {
  560. struct ahash_request *req = context;
  561. struct ahash_edesc *edesc;
  562. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  563. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  564. #ifdef DEBUG
  565. struct caam_hash_state *state = ahash_request_ctx(req);
  566. int digestsize = crypto_ahash_digestsize(ahash);
  567. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  568. #endif
  569. edesc = (struct ahash_edesc *)((char *)desc -
  570. offsetof(struct ahash_edesc, hw_desc));
  571. if (err) {
  572. char tmp[CAAM_ERROR_STR_MAX];
  573. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  574. }
  575. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_BIDIRECTIONAL);
  576. kfree(edesc);
  577. #ifdef DEBUG
  578. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  579. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  580. ctx->ctx_len, 1);
  581. if (req->result)
  582. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  583. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  584. digestsize, 1);
  585. #endif
  586. req->base.complete(&req->base, err);
  587. }
  588. static void ahash_done_ctx_src(struct device *jrdev, u32 *desc, u32 err,
  589. void *context)
  590. {
  591. struct ahash_request *req = context;
  592. struct ahash_edesc *edesc;
  593. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  594. int digestsize = crypto_ahash_digestsize(ahash);
  595. #ifdef DEBUG
  596. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  597. struct caam_hash_state *state = ahash_request_ctx(req);
  598. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  599. #endif
  600. edesc = (struct ahash_edesc *)((char *)desc -
  601. offsetof(struct ahash_edesc, hw_desc));
  602. if (err) {
  603. char tmp[CAAM_ERROR_STR_MAX];
  604. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  605. }
  606. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  607. kfree(edesc);
  608. #ifdef DEBUG
  609. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  610. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  611. ctx->ctx_len, 1);
  612. if (req->result)
  613. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  614. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  615. digestsize, 1);
  616. #endif
  617. req->base.complete(&req->base, err);
  618. }
  619. static void ahash_done_ctx_dst(struct device *jrdev, u32 *desc, u32 err,
  620. void *context)
  621. {
  622. struct ahash_request *req = context;
  623. struct ahash_edesc *edesc;
  624. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  625. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  626. #ifdef DEBUG
  627. struct caam_hash_state *state = ahash_request_ctx(req);
  628. int digestsize = crypto_ahash_digestsize(ahash);
  629. dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
  630. #endif
  631. edesc = (struct ahash_edesc *)((char *)desc -
  632. offsetof(struct ahash_edesc, hw_desc));
  633. if (err) {
  634. char tmp[CAAM_ERROR_STR_MAX];
  635. dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
  636. }
  637. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len, DMA_TO_DEVICE);
  638. kfree(edesc);
  639. #ifdef DEBUG
  640. print_hex_dump(KERN_ERR, "ctx@"xstr(__LINE__)": ",
  641. DUMP_PREFIX_ADDRESS, 16, 4, state->caam_ctx,
  642. ctx->ctx_len, 1);
  643. if (req->result)
  644. print_hex_dump(KERN_ERR, "result@"xstr(__LINE__)": ",
  645. DUMP_PREFIX_ADDRESS, 16, 4, req->result,
  646. digestsize, 1);
  647. #endif
  648. req->base.complete(&req->base, err);
  649. }
  650. /* submit update job descriptor */
  651. static int ahash_update_ctx(struct ahash_request *req)
  652. {
  653. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  654. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  655. struct caam_hash_state *state = ahash_request_ctx(req);
  656. struct device *jrdev = ctx->jrdev;
  657. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  658. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  659. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  660. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  661. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  662. int *next_buflen = state->current_buf ? &state->buflen_0 :
  663. &state->buflen_1, last_buflen;
  664. int in_len = *buflen + req->nbytes, to_hash;
  665. u32 *sh_desc = ctx->sh_desc_update, *desc;
  666. dma_addr_t ptr = ctx->sh_desc_update_dma;
  667. int src_nents, sec4_sg_bytes, sec4_sg_src_index;
  668. struct ahash_edesc *edesc;
  669. bool chained = false;
  670. int ret = 0;
  671. int sh_len;
  672. last_buflen = *next_buflen;
  673. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  674. to_hash = in_len - *next_buflen;
  675. if (to_hash) {
  676. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  677. &chained);
  678. sec4_sg_src_index = 1 + (*buflen ? 1 : 0);
  679. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  680. sizeof(struct sec4_sg_entry);
  681. /*
  682. * allocate space for base edesc and hw desc commands,
  683. * link tables
  684. */
  685. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  686. sec4_sg_bytes, GFP_DMA | flags);
