sata_rcar.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. /*
  2. * Renesas R-Car SATA driver
  3. *
  4. * Author: Vladimir Barinov <source@cogentembedded.com>
  5. * Copyright (C) 2013 Cogent Embedded, Inc.
  6. * Copyright (C) 2013 Renesas Solutions Corp.
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/ata.h>
  16. #include <linux/libata.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/clk.h>
  19. #define DRV_NAME "sata_rcar"
  20. /* SH-Navi2G/ATAPI-ATA compatible task registers */
  21. #define DATA_REG 0x100
  22. #define SDEVCON_REG 0x138
  23. /* SH-Navi2G/ATAPI module compatible control registers */
  24. #define ATAPI_CONTROL1_REG 0x180
  25. #define ATAPI_STATUS_REG 0x184
  26. #define ATAPI_INT_ENABLE_REG 0x188
  27. #define ATAPI_DTB_ADR_REG 0x198
  28. #define ATAPI_DMA_START_ADR_REG 0x19C
  29. #define ATAPI_DMA_TRANS_CNT_REG 0x1A0
  30. #define ATAPI_CONTROL2_REG 0x1A4
  31. #define ATAPI_SIG_ST_REG 0x1B0
  32. #define ATAPI_BYTE_SWAP_REG 0x1BC
  33. /* ATAPI control 1 register (ATAPI_CONTROL1) bits */
  34. #define ATAPI_CONTROL1_ISM BIT(16)
  35. #define ATAPI_CONTROL1_DTA32M BIT(11)
  36. #define ATAPI_CONTROL1_RESET BIT(7)
  37. #define ATAPI_CONTROL1_DESE BIT(3)
  38. #define ATAPI_CONTROL1_RW BIT(2)
  39. #define ATAPI_CONTROL1_STOP BIT(1)
  40. #define ATAPI_CONTROL1_START BIT(0)
  41. /* ATAPI status register (ATAPI_STATUS) bits */
  42. #define ATAPI_STATUS_SATAINT BIT(11)
  43. #define ATAPI_STATUS_DNEND BIT(6)
  44. #define ATAPI_STATUS_DEVTRM BIT(5)
  45. #define ATAPI_STATUS_DEVINT BIT(4)
  46. #define ATAPI_STATUS_ERR BIT(2)
  47. #define ATAPI_STATUS_NEND BIT(1)
  48. #define ATAPI_STATUS_ACT BIT(0)
  49. /* Interrupt enable register (ATAPI_INT_ENABLE) bits */
  50. #define ATAPI_INT_ENABLE_SATAINT BIT(11)
  51. #define ATAPI_INT_ENABLE_DNEND BIT(6)
  52. #define ATAPI_INT_ENABLE_DEVTRM BIT(5)
  53. #define ATAPI_INT_ENABLE_DEVINT BIT(4)
  54. #define ATAPI_INT_ENABLE_ERR BIT(2)
  55. #define ATAPI_INT_ENABLE_NEND BIT(1)
  56. #define ATAPI_INT_ENABLE_ACT BIT(0)
  57. /* Access control registers for physical layer control register */
  58. #define SATAPHYADDR_REG 0x200
  59. #define SATAPHYWDATA_REG 0x204
  60. #define SATAPHYACCEN_REG 0x208
  61. #define SATAPHYRESET_REG 0x20C
  62. #define SATAPHYRDATA_REG 0x210
  63. #define SATAPHYACK_REG 0x214
  64. /* Physical layer control address command register (SATAPHYADDR) bits */
  65. #define SATAPHYADDR_PHYRATEMODE BIT(10)
  66. #define SATAPHYADDR_PHYCMD_READ BIT(9)
  67. #define SATAPHYADDR_PHYCMD_WRITE BIT(8)
  68. /* Physical layer control enable register (SATAPHYACCEN) bits */
  69. #define SATAPHYACCEN_PHYLANE BIT(0)
  70. /* Physical layer control reset register (SATAPHYRESET) bits */
  71. #define SATAPHYRESET_PHYRST BIT(1)
  72. #define SATAPHYRESET_PHYSRES BIT(0)
  73. /* Physical layer control acknowledge register (SATAPHYACK) bits */
  74. #define SATAPHYACK_PHYACK BIT(0)
  75. /* Serial-ATA HOST control registers */
  76. #define BISTCONF_REG 0x102C
  77. #define SDATA_REG 0x1100
  78. #define SSDEVCON_REG 0x1204
  79. #define SCRSSTS_REG 0x1400
  80. #define SCRSERR_REG 0x1404
  81. #define SCRSCON_REG 0x1408
  82. #define SCRSACT_REG 0x140C
  83. #define SATAINTSTAT_REG 0x1508
