cn_proc.c 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * cn_proc.c - process events connector
  3. *
  4. * Copyright (C) Matt Helsley, IBM Corp. 2005
  5. * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
  6. * Original copyright notice follows:
  7. * Copyright (C) 2005 BULL SA.
  8. *
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/ktime.h>
  27. #include <linux/init.h>
  28. #include <linux/connector.h>
  29. #include <linux/gfp.h>
  30. #include <linux/ptrace.h>
  31. #include <linux/atomic.h>
  32. #include <linux/pid_namespace.h>
  33. #include <asm/unaligned.h>
  34. #include <linux/cn_proc.h>
  35. #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event))
  36. static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
  37. static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
  38. /* proc_event_counts is used as the sequence number of the netlink message */
  39. static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
  40. static inline void get_seq(__u32 *ts, int *cpu)
  41. {
  42. preempt_disable();
  43. *ts = __this_cpu_inc_return(proc_event_counts) - 1;
  44. *cpu = smp_processor_id();
  45. preempt_enable();
  46. }
  47. void proc_fork_connector(struct task_struct *task)
  48. {
  49. struct cn_msg *msg;
  50. struct proc_event *ev;
  51. __u8 buffer[CN_PROC_MSG_SIZE];
  52. struct timespec ts;
  53. struct task_struct *parent;
  54. if (atomic_read(&proc_event_num_listeners) < 1)
  55. return;
  56. msg = (struct cn_msg *)buffer;
  57. ev = (struct proc_event *)msg->data;
  58. get_seq(&msg->seq, &ev->cpu);
  59. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  60. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  61. ev->what = PROC_EVENT_FORK;
  62. rcu_read_lock();
  63. parent = rcu_dereference(task->real_parent);
  64. ev->event_data.fork.parent_pid = parent->pid;
  65. ev->event_data.fork.parent_tgid = parent->tgid;
  66. rcu_read_unlock();
  67. ev->event_data.fork.child_pid = task->pid;
  68. ev->event_data.fork.child_tgid = task->tgid;
  69. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  70. msg->ack = 0; /* not used */
  71. msg->len = sizeof(*ev);
  72. /* If cn_netlink_send() failed, the data is not sent */
  73. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  74. }
  75. void proc_exec_connector(struct task_struct *task)
  76. {
  77. struct cn_msg *msg;
  78. struct proc_event *ev;
  79. struct timespec ts;
  80. __u8 buffer[CN_PROC_MSG_SIZE];
  81. if (atomic_read(&proc_event_num_listeners) < 1)
  82. return;
  83. msg = (struct cn_msg *)buffer;
  84. ev = (struct proc_event *)msg->data;
  85. get_seq(&msg->seq, &ev->cpu);
  86. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  87. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  88. ev->what = PROC_EVENT_EXEC;
  89. ev->event_data.exec.process_pid = task->pid;
  90. ev->event_data.exec.process_tgid = task->tgid;
  91. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  92. msg->ack = 0; /* not used */
  93. msg->len = sizeof(*ev);
  94. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  95. }
  96. void proc_id_connector(struct task_struct *task, int which_id)
  97. {
  98. struct cn_msg *msg;
  99. struct proc_event *ev;
  100. __u8 buffer[CN_PROC_MSG_SIZE];
  101. struct timespec ts;
  102. const struct cred *cred;
  103. if (atomic_read(&proc_event_num_listeners) < 1)
  104. return;
  105. msg = (struct cn_msg *)buffer;
  106. ev = (struct proc_event *)msg->data;
  107. ev->what = which_id;
  108. ev->event_data.id.process_pid = task->pid;
  109. ev->event_data.id.process_tgid = task->tgid;
  110. rcu_read_lock();
  111. cred = __task_cred(task);
  112. if (which_id == PROC_EVENT_UID) {
  113. ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
  114. ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
  115. } else if (which_id == PROC_EVENT_GID) {
  116. ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
  117. ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
  118. } else {
  119. rcu_read_unlock();
  120. return;
  121. }
  122. rcu_read_unlock();
  123. get_seq(&msg->seq, &ev->cpu);
  124. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  125. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  126. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  127. msg->ack = 0; /* not used */
  128. msg->len = sizeof(*ev);
  129. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  130. }
  131. void proc_sid_connector(struct task_struct *task)
  132. {
  133. struct cn_msg *msg;
  134. struct proc_event *ev;
  135. struct timespec ts;
  136. __u8 buffer[CN_PROC_MSG_SIZE];
  137. if (atomic_read(&proc_event_num_listeners) < 1)
  138. return;
  139. msg = (struct cn_msg *)buffer;
  140. ev = (struct proc_event *)msg->data;
  141. get_seq(&msg->seq, &ev->cpu);
  142. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  143. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  144. ev->what = PROC_EVENT_SID;
  145. ev->event_data.sid.process_pid = task->pid;
  146. ev->event_data.sid.process_tgid = task->tgid;
  147. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  148. msg->ack = 0; /* not used */
  149. msg->len = sizeof(*ev);
  150. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  151. }
  152. void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
  153. {
  154. struct cn_msg *msg;
  155. struct proc_event *ev;
  156. struct timespec ts;
  157. __u8 buffer[CN_PROC_MSG_SIZE];