  687. if (!edesc) {
  688. dev_err(jrdev,
  689. "could not allocate extended descriptor\n");
  690. return -ENOMEM;
  691. }
  692. edesc->src_nents = src_nents;
  693. edesc->chained = chained;
  694. edesc->sec4_sg_bytes = sec4_sg_bytes;
  695. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  696. DESC_JOB_IO_LEN;
  697. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  698. sec4_sg_bytes,
  699. DMA_TO_DEVICE);
  700. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len,
  701. edesc->sec4_sg, DMA_BIDIRECTIONAL);
  702. state->buf_dma = try_buf_map_to_sec4_sg(jrdev,
  703. edesc->sec4_sg + 1,
  704. buf, state->buf_dma,
  705. *buflen, last_buflen);
  706. if (src_nents) {
  707. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  708. edesc->sec4_sg + sec4_sg_src_index,
  709. chained);
  710. if (*next_buflen) {
  711. sg_copy_part(next_buf, req->src, to_hash -
  712. *buflen, req->nbytes);
  713. state->current_buf = !state->current_buf;
  714. }
  715. } else {
  716. (edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
  717. SEC4_SG_LEN_FIN;
  718. }
  719. sh_len = desc_len(sh_desc);
  720. desc = edesc->hw_desc;
  721. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  722. HDR_REVERSE);
  723. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  724. to_hash, LDST_SGF);
  725. append_seq_out_ptr(desc, state->ctx_dma, ctx->ctx_len, 0);
  726. #ifdef DEBUG
  727. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  728. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  729. desc_bytes(desc), 1);
  730. #endif
  731. ret = caam_jr_enqueue(jrdev, desc, ahash_done_bi, req);
  732. if (!ret) {
  733. ret = -EINPROGRESS;
  734. } else {
  735. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  736. DMA_BIDIRECTIONAL);
  737. kfree(edesc);
  738. }
  739. } else if (*next_buflen) {
  740. sg_copy(buf + *buflen, req->src, req->nbytes);
  741. *buflen = *next_buflen;
  742. *next_buflen = last_buflen;
  743. }
  744. #ifdef DEBUG
  745. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  746. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  747. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  748. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  749. *next_buflen, 1);
  750. #endif
  751. return ret;
  752. }
  753. static int ahash_final_ctx(struct ahash_request *req)
  754. {
  755. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  756. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  757. struct caam_hash_state *state = ahash_request_ctx(req);
  758. struct device *jrdev = ctx->jrdev;
  759. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  760. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  761. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  762. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  763. int last_buflen = state->current_buf ? state->buflen_0 :
  764. state->buflen_1;
  765. u32 *sh_desc = ctx->sh_desc_fin, *desc;
  766. dma_addr_t ptr = ctx->sh_desc_fin_dma;
  767. int sec4_sg_bytes;
  768. int digestsize = crypto_ahash_digestsize(ahash);
  769. struct ahash_edesc *edesc;
  770. int ret = 0;
  771. int sh_len;
  772. sec4_sg_bytes = (1 + (buflen ? 1 : 0)) * sizeof(struct sec4_sg_entry);
  773. /* allocate space for base edesc and hw desc commands, link tables */
  774. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  775. sec4_sg_bytes, GFP_DMA | flags);
  776. if (!edesc) {
  777. dev_err(jrdev, "could not allocate extended descriptor\n");
  778. return -ENOMEM;
  779. }
  780. sh_len = desc_len(sh_desc);
  781. desc = edesc->hw_desc;
  782. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  783. edesc->sec4_sg_bytes = sec4_sg_bytes;
  784. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  785. DESC_JOB_IO_LEN;
  786. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  787. sec4_sg_bytes, DMA_TO_DEVICE);
  788. edesc->src_nents = 0;
  789. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  790. DMA_TO_DEVICE);
  791. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  792. buf, state->buf_dma, buflen,
  793. last_buflen);
  794. (edesc->sec4_sg + sec4_sg_bytes - 1)->len |= SEC4_SG_LEN_FIN;
  795. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len + buflen,
  796. LDST_SGF);
  797. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  798. digestsize);
  799. #ifdef DEBUG
  800. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  801. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  802. #endif
  803. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  804. if (!ret) {
  805. ret = -EINPROGRESS;
  806. } else {
  807. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  808. kfree(edesc);
  809. }
  810. return ret;
  811. }
  812. static int ahash_finup_ctx(struct ahash_request *req)
  813. {
  814. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  815. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  816. struct caam_hash_state *state = ahash_request_ctx(req);
  817. struct device *jrdev = ctx->jrdev;
