pci.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /*
  2. * arch/xtensa/kernel/pci.c
  3. *
  4. * PCI bios-type initialisation for PCI machines
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. *
  11. * Copyright (C) 2001-2005 Tensilica Inc.
  12. *
  13. * Based largely on work from Cort (ppc/kernel/pci.c)
  14. * IO functions copied from sparc.
  15. *
  16. * Chris Zankel <chris@zankel.net>
  17. *
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/string.h>
  23. #include <linux/init.h>
  24. #include <linux/sched.h>
  25. #include <linux/errno.h>
  26. #include <linux/bootmem.h>
  27. #include <asm/pci-bridge.h>
  28. #include <asm/platform.h>
  29. #undef DEBUG
  30. #ifdef DEBUG
  31. #define DBG(x...) printk(x)
  32. #else
  33. #define DBG(x...)
  34. #endif
  35. /* PCI Controller */
  36. /*
  37. * pcibios_alloc_controller
  38. * pcibios_enable_device
  39. * pcibios_fixups
  40. * pcibios_align_resource
  41. * pcibios_fixup_bus
  42. * pci_bus_add_device
  43. * pci_mmap_page_range
  44. */
  45. struct pci_controller* pci_ctrl_head;
  46. struct pci_controller** pci_ctrl_tail = &pci_ctrl_head;
  47. static int pci_bus_count;
  48. /*
  49. * We need to avoid collisions with `mirrored' VGA ports
  50. * and other strange ISA hardware, so we always want the
  51. * addresses to be allocated in the 0x000-0x0ff region
  52. * modulo 0x400.
  53. *
  54. * Why? Because some silly external IO cards only decode
  55. * the low 10 bits of the IO address. The 0x00-0xff region
  56. * is reserved for motherboard devices that decode all 16
  57. * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
  58. * but we want to try to avoid allocating at 0x2900-0x2bff
  59. * which might have be mirrored at 0x0100-0x03ff..
  60. */
  61. resource_size_t
  62. pcibios_align_resource(void *data, const struct resource *res,
  63. resource_size_t size, resource_size_t align)
  64. {
  65. struct pci_dev *dev = data;
  66. resource_size_t start = res->start;
  67. if (res->flags & IORESOURCE_IO) {
  68. if (size > 0x100) {
  69. printk(KERN_ERR "PCI: I/O Region %s/%d too large"
  70. " (%ld bytes)\n", pci_name(dev),
  71. dev->resource - res, size);
  72. }
  73. if (start & 0x300)
  74. start = (start + 0x3ff) & ~0x3ff;
  75. }
  76. return start;
  77. }
  78. int
  79. pcibios_enable_resources(struct pci_dev *dev, int mask)
  80. {
  81. u16 cmd, old_cmd;
  82. int idx;
  83. struct resource *r;
  84. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  85. old_cmd = cmd;
  86. for(idx=0; idx<6; idx++) {
  87. r = &dev->resource[idx];
  88. if (!r->start && r->end) {
  89. printk (KERN_ERR "PCI: Device %s not available because "
  90. "of resource collisions\n", pci_name(dev));
  91. return -EINVAL;
  92. }
  93. if (r->flags & IORESOURCE_IO)
  94. cmd |= PCI_COMMAND_IO;
  95. if (r->flags & IORESOURCE_MEM)
  96. cmd |= PCI_COMMAND_MEMORY;
  97. }
  98. if (dev->resource[PCI_ROM_RESOURCE].start)
  99. cmd |= PCI_COMMAND_MEMORY;
  100. if (cmd != old_cmd) {
  101. printk("PCI: Enabling device %s (%04x -> %04x)\n",
  102. pci_name(dev), old_cmd, cmd);
  103. pci_write_config_word(dev, PCI_COMMAND, cmd);
  104. }
  105. return 0;
  106. }
  107. struct pci_controller * __init pcibios_alloc_controller(void)
  108. {
  109. struct pci_controller *pci_ctrl;
  110. pci_ctrl = (struct pci_controller *)alloc_bootmem(sizeof(*pci_ctrl));