  158. if (atomic_read(&proc_event_num_listeners) < 1)
  159. return;
  160. msg = (struct cn_msg *)buffer;
  161. ev = (struct proc_event *)msg->data;
  162. get_seq(&msg->seq, &ev->cpu);
  163. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  164. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  165. ev->what = PROC_EVENT_PTRACE;
  166. ev->event_data.ptrace.process_pid = task->pid;
  167. ev->event_data.ptrace.process_tgid = task->tgid;
  168. if (ptrace_id == PTRACE_ATTACH) {
  169. ev->event_data.ptrace.tracer_pid = current->pid;
  170. ev->event_data.ptrace.tracer_tgid = current->tgid;
  171. } else if (ptrace_id == PTRACE_DETACH) {
  172. ev->event_data.ptrace.tracer_pid = 0;
  173. ev->event_data.ptrace.tracer_tgid = 0;
  174. } else
  175. return;
  176. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  177. msg->ack = 0; /* not used */
  178. msg->len = sizeof(*ev);
  179. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  180. }
  181. void proc_comm_connector(struct task_struct *task)
  182. {
  183. struct cn_msg *msg;
  184. struct proc_event *ev;
  185. struct timespec ts;
  186. __u8 buffer[CN_PROC_MSG_SIZE];
  187. if (atomic_read(&proc_event_num_listeners) < 1)
  188. return;
  189. msg = (struct cn_msg *)buffer;
  190. ev = (struct proc_event *)msg->data;
  191. get_seq(&msg->seq, &ev->cpu);
  192. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  193. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  194. ev->what = PROC_EVENT_COMM;
  195. ev->event_data.comm.process_pid = task->pid;
  196. ev->event_data.comm.process_tgid = task->tgid;
  197. get_task_comm(ev->event_data.comm.comm, task);
  198. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  199. msg->ack = 0; /* not used */
  200. msg->len = sizeof(*ev);
  201. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  202. }
  203. void proc_exit_connector(struct task_struct *task)
  204. {
  205. struct cn_msg *msg;
  206. struct proc_event *ev;
  207. __u8 buffer[CN_PROC_MSG_SIZE];
  208. struct timespec ts;
  209. if (atomic_read(&proc_event_num_listeners) < 1)
  210. return;
  211. msg = (struct cn_msg *)buffer;
  212. ev = (struct proc_event *)msg->data;
  213. get_seq(&msg->seq, &ev->cpu);
  214. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  215. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  216. ev->what = PROC_EVENT_EXIT;
  217. ev->event_data.exit.process_pid = task->pid;
  218. ev->event_data.exit.process_tgid = task->tgid;
  219. ev->event_data.exit.exit_code = task->exit_code;
  220. ev->event_data.exit.exit_signal = task->exit_signal;
  221. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  222. msg->ack = 0; /* not used */
  223. msg->len = sizeof(*ev);
  224. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  225. }
  226. /*
  227. * Send an acknowledgement message to userspace
  228. *
  229. * Use 0 for success, EFOO otherwise.
  230. * Note: this is the negative of conventional kernel error
  231. * values because it's not being returned via syscall return
  232. * mechanisms.
  233. */
  234. static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
  235. {
  236. struct cn_msg *msg;
  237. struct proc_event *ev;
  238. __u8 buffer[CN_PROC_MSG_SIZE];
  239. struct timespec ts;
  240. if (atomic_read(&proc_event_num_listeners) < 1)
  241. return;
  242. msg = (struct cn_msg *)buffer;
  243. ev = (struct proc_event *)msg->data;
  244. msg->seq = rcvd_seq;
  245. ktime_get_ts(&ts); /* get high res monotonic timestamp */
  246. put_unaligned(timespec_to_ns(&ts), (__u64 *)&ev->timestamp_ns);
  247. ev->cpu = -1;
  248. ev->what = PROC_EVENT_NONE;
  249. ev->event_data.ack.err = err;
  250. memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
  251. msg->ack = rcvd_ack + 1;
  252. msg->len = sizeof(*ev);
  253. cn_netlink_send(msg, CN_IDX_PROC, GFP_KERNEL);
  254. }
  255. /**
  256. * cn_proc_mcast_ctl
  257. * @data: message sent from userspace via the connector
  258. */
  259. static void cn_proc_mcast_ctl(struct cn_msg *msg,
  260. struct netlink_skb_parms *nsp)
  261. {
  262. enum proc_cn_mcast_op *mc_op = NULL;
  263. int err = 0;
  264. if (msg->len != sizeof(*mc_op))
  265. return;
  266. /*
  267. * Events are reported with respect to the initial pid
  268. * and user namespaces so ignore requestors from
  269. * other namespaces.
  270. */
  271. if ((current_user_ns() != &init_user_ns) ||
  272. (task_active_pid_ns(current) != &init_pid_ns))
  273. return;
  274. /* Can only change if privileged. */
  275. if (!capable(CAP_NET_ADMIN)) {
  276. err = EPERM;
  277. goto out;
  278. }
  279. mc_op = (enum proc_cn_mcast_op *)msg->data;
  280. switch (*mc_op) {
  281. case PROC_CN_MCAST_LISTEN:
  282. atomic_inc(&proc_event_num_listeners);
  283. break;
  284. case PROC_CN_MCAST_IGNORE:
  285. atomic_dec(&proc_event_num_listeners);
  286. break;
  287. default:
  288. err = EINVAL;
  289. break;
  290. }
  291. out:
  292. cn_proc_ack(err, msg->seq, msg->ack);
  293. }
  294. /*
  295. * cn_proc_init - initialization entry point
  296. *
  297. * Adds the connector callback to the connector driver.
  298. */
  299. static int __init cn_proc_init(void)
  300. {
  301. int err = cn_add_callback(&cn_proc_event_id,
  302. "cn_proc",
  303. &cn_proc_mcast_ctl);
  304. if (err) {
  305. pr_warn("cn_proc failed to register\n");
  306. return err;
  307. }
  308. return 0;
  309. }
  310. module_init(cn_proc_init);