  818. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  819. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  820. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  821. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  822. int last_buflen = state->current_buf ? state->buflen_0 :
  823. state->buflen_1;
  824. u32 *sh_desc = ctx->sh_desc_finup, *desc;
  825. dma_addr_t ptr = ctx->sh_desc_finup_dma;
  826. int sec4_sg_bytes, sec4_sg_src_index;
  827. int src_nents;
  828. int digestsize = crypto_ahash_digestsize(ahash);
  829. struct ahash_edesc *edesc;
  830. bool chained = false;
  831. int ret = 0;
  832. int sh_len;
  833. src_nents = __sg_count(req->src, req->nbytes, &chained);
  834. sec4_sg_src_index = 1 + (buflen ? 1 : 0);
  835. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  836. sizeof(struct sec4_sg_entry);
  837. /* allocate space for base edesc and hw desc commands, link tables */
  838. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  839. sec4_sg_bytes, GFP_DMA | flags);
  840. if (!edesc) {
  841. dev_err(jrdev, "could not allocate extended descriptor\n");
  842. return -ENOMEM;
  843. }
  844. sh_len = desc_len(sh_desc);
  845. desc = edesc->hw_desc;
  846. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  847. edesc->src_nents = src_nents;
  848. edesc->chained = chained;
  849. edesc->sec4_sg_bytes = sec4_sg_bytes;
  850. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  851. DESC_JOB_IO_LEN;
  852. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  853. sec4_sg_bytes, DMA_TO_DEVICE);
  854. ctx_map_to_sec4_sg(desc, jrdev, state, ctx->ctx_len, edesc->sec4_sg,
  855. DMA_TO_DEVICE);
  856. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg + 1,
  857. buf, state->buf_dma, buflen,
  858. last_buflen);
  859. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg +
  860. sec4_sg_src_index, chained);
  861. append_seq_in_ptr(desc, edesc->sec4_sg_dma, ctx->ctx_len +
  862. buflen + req->nbytes, LDST_SGF);
  863. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  864. digestsize);
  865. #ifdef DEBUG
  866. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  867. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  868. #endif
  869. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_src, req);
  870. if (!ret) {
  871. ret = -EINPROGRESS;
  872. } else {
  873. ahash_unmap_ctx(jrdev, edesc, req, digestsize, DMA_FROM_DEVICE);
  874. kfree(edesc);
  875. }
  876. return ret;
  877. }
  878. static int ahash_digest(struct ahash_request *req)
  879. {
  880. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  881. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  882. struct device *jrdev = ctx->jrdev;
  883. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  884. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  885. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  886. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  887. int digestsize = crypto_ahash_digestsize(ahash);
  888. int src_nents, sec4_sg_bytes;
  889. dma_addr_t src_dma;
  890. struct ahash_edesc *edesc;
  891. bool chained = false;
  892. int ret = 0;
  893. u32 options;
  894. int sh_len;
  895. src_nents = sg_count(req->src, req->nbytes, &chained);
  896. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1, DMA_TO_DEVICE,
  897. chained);
  898. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  899. /* allocate space for base edesc and hw desc commands, link tables */
  900. edesc = kmalloc(sizeof(struct ahash_edesc) + sec4_sg_bytes +
  901. DESC_JOB_IO_LEN, GFP_DMA | flags);
  902. if (!edesc) {
  903. dev_err(jrdev, "could not allocate extended descriptor\n");
  904. return -ENOMEM;
  905. }
  906. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  907. DESC_JOB_IO_LEN;
  908. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  909. sec4_sg_bytes, DMA_TO_DEVICE);
  910. edesc->src_nents = src_nents;
  911. edesc->chained = chained;
  912. sh_len = desc_len(sh_desc);
  913. desc = edesc->hw_desc;
  914. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  915. if (src_nents) {
  916. sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0);
  917. src_dma = edesc->sec4_sg_dma;
  918. options = LDST_SGF;
  919. } else {
  920. src_dma = sg_dma_address(req->src);
  921. options = 0;
  922. }
  923. append_seq_in_ptr(desc, src_dma, req->nbytes, options);
  924. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  925. digestsize);
  926. #ifdef DEBUG
  927. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  928. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  929. #endif
  930. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  931. if (!ret) {
  932. ret = -EINPROGRESS;
  933. } else {
  934. ahash_unmap(jrdev, edesc, req, digestsize);
  935. kfree(edesc);
  936. }
  937. return ret;
  938. }
  939. /* submit ahash final if it the first job descriptor */
  940. static int ahash_final_no_ctx(struct ahash_request *req)
  941. {
  942. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  943. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  944. struct caam_hash_state *state = ahash_request_ctx(req);
  945. struct device *jrdev = ctx->jrdev;