  111. memset(pci_ctrl, 0, sizeof(struct pci_controller));
  112. *pci_ctrl_tail = pci_ctrl;
  113. pci_ctrl_tail = &pci_ctrl->next;
  114. return pci_ctrl;
  115. }
  116. static void __init pci_controller_apertures(struct pci_controller *pci_ctrl,
  117. struct list_head *resources)
  118. {
  119. struct resource *res;
  120. unsigned long io_offset;
  121. int i;
  122. io_offset = (unsigned long)pci_ctrl->io_space.base;
  123. res = &pci_ctrl->io_resource;
  124. if (!res->flags) {
  125. if (io_offset)
  126. printk (KERN_ERR "I/O resource not set for host"
  127. " bridge %d\n", pci_ctrl->index);
  128. res->start = 0;
  129. res->end = IO_SPACE_LIMIT;
  130. res->flags = IORESOURCE_IO;
  131. }
  132. res->start += io_offset;
  133. res->end += io_offset;
  134. pci_add_resource_offset(resources, res, io_offset);
  135. for (i = 0; i < 3; i++) {
  136. res = &pci_ctrl->mem_resources[i];
  137. if (!res->flags) {
  138. if (i > 0)
  139. continue;
  140. printk(KERN_ERR "Memory resource not set for "
  141. "host bridge %d\n", pci_ctrl->index);
  142. res->start = 0;
  143. res->end = ~0U;
  144. res->flags = IORESOURCE_MEM;
  145. }
  146. pci_add_resource(resources, res);
  147. }
  148. }
  149. static int __init pcibios_init(void)
  150. {
  151. struct pci_controller *pci_ctrl;
  152. struct list_head resources;
  153. struct pci_bus *bus;
  154. int next_busno = 0, i;
  155. printk("PCI: Probing PCI hardware\n");
  156. /* Scan all of the recorded PCI controllers. */
  157. for (pci_ctrl = pci_ctrl_head; pci_ctrl; pci_ctrl = pci_ctrl->next) {
  158. pci_ctrl->last_busno = 0xff;
  159. INIT_LIST_HEAD(&resources);
  160. pci_controller_apertures(pci_ctrl, &resources);
  161. bus = pci_scan_root_bus(NULL, pci_ctrl->first_busno,
  162. pci_ctrl->ops, pci_ctrl, &resources);
  163. pci_ctrl->bus = bus;
  164. pci_ctrl->last_busno = bus->busn_res.end;
  165. if (next_busno <= pci_ctrl->last_busno)
  166. next_busno = pci_ctrl->last_busno+1;
  167. }
  168. pci_bus_count = next_busno;
  169. return platform_pcibios_fixup();
  170. }
  171. subsys_initcall(pcibios_init);
  172. void __init pcibios_fixup_bus(struct pci_bus *bus)
  173. {
  174. if (bus->parent) {
  175. /* This is a subordinate bridge */
  176. pci_read_bridge_bases(bus);
  177. }
  178. }
  179. void pcibios_set_master(struct pci_dev *dev)
  180. {
  181. /* No special bus mastering setup handling */
  182. }
  183. int pcibios_enable_device(struct pci_dev *dev, int mask)
  184. {
  185. u16 cmd, old_cmd;
  186. int idx;
  187. struct resource *r;
  188. pci_read_config_word(dev, PCI_COMMAND, &cmd);
  189. old_cmd = cmd;
  190. for (idx=0; idx<6; idx++) {
  191. r = &dev->resource[idx];
  192. if (!r->start && r->end) {
  193. printk(KERN_ERR "PCI: Device %s not available because "
  194. "of resource collisions\n", pci_name(dev));
  195. return -EINVAL;
  196. }
  197. if (r->flags & IORESOURCE_IO)
  198. cmd |= PCI_COMMAND_IO;
  199. if (r->flags & IORESOURCE_MEM)
  200. cmd |= PCI_COMMAND_MEMORY;
  201. }
  202. if (cmd != old_cmd) {
  203. printk("PCI: Enabling device %s (%04x -> %04x)\n",
  204. pci_name(dev), old_cmd, cmd);
  205. pci_write_config_word(dev, PCI_COMMAND, cmd);
  206. }
  207. return 0;
  208. }
  209. #ifdef CONFIG_PROC_FS
  210. /*
  211. * Return the index of the PCI controller for device pdev.
