Kconfig 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. #
  2. # Generic algorithms support
  3. #
  4. config XOR_BLOCKS
  5. tristate
  6. #
  7. # async_tx api: hardware offloaded memory transfer/transform support
  8. #
  9. source "crypto/async_tx/Kconfig"
  10. #
  11. # Cryptographic API Configuration
  12. #
  13. menuconfig CRYPTO
  14. tristate "Cryptographic API"
  15. help
  16. This option provides the core Cryptographic API.
  17. if CRYPTO
  18. comment "Crypto core or helper"
  19. config CRYPTO_FIPS
  20. bool "FIPS 200 compliance"
  21. depends on CRYPTO_ANSI_CPRNG && !CRYPTO_MANAGER_DISABLE_TESTS
  22. help
  23. This options enables the fips boot option which is
  24. required if you want to system to operate in a FIPS 200
  25. certification. You should say no unless you know what
  26. this is.
  27. config CRYPTO_ALGAPI
  28. tristate
  29. select CRYPTO_ALGAPI2
  30. help
  31. This option provides the API for cryptographic algorithms.
  32. config CRYPTO_ALGAPI2
  33. tristate
  34. config CRYPTO_AEAD
  35. tristate
  36. select CRYPTO_AEAD2
  37. select CRYPTO_ALGAPI
  38. config CRYPTO_AEAD2
  39. tristate
  40. select CRYPTO_ALGAPI2
  41. config CRYPTO_BLKCIPHER
  42. tristate
  43. select CRYPTO_BLKCIPHER2
  44. select CRYPTO_ALGAPI
  45. config CRYPTO_BLKCIPHER2
  46. tristate
  47. select CRYPTO_ALGAPI2
  48. select CRYPTO_RNG2
  49. select CRYPTO_WORKQUEUE
  50. config CRYPTO_HASH
  51. tristate
  52. select CRYPTO_HASH2
  53. select CRYPTO_ALGAPI
  54. config CRYPTO_HASH2
  55. tristate
  56. select CRYPTO_ALGAPI2
  57. config CRYPTO_RNG
  58. tristate
  59. select CRYPTO_RNG2
  60. select CRYPTO_ALGAPI
  61. config CRYPTO_RNG2
  62. tristate
  63. select CRYPTO_ALGAPI2
  64. config CRYPTO_PCOMP
  65. tristate
  66. select CRYPTO_PCOMP2
  67. select CRYPTO_ALGAPI
  68. config CRYPTO_PCOMP2
  69. tristate
  70. select CRYPTO_ALGAPI2
  71. config CRYPTO_MANAGER
  72. tristate "Cryptographic algorithm manager"
  73. select CRYPTO_MANAGER2
  74. help
  75. Create default cryptographic template instantiations such as
  76. cbc(aes).
  77. config CRYPTO_MANAGER2
  78. def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
  79. select CRYPTO_AEAD2
  80. select CRYPTO_HASH2
  81. select CRYPTO_BLKCIPHER2
  82. select CRYPTO_PCOMP2
  83. config CRYPTO_USER
  84. tristate "Userspace cryptographic algorithm configuration"
  85. depends on NET
  86. select CRYPTO_MANAGER
  87. help
  88. Userspace configuration for cryptographic instantiations such as
  89. cbc(aes).
  90. config CRYPTO_MANAGER_DISABLE_TESTS
  91. bool "Disable run-time self tests"
  92. default y
  93. depends on CRYPTO_MANAGER2
  94. help
  95. Disable run-time self tests that normally take place at
  96. algorithm registration.
  97. config CRYPTO_GF128MUL
  98. tristate "GF(2^128) multiplication functions"
  99. help
  100. Efficient table driven implementation of multiplications in the
  101. field GF(2^128). This is needed by some cypher modes. This
  102. option will be selected automatically if you select such a
  103. cipher mode. Only select this option by hand if you expect to load
  104. an external module that requires these functions.
  105. config CRYPTO_NULL
  106. tristate "Null algorithms"
  107. select CRYPTO_ALGAPI
  108. select CRYPTO_BLKCIPHER
  109. select CRYPTO_HASH
  110. help
  111. These are 'Null' algorithms, used by IPsec, which do nothing.
  112. config CRYPTO_PCRYPT
  113. tristate "Parallel crypto engine"
  114. depends on SMP
  115. select PADATA
  116. select CRYPTO_MANAGER
  117. select CRYPTO_AEAD
  118. help
  119. This converts an arbitrary crypto algorithm into a parallel
  120. algorithm that executes in kernel threads.
  121. config CRYPTO_WORKQUEUE
  122. tristate
  123. config CRYPTO_CRYPTD
  124. tristate "Software async crypto daemon"
  125. select CRYPTO_BLKCIPHER
  126. select CRYPTO_HASH
  127. select CRYPTO_MANAGER
  128. select CRYPTO_WORKQUEUE
  129. help
  130. This is a generic software asynchronous crypto daemon that
  131. converts an arbitrary synchronous software crypto algorithm
  132. into an asynchronous algorithm that executes in a kernel thread.