  84. #define SATAINTMASK_REG 0x150C
  85. /* SATA INT status register (SATAINTSTAT) bits */
  86. #define SATAINTSTAT_SERR BIT(3)
  87. #define SATAINTSTAT_ATA BIT(0)
  88. /* SATA INT mask register (SATAINTSTAT) bits */
  89. #define SATAINTMASK_SERRMSK BIT(3)
  90. #define SATAINTMASK_ERRMSK BIT(2)
  91. #define SATAINTMASK_ERRCRTMSK BIT(1)
  92. #define SATAINTMASK_ATAMSK BIT(0)
  93. #define SATA_RCAR_INT_MASK (SATAINTMASK_SERRMSK | \
  94. SATAINTMASK_ATAMSK)
  95. /* Physical Layer Control Registers */
  96. #define SATAPCTLR1_REG 0x43
  97. #define SATAPCTLR2_REG 0x52
  98. #define SATAPCTLR3_REG 0x5A
  99. #define SATAPCTLR4_REG 0x60
  100. /* Descriptor table word 0 bit (when DTA32M = 1) */
  101. #define SATA_RCAR_DTEND BIT(0)
  102. struct sata_rcar_priv {
  103. void __iomem *base;
  104. struct clk *clk;
  105. };
  106. static void sata_rcar_phy_initialize(struct sata_rcar_priv *priv)
  107. {
  108. /* idle state */
  109. iowrite32(0, priv->base + SATAPHYADDR_REG);
  110. /* reset */
  111. iowrite32(SATAPHYRESET_PHYRST, priv->base + SATAPHYRESET_REG);
  112. udelay(10);
  113. /* deassert reset */
  114. iowrite32(0, priv->base + SATAPHYRESET_REG);
  115. }
  116. static void sata_rcar_phy_write(struct sata_rcar_priv *priv, u16 reg, u32 val,
  117. int group)
  118. {
  119. int timeout;
  120. /* deassert reset */
  121. iowrite32(0, priv->base + SATAPHYRESET_REG);
  122. /* lane 1 */
  123. iowrite32(SATAPHYACCEN_PHYLANE, priv->base + SATAPHYACCEN_REG);
  124. /* write phy register value */
  125. iowrite32(val, priv->base + SATAPHYWDATA_REG);
  126. /* set register group */
  127. if (group)
  128. reg |= SATAPHYADDR_PHYRATEMODE;
  129. /* write command */
  130. iowrite32(SATAPHYADDR_PHYCMD_WRITE | reg, priv->base + SATAPHYADDR_REG);
  131. /* wait for ack */
  132. for (timeout = 0; timeout < 100; timeout++) {
  133. val = ioread32(priv->base + SATAPHYACK_REG);
  134. if (val & SATAPHYACK_PHYACK)
  135. break;
  136. }
  137. if (timeout >= 100)
  138. pr_err("%s timeout\n", __func__);
  139. /* idle state */
  140. iowrite32(0, priv->base + SATAPHYADDR_REG);
  141. }
  142. static void sata_rcar_freeze(struct ata_port *ap)
  143. {
  144. struct sata_rcar_priv *priv = ap->host->private_data;
  145. /* mask */
  146. iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
  147. ata_sff_freeze(ap);
  148. }
  149. static void sata_rcar_thaw(struct ata_port *ap)
  150. {
  151. struct sata_rcar_priv *priv = ap->host->private_data;
  152. /* ack */
  153. iowrite32(~SATA_RCAR_INT_MASK, priv->base + SATAINTSTAT_REG);
  154. ata_sff_thaw(ap);
  155. /* unmask */
  156. iowrite32(0x7ff & ~SATA_RCAR_INT_MASK, priv->base + SATAINTMASK_REG);
  157. }
  158. static void sata_rcar_ioread16_rep(void __iomem *reg, void *buffer, int count)
  159. {
  160. u16 *ptr = buffer;
  161. while (count--) {
  162. u16 data = ioread32(reg);
  163. *ptr++ = data;
  164. }
  165. }
  166. static void sata_rcar_iowrite16_rep(void __iomem *reg, void *buffer, int count)
  167. {
  168. const u16 *ptr = buffer;
  169. while (count--)
  170. iowrite32(*ptr++, reg);
  171. }
  172. static u8 sata_rcar_check_status(struct ata_port *ap)
  173. {
  174. return ioread32(ap->ioaddr.status_addr);
