imx6q-cpufreq.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpufreq.h>
  10. #include <linux/delay.h>
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/of.h>
  14. #include <linux/opp.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/regulator/consumer.h>
  17. #define PU_SOC_VOLTAGE_NORMAL 1250000
  18. #define PU_SOC_VOLTAGE_HIGH 1275000
  19. #define FREQ_1P2_GHZ 1200000000
  20. static struct regulator *arm_reg;
  21. static struct regulator *pu_reg;
  22. static struct regulator *soc_reg;
  23. static struct clk *arm_clk;
  24. static struct clk *pll1_sys_clk;
  25. static struct clk *pll1_sw_clk;
  26. static struct clk *step_clk;
  27. static struct clk *pll2_pfd2_396m_clk;
  28. static struct device *cpu_dev;
  29. static struct cpufreq_frequency_table *freq_table;
  30. static unsigned int transition_latency;
  31. static int imx6q_verify_speed(struct cpufreq_policy *policy)
  32. {
  33. return cpufreq_frequency_table_verify(policy, freq_table);
  34. }
  35. static unsigned int imx6q_get_speed(unsigned int cpu)
  36. {
  37. return clk_get_rate(arm_clk) / 1000;
  38. }
  39. static int imx6q_set_target(struct cpufreq_policy *policy,
  40. unsigned int target_freq, unsigned int relation)
  41. {
  42. struct cpufreq_freqs freqs;
  43. struct opp *opp;
  44. unsigned long freq_hz, volt, volt_old;
  45. unsigned int index, cpu;
  46. int ret;
  47. ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
  48. relation, &index);
  49. if (ret) {
  50. dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
  51. target_freq, ret);
  52. return ret;
  53. }
  54. freqs.new = freq_table[index].frequency;
  55. freq_hz = freqs.new * 1000;
  56. freqs.old = clk_get_rate(arm_clk) / 1000;
  57. if (freqs.old == freqs.new)
  58. return 0;
  59. for_each_online_cpu(cpu) {
  60. freqs.cpu = cpu;
  61. cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
  62. }
  63. rcu_read_lock();
  64. opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
  65. if (IS_ERR(opp)) {
  66. rcu_read_unlock();
  67. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  68. return PTR_ERR(opp);
  69. }
  70. volt = opp_get_voltage(opp);
  71. rcu_read_unlock();
  72. volt_old = regulator_get_voltage(arm_reg);
  73. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  74. freqs.old / 1000, volt_old / 1000,
  75. freqs.new / 1000, volt / 1000);
  76. /* scaling up? scale voltage before frequency */
  77. if (freqs.new > freqs.old) {
  78. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  79. if (ret) {
  80. dev_err(cpu_dev,
  81. "failed to scale vddarm up: %d\n", ret);
  82. return ret;
  83. }
  84. /*
  85. * Need to increase vddpu and vddsoc for safety
  86. * if we are about to run at 1.2 GHz.
  87. */
  88. if (freqs.new == FREQ_1P2_GHZ / 1000) {
  89. regulator_set_voltage_tol(pu_reg,
  90. PU_SOC_VOLTAGE_HIGH, 0);
  91. regulator_set_voltage_tol(soc_reg,
  92. PU_SOC_VOLTAGE_HIGH, 0);
  93. }
  94. }
  95. /*
  96. * The setpoints are selected per PLL/PDF frequencies, so we need to
  97. * reprogram PLL for frequency scaling. The procedure of reprogramming
  98. * PLL1 is as below.
  99. *
  100. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  101. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  102. * - Disable pll2_pfd2_396m_clk
  103. */
  104. clk_prepare_enable(pll2_pfd2_396m_clk);
  105. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  106. clk_set_parent(pll1_sw_clk, step_clk);
  107. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  108. clk_set_rate(pll1_sys_clk, freqs.new * 1000);
  109. /*
  110. * If we are leaving 396 MHz set-point, we need to enable
  111. * pll1_sys_clk and disable pll2_pfd2_396m_clk to keep
  112. * their use count correct.
  113. */
  114. if (freqs.old * 1000 <= clk_get_rate(pll2_pfd2_396m_clk)) {
  115. clk_prepare_enable(pll1_sys_clk);
  116. clk_disable_unprepare(pll2_pfd2_396m_clk);
  117. }
  118. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  119. clk_disable_unprepare(pll2_pfd2_396m_clk);
  120. } else {
  121. /*
  122. * Disable pll1_sys_clk if pll2_pfd2_396m_clk is sufficient
  123. * to provide the frequency.