  946. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  947. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  948. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  949. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  950. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  951. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  952. int digestsize = crypto_ahash_digestsize(ahash);
  953. struct ahash_edesc *edesc;
  954. int ret = 0;
  955. int sh_len;
  956. /* allocate space for base edesc and hw desc commands, link tables */
  957. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN,
  958. GFP_DMA | flags);
  959. if (!edesc) {
  960. dev_err(jrdev, "could not allocate extended descriptor\n");
  961. return -ENOMEM;
  962. }
  963. sh_len = desc_len(sh_desc);
  964. desc = edesc->hw_desc;
  965. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  966. state->buf_dma = dma_map_single(jrdev, buf, buflen, DMA_TO_DEVICE);
  967. append_seq_in_ptr(desc, state->buf_dma, buflen, 0);
  968. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  969. digestsize);
  970. edesc->src_nents = 0;
  971. #ifdef DEBUG
  972. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  973. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  974. #endif
  975. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  976. if (!ret) {
  977. ret = -EINPROGRESS;
  978. } else {
  979. ahash_unmap(jrdev, edesc, req, digestsize);
  980. kfree(edesc);
  981. }
  982. return ret;
  983. }
  984. /* submit ahash update if it the first job descriptor after update */
  985. static int ahash_update_no_ctx(struct ahash_request *req)
  986. {
  987. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  988. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  989. struct caam_hash_state *state = ahash_request_ctx(req);
  990. struct device *jrdev = ctx->jrdev;
  991. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  992. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  993. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  994. int *buflen = state->current_buf ? &state->buflen_1 : &state->buflen_0;
  995. u8 *next_buf = state->current_buf ? state->buf_0 : state->buf_1;
  996. int *next_buflen = state->current_buf ? &state->buflen_0 :
  997. &state->buflen_1;
  998. int in_len = *buflen + req->nbytes, to_hash;
  999. int sec4_sg_bytes, src_nents;
  1000. struct ahash_edesc *edesc;
  1001. u32 *desc, *sh_desc = ctx->sh_desc_update_first;
  1002. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1003. bool chained = false;
  1004. int ret = 0;
  1005. int sh_len;
  1006. *next_buflen = in_len & (crypto_tfm_alg_blocksize(&ahash->base) - 1);
  1007. to_hash = in_len - *next_buflen;
  1008. if (to_hash) {
  1009. src_nents = __sg_count(req->src, req->nbytes - (*next_buflen),
  1010. &chained);
  1011. sec4_sg_bytes = (1 + src_nents) *
  1012. sizeof(struct sec4_sg_entry);
  1013. /*
  1014. * allocate space for base edesc and hw desc commands,
  1015. * link tables
  1016. */
  1017. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1018. sec4_sg_bytes, GFP_DMA | flags);
  1019. if (!edesc) {
  1020. dev_err(jrdev,
  1021. "could not allocate extended descriptor\n");
  1022. return -ENOMEM;
  1023. }
  1024. edesc->src_nents = src_nents;
  1025. edesc->chained = chained;
  1026. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1027. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1028. DESC_JOB_IO_LEN;
  1029. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1030. sec4_sg_bytes,
  1031. DMA_TO_DEVICE);
  1032. state->buf_dma = buf_map_to_sec4_sg(jrdev, edesc->sec4_sg,
  1033. buf, *buflen);
  1034. src_map_to_sec4_sg(jrdev, req->src, src_nents,
  1035. edesc->sec4_sg + 1, chained);
  1036. if (*next_buflen) {
  1037. sg_copy_part(next_buf, req->src, to_hash - *buflen,
  1038. req->nbytes);
  1039. state->current_buf = !state->current_buf;
  1040. }
  1041. sh_len = desc_len(sh_desc);
  1042. desc = edesc->hw_desc;
  1043. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1044. HDR_REVERSE);
  1045. append_seq_in_ptr(desc, edesc->sec4_sg_dma, to_hash, LDST_SGF);
  1046. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1047. #ifdef DEBUG
  1048. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1049. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1050. desc_bytes(desc), 1);
  1051. #endif
  1052. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst, req);
  1053. if (!ret) {
  1054. ret = -EINPROGRESS;
  1055. state->update = ahash_update_ctx;
  1056. state->finup = ahash_finup_ctx;
  1057. state->final = ahash_final_ctx;
  1058. } else {
  1059. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1060. DMA_TO_DEVICE);
  1061. kfree(edesc);
  1062. }
  1063. } else if (*next_buflen) {
  1064. sg_copy(buf + *buflen, req->src, req->nbytes);
  1065. *buflen = *next_buflen;
  1066. *next_buflen = 0;
  1067. }
  1068. #ifdef DEBUG
  1069. print_hex_dump(KERN_ERR, "buf@"xstr(__LINE__)": ",
  1070. DUMP_PREFIX_ADDRESS, 16, 4, buf, *buflen, 1);
  1071. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1072. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1073. *next_buflen, 1);
  1074. #endif
  1075. return ret;
  1076. }