  175. }
  176. static u8 sata_rcar_check_altstatus(struct ata_port *ap)
  177. {
  178. return ioread32(ap->ioaddr.altstatus_addr);
  179. }
  180. static void sata_rcar_set_devctl(struct ata_port *ap, u8 ctl)
  181. {
  182. iowrite32(ctl, ap->ioaddr.ctl_addr);
  183. }
  184. static void sata_rcar_dev_select(struct ata_port *ap, unsigned int device)
  185. {
  186. iowrite32(ATA_DEVICE_OBS, ap->ioaddr.device_addr);
  187. ata_sff_pause(ap); /* needed; also flushes, for mmio */
  188. }
  189. static unsigned int sata_rcar_ata_devchk(struct ata_port *ap,
  190. unsigned int device)
  191. {
  192. struct ata_ioports *ioaddr = &ap->ioaddr;
  193. u8 nsect, lbal;
  194. sata_rcar_dev_select(ap, device);
  195. iowrite32(0x55, ioaddr->nsect_addr);
  196. iowrite32(0xaa, ioaddr->lbal_addr);
  197. iowrite32(0xaa, ioaddr->nsect_addr);
  198. iowrite32(0x55, ioaddr->lbal_addr);
  199. iowrite32(0x55, ioaddr->nsect_addr);
  200. iowrite32(0xaa, ioaddr->lbal_addr);
  201. nsect = ioread32(ioaddr->nsect_addr);
  202. lbal = ioread32(ioaddr->lbal_addr);
  203. if (nsect == 0x55 && lbal == 0xaa)
  204. return 1; /* found a device */
  205. return 0; /* nothing found */
  206. }
  207. static int sata_rcar_wait_after_reset(struct ata_link *link,
  208. unsigned long deadline)
  209. {
  210. struct ata_port *ap = link->ap;
  211. ata_msleep(ap, ATA_WAIT_AFTER_RESET);
  212. return ata_sff_wait_ready(link, deadline);
  213. }
  214. static int sata_rcar_bus_softreset(struct ata_port *ap, unsigned long deadline)
  215. {
  216. struct ata_ioports *ioaddr = &ap->ioaddr;
  217. DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
  218. /* software reset. causes dev0 to be selected */
  219. iowrite32(ap->ctl, ioaddr->ctl_addr);
  220. udelay(20);
  221. iowrite32(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
  222. udelay(20);
  223. iowrite32(ap->ctl, ioaddr->ctl_addr);
  224. ap->last_ctl = ap->ctl;
  225. /* wait the port to become ready */
  226. return sata_rcar_wait_after_reset(&ap->link, deadline);
  227. }
  228. static int sata_rcar_softreset(struct ata_link *link, unsigned int *classes,
  229. unsigned long deadline)
  230. {
  231. struct ata_port *ap = link->ap;
  232. unsigned int devmask = 0;
  233. int rc;
  234. u8 err;
  235. /* determine if device 0 is present */
  236. if (sata_rcar_ata_devchk(ap, 0))
  237. devmask |= 1 << 0;
  238. /* issue bus reset */
  239. DPRINTK("about to softreset, devmask=%x\n", devmask);
  240. rc = sata_rcar_bus_softreset(ap, deadline);
  241. /* if link is occupied, -ENODEV too is an error */
  242. if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
  243. ata_link_err(link, "SRST failed (errno=%d)\n", rc);
  244. return rc;
  245. }
  246. /* determine by signature whether we have ATA or ATAPI devices */
  247. classes[0] = ata_sff_dev_classify(&link->device[0], devmask, &err);
  248. DPRINTK("classes[0]=%u\n", classes[0]);
  249. return 0;
  250. }
  251. static void sata_rcar_tf_load(struct ata_port *ap,
  252. const struct ata_taskfile *tf)
  253. {
  254. struct ata_ioports *ioaddr = &ap->ioaddr;
  255. unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
  256. if (tf->ctl != ap->last_ctl) {