  212. */
  213. int
  214. pci_controller_num(struct pci_dev *dev)
  215. {
  216. struct pci_controller *pci_ctrl = (struct pci_controller*) dev->sysdata;
  217. return pci_ctrl->index;
  218. }
  219. #endif /* CONFIG_PROC_FS */
  220. /*
  221. * Platform support for /proc/bus/pci/X/Y mmap()s,
  222. * modelled on the sparc64 implementation by Dave Miller.
  223. * -- paulus.
  224. */
  225. /*
  226. * Adjust vm_pgoff of VMA such that it is the physical page offset
  227. * corresponding to the 32-bit pci bus offset for DEV requested by the user.
  228. *
  229. * Basically, the user finds the base address for his device which he wishes
  230. * to mmap. They read the 32-bit value from the config space base register,
  231. * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
  232. * offset parameter of mmap on /proc/bus/pci/XXX for that device.
  233. *
  234. * Returns negative error code on failure, zero on success.
  235. */
  236. static __inline__ int
  237. __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
  238. enum pci_mmap_state mmap_state)
  239. {
  240. struct pci_controller *pci_ctrl = (struct pci_controller*) dev->sysdata;
  241. unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
  242. unsigned long io_offset = 0;
  243. int i, res_bit;
  244. if (pci_ctrl == 0)
  245. return -EINVAL; /* should never happen */
  246. /* If memory, add on the PCI bridge address offset */
  247. if (mmap_state == pci_mmap_mem) {
  248. res_bit = IORESOURCE_MEM;
  249. } else {
  250. io_offset = (unsigned long)pci_ctrl->io_space.base;
  251. offset += io_offset;
  252. res_bit = IORESOURCE_IO;
  253. }
  254. /*
  255. * Check that the offset requested corresponds to one of the
  256. * resources of the device.
  257. */
  258. for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
  259. struct resource *rp = &dev->resource[i];
  260. int flags = rp->flags;
  261. /* treat ROM as memory (should be already) */
  262. if (i == PCI_ROM_RESOURCE)
  263. flags |= IORESOURCE_MEM;
  264. /* Active and same type? */
  265. if ((flags & res_bit) == 0)
  266. continue;
  267. /* In the range of this resource? */
  268. if (offset < (rp->start & PAGE_MASK) || offset > rp->end)
  269. continue;
  270. /* found it! construct the final physical address */
  271. if (mmap_state == pci_mmap_io)
  272. offset += pci_ctrl->io_space.start - io_offset;
  273. vma->vm_pgoff = offset >> PAGE_SHIFT;
  274. return 0;
  275. }
  276. return -EINVAL;
  277. }
  278. /*
  279. * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
  280. * device mapping.
  281. */
  282. static __inline__ void
  283. __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
  284. enum pci_mmap_state mmap_state, int write_combine)
  285. {
  286. int prot = pgprot_val(vma->vm_page_prot);
  287. /* Set to write-through */
  288. prot = (prot & _PAGE_CA_MASK) | _PAGE_CA_WT;
  289. #if 0
  290. if (!write_combine)
  291. prot |= _PAGE_WRITETHRU;
  292. #endif
  293. vma->vm_page_prot = __pgprot(prot);
  294. }
  295. /*
  296. * Perform the actual remap of the pages for a PCI device mapping, as
  297. * appropriate for this architecture. The region in the process to map
  298. * is described by vm_start and vm_end members of VMA, the base physical
  299. * address is found in vm_pgoff.
  300. * The pci device structure is provided so that architectures may make mapping
  301. * decisions on a per-device or per-bus basis.
  302. *
  303. * Returns a negative error code on failure, zero on success.
  304. */
  305. int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
  306. enum pci_mmap_state mmap_state,
  307. int write_combine)
  308. {
  309. int ret;
  310. ret = __pci_mmap_make_offset(dev, vma, mmap_state);
  311. if (ret < 0)
  312. return ret;
  313. __pci_mmap_set_pgprot(dev, vma, mmap_state, write_combine);
  314. ret = io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
  315. vma->vm_end - vma->vm_start,vma->vm_page_prot);
  316. return ret;
  317. }