  133. config CRYPTO_AUTHENC
  134. tristate "Authenc support"
  135. select CRYPTO_AEAD
  136. select CRYPTO_BLKCIPHER
  137. select CRYPTO_MANAGER
  138. select CRYPTO_HASH
  139. help
  140. Authenc: Combined mode wrapper for IPsec.
  141. This is required for IPSec.
  142. config CRYPTO_TEST
  143. tristate "Testing module"
  144. depends on m
  145. select CRYPTO_MANAGER
  146. help
  147. Quick & dirty crypto test module.
  148. config CRYPTO_ABLK_HELPER_X86
  149. tristate
  150. depends on X86
  151. select CRYPTO_CRYPTD
  152. config CRYPTO_GLUE_HELPER_X86
  153. tristate
  154. depends on X86
  155. select CRYPTO_ALGAPI
  156. comment "Authenticated Encryption with Associated Data"
  157. config CRYPTO_CCM
  158. tristate "CCM support"
  159. select CRYPTO_CTR
  160. select CRYPTO_AEAD
  161. help
  162. Support for Counter with CBC MAC. Required for IPsec.
  163. config CRYPTO_GCM
  164. tristate "GCM/GMAC support"
  165. select CRYPTO_CTR
  166. select CRYPTO_AEAD
  167. select CRYPTO_GHASH
  168. help
  169. Support for Galois/Counter Mode (GCM) and Galois Message
  170. Authentication Code (GMAC). Required for IPSec.
  171. config CRYPTO_SEQIV
  172. tristate "Sequence Number IV Generator"
  173. select CRYPTO_AEAD
  174. select CRYPTO_BLKCIPHER
  175. select CRYPTO_RNG
  176. help
  177. This IV generator generates an IV based on a sequence number by
  178. xoring it with a salt. This algorithm is mainly useful for CTR
  179. comment "Block modes"
  180. config CRYPTO_CBC
  181. tristate "CBC support"
  182. select CRYPTO_BLKCIPHER
  183. select CRYPTO_MANAGER
  184. help
  185. CBC: Cipher Block Chaining mode
  186. This block cipher algorithm is required for IPSec.
  187. config CRYPTO_CTR
  188. tristate "CTR support"
  189. select CRYPTO_BLKCIPHER
  190. select CRYPTO_SEQIV
  191. select CRYPTO_MANAGER
  192. help
  193. CTR: Counter mode
  194. This block cipher algorithm is required for IPSec.
  195. config CRYPTO_CTS
  196. tristate "CTS support"
  197. select CRYPTO_BLKCIPHER
  198. help
  199. CTS: Cipher Text Stealing
  200. This is the Cipher Text Stealing mode as described by
  201. Section 8 of rfc2040 and referenced by rfc3962.
  202. (rfc3962 includes errata information in its Appendix A)
  203. This mode is required for Kerberos gss mechanism support
  204. for AES encryption.
  205. config CRYPTO_ECB
  206. tristate "ECB support"
  207. select CRYPTO_BLKCIPHER
  208. select CRYPTO_MANAGER
  209. help
  210. ECB: Electronic CodeBook mode
  211. This is the simplest block cipher algorithm. It simply encrypts
  212. the input block by block.
  213. config CRYPTO_LRW
  214. tristate "LRW support"
  215. select CRYPTO_BLKCIPHER
  216. select CRYPTO_MANAGER
  217. select CRYPTO_GF128MUL
  218. help
  219. LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
  220. narrow block cipher mode for dm-crypt. Use it with cipher
  221. specification string aes-lrw-benbi, the key must be 256, 320 or 384.
  222. The first 128, 192 or 256 bits in the key are used for AES and the
  223. rest is used to tie each cipher block to its logical position.
  224. config CRYPTO_PCBC
  225. tristate "PCBC support"
  226. select CRYPTO_BLKCIPHER
  227. select CRYPTO_MANAGER
  228. help
  229. PCBC: Propagating Cipher Block Chaining mode
  230. This block cipher algorithm is required for RxRPC.
  231. config CRYPTO_XTS
  232. tristate "XTS support"
  233. select CRYPTO_BLKCIPHER
  234. select CRYPTO_MANAGER
  235. select CRYPTO_GF128MUL
  236. help
  237. XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
  238. key size 256, 384 or 512 bits. This implementation currently
  239. can't handle a sectorsize which is not a multiple of 16 bytes.
  240. comment "Hash modes"
  241. config CRYPTO_HMAC
  242. tristate "HMAC support"
  243. select CRYPTO_HASH
  244. select CRYPTO_MANAGER
  245. help
  246. HMAC: Keyed-Hashing for Message Authentication (RFC2104).
  247. This is required for IPSec.
  248. config CRYPTO_XCBC
  249. tristate "XCBC support"
  250. select CRYPTO_HASH
  251. select CRYPTO_MANAGER
  252. help
  253. XCBC: Keyed-Hashing with encryption algorithm
  254. http://www.ietf.org/rfc/rfc3566.txt
  255. http://csrc.nist.gov/encryption/modes/proposedmodes/
  256. xcbc-mac/xcbc-mac-spec.pdf
  257. config CRYPTO_VMAC
  258. tristate "VMAC support"
  259. select CRYPTO_HASH
  260. select CRYPTO_MANAGER
  261. help
  262. VMAC is a message authentication algorithm designed for
  263. very high speed on 64-bit architectures.
  264. See also:
  265. <http://fastcrypto.org/vmac>
  266. comment "Digest"
  267. config CRYPTO_CRC32C
  268. tristate "CRC32c CRC algorithm"
  269. select CRYPTO_HASH
  270. select CRC32
  271. help
  272. Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
  273. by iSCSI for header and data digests and by others.
  274. See Castagnoli93. Module will be crc32c.
  275. config CRYPTO_CRC32C_X86_64
  276. bool
  277. depends on X86 && 64BIT
  278. select CRYPTO_HASH
  279. help
  280. In Intel processor with SSE4.2 supported, the processor will
  281. support CRC32C calculation using hardware accelerated CRC32
  282. instruction optimized with PCLMULQDQ instruction when available.