  257. iowrite32(tf->ctl, ioaddr->ctl_addr);
  258. ap->last_ctl = tf->ctl;
  259. ata_wait_idle(ap);
  260. }
  261. if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
  262. iowrite32(tf->hob_feature, ioaddr->feature_addr);
  263. iowrite32(tf->hob_nsect, ioaddr->nsect_addr);
  264. iowrite32(tf->hob_lbal, ioaddr->lbal_addr);
  265. iowrite32(tf->hob_lbam, ioaddr->lbam_addr);
  266. iowrite32(tf->hob_lbah, ioaddr->lbah_addr);
  267. VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
  268. tf->hob_feature,
  269. tf->hob_nsect,
  270. tf->hob_lbal,
  271. tf->hob_lbam,
  272. tf->hob_lbah);
  273. }
  274. if (is_addr) {
  275. iowrite32(tf->feature, ioaddr->feature_addr);
  276. iowrite32(tf->nsect, ioaddr->nsect_addr);
  277. iowrite32(tf->lbal, ioaddr->lbal_addr);
  278. iowrite32(tf->lbam, ioaddr->lbam_addr);
  279. iowrite32(tf->lbah, ioaddr->lbah_addr);
  280. VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
  281. tf->feature,
  282. tf->nsect,
  283. tf->lbal,
  284. tf->lbam,
  285. tf->lbah);
  286. }
  287. if (tf->flags & ATA_TFLAG_DEVICE) {
  288. iowrite32(tf->device, ioaddr->device_addr);
  289. VPRINTK("device 0x%X\n", tf->device);
  290. }
  291. ata_wait_idle(ap);
  292. }
  293. static void sata_rcar_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
  294. {
  295. struct ata_ioports *ioaddr = &ap->ioaddr;
  296. tf->command = sata_rcar_check_status(ap);
  297. tf->feature = ioread32(ioaddr->error_addr);
  298. tf->nsect = ioread32(ioaddr->nsect_addr);
  299. tf->lbal = ioread32(ioaddr->lbal_addr);
  300. tf->lbam = ioread32(ioaddr->lbam_addr);
  301. tf->lbah = ioread32(ioaddr->lbah_addr);
  302. tf->device = ioread32(ioaddr->device_addr);
  303. if (tf->flags & ATA_TFLAG_LBA48) {
  304. iowrite32(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
  305. tf->hob_feature = ioread32(ioaddr->error_addr);
  306. tf->hob_nsect = ioread32(ioaddr->nsect_addr);
  307. tf->hob_lbal = ioread32(ioaddr->lbal_addr);
  308. tf->hob_lbam = ioread32(ioaddr->lbam_addr);
  309. tf->hob_lbah = ioread32(ioaddr->lbah_addr);
  310. iowrite32(tf->ctl, ioaddr->ctl_addr);
  311. ap->last_ctl = tf->ctl;
  312. }
  313. }
  314. static void sata_rcar_exec_command(struct ata_port *ap,
  315. const struct ata_taskfile *tf)
  316. {
  317. DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
  318. iowrite32(tf->command, ap->ioaddr.command_addr);
  319. ata_sff_pause(ap);
  320. }
  321. static unsigned int sata_rcar_data_xfer(struct ata_device *dev,
  322. unsigned char *buf,
  323. unsigned int buflen, int rw)
  324. {
  325. struct ata_port *ap = dev->link->ap;
  326. void __iomem *data_addr = ap->ioaddr.data_addr;
  327. unsigned int words = buflen >> 1;
  328. /* Transfer multiple of 2 bytes */
  329. if (rw == READ)
  330. sata_rcar_ioread16_rep(data_addr, buf, words);
  331. else
  332. sata_rcar_iowrite16_rep(data_addr, buf, words);
  333. /* Transfer trailing byte, if any. */
  334. if (unlikely(buflen & 0x01)) {
  335. unsigned char pad[2] = { };
  336. /* Point buf to the tail of buffer */
  337. buf += buflen - 1;
  338. /*
  339. * Use io*16_rep() accessors here as well to avoid pointlessly
  340. * swapping bytes to and from on the big endian machines...