  1077. /* submit ahash finup if it the first job descriptor after update */
  1078. static int ahash_finup_no_ctx(struct ahash_request *req)
  1079. {
  1080. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1081. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1082. struct caam_hash_state *state = ahash_request_ctx(req);
  1083. struct device *jrdev = ctx->jrdev;
  1084. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1085. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1086. u8 *buf = state->current_buf ? state->buf_1 : state->buf_0;
  1087. int buflen = state->current_buf ? state->buflen_1 : state->buflen_0;
  1088. int last_buflen = state->current_buf ? state->buflen_0 :
  1089. state->buflen_1;
  1090. u32 *sh_desc = ctx->sh_desc_digest, *desc;
  1091. dma_addr_t ptr = ctx->sh_desc_digest_dma;
  1092. int sec4_sg_bytes, sec4_sg_src_index, src_nents;
  1093. int digestsize = crypto_ahash_digestsize(ahash);
  1094. struct ahash_edesc *edesc;
  1095. bool chained = false;
  1096. int sh_len;
  1097. int ret = 0;
  1098. src_nents = __sg_count(req->src, req->nbytes, &chained);
  1099. sec4_sg_src_index = 2;
  1100. sec4_sg_bytes = (sec4_sg_src_index + src_nents) *
  1101. sizeof(struct sec4_sg_entry);
  1102. /* allocate space for base edesc and hw desc commands, link tables */
  1103. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1104. sec4_sg_bytes, GFP_DMA | flags);
  1105. if (!edesc) {
  1106. dev_err(jrdev, "could not allocate extended descriptor\n");
  1107. return -ENOMEM;
  1108. }
  1109. sh_len = desc_len(sh_desc);
  1110. desc = edesc->hw_desc;
  1111. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER | HDR_REVERSE);
  1112. edesc->src_nents = src_nents;
  1113. edesc->chained = chained;
  1114. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1115. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1116. DESC_JOB_IO_LEN;
  1117. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1118. sec4_sg_bytes, DMA_TO_DEVICE);
  1119. state->buf_dma = try_buf_map_to_sec4_sg(jrdev, edesc->sec4_sg, buf,
  1120. state->buf_dma, buflen,
  1121. last_buflen);
  1122. src_map_to_sec4_sg(jrdev, req->src, src_nents, edesc->sec4_sg + 1,
  1123. chained);
  1124. append_seq_in_ptr(desc, edesc->sec4_sg_dma, buflen +
  1125. req->nbytes, LDST_SGF);
  1126. edesc->dst_dma = map_seq_out_ptr_result(desc, jrdev, req->result,
  1127. digestsize);
  1128. #ifdef DEBUG
  1129. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1130. DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
  1131. #endif
  1132. ret = caam_jr_enqueue(jrdev, desc, ahash_done, req);
  1133. if (!ret) {
  1134. ret = -EINPROGRESS;
  1135. } else {
  1136. ahash_unmap(jrdev, edesc, req, digestsize);
  1137. kfree(edesc);
  1138. }
  1139. return ret;
  1140. }
  1141. /* submit first update job descriptor after init */
  1142. static int ahash_update_first(struct ahash_request *req)
  1143. {
  1144. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1145. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1146. struct caam_hash_state *state = ahash_request_ctx(req);
  1147. struct device *jrdev = ctx->jrdev;
  1148. gfp_t flags = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
  1149. CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
  1150. u8 *next_buf = state->buf_0 + state->current_buf *
  1151. CAAM_MAX_HASH_BLOCK_SIZE;
  1152. int *next_buflen = &state->buflen_0 + state->current_buf;
  1153. int to_hash;
  1154. u32 *sh_desc = ctx->sh_desc_update_first, *desc;
  1155. dma_addr_t ptr = ctx->sh_desc_update_first_dma;
  1156. int sec4_sg_bytes, src_nents;
  1157. dma_addr_t src_dma;
  1158. u32 options;
  1159. struct ahash_edesc *edesc;
  1160. bool chained = false;
  1161. int ret = 0;
  1162. int sh_len;
  1163. *next_buflen = req->nbytes & (crypto_tfm_alg_blocksize(&ahash->base) -
  1164. 1);
  1165. to_hash = req->nbytes - *next_buflen;
  1166. if (to_hash) {
  1167. src_nents = sg_count(req->src, req->nbytes - (*next_buflen),
  1168. &chained);
  1169. dma_map_sg_chained(jrdev, req->src, src_nents ? : 1,
  1170. DMA_TO_DEVICE, chained);
  1171. sec4_sg_bytes = src_nents * sizeof(struct sec4_sg_entry);
  1172. /*
  1173. * allocate space for base edesc and hw desc commands,
  1174. * link tables
  1175. */
  1176. edesc = kmalloc(sizeof(struct ahash_edesc) + DESC_JOB_IO_LEN +
  1177. sec4_sg_bytes, GFP_DMA | flags);
  1178. if (!edesc) {
  1179. dev_err(jrdev,
  1180. "could not allocate extended descriptor\n");
  1181. return -ENOMEM;
  1182. }
  1183. edesc->src_nents = src_nents;
  1184. edesc->chained = chained;
  1185. edesc->sec4_sg_bytes = sec4_sg_bytes;
  1186. edesc->sec4_sg = (void *)edesc + sizeof(struct ahash_edesc) +
  1187. DESC_JOB_IO_LEN;
  1188. edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
  1189. sec4_sg_bytes,
  1190. DMA_TO_DEVICE);
  1191. if (src_nents) {
  1192. sg_to_sec4_sg_last(req->src, src_nents,
  1193. edesc->sec4_sg, 0);
  1194. src_dma = edesc->sec4_sg_dma;
  1195. options = LDST_SGF;
  1196. } else {
  1197. src_dma = sg_dma_address(req->src);
  1198. options = 0;
  1199. }
  1200. if (*next_buflen)
  1201. sg_copy_part(next_buf, req->src, to_hash, req->nbytes);