  283. config CRYPTO_CRC32C_INTEL
  284. tristate "CRC32c INTEL hardware acceleration"
  285. depends on X86
  286. select CRYPTO_CRC32C_X86_64 if 64BIT
  287. select CRYPTO_HASH
  288. help
  289. In Intel processor with SSE4.2 supported, the processor will
  290. support CRC32C implementation using hardware accelerated CRC32
  291. instruction. This option will create 'crc32c-intel' module,
  292. which will enable any routine to use the CRC32 instruction to
  293. gain performance compared with software implementation.
  294. Module will be crc32c-intel.
  295. config CRYPTO_CRC32C_SPARC64
  296. tristate "CRC32c CRC algorithm (SPARC64)"
  297. depends on SPARC64
  298. select CRYPTO_HASH
  299. select CRC32
  300. help
  301. CRC32c CRC algorithm implemented using sparc64 crypto instructions,
  302. when available.
  303. config CRYPTO_CRC32
  304. tristate "CRC32 CRC algorithm"
  305. select CRYPTO_HASH
  306. select CRC32
  307. help
  308. CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
  309. Shash crypto api wrappers to crc32_le function.
  310. config CRYPTO_CRC32_PCLMUL
  311. tristate "CRC32 PCLMULQDQ hardware acceleration"
  312. depends on X86
  313. select CRYPTO_HASH
  314. select CRC32
  315. help
  316. From Intel Westmere and AMD Bulldozer processor with SSE4.2
  317. and PCLMULQDQ supported, the processor will support
  318. CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
  319. instruction. This option will create 'crc32-plcmul' module,
  320. which will enable any routine to use the CRC-32-IEEE 802.3 checksum
  321. and gain better performance as compared with the table implementation.
  322. config CRYPTO_GHASH
  323. tristate "GHASH digest algorithm"
  324. select CRYPTO_GF128MUL
  325. help
  326. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  327. config CRYPTO_MD4
  328. tristate "MD4 digest algorithm"
  329. select CRYPTO_HASH
  330. help
  331. MD4 message digest algorithm (RFC1320).
  332. config CRYPTO_MD5
  333. tristate "MD5 digest algorithm"
  334. select CRYPTO_HASH
  335. help
  336. MD5 message digest algorithm (RFC1321).
  337. config CRYPTO_MD5_SPARC64
  338. tristate "MD5 digest algorithm (SPARC64)"
  339. depends on SPARC64
  340. select CRYPTO_MD5
  341. select CRYPTO_HASH
  342. help
  343. MD5 message digest algorithm (RFC1321) implemented
  344. using sparc64 crypto instructions, when available.
  345. config CRYPTO_MICHAEL_MIC
  346. tristate "Michael MIC keyed digest algorithm"
  347. select CRYPTO_HASH
  348. help
  349. Michael MIC is used for message integrity protection in TKIP
  350. (IEEE 802.11i). This algorithm is required for TKIP, but it
  351. should not be used for other purposes because of the weakness
  352. of the algorithm.
  353. config CRYPTO_RMD128
  354. tristate "RIPEMD-128 digest algorithm"
  355. select CRYPTO_HASH
  356. help
  357. RIPEMD-128 (ISO/IEC 10118-3:2004).
  358. RIPEMD-128 is a 128-bit cryptographic hash function. It should only
  359. be used as a secure replacement for RIPEMD. For other use cases,
  360. RIPEMD-160 should be used.
  361. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  362. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  363. config CRYPTO_RMD160
  364. tristate "RIPEMD-160 digest algorithm"
  365. select CRYPTO_HASH
  366. help
  367. RIPEMD-160 (ISO/IEC 10118-3:2004).
  368. RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
  369. to be used as a secure replacement for the 128-bit hash functions
  370. MD4, MD5 and it's predecessor RIPEMD
  371. (not to be confused with RIPEMD-128).
  372. It's speed is comparable to SHA1 and there are no known attacks
  373. against RIPEMD-160.
  374. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  375. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  376. config CRYPTO_RMD256
  377. tristate "RIPEMD-256 digest algorithm"
  378. select CRYPTO_HASH
  379. help
  380. RIPEMD-256 is an optional extension of RIPEMD-128 with a
  381. 256 bit hash. It is intended for applications that require
  382. longer hash-results, without needing a larger security level
  383. (than RIPEMD-128).
  384. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  385. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  386. config CRYPTO_RMD320
  387. tristate "RIPEMD-320 digest algorithm"
  388. select CRYPTO_HASH
  389. help
  390. RIPEMD-320 is an optional extension of RIPEMD-160 with a
  391. 320 bit hash. It is intended for applications that require
  392. longer hash-results, without needing a larger security level
  393. (than RIPEMD-160).
  394. Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
  395. See <http://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
  396. config CRYPTO_SHA1
  397. tristate "SHA1 digest algorithm"
  398. select CRYPTO_HASH
  399. help
  400. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  401. config CRYPTO_SHA1_SSSE3
  402. tristate "SHA1 digest algorithm (SSSE3/AVX)"
  403. depends on X86 && 64BIT
  404. select CRYPTO_SHA1
  405. select CRYPTO_HASH
  406. help
  407. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  408. using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
  409. Extensions (AVX), when available.
  410. config CRYPTO_SHA1_SPARC64
  411. tristate "SHA1 digest algorithm (SPARC64)"
  412. depends on SPARC64
  413. select CRYPTO_SHA1
  414. select CRYPTO_HASH
  415. help
  416. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  417. using sparc64 crypto instructions, when available.
  418. config CRYPTO_SHA1_ARM
  419. tristate "SHA1 digest algorithm (ARM-asm)"
  420. depends on ARM
  421. select CRYPTO_SHA1
  422. select CRYPTO_HASH
  423. help
  424. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
  425. using optimized ARM assembler.