  341. */
  342. if (rw == READ) {
  343. sata_rcar_ioread16_rep(data_addr, pad, 1);
  344. *buf = pad[0];
  345. } else {
  346. pad[0] = *buf;
  347. sata_rcar_iowrite16_rep(data_addr, pad, 1);
  348. }
  349. words++;
  350. }
  351. return words << 1;
  352. }
  353. static void sata_rcar_drain_fifo(struct ata_queued_cmd *qc)
  354. {
  355. int count;
  356. struct ata_port *ap;
  357. /* We only need to flush incoming data when a command was running */
  358. if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
  359. return;
  360. ap = qc->ap;
  361. /* Drain up to 64K of data before we give up this recovery method */
  362. for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) &&
  363. count < 65536; count += 2)
  364. ioread32(ap->ioaddr.data_addr);
  365. /* Can become DEBUG later */
  366. if (count)
  367. ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
  368. }
  369. static int sata_rcar_scr_read(struct ata_link *link, unsigned int sc_reg,
  370. u32 *val)
  371. {
  372. if (sc_reg > SCR_ACTIVE)
  373. return -EINVAL;
  374. *val = ioread32(link->ap->ioaddr.scr_addr + (sc_reg << 2));
  375. return 0;
  376. }
  377. static int sata_rcar_scr_write(struct ata_link *link, unsigned int sc_reg,
  378. u32 val)
  379. {
  380. if (sc_reg > SCR_ACTIVE)
  381. return -EINVAL;
  382. iowrite32(val, link->ap->ioaddr.scr_addr + (sc_reg << 2));
  383. return 0;
  384. }
  385. static void sata_rcar_bmdma_fill_sg(struct ata_queued_cmd *qc)
  386. {
  387. struct ata_port *ap = qc->ap;
  388. struct ata_bmdma_prd *prd = ap->bmdma_prd;
  389. struct scatterlist *sg;
  390. unsigned int si, pi;
  391. pi = 0;
  392. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  393. u32 addr, sg_len, len;
  394. /*
  395. * Note: h/w doesn't support 64-bit, so we unconditionally
  396. * truncate dma_addr_t to u32.
  397. */
  398. addr = (u32)sg_dma_address(sg);
  399. sg_len = sg_dma_len(sg);
  400. /* H/w transfer count is only 29 bits long, let's be careful */
  401. while (sg_len) {
  402. len = sg_len;
  403. if (len > 0x1ffffffe)
  404. len = 0x1ffffffe;
  405. prd[pi].addr = cpu_to_le32(addr);
  406. prd[pi].flags_len = cpu_to_le32(len);
  407. VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
  408. pi++;
  409. sg_len -= len;
  410. addr += len;
  411. }
  412. }
  413. /* end-of-table flag */
  414. prd[pi - 1].addr |= cpu_to_le32(SATA_RCAR_DTEND);
  415. }
  416. static void sata_rcar_qc_prep(struct ata_queued_cmd *qc)
  417. {
  418. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  419. return;
  420. sata_rcar_bmdma_fill_sg(qc);
  421. }
  422. static void sata_rcar_bmdma_setup(struct ata_queued_cmd *qc)
  423. {
  424. struct ata_port *ap = qc->ap;
  425. unsigned int rw = qc->tf.flags & ATA_TFLAG_WRITE;
  426. u32 dmactl;
  427. struct sata_rcar_priv *priv = ap->host->private_data;
  428. /* load PRD table addr. */
  429. mb(); /* make sure PRD table writes are visible to controller */
  430. iowrite32(ap->bmdma_prd_dma, priv->base + ATAPI_DTB_ADR_REG);
  431. /* specify data direction, triple-check start bit is clear */
  432. dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
  433. dmactl &= ~(ATAPI_CONTROL1_RW | ATAPI_CONTROL1_STOP);
  434. if (dmactl & ATAPI_CONTROL1_START) {
  435. dmactl &= ~ATAPI_CONTROL1_START;
  436. dmactl |= ATAPI_CONTROL1_STOP;
  437. }
  438. if (!rw)
  439. dmactl |= ATAPI_CONTROL1_RW;
  440. iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
  441. /* issue r/w command */
  442. ap->ops->sff_exec_command(ap, &qc->tf);
  443. }
  444. static void sata_rcar_bmdma_start(struct ata_queued_cmd *qc)
  445. {
  446. struct ata_port *ap = qc->ap;