  1202. sh_len = desc_len(sh_desc);
  1203. desc = edesc->hw_desc;
  1204. init_job_desc_shared(desc, ptr, sh_len, HDR_SHARE_DEFER |
  1205. HDR_REVERSE);
  1206. append_seq_in_ptr(desc, src_dma, to_hash, options);
  1207. map_seq_out_ptr_ctx(desc, jrdev, state, ctx->ctx_len);
  1208. #ifdef DEBUG
  1209. print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
  1210. DUMP_PREFIX_ADDRESS, 16, 4, desc,
  1211. desc_bytes(desc), 1);
  1212. #endif
  1213. ret = caam_jr_enqueue(jrdev, desc, ahash_done_ctx_dst,
  1214. req);
  1215. if (!ret) {
  1216. ret = -EINPROGRESS;
  1217. state->update = ahash_update_ctx;
  1218. state->finup = ahash_finup_ctx;
  1219. state->final = ahash_final_ctx;
  1220. } else {
  1221. ahash_unmap_ctx(jrdev, edesc, req, ctx->ctx_len,
  1222. DMA_TO_DEVICE);
  1223. kfree(edesc);
  1224. }
  1225. } else if (*next_buflen) {
  1226. state->update = ahash_update_no_ctx;
  1227. state->finup = ahash_finup_no_ctx;
  1228. state->final = ahash_final_no_ctx;
  1229. sg_copy(next_buf, req->src, req->nbytes);
  1230. }
  1231. #ifdef DEBUG
  1232. print_hex_dump(KERN_ERR, "next buf@"xstr(__LINE__)": ",
  1233. DUMP_PREFIX_ADDRESS, 16, 4, next_buf,
  1234. *next_buflen, 1);
  1235. #endif
  1236. return ret;
  1237. }
  1238. static int ahash_finup_first(struct ahash_request *req)
  1239. {
  1240. return ahash_digest(req);
  1241. }
  1242. static int ahash_init(struct ahash_request *req)
  1243. {
  1244. struct caam_hash_state *state = ahash_request_ctx(req);
  1245. state->update = ahash_update_first;
  1246. state->finup = ahash_finup_first;
  1247. state->final = ahash_final_no_ctx;
  1248. state->current_buf = 0;
  1249. return 0;
  1250. }
  1251. static int ahash_update(struct ahash_request *req)
  1252. {
  1253. struct caam_hash_state *state = ahash_request_ctx(req);
  1254. return state->update(req);
  1255. }
  1256. static int ahash_finup(struct ahash_request *req)
  1257. {
  1258. struct caam_hash_state *state = ahash_request_ctx(req);
  1259. return state->finup(req);
  1260. }
  1261. static int ahash_final(struct ahash_request *req)
  1262. {
  1263. struct caam_hash_state *state = ahash_request_ctx(req);
  1264. return state->final(req);
  1265. }
  1266. static int ahash_export(struct ahash_request *req, void *out)
  1267. {
  1268. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1269. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1270. struct caam_hash_state *state = ahash_request_ctx(req);
  1271. memcpy(out, ctx, sizeof(struct caam_hash_ctx));
  1272. memcpy(out + sizeof(struct caam_hash_ctx), state,
  1273. sizeof(struct caam_hash_state));
  1274. return 0;
  1275. }
  1276. static int ahash_import(struct ahash_request *req, const void *in)
  1277. {
  1278. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  1279. struct caam_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  1280. struct caam_hash_state *state = ahash_request_ctx(req);
  1281. memcpy(ctx, in, sizeof(struct caam_hash_ctx));
  1282. memcpy(state, in + sizeof(struct caam_hash_ctx),
  1283. sizeof(struct caam_hash_state));
  1284. return 0;
  1285. }
  1286. struct caam_hash_template {
  1287. char name[CRYPTO_MAX_ALG_NAME];
  1288. char driver_name[CRYPTO_MAX_ALG_NAME];
  1289. char hmac_name[CRYPTO_MAX_ALG_NAME];
  1290. char hmac_driver_name[CRYPTO_MAX_ALG_NAME];
  1291. unsigned int blocksize;
  1292. struct ahash_alg template_ahash;
  1293. u32 alg_type;
  1294. u32 alg_op;
  1295. };
  1296. /* ahash descriptors */
  1297. static struct caam_hash_template driver_hash[] = {
  1298. {
  1299. .name = "sha1",
  1300. .driver_name = "sha1-caam",
  1301. .hmac_name = "hmac(sha1)",
  1302. .hmac_driver_name = "hmac-sha1-caam",
  1303. .blocksize = SHA1_BLOCK_SIZE,
  1304. .template_ahash = {
  1305. .init = ahash_init,
  1306. .update = ahash_update,
  1307. .final = ahash_final,
  1308. .finup = ahash_finup,
  1309. .digest = ahash_digest,
  1310. .export = ahash_export,
  1311. .import = ahash_import,
  1312. .setkey = ahash_setkey,
  1313. .halg = {
  1314. .digestsize = SHA1_DIGEST_SIZE,
  1315. },
  1316. },
  1317. .alg_type = OP_ALG_ALGSEL_SHA1,
  1318. .alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
  1319. }, {
  1320. .name = "sha224",
  1321. .driver_name = "sha224-caam",
  1322. .hmac_name = "hmac(sha224)",
  1323. .hmac_driver_name = "hmac-sha224-caam",
  1324. .blocksize = SHA224_BLOCK_SIZE,
  1325. .template_ahash = {
  1326. .init = ahash_init,
  1327. .update = ahash_update,
  1328. .final = ahash_final,
  1329. .finup = ahash_finup,
  1330. .digest = ahash_digest,
  1331. .export = ahash_export,
  1332. .import = ahash_import,
  1333. .setkey = ahash_setkey,
  1334. .halg = {
  1335. .digestsize = SHA224_DIGEST_SIZE,
  1336. },
  1337. },
  1338. .alg_type = OP_ALG_ALGSEL_SHA224,
  1339. .alg_op = OP_ALG_ALGSEL_SHA224 | OP_ALG_AAI_HMAC,
  1340. }, {
  1341. .name = "sha256",
  1342. .driver_name = "sha256-caam",
  1343. .hmac_name = "hmac(sha256)",
  1344. .hmac_driver_name = "hmac-sha256-caam",
  1345. .blocksize = SHA256_BLOCK_SIZE,
  1346. .template_ahash = {
  1347. .init = ahash_init,
  1348. .update = ahash_update,