  426. config CRYPTO_SHA1_PPC
  427. tristate "SHA1 digest algorithm (powerpc)"
  428. depends on PPC
  429. help
  430. This is the powerpc hardware accelerated implementation of the
  431. SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
  432. config CRYPTO_SHA256
  433. tristate "SHA224 and SHA256 digest algorithm"
  434. select CRYPTO_HASH
  435. help
  436. SHA256 secure hash standard (DFIPS 180-2).
  437. This version of SHA implements a 256 bit hash with 128 bits of
  438. security against collision attacks.
  439. This code also includes SHA-224, a 224 bit hash with 112 bits
  440. of security against collision attacks.
  441. config CRYPTO_SHA256_SPARC64
  442. tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
  443. depends on SPARC64
  444. select CRYPTO_SHA256
  445. select CRYPTO_HASH
  446. help
  447. SHA-256 secure hash standard (DFIPS 180-2) implemented
  448. using sparc64 crypto instructions, when available.
  449. config CRYPTO_SHA512
  450. tristate "SHA384 and SHA512 digest algorithms"
  451. select CRYPTO_HASH
  452. help
  453. SHA512 secure hash standard (DFIPS 180-2).
  454. This version of SHA implements a 512 bit hash with 256 bits of
  455. security against collision attacks.
  456. This code also includes SHA-384, a 384 bit hash with 192 bits
  457. of security against collision attacks.
  458. config CRYPTO_SHA512_SPARC64
  459. tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
  460. depends on SPARC64
  461. select CRYPTO_SHA512
  462. select CRYPTO_HASH
  463. help
  464. SHA-512 secure hash standard (DFIPS 180-2) implemented
  465. using sparc64 crypto instructions, when available.
  466. config CRYPTO_TGR192
  467. tristate "Tiger digest algorithms"
  468. select CRYPTO_HASH
  469. help
  470. Tiger hash algorithm 192, 160 and 128-bit hashes
  471. Tiger is a hash function optimized for 64-bit processors while
  472. still having decent performance on 32-bit processors.
  473. Tiger was developed by Ross Anderson and Eli Biham.
  474. See also:
  475. <http://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
  476. config CRYPTO_WP512
  477. tristate "Whirlpool digest algorithms"
  478. select CRYPTO_HASH
  479. help
  480. Whirlpool hash algorithm 512, 384 and 256-bit hashes
  481. Whirlpool-512 is part of the NESSIE cryptographic primitives.
  482. Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
  483. See also:
  484. <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
  485. config CRYPTO_GHASH_CLMUL_NI_INTEL
  486. tristate "GHASH digest algorithm (CLMUL-NI accelerated)"
  487. depends on X86 && 64BIT
  488. select CRYPTO_CRYPTD
  489. help
  490. GHASH is message digest algorithm for GCM (Galois/Counter Mode).
  491. The implementation is accelerated by CLMUL-NI of Intel.
  492. comment "Ciphers"
  493. config CRYPTO_AES
  494. tristate "AES cipher algorithms"
  495. select CRYPTO_ALGAPI
  496. help
  497. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  498. algorithm.
  499. Rijndael appears to be consistently a very good performer in
  500. both hardware and software across a wide range of computing
  501. environments regardless of its use in feedback or non-feedback
  502. modes. Its key setup time is excellent, and its key agility is
  503. good. Rijndael's very low memory requirements make it very well
  504. suited for restricted-space environments, in which it also
  505. demonstrates excellent performance. Rijndael's operations are
  506. among the easiest to defend against power and timing attacks.
  507. The AES specifies three key sizes: 128, 192 and 256 bits
  508. See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
  509. config CRYPTO_AES_586
  510. tristate "AES cipher algorithms (i586)"
  511. depends on (X86 || UML_X86) && !64BIT
  512. select CRYPTO_ALGAPI
  513. select CRYPTO_AES
  514. help
  515. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  516. algorithm.
  517. Rijndael appears to be consistently a very good performer in
  518. both hardware and software across a wide range of computing
  519. environments regardless of its use in feedback or non-feedback
  520. modes. Its key setup time is excellent, and its key agility is
  521. good. Rijndael's very low memory requirements make it very well
  522. suited for restricted-space environments, in which it also
  523. demonstrates excellent performance. Rijndael's operations are
  524. among the easiest to defend against power and timing attacks.
  525. The AES specifies three key sizes: 128, 192 and 256 bits
  526. See <http://csrc.nist.gov/encryption/aes/> for more information.
  527. config CRYPTO_AES_X86_64
  528. tristate "AES cipher algorithms (x86_64)"
  529. depends on (X86 || UML_X86) && 64BIT
  530. select CRYPTO_ALGAPI
  531. select CRYPTO_AES
  532. help
  533. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  534. algorithm.
  535. Rijndael appears to be consistently a very good performer in
  536. both hardware and software across a wide range of computing
  537. environments regardless of its use in feedback or non-feedback
  538. modes. Its key setup time is excellent, and its key agility is
  539. good. Rijndael's very low memory requirements make it very well
  540. suited for restricted-space environments, in which it also
  541. demonstrates excellent performance. Rijndael's operations are
  542. among the easiest to defend against power and timing attacks.
  543. The AES specifies three key sizes: 128, 192 and 256 bits
  544. See <http://csrc.nist.gov/encryption/aes/> for more information.
  545. config CRYPTO_AES_NI_INTEL
  546. tristate "AES cipher algorithms (AES-NI)"
  547. depends on X86
  548. select CRYPTO_AES_X86_64 if 64BIT
  549. select CRYPTO_AES_586 if !64BIT
  550. select CRYPTO_CRYPTD
  551. select CRYPTO_ABLK_HELPER_X86
  552. select CRYPTO_ALGAPI
  553. select CRYPTO_LRW
  554. select CRYPTO_XTS
  555. help
  556. Use Intel AES-NI instructions for AES algorithm.
  557. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  558. algorithm.