  447. u32 dmactl;
  448. struct sata_rcar_priv *priv = ap->host->private_data;
  449. /* start host DMA transaction */
  450. dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
  451. dmactl |= ATAPI_CONTROL1_START;
  452. iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
  453. }
  454. static void sata_rcar_bmdma_stop(struct ata_queued_cmd *qc)
  455. {
  456. struct ata_port *ap = qc->ap;
  457. struct sata_rcar_priv *priv = ap->host->private_data;
  458. u32 dmactl;
  459. /* force termination of DMA transfer if active */
  460. dmactl = ioread32(priv->base + ATAPI_CONTROL1_REG);
  461. if (dmactl & ATAPI_CONTROL1_START) {
  462. dmactl &= ~ATAPI_CONTROL1_START;
  463. dmactl |= ATAPI_CONTROL1_STOP;
  464. iowrite32(dmactl, priv->base + ATAPI_CONTROL1_REG);
  465. }
  466. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  467. ata_sff_dma_pause(ap);
  468. }
  469. static u8 sata_rcar_bmdma_status(struct ata_port *ap)
  470. {
  471. struct sata_rcar_priv *priv = ap->host->private_data;
  472. u32 status;
  473. u8 host_stat = 0;
  474. status = ioread32(priv->base + ATAPI_STATUS_REG);
  475. if (status & ATAPI_STATUS_DEVINT)
  476. host_stat |= ATA_DMA_INTR;
  477. if (status & ATAPI_STATUS_ACT)
  478. host_stat |= ATA_DMA_ACTIVE;
  479. return host_stat;
  480. }
  481. static struct scsi_host_template sata_rcar_sht = {
  482. ATA_BMDMA_SHT(DRV_NAME),
  483. };
  484. static struct ata_port_operations sata_rcar_port_ops = {
  485. .inherits = &ata_bmdma_port_ops,
  486. .freeze = sata_rcar_freeze,
  487. .thaw = sata_rcar_thaw,
  488. .softreset = sata_rcar_softreset,
  489. .scr_read = sata_rcar_scr_read,
  490. .scr_write = sata_rcar_scr_write,
  491. .sff_dev_select = sata_rcar_dev_select,
  492. .sff_set_devctl = sata_rcar_set_devctl,
  493. .sff_check_status = sata_rcar_check_status,
  494. .sff_check_altstatus = sata_rcar_check_altstatus,
  495. .sff_tf_load = sata_rcar_tf_load,
  496. .sff_tf_read = sata_rcar_tf_read,
  497. .sff_exec_command = sata_rcar_exec_command,
  498. .sff_data_xfer = sata_rcar_data_xfer,
  499. .sff_drain_fifo = sata_rcar_drain_fifo,
  500. .qc_prep = sata_rcar_qc_prep,
  501. .bmdma_setup = sata_rcar_bmdma_setup,
  502. .bmdma_start = sata_rcar_bmdma_start,
  503. .bmdma_stop = sata_rcar_bmdma_stop,
  504. .bmdma_status = sata_rcar_bmdma_status,
  505. };
  506. static int sata_rcar_serr_interrupt(struct ata_port *ap)
  507. {
  508. struct sata_rcar_priv *priv = ap->host->private_data;
  509. struct ata_eh_info *ehi = &ap->link.eh_info;
  510. int freeze = 0;
  511. int handled = 0;
  512. u32 serror;
  513. serror = ioread32(priv->base + SCRSERR_REG);
  514. if (!serror)
  515. return 0;
  516. DPRINTK("SError @host_intr: 0x%x\n", serror);
  517. /* first, analyze and record host port events */
  518. ata_ehi_clear_desc(ehi);
  519. if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) {
  520. /* Setup a soft-reset EH action */
  521. ata_ehi_hotplugged(ehi);
  522. ata_ehi_push_desc(ehi, "%s", "hotplug");
  523. freeze = serror & SERR_COMM_WAKE ? 0 : 1;
  524. handled = 1;
  525. }
  526. /* freeze or abort */
  527. if (freeze)
  528. ata_port_freeze(ap);
  529. else
  530. ata_port_abort(ap);
  531. return handled;
  532. }
  533. static int sata_rcar_ata_interrupt(struct ata_port *ap)
  534. {
  535. struct ata_queued_cmd *qc;
  536. int handled = 0;
  537. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  538. if (qc)
  539. handled |= ata_bmdma_port_intr(ap, qc);
  540. return handled;
  541. }
  542. static irqreturn_t sata_rcar_interrupt(int irq, void *dev_instance)
  543. {
  544. struct ata_host *host = dev_instance;