  1349. .final = ahash_final,
  1350. .finup = ahash_finup,
  1351. .digest = ahash_digest,
  1352. .export = ahash_export,
  1353. .import = ahash_import,
  1354. .setkey = ahash_setkey,
  1355. .halg = {
  1356. .digestsize = SHA256_DIGEST_SIZE,
  1357. },
  1358. },
  1359. .alg_type = OP_ALG_ALGSEL_SHA256,
  1360. .alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
  1361. }, {
  1362. .name = "sha384",
  1363. .driver_name = "sha384-caam",
  1364. .hmac_name = "hmac(sha384)",
  1365. .hmac_driver_name = "hmac-sha384-caam",
  1366. .blocksize = SHA384_BLOCK_SIZE,
  1367. .template_ahash = {
  1368. .init = ahash_init,
  1369. .update = ahash_update,
  1370. .final = ahash_final,
  1371. .finup = ahash_finup,
  1372. .digest = ahash_digest,
  1373. .export = ahash_export,
  1374. .import = ahash_import,
  1375. .setkey = ahash_setkey,
  1376. .halg = {
  1377. .digestsize = SHA384_DIGEST_SIZE,
  1378. },
  1379. },
  1380. .alg_type = OP_ALG_ALGSEL_SHA384,
  1381. .alg_op = OP_ALG_ALGSEL_SHA384 | OP_ALG_AAI_HMAC,
  1382. }, {
  1383. .name = "sha512",
  1384. .driver_name = "sha512-caam",
  1385. .hmac_name = "hmac(sha512)",
  1386. .hmac_driver_name = "hmac-sha512-caam",
  1387. .blocksize = SHA512_BLOCK_SIZE,
  1388. .template_ahash = {
  1389. .init = ahash_init,
  1390. .update = ahash_update,
  1391. .final = ahash_final,
  1392. .finup = ahash_finup,
  1393. .digest = ahash_digest,
  1394. .export = ahash_export,
  1395. .import = ahash_import,
  1396. .setkey = ahash_setkey,
  1397. .halg = {
  1398. .digestsize = SHA512_DIGEST_SIZE,
  1399. },
  1400. },
  1401. .alg_type = OP_ALG_ALGSEL_SHA512,
  1402. .alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
  1403. }, {
  1404. .name = "md5",
  1405. .driver_name = "md5-caam",
  1406. .hmac_name = "hmac(md5)",
  1407. .hmac_driver_name = "hmac-md5-caam",
  1408. .blocksize = MD5_BLOCK_WORDS * 4,
  1409. .template_ahash = {
  1410. .init = ahash_init,
  1411. .update = ahash_update,
  1412. .final = ahash_final,
  1413. .finup = ahash_finup,
  1414. .digest = ahash_digest,
  1415. .export = ahash_export,
  1416. .import = ahash_import,
  1417. .setkey = ahash_setkey,
  1418. .halg = {
  1419. .digestsize = MD5_DIGEST_SIZE,
  1420. },
  1421. },
  1422. .alg_type = OP_ALG_ALGSEL_MD5,
  1423. .alg_op = OP_ALG_ALGSEL_MD5 | OP_ALG_AAI_HMAC,
  1424. },
  1425. };
  1426. struct caam_hash_alg {
  1427. struct list_head entry;
  1428. struct device *ctrldev;
  1429. int alg_type;
  1430. int alg_op;
  1431. struct ahash_alg ahash_alg;
  1432. };
  1433. static int caam_hash_cra_init(struct crypto_tfm *tfm)
  1434. {
  1435. struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
  1436. struct crypto_alg *base = tfm->__crt_alg;
  1437. struct hash_alg_common *halg =
  1438. container_of(base, struct hash_alg_common, base);
  1439. struct ahash_alg *alg =
  1440. container_of(halg, struct ahash_alg, halg);
  1441. struct caam_hash_alg *caam_hash =
  1442. container_of(alg, struct caam_hash_alg, ahash_alg);
  1443. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1444. struct caam_drv_private *priv = dev_get_drvdata(caam_hash->ctrldev);
  1445. /* Sizes for MDHA running digests: MD5, SHA1, 224, 256, 384, 512 */
  1446. static const u8 runninglen[] = { HASH_MSG_LEN + MD5_DIGEST_SIZE,
  1447. HASH_MSG_LEN + SHA1_DIGEST_SIZE,
  1448. HASH_MSG_LEN + 32,
  1449. HASH_MSG_LEN + SHA256_DIGEST_SIZE,
  1450. HASH_MSG_LEN + 64,
  1451. HASH_MSG_LEN + SHA512_DIGEST_SIZE };
  1452. int tgt_jr = atomic_inc_return(&priv->tfm_count);
  1453. int ret = 0;
  1454. /*
  1455. * distribute tfms across job rings to ensure in-order
  1456. * crypto request processing per tfm
  1457. */
  1458. ctx->jrdev = priv->jrdev[tgt_jr % priv->total_jobrs];
  1459. /* copy descriptor header template value */
  1460. ctx->alg_type = OP_TYPE_CLASS2_ALG | caam_hash->alg_type;
  1461. ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_hash->alg_op;
  1462. ctx->ctx_len = runninglen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
  1463. OP_ALG_ALGSEL_SHIFT];
  1464. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1465. sizeof(struct caam_hash_state));
  1466. ret = ahash_set_sh_desc(ahash);
  1467. return ret;
  1468. }
  1469. static void caam_hash_cra_exit(struct crypto_tfm *tfm)
  1470. {
  1471. struct caam_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1472. if (ctx->sh_desc_update_dma &&
  1473. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_dma))
  1474. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_dma,
  1475. desc_bytes(ctx->sh_desc_update),
  1476. DMA_TO_DEVICE);
  1477. if (ctx->sh_desc_update_first_dma &&
  1478. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_update_first_dma))
  1479. dma_unmap_single(ctx->jrdev, ctx->sh_desc_update_first_dma,
  1480. desc_bytes(ctx->sh_desc_update_first),
  1481. DMA_TO_DEVICE);
  1482. if (ctx->sh_desc_fin_dma &&
  1483. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_fin_dma))
  1484. dma_unmap_single(ctx->jrdev, ctx->sh_desc_fin_dma,
  1485. desc_bytes(ctx->sh_desc_fin), DMA_TO_DEVICE);
  1486. if (ctx->sh_desc_digest_dma &&
  1487. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_digest_dma))