  559. Rijndael appears to be consistently a very good performer in
  560. both hardware and software across a wide range of computing
  561. environments regardless of its use in feedback or non-feedback
  562. modes. Its key setup time is excellent, and its key agility is
  563. good. Rijndael's very low memory requirements make it very well
  564. suited for restricted-space environments, in which it also
  565. demonstrates excellent performance. Rijndael's operations are
  566. among the easiest to defend against power and timing attacks.
  567. The AES specifies three key sizes: 128, 192 and 256 bits
  568. See <http://csrc.nist.gov/encryption/aes/> for more information.
  569. In addition to AES cipher algorithm support, the acceleration
  570. for some popular block cipher mode is supported too, including
  571. ECB, CBC, LRW, PCBC, XTS. The 64 bit version has additional
  572. acceleration for CTR.
  573. config CRYPTO_AES_SPARC64
  574. tristate "AES cipher algorithms (SPARC64)"
  575. depends on SPARC64
  576. select CRYPTO_CRYPTD
  577. select CRYPTO_ALGAPI
  578. help
  579. Use SPARC64 crypto opcodes for AES algorithm.
  580. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  581. algorithm.
  582. Rijndael appears to be consistently a very good performer in
  583. both hardware and software across a wide range of computing
  584. environments regardless of its use in feedback or non-feedback
  585. modes. Its key setup time is excellent, and its key agility is
  586. good. Rijndael's very low memory requirements make it very well
  587. suited for restricted-space environments, in which it also
  588. demonstrates excellent performance. Rijndael's operations are
  589. among the easiest to defend against power and timing attacks.
  590. The AES specifies three key sizes: 128, 192 and 256 bits
  591. See <http://csrc.nist.gov/encryption/aes/> for more information.
  592. In addition to AES cipher algorithm support, the acceleration
  593. for some popular block cipher mode is supported too, including
  594. ECB and CBC.
  595. config CRYPTO_AES_ARM
  596. tristate "AES cipher algorithms (ARM-asm)"
  597. depends on ARM
  598. select CRYPTO_ALGAPI
  599. select CRYPTO_AES
  600. help
  601. Use optimized AES assembler routines for ARM platforms.
  602. AES cipher algorithms (FIPS-197). AES uses the Rijndael
  603. algorithm.
  604. Rijndael appears to be consistently a very good performer in
  605. both hardware and software across a wide range of computing
  606. environments regardless of its use in feedback or non-feedback
  607. modes. Its key setup time is excellent, and its key agility is
  608. good. Rijndael's very low memory requirements make it very well
  609. suited for restricted-space environments, in which it also
  610. demonstrates excellent performance. Rijndael's operations are
  611. among the easiest to defend against power and timing attacks.
  612. The AES specifies three key sizes: 128, 192 and 256 bits
  613. See <http://csrc.nist.gov/encryption/aes/> for more information.
  614. config CRYPTO_ANUBIS
  615. tristate "Anubis cipher algorithm"
  616. select CRYPTO_ALGAPI
  617. help
  618. Anubis cipher algorithm.
  619. Anubis is a variable key length cipher which can use keys from
  620. 128 bits to 320 bits in length. It was evaluated as a entrant
  621. in the NESSIE competition.
  622. See also:
  623. <https://www.cosic.esat.kuleuven.be/nessie/reports/>
  624. <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
  625. config CRYPTO_ARC4
  626. tristate "ARC4 cipher algorithm"
  627. select CRYPTO_BLKCIPHER
  628. help
  629. ARC4 cipher algorithm.
  630. ARC4 is a stream cipher using keys ranging from 8 bits to 2048
  631. bits in length. This algorithm is required for driver-based
  632. WEP, but it should not be for other purposes because of the
  633. weakness of the algorithm.
  634. config CRYPTO_BLOWFISH
  635. tristate "Blowfish cipher algorithm"
  636. select CRYPTO_ALGAPI
  637. select CRYPTO_BLOWFISH_COMMON
  638. help
  639. Blowfish cipher algorithm, by Bruce Schneier.
  640. This is a variable key length cipher which can use keys from 32
  641. bits to 448 bits in length. It's fast, simple and specifically
  642. designed for use on "large microprocessors".
  643. See also:
  644. <http://www.schneier.com/blowfish.html>
  645. config CRYPTO_BLOWFISH_COMMON
  646. tristate
  647. help
  648. Common parts of the Blowfish cipher algorithm shared by the
  649. generic c and the assembler implementations.
  650. See also:
  651. <http://www.schneier.com/blowfish.html>
  652. config CRYPTO_BLOWFISH_X86_64
  653. tristate "Blowfish cipher algorithm (x86_64)"
  654. depends on X86 && 64BIT
  655. select CRYPTO_ALGAPI
  656. select CRYPTO_BLOWFISH_COMMON
  657. help
  658. Blowfish cipher algorithm (x86_64), by Bruce Schneier.
  659. This is a variable key length cipher which can use keys from 32
  660. bits to 448 bits in length. It's fast, simple and specifically
  661. designed for use on "large microprocessors".
  662. See also:
  663. <http://www.schneier.com/blowfish.html>
  664. config CRYPTO_CAMELLIA
  665. tristate "Camellia cipher algorithms"
  666. depends on CRYPTO
  667. select CRYPTO_ALGAPI
  668. help
  669. Camellia cipher algorithms module.
  670. Camellia is a symmetric key block cipher developed jointly
  671. at NTT and Mitsubishi Electric Corporation.