  545. struct sata_rcar_priv *priv = host->private_data;
  546. struct ata_port *ap;
  547. unsigned int handled = 0;
  548. u32 sataintstat;
  549. unsigned long flags;
  550. spin_lock_irqsave(&host->lock, flags);
  551. sataintstat = ioread32(priv->base + SATAINTSTAT_REG);
  552. if (!sataintstat)
  553. goto done;
  554. /* ack */
  555. iowrite32(sataintstat & ~SATA_RCAR_INT_MASK,
  556. priv->base + SATAINTSTAT_REG);
  557. ap = host->ports[0];
  558. if (sataintstat & SATAINTSTAT_ATA)
  559. handled |= sata_rcar_ata_interrupt(ap);
  560. if (sataintstat & SATAINTSTAT_SERR)
  561. handled |= sata_rcar_serr_interrupt(ap);
  562. done:
  563. spin_unlock_irqrestore(&host->lock, flags);
  564. return IRQ_RETVAL(handled);
  565. }
  566. static void sata_rcar_setup_port(struct ata_host *host)
  567. {
  568. struct ata_port *ap = host->ports[0];
  569. struct ata_ioports *ioaddr = &ap->ioaddr;
  570. struct sata_rcar_priv *priv = host->private_data;
  571. ap->ops = &sata_rcar_port_ops;
  572. ap->pio_mask = ATA_PIO4;
  573. ap->udma_mask = ATA_UDMA6;
  574. ap->flags |= ATA_FLAG_SATA;
  575. ioaddr->cmd_addr = priv->base + SDATA_REG;
  576. ioaddr->ctl_addr = priv->base + SSDEVCON_REG;
  577. ioaddr->scr_addr = priv->base + SCRSSTS_REG;
  578. ioaddr->altstatus_addr = ioaddr->ctl_addr;
  579. ioaddr->data_addr = ioaddr->cmd_addr + (ATA_REG_DATA << 2);
  580. ioaddr->error_addr = ioaddr->cmd_addr + (ATA_REG_ERR << 2);
  581. ioaddr->feature_addr = ioaddr->cmd_addr + (ATA_REG_FEATURE << 2);
  582. ioaddr->nsect_addr = ioaddr->cmd_addr + (ATA_REG_NSECT << 2);
  583. ioaddr->lbal_addr = ioaddr->cmd_addr + (ATA_REG_LBAL << 2);
  584. ioaddr->lbam_addr = ioaddr->cmd_addr + (ATA_REG_LBAM << 2);
  585. ioaddr->lbah_addr = ioaddr->cmd_addr + (ATA_REG_LBAH << 2);
  586. ioaddr->device_addr = ioaddr->cmd_addr + (ATA_REG_DEVICE << 2);
  587. ioaddr->status_addr = ioaddr->cmd_addr + (ATA_REG_STATUS << 2);
  588. ioaddr->command_addr = ioaddr->cmd_addr + (ATA_REG_CMD << 2);
  589. }
  590. static void sata_rcar_init_controller(struct ata_host *host)
  591. {
  592. struct sata_rcar_priv *priv = host->private_data;
  593. u32 val;
  594. /* reset and setup phy */
  595. sata_rcar_phy_initialize(priv);
  596. sata_rcar_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 0);
  597. sata_rcar_phy_write(priv, SATAPCTLR1_REG, 0x00200188, 1);
  598. sata_rcar_phy_write(priv, SATAPCTLR3_REG, 0x0000A061, 0);
  599. sata_rcar_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 0);
  600. sata_rcar_phy_write(priv, SATAPCTLR2_REG, 0x20000000, 1);
  601. sata_rcar_phy_write(priv, SATAPCTLR4_REG, 0x28E80000, 0);
  602. /* SATA-IP reset state */
  603. val = ioread32(priv->base + ATAPI_CONTROL1_REG);
  604. val |= ATAPI_CONTROL1_RESET;
  605. iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
  606. /* ISM mode, PRD mode, DTEND flag at bit 0 */
  607. val = ioread32(priv->base + ATAPI_CONTROL1_REG);
  608. val |= ATAPI_CONTROL1_ISM;
  609. val |= ATAPI_CONTROL1_DESE;
  610. val |= ATAPI_CONTROL1_DTA32M;
  611. iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
  612. /* Release the SATA-IP from the reset state */
  613. val = ioread32(priv->base + ATAPI_CONTROL1_REG);
  614. val &= ~ATAPI_CONTROL1_RESET;
  615. iowrite32(val, priv->base + ATAPI_CONTROL1_REG);
  616. /* ack and mask */
  617. iowrite32(0, priv->base + SATAINTSTAT_REG);
  618. iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
  619. /* enable interrupts */
  620. iowrite32(ATAPI_INT_ENABLE_SATAINT, priv->base + ATAPI_INT_ENABLE_REG);
  621. }
  622. static int sata_rcar_probe(struct platform_device *pdev)
  623. {
  624. struct ata_host *host;
  625. struct sata_rcar_priv *priv;