  1488. dma_unmap_single(ctx->jrdev, ctx->sh_desc_digest_dma,
  1489. desc_bytes(ctx->sh_desc_digest),
  1490. DMA_TO_DEVICE);
  1491. if (ctx->sh_desc_finup_dma &&
  1492. !dma_mapping_error(ctx->jrdev, ctx->sh_desc_finup_dma))
  1493. dma_unmap_single(ctx->jrdev, ctx->sh_desc_finup_dma,
  1494. desc_bytes(ctx->sh_desc_finup), DMA_TO_DEVICE);
  1495. }
  1496. static void __exit caam_algapi_hash_exit(void)
  1497. {
  1498. struct device_node *dev_node;
  1499. struct platform_device *pdev;
  1500. struct device *ctrldev;
  1501. struct caam_drv_private *priv;
  1502. struct caam_hash_alg *t_alg, *n;
  1503. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1504. if (!dev_node) {
  1505. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1506. if (!dev_node)
  1507. return;
  1508. }
  1509. pdev = of_find_device_by_node(dev_node);
  1510. if (!pdev)
  1511. return;
  1512. ctrldev = &pdev->dev;
  1513. of_node_put(dev_node);
  1514. priv = dev_get_drvdata(ctrldev);
  1515. if (!priv->hash_list.next)
  1516. return;
  1517. list_for_each_entry_safe(t_alg, n, &priv->hash_list, entry) {
  1518. crypto_unregister_ahash(&t_alg->ahash_alg);
  1519. list_del(&t_alg->entry);
  1520. kfree(t_alg);
  1521. }
  1522. }
  1523. static struct caam_hash_alg *
  1524. caam_hash_alloc(struct device *ctrldev, struct caam_hash_template *template,
  1525. bool keyed)
  1526. {
  1527. struct caam_hash_alg *t_alg;
  1528. struct ahash_alg *halg;
  1529. struct crypto_alg *alg;
  1530. t_alg = kzalloc(sizeof(struct caam_hash_alg), GFP_KERNEL);
  1531. if (!t_alg) {
  1532. dev_err(ctrldev, "failed to allocate t_alg\n");
  1533. return ERR_PTR(-ENOMEM);
  1534. }
  1535. t_alg->ahash_alg = template->template_ahash;
  1536. halg = &t_alg->ahash_alg;
  1537. alg = &halg->halg.base;
  1538. if (keyed) {
  1539. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1540. template->hmac_name);
  1541. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1542. template->hmac_driver_name);
  1543. } else {
  1544. snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s",
  1545. template->name);
  1546. snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1547. template->driver_name);
  1548. }
  1549. alg->cra_module = THIS_MODULE;
  1550. alg->cra_init = caam_hash_cra_init;
  1551. alg->cra_exit = caam_hash_cra_exit;
  1552. alg->cra_ctxsize = sizeof(struct caam_hash_ctx);
  1553. alg->cra_priority = CAAM_CRA_PRIORITY;
  1554. alg->cra_blocksize = template->blocksize;
  1555. alg->cra_alignmask = 0;
  1556. alg->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_TYPE_AHASH;
  1557. alg->cra_type = &crypto_ahash_type;
  1558. t_alg->alg_type = template->alg_type;
  1559. t_alg->alg_op = template->alg_op;
  1560. t_alg->ctrldev = ctrldev;
  1561. return t_alg;
  1562. }
  1563. static int __init caam_algapi_hash_init(void)
  1564. {
  1565. struct device_node *dev_node;
  1566. struct platform_device *pdev;
  1567. struct device *ctrldev;
  1568. struct caam_drv_private *priv;
  1569. int i = 0, err = 0;
  1570. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
  1571. if (!dev_node) {
  1572. dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
  1573. if (!dev_node)
  1574. return -ENODEV;
  1575. }
  1576. pdev = of_find_device_by_node(dev_node);
  1577. if (!pdev)
  1578. return -ENODEV;
  1579. ctrldev = &pdev->dev;
  1580. priv = dev_get_drvdata(ctrldev);
  1581. of_node_put(dev_node);
  1582. INIT_LIST_HEAD(&priv->hash_list);
  1583. atomic_set(&priv->tfm_count, -1);
  1584. /* register crypto algorithms the device supports */
  1585. for (i = 0; i < ARRAY_SIZE(driver_hash); i++) {
  1586. /* TODO: check if h/w supports alg */
  1587. struct caam_hash_alg *t_alg;
  1588. /* register hmac version */
  1589. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], true);
  1590. if (IS_ERR(t_alg)) {
  1591. err = PTR_ERR(t_alg);
  1592. dev_warn(ctrldev, "%s alg allocation failed\n",
  1593. driver_hash[i].driver_name);
  1594. continue;
  1595. }
  1596. err = crypto_register_ahash(&t_alg->ahash_alg);
  1597. if (err) {
  1598. dev_warn(ctrldev, "%s alg registration failed\n",
  1599. t_alg->ahash_alg.halg.base.cra_driver_name);
  1600. kfree(t_alg);
  1601. } else
  1602. list_add_tail(&t_alg->entry, &priv->hash_list);
  1603. /* register unkeyed version */
  1604. t_alg = caam_hash_alloc(ctrldev, &driver_hash[i], false);
  1605. if (IS_ERR(t_alg)) {
  1606. err = PTR_ERR(t_alg);
  1607. dev_warn(ctrldev, "%s alg allocation failed\n",
  1608. driver_hash[i].driver_name);
  1609. continue;
  1610. }
  1611. err = crypto_register_ahash(&t_alg->ahash_alg);
  1612. if (err) {
  1613. dev_warn(ctrldev, "%s alg registration failed\n",
  1614. t_alg->ahash_alg.halg.base.cra_driver_name);
  1615. kfree(t_alg);
  1616. } else
  1617. list_add_tail(&t_alg->entry, &priv->hash_list);
  1618. }
  1619. return err;
  1620. }
  1621. module_init(caam_algapi_hash_init);
  1622. module_exit(caam_algapi_hash_exit);
  1623. MODULE_LICENSE("GPL");
  1624. MODULE_DESCRIPTION("FSL CAAM support for ahash functions of crypto API");
  1625. MODULE_AUTHOR("Freescale Semiconductor - NMG");