  672. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  673. See also:
  674. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  675. config CRYPTO_CAMELLIA_X86_64
  676. tristate "Camellia cipher algorithm (x86_64)"
  677. depends on X86 && 64BIT
  678. depends on CRYPTO
  679. select CRYPTO_ALGAPI
  680. select CRYPTO_GLUE_HELPER_X86
  681. select CRYPTO_LRW
  682. select CRYPTO_XTS
  683. help
  684. Camellia cipher algorithm module (x86_64).
  685. Camellia is a symmetric key block cipher developed jointly
  686. at NTT and Mitsubishi Electric Corporation.
  687. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  688. See also:
  689. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  690. config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
  691. tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
  692. depends on X86 && 64BIT
  693. depends on CRYPTO
  694. select CRYPTO_ALGAPI
  695. select CRYPTO_CRYPTD
  696. select CRYPTO_ABLK_HELPER_X86
  697. select CRYPTO_GLUE_HELPER_X86
  698. select CRYPTO_CAMELLIA_X86_64
  699. select CRYPTO_LRW
  700. select CRYPTO_XTS
  701. help
  702. Camellia cipher algorithm module (x86_64/AES-NI/AVX).
  703. Camellia is a symmetric key block cipher developed jointly
  704. at NTT and Mitsubishi Electric Corporation.
  705. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  706. See also:
  707. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  708. config CRYPTO_CAMELLIA_SPARC64
  709. tristate "Camellia cipher algorithm (SPARC64)"
  710. depends on SPARC64
  711. depends on CRYPTO
  712. select CRYPTO_ALGAPI
  713. help
  714. Camellia cipher algorithm module (SPARC64).
  715. Camellia is a symmetric key block cipher developed jointly
  716. at NTT and Mitsubishi Electric Corporation.
  717. The Camellia specifies three key sizes: 128, 192 and 256 bits.
  718. See also:
  719. <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
  720. config CRYPTO_CAST_COMMON
  721. tristate
  722. help
  723. Common parts of the CAST cipher algorithms shared by the
  724. generic c and the assembler implementations.
  725. config CRYPTO_CAST5
  726. tristate "CAST5 (CAST-128) cipher algorithm"
  727. select CRYPTO_ALGAPI
  728. select CRYPTO_CAST_COMMON
  729. help
  730. The CAST5 encryption algorithm (synonymous with CAST-128) is
  731. described in RFC2144.
  732. config CRYPTO_CAST5_AVX_X86_64
  733. tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
  734. depends on X86 && 64BIT
  735. select CRYPTO_ALGAPI
  736. select CRYPTO_CRYPTD
  737. select CRYPTO_ABLK_HELPER_X86
  738. select CRYPTO_CAST_COMMON
  739. select CRYPTO_CAST5
  740. help
  741. The CAST5 encryption algorithm (synonymous with CAST-128) is
  742. described in RFC2144.
  743. This module provides the Cast5 cipher algorithm that processes
  744. sixteen blocks parallel using the AVX instruction set.
  745. config CRYPTO_CAST6
  746. tristate "CAST6 (CAST-256) cipher algorithm"
  747. select CRYPTO_ALGAPI
  748. select CRYPTO_CAST_COMMON
  749. help
  750. The CAST6 encryption algorithm (synonymous with CAST-256) is
  751. described in RFC2612.
  752. config CRYPTO_CAST6_AVX_X86_64
  753. tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
  754. depends on X86 && 64BIT
  755. select CRYPTO_ALGAPI
  756. select CRYPTO_CRYPTD
  757. select CRYPTO_ABLK_HELPER_X86
  758. select CRYPTO_GLUE_HELPER_X86
  759. select CRYPTO_CAST_COMMON
  760. select CRYPTO_CAST6
  761. select CRYPTO_LRW
  762. select CRYPTO_XTS
  763. help
  764. The CAST6 encryption algorithm (synonymous with CAST-256) is
  765. described in RFC2612.
  766. This module provides the Cast6 cipher algorithm that processes
  767. eight blocks parallel using the AVX instruction set.
  768. config CRYPTO_DES
  769. tristate "DES and Triple DES EDE cipher algorithms"
  770. select CRYPTO_ALGAPI
  771. help
  772. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
  773. config CRYPTO_DES_SPARC64
  774. tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
  775. depends on SPARC64
  776. select CRYPTO_ALGAPI
  777. select CRYPTO_DES
  778. help
  779. DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
  780. optimized using SPARC64 crypto opcodes.
  781. config CRYPTO_FCRYPT
  782. tristate "FCrypt cipher algorithm"
  783. select CRYPTO_ALGAPI
  784. select CRYPTO_BLKCIPHER
  785. help
  786. FCrypt algorithm used by RxRPC.
  787. config CRYPTO_KHAZAD
  788. tristate "Khazad cipher algorithm"
  789. select CRYPTO_ALGAPI
  790. help
  791. Khazad cipher algorithm.
  792. Khazad was a finalist in the initial NESSIE competition. It is
  793. an algorithm optimized for 64-bit processors with good performance
  794. on 32-bit processors. Khazad uses an 128 bit key size.
  795. See also:
  796. <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
  797. config CRYPTO_SALSA20
  798. tristate "Salsa20 stream cipher algorithm"
  799. select CRYPTO_BLKCIPHER
  800. help
  801. Salsa20 stream cipher algorithm.
  802. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  803. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  804. The Salsa20 stream cipher algorithm is designed by Daniel J.
  805. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  806. config CRYPTO_SALSA20_586
  807. tristate "Salsa20 stream cipher algorithm (i586)"
  808. depends on (X86 || UML_X86) && !64BIT
  809. select CRYPTO_BLKCIPHER
  810. help
  811. Salsa20 stream cipher algorithm.
  812. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  813. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  814. The Salsa20 stream cipher algorithm is designed by Daniel J.