  626. struct resource *mem;
  627. int irq;
  628. int ret = 0;
  629. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  630. if (mem == NULL)
  631. return -EINVAL;
  632. irq = platform_get_irq(pdev, 0);
  633. if (irq <= 0)
  634. return -EINVAL;
  635. priv = devm_kzalloc(&pdev->dev, sizeof(struct sata_rcar_priv),
  636. GFP_KERNEL);
  637. if (!priv)
  638. return -ENOMEM;
  639. priv->clk = devm_clk_get(&pdev->dev, NULL);
  640. if (IS_ERR(priv->clk)) {
  641. dev_err(&pdev->dev, "failed to get access to sata clock\n");
  642. return PTR_ERR(priv->clk);
  643. }
  644. clk_enable(priv->clk);
  645. host = ata_host_alloc(&pdev->dev, 1);
  646. if (!host) {
  647. dev_err(&pdev->dev, "ata_host_alloc failed\n");
  648. ret = -ENOMEM;
  649. goto cleanup;
  650. }
  651. host->private_data = priv;
  652. priv->base = devm_request_and_ioremap(&pdev->dev, mem);
  653. if (!priv->base) {
  654. ret = -EADDRNOTAVAIL;
  655. goto cleanup;
  656. }
  657. /* setup port */
  658. sata_rcar_setup_port(host);
  659. /* initialize host controller */
  660. sata_rcar_init_controller(host);
  661. ret = ata_host_activate(host, irq, sata_rcar_interrupt, 0,
  662. &sata_rcar_sht);
  663. if (!ret)
  664. return 0;
  665. cleanup:
  666. clk_disable(priv->clk);
  667. return ret;
  668. }
  669. static int sata_rcar_remove(struct platform_device *pdev)
  670. {
  671. struct ata_host *host = dev_get_drvdata(&pdev->dev);
  672. struct sata_rcar_priv *priv = host->private_data;
  673. ata_host_detach(host);
  674. /* disable interrupts */
  675. iowrite32(0, priv->base + ATAPI_INT_ENABLE_REG);
  676. /* ack and mask */
  677. iowrite32(0, priv->base + SATAINTSTAT_REG);
  678. iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
  679. clk_disable(priv->clk);
  680. return 0;
  681. }
  682. #ifdef CONFIG_PM
  683. static int sata_rcar_suspend(struct device *dev)
  684. {
  685. struct ata_host *host = dev_get_drvdata(dev);
  686. struct sata_rcar_priv *priv = host->private_data;
  687. int ret;
  688. ret = ata_host_suspend(host, PMSG_SUSPEND);
  689. if (!ret) {
  690. /* disable interrupts */
  691. iowrite32(0, priv->base + ATAPI_INT_ENABLE_REG);
  692. /* mask */
  693. iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
  694. clk_disable(priv->clk);
  695. }
  696. return ret;
  697. }
  698. static int sata_rcar_resume(struct device *dev)
  699. {
  700. struct ata_host *host = dev_get_drvdata(dev);
  701. struct sata_rcar_priv *priv = host->private_data;
  702. clk_enable(priv->clk);
  703. /* ack and mask */
  704. iowrite32(0, priv->base + SATAINTSTAT_REG);
  705. iowrite32(0x7ff, priv->base + SATAINTMASK_REG);
  706. /* enable interrupts */
  707. iowrite32(ATAPI_INT_ENABLE_SATAINT, priv->base + ATAPI_INT_ENABLE_REG);
  708. ata_host_resume(host);
  709. return 0;
  710. }
  711. static const struct dev_pm_ops sata_rcar_pm_ops = {
  712. .suspend = sata_rcar_suspend,
  713. .resume = sata_rcar_resume,
  714. };
  715. #endif
  716. static struct of_device_id sata_rcar_match[] = {
  717. { .compatible = "renesas,rcar-sata", },
  718. {},
  719. };
  720. MODULE_DEVICE_TABLE(of, sata_rcar_match);
  721. static struct platform_driver sata_rcar_driver = {
  722. .probe = sata_rcar_probe,
  723. .remove = sata_rcar_remove,
  724. .driver = {
  725. .name = DRV_NAME,
  726. .owner = THIS_MODULE,
  727. .of_match_table = sata_rcar_match,
  728. #ifdef CONFIG_PM
  729. .pm = &sata_rcar_pm_ops,
  730. #endif
  731. },
  732. };
  733. module_platform_driver(sata_rcar_driver);
  734. MODULE_LICENSE("GPL");
  735. MODULE_AUTHOR("Vladimir Barinov");
  736. MODULE_DESCRIPTION("Renesas R-Car SATA controller low level driver");