  124. */
  125. clk_disable_unprepare(pll1_sys_clk);
  126. }
  127. /* Ensure the arm clock divider is what we expect */
  128. ret = clk_set_rate(arm_clk, freqs.new * 1000);
  129. if (ret) {
  130. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  131. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  132. return ret;
  133. }
  134. /* scaling down? scale voltage after frequency */
  135. if (freqs.new < freqs.old) {
  136. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  137. if (ret)
  138. dev_warn(cpu_dev,
  139. "failed to scale vddarm down: %d\n", ret);
  140. if (freqs.old == FREQ_1P2_GHZ / 1000) {
  141. regulator_set_voltage_tol(pu_reg,
  142. PU_SOC_VOLTAGE_NORMAL, 0);
  143. regulator_set_voltage_tol(soc_reg,
  144. PU_SOC_VOLTAGE_NORMAL, 0);
  145. }
  146. }
  147. for_each_online_cpu(cpu) {
  148. freqs.cpu = cpu;
  149. cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
  150. }
  151. return 0;
  152. }
  153. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  154. {
  155. int ret;
  156. ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
  157. if (ret) {
  158. dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
  159. return ret;
  160. }
  161. policy->cpuinfo.transition_latency = transition_latency;
  162. policy->cur = clk_get_rate(arm_clk) / 1000;
  163. cpumask_setall(policy->cpus);
  164. cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
  165. return 0;
  166. }
  167. static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
  168. {
  169. cpufreq_frequency_table_put_attr(policy->cpu);
  170. return 0;
  171. }
  172. static struct freq_attr *imx6q_cpufreq_attr[] = {
  173. &cpufreq_freq_attr_scaling_available_freqs,
  174. NULL,
  175. };
  176. static struct cpufreq_driver imx6q_cpufreq_driver = {
  177. .verify = imx6q_verify_speed,
  178. .target = imx6q_set_target,
  179. .get = imx6q_get_speed,
  180. .init = imx6q_cpufreq_init,
  181. .exit = imx6q_cpufreq_exit,
  182. .name = "imx6q-cpufreq",
  183. .attr = imx6q_cpufreq_attr,
  184. };
  185. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  186. {
  187. struct device_node *np;
  188. struct opp *opp;
  189. unsigned long min_volt, max_volt;
  190. int num, ret;
  191. cpu_dev = &pdev->dev;
  192. np = of_find_node_by_path("/cpus/cpu@0");
  193. if (!np) {
  194. dev_err(cpu_dev, "failed to find cpu0 node\n");
  195. return -ENOENT;
  196. }
  197. cpu_dev->of_node = np;
  198. arm_clk = devm_clk_get(cpu_dev, "arm");
  199. pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
  200. pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
  201. step_clk = devm_clk_get(cpu_dev, "step");
  202. pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
  203. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  204. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  205. dev_err(cpu_dev, "failed to get clocks\n");
  206. ret = -ENOENT;
  207. goto put_node;
  208. }
  209. arm_reg = devm_regulator_get(cpu_dev, "arm");
  210. pu_reg = devm_regulator_get(cpu_dev, "pu");
  211. soc_reg = devm_regulator_get(cpu_dev, "soc");
  212. if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
  213. dev_err(cpu_dev, "failed to get regulators\n");
  214. ret = -ENOENT;
  215. goto put_node;
  216. }
  217. /* We expect an OPP table supplied by platform */
  218. num = opp_get_opp_count(cpu_dev);
  219. if (num < 0) {
  220. ret = num;
  221. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  222. goto put_node;
  223. }
  224. ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
  225. if (ret) {
  226. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  227. goto put_node;
  228. }
  229. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  230. transition_latency = CPUFREQ_ETERNAL;
  231. /*
  232. * OPP is maintained in order of increasing frequency, and
  233. * freq_table initialised from OPP is therefore sorted in the
  234. * same order.
  235. */
  236. rcu_read_lock();
  237. opp = opp_find_freq_exact(cpu_dev,
  238. freq_table[0].frequency * 1000, true);
  239. min_volt = opp_get_voltage(opp);
  240. opp = opp_find_freq_exact(cpu_dev,
  241. freq_table[--num].frequency * 1000, true);
  242. max_volt = opp_get_voltage(opp);
  243. rcu_read_unlock();
  244. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  245. if (ret > 0)
  246. transition_latency += ret * 1000;
  247. /* Count vddpu and vddsoc latency in for 1.2 GHz support */
  248. if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
  249. ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
  250. PU_SOC_VOLTAGE_HIGH);
  251. if (ret > 0)
  252. transition_latency += ret * 1000;
  253. ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
  254. PU_SOC_VOLTAGE_HIGH);
  255. if (ret > 0)
  256. transition_latency += ret * 1000;
  257. }
  258. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  259. if (ret) {
  260. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  261. goto free_freq_table;
  262. }
  263. of_node_put(np);
  264. return 0;
  265. free_freq_table:
  266. opp_free_cpufreq_table(cpu_dev, &freq_table);
  267. put_node:
  268. of_node_put(np);
  269. return ret;
  270. }
  271. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  272. {
  273. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  274. opp_free_cpufreq_table(cpu_dev, &freq_table);
  275. return 0;
  276. }
  277. static struct platform_driver imx6q_cpufreq_platdrv = {
  278. .driver = {
  279. .name = "imx6q-cpufreq",
  280. .owner = THIS_MODULE,
  281. },
  282. .probe = imx6q_cpufreq_probe,
  283. .remove = imx6q_cpufreq_remove,
  284. };
  285. module_platform_driver(imx6q_cpufreq_platdrv);
  286. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  287. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  288. MODULE_LICENSE("GPL");