  815. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  816. config CRYPTO_SALSA20_X86_64
  817. tristate "Salsa20 stream cipher algorithm (x86_64)"
  818. depends on (X86 || UML_X86) && 64BIT
  819. select CRYPTO_BLKCIPHER
  820. help
  821. Salsa20 stream cipher algorithm.
  822. Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
  823. Stream Cipher Project. See <http://www.ecrypt.eu.org/stream/>
  824. The Salsa20 stream cipher algorithm is designed by Daniel J.
  825. Bernstein <djb@cr.yp.to>. See <http://cr.yp.to/snuffle.html>
  826. config CRYPTO_SEED
  827. tristate "SEED cipher algorithm"
  828. select CRYPTO_ALGAPI
  829. help
  830. SEED cipher algorithm (RFC4269).
  831. SEED is a 128-bit symmetric key block cipher that has been
  832. developed by KISA (Korea Information Security Agency) as a
  833. national standard encryption algorithm of the Republic of Korea.
  834. It is a 16 round block cipher with the key size of 128 bit.
  835. See also:
  836. <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
  837. config CRYPTO_SERPENT
  838. tristate "Serpent cipher algorithm"
  839. select CRYPTO_ALGAPI
  840. help
  841. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  842. Keys are allowed to be from 0 to 256 bits in length, in steps
  843. of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
  844. variant of Serpent for compatibility with old kerneli.org code.
  845. See also:
  846. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  847. config CRYPTO_SERPENT_SSE2_X86_64
  848. tristate "Serpent cipher algorithm (x86_64/SSE2)"
  849. depends on X86 && 64BIT
  850. select CRYPTO_ALGAPI
  851. select CRYPTO_CRYPTD
  852. select CRYPTO_ABLK_HELPER_X86
  853. select CRYPTO_GLUE_HELPER_X86
  854. select CRYPTO_SERPENT
  855. select CRYPTO_LRW
  856. select CRYPTO_XTS
  857. help
  858. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  859. Keys are allowed to be from 0 to 256 bits in length, in steps
  860. of 8 bits.
  861. This module provides Serpent cipher algorithm that processes eigth
  862. blocks parallel using SSE2 instruction set.
  863. See also:
  864. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  865. config CRYPTO_SERPENT_SSE2_586
  866. tristate "Serpent cipher algorithm (i586/SSE2)"
  867. depends on X86 && !64BIT
  868. select CRYPTO_ALGAPI
  869. select CRYPTO_CRYPTD
  870. select CRYPTO_ABLK_HELPER_X86
  871. select CRYPTO_GLUE_HELPER_X86
  872. select CRYPTO_SERPENT
  873. select CRYPTO_LRW
  874. select CRYPTO_XTS
  875. help
  876. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  877. Keys are allowed to be from 0 to 256 bits in length, in steps
  878. of 8 bits.
  879. This module provides Serpent cipher algorithm that processes four
  880. blocks parallel using SSE2 instruction set.
  881. See also:
  882. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  883. config CRYPTO_SERPENT_AVX_X86_64
  884. tristate "Serpent cipher algorithm (x86_64/AVX)"
  885. depends on X86 && 64BIT
  886. select CRYPTO_ALGAPI
  887. select CRYPTO_CRYPTD
  888. select CRYPTO_ABLK_HELPER_X86
  889. select CRYPTO_GLUE_HELPER_X86
  890. select CRYPTO_SERPENT
  891. select CRYPTO_LRW
  892. select CRYPTO_XTS
  893. help
  894. Serpent cipher algorithm, by Anderson, Biham & Knudsen.
  895. Keys are allowed to be from 0 to 256 bits in length, in steps
  896. of 8 bits.
  897. This module provides the Serpent cipher algorithm that processes
  898. eight blocks parallel using the AVX instruction set.
  899. See also:
  900. <http://www.cl.cam.ac.uk/~rja14/serpent.html>
  901. config CRYPTO_TEA
  902. tristate "TEA, XTEA and XETA cipher algorithms"
  903. select CRYPTO_ALGAPI
  904. help
  905. TEA cipher algorithm.
  906. Tiny Encryption Algorithm is a simple cipher that uses
  907. many rounds for security. It is very fast and uses
  908. little memory.
  909. Xtendend Tiny Encryption Algorithm is a modification to
  910. the TEA algorithm to address a potential key weakness
  911. in the TEA algorithm.
  912. Xtendend Encryption Tiny Algorithm is a mis-implementation
  913. of the XTEA algorithm for compatibility purposes.
  914. config CRYPTO_TWOFISH
  915. tristate "Twofish cipher algorithm"
  916. select CRYPTO_ALGAPI
  917. select CRYPTO_TWOFISH_COMMON
  918. help
  919. Twofish cipher algorithm.
  920. Twofish was submitted as an AES (Advanced Encryption Standard)
  921. candidate cipher by researchers at CounterPane Systems. It is a
  922. 16 round block cipher supporting key sizes of 128, 192, and 256
  923. bits.
  924. See also:
  925. <http://www.schneier.com/twofish.html>
  926. config CRYPTO_TWOFISH_COMMON
  927. tristate
  928. help
  929. Common parts of the Twofish cipher algorithm shared by the
  930. generic c and the assembler implementations.
  931. config CRYPTO_TWOFISH_586
  932. tristate "Twofish cipher algorithms (i586)"
  933. depends on (X86 || UML_X86) && !64BIT
  934. select CRYPTO_ALGAPI
  935. select CRYPTO_TWOFISH_COMMON
  936. help
  937. Twofish cipher algorithm.
  938. Twofish was submitted as an AES (Advanced Encryption Standard)
  939. candidate cipher by researchers at CounterPane Systems. It is a
  940. 16 round block cipher supporting key sizes of 128, 192, and 256
  941. bits.
  942. See also:
  943. <http://www.schneier.com/twofish.html>
  944. config CRYPTO_TWOFISH_X86_64
  945. tristate "Twofish cipher algorithm (x86_64)"
  946. depends on (X86 || UML_X86) && 64BIT
  947. select CRYPTO_ALGAPI
  948. select CRYPTO_TWOFISH_COMMON
  949. help
  950. Twofish cipher algorithm (x86_64).
  951. Twofish was submitted as an AES (Advanced Encryption Standard)
  952. candidate cipher by researchers at CounterPane Systems. It is a
  953. 16 round block cipher supporting key sizes of 128, 192, and 256
  954. bits.
  955. See also:
  956. <http://www.schneier.com/twofish.html>
  957. config CRYPTO_TWOFISH_X86_64_3WAY
  958. tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
  959. depends on X86 && 64BIT
  960. select CRYPTO_ALGAPI
  961. select CRYPTO_TWOFISH_COMMON
  962. select CRYPTO_TWOFISH_X86_64
  963. select CRYPTO_GLUE_HELPER_X86
  964. select CRYPTO_LRW
  965. select CRYPTO_XTS
  966. help
  967. Twofish cipher algorithm (x86_64, 3-way parallel).
  968. Twofish was submitted as an AES (Advanced Encryption Standard)
  969. candidate cipher by researchers at CounterPane Systems. It is a
  970. 16 round block cipher supporting key sizes of 128, 192, and 256
  971. bits.
  972. This module provides Twofish cipher algorithm that processes three
  973. blocks parallel, utilizing resources of out-of-order CPUs better.
  974. See also:
  975. <http://www.schneier.com/twofish.html>
  976. config CRYPTO_TWOFISH_AVX_X86_64
  977. tristate "Twofish cipher algorithm (x86_64/AVX)"
  978. depends on X86 && 64BIT
  979. select CRYPTO_ALGAPI
  980. select CRYPTO_CRYPTD
  981. select CRYPTO_ABLK_HELPER_X86
  982. select CRYPTO_GLUE_HELPER_X86
  983. select CRYPTO_TWOFISH_COMMON
  984. select CRYPTO_TWOFISH_X86_64
  985. select CRYPTO_TWOFISH_X86_64_3WAY
  986. select CRYPTO_LRW
  987. select CRYPTO_XTS
  988. help
  989. Twofish cipher algorithm (x86_64/AVX).
  990. Twofish was submitted as an AES (Advanced Encryption Standard)
  991. candidate cipher by researchers at CounterPane Systems. It is a
  992. 16 round block cipher supporting key sizes of 128, 192, and 256
  993. bits.
  994. This module provides the Twofish cipher algorithm that processes
  995. eight blocks parallel using the AVX Instruction Set.
  996. See also:
  997. <http://www.schneier.com/twofish.html>
  998. comment "Compression"
  999. config CRYPTO_DEFLATE
  1000. tristate "Deflate compression algorithm"
  1001. select CRYPTO_ALGAPI
  1002. select ZLIB_INFLATE
  1003. select ZLIB_DEFLATE
  1004. help
  1005. This is the Deflate algorithm (RFC1951), specified for use in
  1006. IPSec with the IPCOMP protocol (RFC3173, RFC2394).
  1007. You will most probably want this if using IPSec.
  1008. config CRYPTO_ZLIB
  1009. tristate "Zlib compression algorithm"
  1010. select CRYPTO_PCOMP
  1011. select ZLIB_INFLATE
  1012. select ZLIB_DEFLATE
  1013. select NLATTR
  1014. help
  1015. This is the zlib algorithm.
  1016. config CRYPTO_LZO
  1017. tristate "LZO compression algorithm"
  1018. select CRYPTO_ALGAPI
  1019. select LZO_COMPRESS
  1020. select LZO_DECOMPRESS
  1021. help
  1022. This is the LZO algorithm.
  1023. config CRYPTO_842
  1024. tristate "842 compression algorithm"
  1025. depends on CRYPTO_DEV_NX_COMPRESS
  1026. # 842 uses lzo if the hardware becomes unavailable
  1027. select LZO_COMPRESS
  1028. select LZO_DECOMPRESS
  1029. help
  1030. This is the 842 algorithm.
  1031. comment "Random Number Generation"
  1032. config CRYPTO_ANSI_CPRNG
  1033. tristate "Pseudo Random Number Generation for Cryptographic modules"
  1034. default m
  1035. select CRYPTO_AES
  1036. select CRYPTO_RNG
  1037. help
  1038. This option enables the generic pseudo random number generator
  1039. for cryptographic modules. Uses the Algorithm specified in
  1040. ANSI X9.31 A.2.4. Note that this option must be enabled if
  1041. CRYPTO_FIPS is selected
  1042. config CRYPTO_USER_API
  1043. tristate
  1044. config CRYPTO_USER_API_HASH
  1045. tristate "User-space interface for hash algorithms"
  1046. depends on NET
  1047. select CRYPTO_HASH
  1048. select CRYPTO_USER_API
  1049. help
  1050. This option enables the user-spaces interface for hash
  1051. algorithms.
  1052. config CRYPTO_USER_API_SKCIPHER
  1053. tristate "User-space interface for symmetric key cipher algorithms"
  1054. depends on NET
  1055. select CRYPTO_BLKCIPHER
  1056. select CRYPTO_USER_API
  1057. help
  1058. This option enables the user-spaces interface for symmetric
  1059. key cipher algorithms.
  1060. source "drivers/crypto/Kconfig"
  1061. source crypto/asymmetric_keys/Kconfig
  1062. endif # if CRYPTO